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It remains a challenging problem to tightly estimate the worst case response time of an application in a dis-
tributed embedded system, especially when there are dependencies between tasks. We discovered that the
state-of-the art techniques considering task dependencies either fail to obtain a conservative bound or pro-
duce a loose upper bound. We propose a novel conservative performance analysis, called hybrid performance
analysis, combining the response time analysis technique and the scheduling time bound analysis technique
to compute a tighter bound fast. Through extensive experiments with randomly generated graphs, superior
performance of our proposed approach compared with previous methods is confirmed.
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1. INTRODUCTION
For the design of embedded systems that support real-time applications, it is required
to guarantee the satisfaction of real-time constraints. After applications are mapped
to a candidate architecture, we check the feasibility of the architecture by estimat-
ing the performance. Fast estimation enables us to explore the wider design space of
architecture selection and application mapping. More accurate estimation will reduce
the system cost. The performance analysis problem addressed in this paper is to es-
timate the worst case response time (WCRT) of an application that is executed on a
distributed embedded system. A good example can be found in an intelligent safety ap-
plication in a car where there is a tight requirement on the worst case response time
from the sensor input to the actuator output.

Despite a long history of research over two decades, it still remains a challenging
problem to tightly estimate the WCRT of an application in a distributed embedded
system based on a fixed priority scheduling policy. Since the response time of an ap-
plication is affected by interference between applications as well as execution time
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39:2 J. Choi et al.

variation of tasks, all possible execution scenarios should be considered to obtain the
exact WCRT. There are some approaches proposed, such as a model checking approach
[Brekling et al. 2008] and an ILP-based approach [Kim et al. 2012], to find the accurate
WCRT. However, they require exponential time complexity. The exact WCRT analysis
problem is known to be NP-complete [Yen and Wolf 1998].

Analytical techniques have been extensively researched to obtain a tight upper
bound of the WCRT with diverse assumptions on target architectures and applica-
tions. This paper assumes that an application is given as a task graph that represents
data dependency between tasks and the execution time of a task may vary. It is as-
sumed that each task has a fixed priority. In addition, we support arbitrary mixture
of preemptive and non-preemptive processing elements in the system. To analyze the
WCRT of an application, this paper proposes a performance analysis technique, called
hybrid performance analysis (HPA), combining a scheduling time bound analysis and
a response time analysis (RTA). The proposed technique is proven to be conservative
and experimental results show that it provides a tighter bound of WCRT than the
other state-of-the-art techniques.

The rest of this paper is organized as follows. In Section 2 we overview the related
work and highlight the contributions of this work. In Section 3, the application model
and the system model assumed in this paper are formally described. Section 4 reviews
the Y&W method and proves that it is not conservative by showing some counter ex-
amples. The proposed technique and some optimization techniques are explained in
Sections 5 and 6 respectively. We summarize the overall algorithm in Section 7. Exper-
imental results are discussed in Section 8. Finally, we conclude this paper in Section
9.

2. RELATED WORK
Response time analysis (RTA) was first introduced for a single processor system based
on preemptive scheduling of independent tasks that have fixed priorities, fixed exe-
cution times, and relative deadline constraints equal to their periods [Lehoczky et al.
1989]. Extensive research efforts [Lehoczky 1990, Audsley et al. 1993] have been per-
formed to release the restricted assumptions. Pioneered by K. Tindell et al. [Tindell
and Clark 1994], a group of researchers extended the schedulability analysis tech-
nique to distributed systems; for example, dynamic offset of tasks [Palencia and Har-
bour 1998], communication scheduling [Tindel et all. 1995], partitioned scheduling
with shared resources [Schliecker and Ernst 2010], and earliest deadline first (EDF)
scheduling [Pellizzoni and Lipari 2007]. There exist some researches that consider
precedence constraints between tasks, by assigning the offset and deadline of each
task conservatively considering every possible execution ordering between tasks [Pa-
lencia and Harbour 1998, Tindel et all. 1995, Pellizzoni and Lipari 2007], which usu-
ally incur significant overhead of overestimation and computation complexity. On the
other hand, we handle the dependent tasks directly, assuming that a task is released
immediately after all predecessors complete.

To the best of our knowledge, the state of the art RTA method for dependent tasks
was proposed by Yen and Wolf [Yen and Wolf 1998], denoted as the Y&W method here-
after. It considers data dependencies between tasks and variable execution times of
tasks directly in the response time analysis but supports only preemptive systems.
Several extensions have been made to the Y&W method, with considering communica-
tion [Yen and Wolf 1995] and control dependencies [Pol et al. 2000]. Unfortunately, the
conservativeness has not been proven for the Y&W method. This paper discovers that
the Y&W method is actually not conservative by showing counter-examples for which
the Y&W method produces a shorter response time than the worst case response time
in Section 4.
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Non-preemptive processing elements are supported in the MAST suite [Harbour
2001] that includes several schedulability analysis techniques. But they support only
chain-structured graphs where a task has a single input and/or a single output port.

There is a compositional approach distinguished from the holistic RTA-based ap-
proaches. SymTA/S [Henia et al. 2005] which is a well-known compositional analy-
sis, performs the analysis in a modular manner. It analyzes the performance for each
processing component and abstracts its result as an event stream at the component
boundary. While the compositional approach achieves scalability, it sacrifices estima-
tion accuracy by ignoring the release time constraint coming from data dependencies
between tasks running on different processing elements.

Recently, a holistic WCRT analysis approach, called scheduling time bound analysis
(STBA), has been proposed [Kim et al. 2013]. It computes the conservative time bound
for each task within which the task will be scheduled, considering all possible schedul-
ing patterns. In the STBA approach, however, the task graphs should be expanded up
to the least common multiple (LCM) of their periods, which limits the scalability of
the technique. While the proposed technique adopts the basic time bound idea of the
STBA method to analyze how data dependencies affect the release times of tasks in
the same application, it considers inter-application interference analytically, based on
the response time analysis.

3. PROBLEM DEFINITION

𝜏0 𝜏1

𝜏3 𝜏4

𝒯0

𝒯1

(a) Task graphs

PE0
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𝜏0
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𝑝𝑟𝑖
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𝑝𝑟𝑖
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𝑝𝑟𝑖
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𝑝𝑟𝑖

> 𝜏2
𝑝𝑟𝑖
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𝑝𝑟𝑖

Scheduling PE0, PE2 ⊂ 𝒫, PE1 ⊂ 𝒩

Task

Graph
𝒯𝒑, 𝒯𝒋

𝒯0 100, 0

𝒯1 100, 0

𝜏2

𝜏5

PE1

𝜏1, 𝜏4

PE2

𝜏2, 𝜏3

Fig. 1. (a) Example task graphs, (b) task graph information, (c) task mapping and task information

We formally describe the application model and the system model assumed in this
paper. An input application, Ti, is represented as an acyclic task graph as illus-
trated in Fig. 1 (a). In a task graph, T = {V, E}, V represents a set of tasks and
E = {(τ1, τ2)|τ1, τ2 ∈ V} a set of edges to represent execution dependencies between
tasks. If a task has more than one input edge, it is released after all predecessor tasks
are completed. An application T can be initiated periodically or sporadically, character-
ized by a tuple (T p, T j) where T p and T j represent the period and the maximum jitter,
respectively. For sporadic activation, T p denotes the minimum initiation interval. Task
graph T is given a relative deadline T d to meet once activated. We assume that T d is
not greater than T p in this paper. The task graph that task τi belongs to is denoted by
Tτi .

A system consists of a set of processing elements (PEs) as shown in Fig. 1 (c). A
task is a basic mapping unit onto a processing element. We assume that task map-
ping is given and fixed. The processing element that the task τ is mapped to is de-
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noted by τproc. For each task τ, the varying execution time is represented as a tuple
[τBCET , τWCET ] indicating the lower and the upper bound on the mapped PE. Note
that a communication network can be modeled as a separate PE. For instance, the PE
graph of Fig. 1 (c) represents a system that consists of two processors (PE0 and PE2)
connected to a bus (PE1). Tasks mapped to a communication network deliver messages
between two computation tasks; for example τ1 indicates message communication be-
tween two computation tasks, τ0 and τ2.

We assume that the scheduling policy of a PE can be either a fixed-priority pre-
emptive scheduling or a fixed-priority non-preemptive scheduling. P denotes a set of
PEs that have preemptive scheduling policy, and N denotes a set of PEs with non-
preemptive scheduling policy. A PE belongs to either P or N . In Fig. 1, PE0 and
PE2 use preemptive scheduling while PE1 serves the communication tasks in a non-
preemptive fashion; a higher-priority message cannot preempt the current message
delivery. We assume that all tasks mapped to each PE have distinct priorities to make
the scheduling order deterministic. The priority of the task τ is denoted by τpri.

The WCRT of task graph T, denoted byRT , is defined as the time difference between
the latest finish time and the earliest release time among tasks in the task graph.

4. REVIEW OF THE Y&W METHOD
Since the Y&W method is known as a state-of-the art schedulability analysis technique
that considers dependency between tasks directly, we select it as the reference tech-
nique for comparison in this paper. In this section we review the key ideas of the Y&W
method and prove that it fails to find a conservative upper bound of the WCRT. Since
dependency between tasks constrains the release times of tasks, the Y&W method
proposed three techniques: separation analysis, phase adjustment, and period shifting.

PE0(𝒫)

𝜏1 𝜏2

𝜏0

𝒯1(100, 0)

[10, 10] [10, 10]

[10, 10]
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𝑝𝑟𝑖

> 𝜏1
𝑝𝑟𝑖

> 𝜏2
𝑝𝑟𝑖
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𝜏0

𝜏2

𝜏1

𝜏0
𝜏0

𝜏0

𝜏1
𝜏1

𝜏0

𝜏0
𝜏0 𝜏1

𝜏0

𝜏2

𝜏2

0 50

𝜏0

𝜏2

𝜏1

(a) WCRT from baseline response time analysis

(b) Actual WCRT

30

: Execution : Preemption

Fig. 2. A simple example of WCRT estimation

The baseline response time analysis for independent tasks defines the response time
ri of a task τi as an iterative form:

ri = τWCET
i +

∑
τj∈{τj |τprii

<τpri
j
}

⌈
ri
T pτj

⌉
· τWCET
j (1)

where set τj ∈ {τj |τprii < τprij } represents the set of higher priority tasks that may
preempt task τi. Note that the second term subsumes all possible preemption delays
by higher priority tasks for conservative estimation. When the baseline RTA is di-
rectly applied to tasks with dependency, the analytical WCRT of a task graph may
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become much larger than the actual WCRT. Consider an example in Fig. 2. Unless the
task dependency is considered, τ0 can preempt both τ1 and τ2, and τ1 can preempt τ2.
Therefore, WCRT becomes r1 + r2 = 50 as shown in Fig. 2 (a) while the tight WCRT is
30. If the dependency is considered, τ0 can preempt either τ1 or τ2 but not both, and τ1
cannot preempt τ2, as shown in Fig. 2 (b).

In the Y&W method, the release times and the finish times of tasks are computed,
considering data dependencies between tasks. If the earliest release time (τminRj ) of
a higher priority task τj is larger than the latest finish time (τmaxFi ) of a given task
τi, τj cannot preempt τi. And if there is a direct path between a higher priority task
and a given task, no preemption will occur. These cases are identified in the separation
analysis to check the preemption possibility between two tasks in the same task graph;
the separation analysis finds that τ1 cannot preempt τ2 in the example of Fig. 2.

The phase adjustment technique in the Y&W method computes the distance, called
phase, between the release times of the preempting and the preempted tasks to iden-
tify the impossible preemptions along dependent tasks. The request phase φri,j means
the minimum distance from the request(release) time of τi to the next release time of
τj . Note that if the dependency is not considered, the request phase will be 0 since the
worst case preemption occurs when the preempting task is released at the same time
as the preempted task. The request phase is dependent on the finish phase of its pre-
decessors. The finish phase φfi,j means the minimum distance from the finish time of τi
to the next release time of τj . The phase adjustment technique modifies the response
time formula of equation (1) as follows:

φri,j = max
(
0, min
τk∈pred(τi)

(φfk,j + τmaxFk )− max
τk∈pred(τi)

τmaxFk

)
(2)

ri = τWCET
i +

∑
τj∈{τj |τprii

<τpri
j
}−separated[τi]

⌈
max(0, ri − φri,j)

T pτj

⌉
· τWCET
j (3)

φfi,j =

{
max(0, φri,j − ri), if τj 6∈ {τj |τprii < τprij } − separated[τi]

(φri,j − ri) mod T pj otherwise (4)

where separated[τi] is a set of higher priority tasks excluded in the preemption delay
computation by the separation analysis, and pred(τi) is the immediate predecessor set
of task τi. In the modified formula, the request phase is subtracted from the response
time in the preemption count computation. For conservative computation, the request
phase and the finish phase are made non-negative. For detailed explanation of the
formula, refer to [Yen and Wolf 1998].

For a preempting task τj , we compute the request phase and the finish phase for
each task τi of a task graph. For a source task τi, φri,j is set to 0, meaning that the
preempting task can be released at the same time to make τi experience the maximum
number of preemptions by τj . After computing the response time, finish phase φfi,j is
updated. The request phase for a non-source task is updated in turn based on the
finish phases of its predecessors. In the example of Fig. 2, the request phase φr1,0 is
initialized to 0 and the response time of τ1 is 20. The finish phase φf1,0 is updated to
(0− 20) mod 50 = 30, and the request phase φr2,0 is inherited from φf1,0. Since τ1 and τ2
are separated, the response time of τ2 becomes 10 = 10 + dmax(0,10−30)

50 e · 10. If we sum
the response times of τ1 and τ2, we obtain the actual WCRT that is 30.
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Consider a preempting task with varying release time. The release time may vary
due to finish time variation of its predecessor. Then, the preempting task will not be
scheduled periodically, but in a bursty fashion, which increases the preemption count.
The period shifting technique is used in the Y&W method to account for this effect.
Let τj be a task that may preempt τi and of which release time varies between τminRj

and τmaxRj that indicate the minimum and maximum release time of τj respectively.
To compute the maximum number of preemptions by τj onto τi, we need to consider
the release time difference.

The authors of the Y&W method did not clarify how to integrate the period shifting
technique and the phase adjustment technique in a single formula. If both techniques
are applied separately in sequence, the conventional RTA equation is modified to the
following formula, which is used as the Y&W method in this paper.

ri = τWCET
i +

∑
τj∈{τj |τprii

<τpri
j
}−separated[τi]

⌈
max(0, ri − φri,j + τmaxRj − τminRj )

T pτj

⌉
· τWCET
j

(5)

4.1. The Y&W method is NOT conservative
Unfortunately, the Y&W method fails to find the maximum preemption count. Con-
sider a simple example of Fig. 3. Since τ2 has no predecessor and a zero jitter, re-
lease time is always 0. Then the response time of τ1 from the Y&W method becomes
25 = 20 + d (25+0−0)

30 e · 5 as shown in Fig. 3 (a), in which τ1 can be preempted once by
τ2. But τ2 can preempt τ1 twice and the response time of τ1 can be as large as 30 as
shown in Fig. 3 (b) when the start of τ2 is delayed by the preemption of τ0. Since the
Y&W method only considers the release time variation by predecessors but not the
start time variation by preemption, it fails to obtain a conservative WCRT.

10 15

10

PE0(𝒫)

𝜏0 𝜏1

𝜏2

𝒯0(60, 0)

[10, 10] [20, 20]

[5, 5]

𝒯1(30, 0)

𝜏0
𝑝𝑟𝑖

> 𝜏2
𝑝𝑟𝑖

> 𝜏1
𝑝𝑟𝑖

𝜏0

0 30

𝜏1

𝜏2

0 30

(b) Actual WCRT of 𝒯0

(a)  Underestimated WCRT of 𝒯0

shifting 𝒯𝜏2
𝑝

𝜏0

𝜏1

𝜏2 No shifting
𝒯𝜏2
𝑝

15

: Execution : Preemption

Fig. 3. An underestimated WCRT example in the Y&W method

Another under-estimate example of Fig. 4 shows that period shifting and phase ad-
justment are inter-dependent while the Y&W method treats them separately. In the
Y&W method, φf1,3 and φr2,3 are 60 assuming that task τ3 is first released at time 50
simultaneously with τ1 and the next release will be 100 time units after ignoring the
period shifting effect. But the worst case of preemption occurs when τ3 is first released
at time 0. Then the next release of τ3 can appear after τ2 executes 10 time units as
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shown in Fig. 4. So, the WCRT of T0 is 110 since τ3 appears once per T0 execution in
the Y&W method while it is 130 since τ3 appears twice per T0 execution in the worst
case. Motivated from this example, the proposed technique considers period shifting
and phase adjustment holistically, which will be explained in the next section.

PE0(𝒫)

𝜏0 𝜏1

𝜏3

𝒯0(200, 0)

[50, 50] [20, 20]

[20, 20]
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𝑝𝑟𝑖

> 𝜏3
𝑝𝑟𝑖

> 𝜏1
𝑝𝑟𝑖

> 𝜏2
𝑝𝑟𝑖

𝜏2

[20, 20] 𝜏0

𝜏1

𝜏3

𝜏2

0 100

ϕ13
𝑓
= ϕ23

𝑟 = 60

shifting

: Execution : Preemption

Fig. 4. An example of incorrect phase adjustment

4.2. Overestimation made by the Y&W method

PE0(𝒫)

𝜏0 𝜏1

𝜏4

𝒯0(200, 0)

[40, 40] [30, 30]

[10, 10]

𝒯1(50, 0)

𝜏3
𝑝𝑟𝑖

> 𝜏4
𝑝𝑟𝑖

> 𝜏0
𝑝𝑟𝑖

> 𝜏1
𝑝𝑟𝑖
>𝜏2

𝑝𝑟𝑖

𝜏2

[30, 30]

0 60

(b) Actual WCRT of 𝒯0

(a)  Overestimated WCRT of 𝒯0

shifting

𝜏3

𝜏0
𝜏4PE1(𝒫)

𝜏3

[0, 40]

𝜏1
𝜏2

10 100 140

0 60

shifting

𝜏3

𝜏0
𝜏4

𝜏1
𝜏2

10 100 150

: Execution : Preemption

Fig. 5. Overestimation due to repeated period shifting

In the period shifting technique, the release time difference is added to the response
time in the preemption delay computation. It should be applied only once in a sequence
of releases of the preempting task. But the Y&W method applies period shifting to all
tasks independently, as shown in the example of Fig. 5 where period shifting is applied
to all tasks, τ0 to τ2, in T0. As a result τ4 makes 5 preemptions in total to make the
WCRT of the task graph be 150. But the actual WCRT is 140 as shown in Fig. 5 (b)
since τ4 can make 4 preemptions at most. In the Y&W method, period shifting value for
τ4 is 40 because of the execution time variation of its predecessor τ3. Then τ4 preempts
τ0 twice to make the WCRT of τ0 be 60 = 40 + d (60−0+40)

50 e · 10. φr1,4 is computed to
40 = (0 − 60) mod 50, and the WCRT of τ1 is 40 = 30 + d (40−40+40)

50 e · 10. Since φr2,4
becomes 0 = 40 − 40, the WCRT of τ2 is 50 = 30 + d (50−0+40)

50 e · 10, experiencing two
preemptions. By integrating period shifting into phase adjustment we could improve
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the tightness of the WCRT by removing the problem of redundant application of period
shifting, which will be explained in the next section.

PE0(𝒫)

𝜏0 𝜏1

𝜏3

𝒯0(200, 0)

[10, 10] [30, 30]

[10, 10]

𝜏0
𝑝𝑟𝑖

> 𝜏1
𝑝𝑟𝑖

> 𝜏2
𝑝𝑟𝑖

> 𝜏3
𝑝𝑟𝑖

> 𝜏4
𝑝𝑟𝑖

𝜏4

[10, 10]

PE1(𝒫)

𝜏2

[50, 50]

0

𝜏0

𝜏2
𝜏1

𝜏3
𝜏4

100

0

𝜏0

𝜏2
𝜏1

𝜏3
𝜏4

70

(b) Actual WCRT of 𝒯0

(a)  Overestimated WCRT of 𝒯0

50 preemption delay

20 preemption delay

: Execution : Preemption

Fig. 6. An example of overestimation (Y&W method)

Another cause of overestimation comes from the fact that the Y&W method does not
consider partial preemptions. In the example of Fig. 6, τ1 cannot preempt τ4 since two
tasks are separated. On the other hand, τ2 and τ3 are not separated because τ3 can
be released during the execution of τ2. In the Y&W method, however, the WCET of τ3
is wholly added to the preemption delay of τ2. Partial preemption may occur between
tasks in the same task graph as shown in this example, which is not considered in
the baseline response time analysis. In the proposed analysis, however, we perform
scheduling of tasks in the same task graph so that we could detect this kind of partial
preemption precisely.

5. PROPOSED ANALYSIS TECHNIQUE: HYBRID PERFORMANCE ANALYSIS
The proposed technique called HPA (hybrid performance analysis) extends and com-
bines the STBA approach and the RTA method: the former is to account for interfer-
ence between tasks in a same task graph and the latter for interference from the other
task graphs.

Fig. 7 shows the algorithm flow of the proposed technique. First, we compute three
pairs of time bound information for each task: release time bound(τminRi , τmaxRi ), start
time bound (τminSi , τmaxSi ), and finish time bound (τminFi , τmaxFi ). Unlike the STBA
technique [Kim et al. 2013] that assumes to schedule all task graphs together, the pro-
posed technique schedules each task graph separately at the time bound computation
step. The interference from the other task graphs is considered by the holistic phase
adjustment technique based on the period shifting amount computed in the previous
iteration. A period shifting amount is updated after time bound computation. This
process is repeated until every value is converged.

Problem

Input

Time Bound

Computation

with

Phase adjustment

Period Shifting

Computation

Any value

is changed

Print 

Output

Yes

No

Fig. 7. The proposed HPA technique overall flow

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



A Hybrid Performance Analysis Technique for Distributed Real-Time Embedded Systems 39:9

In this section, we explain the key techniques of the proposed analysis and discuss
how to achieve a safe and tighter bound of the WCRT. At first, how to compute time
bounds is explained. Secondly, we derive and optimize a conservative bound of a pe-
riod shifting amount from τi to τt which bounds the maximum preemption count of
τi between release time and the maximum start time of τt. Finally, period shifting is
combined with phase adjustment technique in the proposed holistic phase adjustment
technique.

5.1. Time Bound Computation

Let τ releaset , τstartt , and τfinisht denote the actual release time, start time, and finish
time of task τt. In our task graph model, the release time of a task is the maximum
finish time of its immediate predecessors , as summarized in the following definition.

DEFINITION 1.

τ releaset =

{
T releaseτt , if τt is a source task

maxτp∈pred(τt) τ
finish
p , otherwise

where T releaseτt denotes the release time of the task graph. Then the minimum (τminRt )
and maximum (τmaxRt ) release time bound pair is computed as follows:

τminRt =

{
0, if τt is a source task

maxτp∈pred(τt) τ
minF
p , otherwise (6)

τmaxRt =

{
T jτt , if τt is a source task

maxτp∈pred(τt) τ
maxF
p , otherwise (7)

The earliest and the latest release times of a non-source task are defined as the max-
imum value among the earliest and the latest finish times of predecessors, respectively
since it becomes executable only after all predecessor tasks are finished.

LEMMA 1. τminRt and τmaxRt are conservative, or τminRt ≤ τ releaset ≤ τmaxRt .

PROOF. If τt is a source task, τminRt = 0 ≤ τ releaset ≤ T jτt = τmaxRt since 0 ≤ T releaseτt ≤
T jτt .

For non-source task τt, assume that it holds for all predecessor tasks of
τt. Since τminRt = maxτp∈pred(τt) τ

minF
p ≤ maxτp∈pred(τt) τ

finish
p = τ releaset ≤

maxτp∈pred(τt) τ
maxF
p = τmaxRt , τminRt ≤ τ releaset ≤ τmaxRt .

By induction, the lemma holds. Q.E.D.

For task τt to start, it should be already released and the processor must be available:
The start time of τt is not smaller than the release time and the maximum time among
finish times of tasks that have higher priority, start earlier, and finish after task τt is
released. Formally, the start time is defined as follows:

DEFINITION 2. τstartt = max(τ releaset ,maxτs∈Γτt
τfinishs )

where set Γτt is defined as Γτt = {τs|τprocs = τproct , τpris > τprit , τ releaset <
τfinishs , τstarts ≤ τstartt } for the preemptive scheduling policy, and Γτt = {τs|τprocs =

τproct , (τpris > τprit , τ releaset < τfinishs , τstarts ≤ τstartt )or(τpris < τprit , τstarts < τ releaset <
τfinishs )} for the non-preemptive scheduling policy.

One the other hand, the earliest start time τminSt is formulated as follows:

τminSt = max(τminRt , max
τs∈Aτt

τminFs ) (8)
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where set Aτt for the preemptive scheduling policy is defined as Aτt = {τs|τs ∈
Tτt , τprocs = τproct , τpris > τprit , τminRt < τminFs , τmaxSs ≤ τminSt } and for the non-
preemptive scheduling policy as Aτt = {τs|τs ∈ Tτt , τprocs = τproct , (τpris > τprit , τminRt <

τminFs , τmaxSs ≤ τminSt )or(τpris < τprit , τmaxSs < τminRt < τminFs )}. If higher priority task
τs always starts before τminSt and the earliest finish time of τs is later than τminRt , τt
should wait for the completion of τs. In case a non-preemptive scheduling is used, a
lower priority task that starts before τminRt is included. Note that we only consider the
tasks in the same task graph since the other tasks can appear at any time, so they
should be ignored for conservative estimation of the minimum start time.

To estimate the maximum start time τmaxSt for conservative estimation, we should
consider all possible preemptions.

τmaxSt = τmaxRt +Delaylt +Delayht (9)
where Delaylt and Delayht denote the amounts of preemption between the release

time and the start time by lower and higher priority tasks respectively. For the pre-
meptive scheduling policy, Delaylt is zero. In case a lower priority task is running when
τt is released, τt should wait until the current lower priority task finishes in the non-
preemptive scheduling policy, which is accounted as follows:

Delaylt =


0, if ∀τp∈pred(τt)(τ

proc
p = τproct )

max

 max
τs∈Bτt

min(τWCET
s , τmaxFs − τmaxRt ),

max
τs∈Cτt

τWCET
s

 , otherwise

(10)
where Bτt = {τs|τs ∈ Tτt , τprocs = τproct , τpris < τprit , τminSs < τmaxRt < τmaxFs } and

Cτt = {τs|τs 6∈ Tτt , τprocs = τproct , τpris < τprit }. Set Bτt includes lower priority tasks in the
same task graph that may start earlier than τt and delay the start time of τt. Note that
partial blocking is considered in the formula by τmaxFs − τmaxRt , which can be smaller
than τWCET

s . On the other hand, set Cτt includes all lower priority tasks in the other
task graphs. Since they can appear at any time, we take the maximum WCET for
conservative estimation. In case every predecessor is mapped to the same PE, Delaylt
is zero.
Delayht is commonly formulated for both scheduling policies as follows:

Delayht =
∑

τs∈Dτt

min(τWCET
s , τmaxFs − τmaxRt ) +

∑
τs∈Eτt

⌈
max(0, τmaxSt − τmaxRt + 1− φrt,s)

T pτs

⌉
· τWCET
s (11)

where Dτt = {τs|τs ∈ Tτt , τprocs = τproct , τpris > τprit , τminSs ≤ τmaxSt , τmaxRt < τmaxFs }
and Eτt = {τs|τs 6∈ Tτt , τprocs = τproct , τpris > τprit }. Set Dτt includes higher priority tasks
in the same task graph that can possibly delay the start time of τt. Partial preemption
is considered similarly to Delaylt formulation. For the example of Fig. 6, we precisely
compute the preemption delay from τ2 to τ3 as τmaxF2 − τmaxR3 = 60 − 40 = 20, which
is less that τWCET

2 . For the higher priority tasks in the other task graphs, we use a
similar formula as the response time analysis to compute the maximum preemption
delay. The notation φrt,s corresponds to the request phase adjustment that computes
the minimum distance from the release time of τt to the next release time of a pre-
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empting task τs. How to formulate the request phase φrt,s will be explained in the next
subsection.

LEMMA 2. τminSt and τmaxSt are conservative, or τminSt ≤ τstartt ≤ τmaxSt .

PROOF. First we prove that τminSt ≤ τstartt .
Since τminRt ≤ τ releaset , we need to prove maxτs∈Aτt τ

minF
s ≤ τstartt .

max
τs∈Aτt

τminFs ≤ max( max
τs∈Γτt

τminFs , max
τs∈Aτt−Γτt

τminFs ).

Since Aτt − Γτt ⊆ {τs|τs ∈ Tτt , τprocs = τproct , τ releaset ≥ τfinishs } for both preemptive and
nonpreemptive cases, and τfinishs ≥ τminFs , maxτs∈Aτt−Γτt

τminFs ≤ τ releaset .

max
τs∈Aτt

τminFs ≤ max( max
τs∈Γτt

τfinishs , τ releaset ) = τstartt .

Next, We prove that τstartt ≤ τmaxSt = τmaxRt + Delaylt + Delayht by showing that no
task will delay the start of τt without being considered in Delaylt or Delayht computa-
tion.

(1) Suppose actual preemption amount by lower priority tasks is larger than Delaylt.
For preemptive scheduling policy, it is impossible because a lower priority task
cannot preempt τt. For nonpreemptive scheduling policy, only one lower priority
task can delay the execution of τt. For τs 6∈ Tτt , since Cτt includes all lower priority
tasks, it is not possible for the preemption amount to be larger than the maximum
worst case execution time of tasks in Cτt .
Consider τs ∈ Tτt . τs can delay τt by τfinishs − τ releaset at most if τs starts before τt is
released or τstarts < τ releaset .

τ releaset + max
τs∈Tτt ,τ

finish
s −τreleaset >0

(τfinishs − τ releaset )

≤ τmaxRt + max
τs∈Tτt ,τ

finish
s −τmaxRt >0

(τfinishs − τmaxRt )

≤ τmaxRt + max
τs∈Tτt ,τmaxRt <τmaxFs

(τmaxFs − τmaxRt ).

Since {τs|τstarts < τ releaset } ⊆ {τs|τminSs < τmaxRt } and {τs|τs ∈ Tτt , τprocs =

τproct , τpris < τprit , τmaxRt < τmaxFs } ∩ {τs|τs ∈ Tτt , τprocs = τproct , τpris < τprit , τminSs <
τmaxRt } ⊆ Bτt ,
τ releaset + max

τs∈Tτt ,τ
finish
s −τreleaset >0

(τfinishs − τ releaset ) ≤ τmaxRt + max
τs∈Bτt

(τmaxFs − τmaxRt ).

Since τs cannot be executed longer than τWCET
s ,

τ releaset + max
τs∈Bτt

min(τWCET
s , τfinishs − τ releaset ) ≤ τmaxRt +Delaylt.

Finally, consider the case when all predecessors are mapped to the same processor.
Since there is no time interval between the finish time of the latest predecessor
task τp and the release time of τt, no lower prioirty task can start after τp finishes
and before τt is released.

(2) Consider higher priority tasks that may preempt τt. For τs ∈ Tτt and τs ∈ Dτt ,
the preemption amount is bounded by min(τWCET

s , τmaxFs − τmaxRt ) similarly to the
proof of the case τs ∈ Tτt and τs ∈ Bτt in 1.
Suppose there is a task τs which can preempt τt such that τs ∈ Tτt and τs 6∈ Dτt .
Then τmaxSt < τminSs or τmaxFs ≤ τmaxRt . τs always starts later than τt since τmaxSt ≤
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τminSs , or τs finishes earlier than τt since τmaxFs ≤ τmaxRt . No preemption may be
occurred so that there exists no such task.
For τs 6∈ Tτt , the proof is trivial if the request phase is conservatively given. The
conservativeness of the request phase, φrt,s will be proven in Lemma 5.

By 1 and 2, τstartt ≤ τmaxSt . Q.E.D.

The minimum finish time τminFt is formulated as follows:

τminFt = τminSt + τBCETt + PreemptBt (12)

where PreemptBt represents the unavoidable (best-case) preemption delay that is
zero for the non-preemptive scheduling policy. For the preemptive scheduling policy,
PreemptBt becomes

PreemptBt =
∑

τs∈Fτt

τBCETs (13)

where Fτt = {τs|τs ∈ Tτt , τprocs = τproct , τpris > τprit , τminSt ≤ τminSs ≤ τmaxSs ≤ τminFt }.
Fτt is a set of higher priority tasks which always start to execute and preempt τt during
τt is running from τminSt to τminFt .

The maximum finish time τmaxFt is formulated as follows:

τmaxFt = τmaxSt + τWCET
t + PreemptWt (14)

where PreemptWt represents the worst-case preemption delay that is zero for the
non-preemptive scheduling policy. PreemptWt for the preemptive scheduling policy is
formulated as follows:

PreemptWt =
∑
τs∈Gτt

τWCET
s +

∑
τs∈Eτt

⌈
max(0, τmaxFt − τmaxSt − φst,s)

T pτs

⌉
· τWCET
s (15)

where Gτt = {τs|τs ∈ Tτt , τprocs = τproct , τpris > τprit , τmaxSt < τminSs ≤ τmaxFt }, indi-
cating a set of higher priority tasks which can appear during the execution of τt. The
notation φst,s is the start phase that is the the minimum distance from the start time of
τt to the next release time of a preempting task τs. For tasks in the other task graphs,
the maximum possible preemption delay is computed similarly to (11). The start phase
will be explained in the next subsection.

LEMMA 3. τminFt and τmaxFt are conservative, or τminFt ≤ τfinisht ≤ τmaxFt .

PROOF. (Nonpreemptive) If non-preemptive scheduling is used then no task may
preempt τt. Hence the finish time is the sum of the start time and the execution time.

(Preemptive) First, we prove that τminFt ≤ τfinisht . Let Wτt be {τs|τs ∈ Tτt , τprocs =

τproct , τpris > τprit }.
τfinisht ≥ τstartt + τBCETt +

∑
τs∈Wτt ,τ

start
t ≤τstarts ≤τfinisht

τBCETs where the last term
accounts for tasks that start to execute during τt is running, and preempt τt.

Since
∑
τs∈Wτt ,τ

start
t ≤τstarts ≤τfinisht

τBCETs ≤ τfinisht − τstartt ,
and

∑
τs∈Wτt ,τ

minS
t ≤τstarts ≤τfinisht

τBCETs ≤
∑
τs∈Wτt ,τ

start
t ≤τstarts ≤τfinisht

τBCETs + (τstartt −
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τminSt ),

τfinisht ≥ τstartt + τBCETt +
∑

τs∈Wτt ,τ
start
t ≤τstarts ≤τfinisht

τBCETs

≥ τminSt + τBCETt +
∑

τs∈Wτt ,τ
minS
t ≤τstarts ≤τfinisht

τBCETs

≥ τminSt + τBCETt +
∑

τs∈Wτt ,τ
minS
t ≤τminSs ≤τmaxSs ≤τfinisht

τBCETs

since τminSs ≤ τstarts ≤ τmaxSs .

τfinisht ≥ τminFt = τminSt + τBCETt +
∑

τs∈Wτt ,τ
minS
t ≤τminSs ≤τmaxSs ≤τminFt

τBCETs .

Second, we prove that τfinisht ≤ τmaxFt by contradiction.
For τs ∈ Tτt , suppose there is some τs 6∈ Gτt that satisfies τs ∈ Tτt and can preempt

τt. Then τminSs ≤ τmaxSt or τmaxFt < τminSs . The tasks that satisfies (τs 6∈ Gτt , τs ∈
Tτt , τminSs ≤ τmaxSt , τmaxRt < τmaxFs ) belongs to the Dτt , so that the amount of preemp-
tion from those tasks are already included in τmaxSt and so in τmaxFt . The tasks that
satisfies (τs 6∈ Gτt , τs ∈ Tτt , τminSs ≤ τmaxSt , τmaxFs ≤ τmaxRt ) cannot preempt τt since
τs finishes before τmaxRt . The tasks that satisfies (τs 6∈ Gτt , τs ∈ Tτt , τmaxFt < τminSs )
cannot preempt τt since τs starts after τmaxFt . For τs 6∈ Tτt , the proof is trivial since we
assume that the start phase is conservatively given. The conservativeness of the start
phase, φst,s will be proven in Lemma 5. Q.E.D.

After determining all time bounds of tasks, we compute the WCRT of each task
graph T as follows:

RT = max
τs∈T

τmaxFs (16)

THEOREM 1. The HPA technique guarantees the conservativeness of every schedule
time bound when it is converged.

PROOF. Theorem 1 is proved by Lemma 1, Lemma 2, and Lemma 3. Q.E.D.

5.2. Period Shifting Computation

𝜏𝑡
𝑚𝑎𝑥𝑅

𝒯𝜏𝑖
𝑝

𝒯𝜏𝑖
𝑝

𝜏𝑡
𝑚𝑎𝑥𝑆

Delayed to 𝜏𝑡
𝑚𝑎𝑥𝑅

𝜏𝑖
𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝜏𝑖

𝑠𝑡𝑎𝑟𝑡 𝜏𝑖
𝑚𝑖𝑛𝑅 + 𝒯𝜏𝑖

𝑝
𝜏𝑖
𝑚𝑖𝑛𝑅

Ψ𝑡,𝑖

Fig. 8. The worst case scenario of the preemption by τi to τt

When computing the maximum time bounds, we have to consider the worst case
scenario of preemptions in the RTA analysis. Fig. 8 shows this scenario. Suppose that
the target task τt is released at τmaxRt . The worst case preemptions of a higher priority
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task τi occur when its start time is aligned with the release time of τt and the second
request appears with the shortest interval from τmaxRt , followed by later requests that
appear periodically from the second request. If the period shifting amount is denoted
by Ψt,i, the next start time of τi will be max(τmaxRt + τWCET

i , τmaxRt −Ψt,i + T pt ).
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Fig. 9. An example for period shifting computation. (a) Possible preemptions to τ3 between τmaxR3 and
τmaxS3 , (b) estimated WCRT of T0 with period shifting τmaxS3 − τminR3 , and (c) actual WCRT of T0

Recall that the Y&W method defines Ψt,i as τmaxRi − τminRi and it fails to find the
worst case behavior as shown in the example of Fig. 3. A naive revision is to define
Ψt,i as τmaxSi − τminRi , by aligning the maximum start time of τi with the maximum
release time of τt. The worst case bursty requests occurs when the preempting task
is released at τmaxRt − Ψt,i. In the example of Fig. 3, we can obtain the actual WCRT
if τmaxS2 is aligned at τmaxR1 , which makes Ψ1,2 = τmaxS2 − τminR2 = 10. However, it
generates a loose bound for the example of Fig. 9. Fig. 9 (a) shows the worst case pre-
emption of τ3, considering all possible preemptions from the other tasks. From Fig. 9
(a), it is known that τmaxS3 − τminR3 is 30. If this value is used as period shifting, a
loose WCRT is obtained as shown in Fig. 9 (b). The actual WCRT is computed when
Ψ1,3 is equal to τWCET

0 , as shown in the Fig. 9 (c), which confirms that more elabo-
rate preemption analysis is needed between τmaxR3 and τmaxS3 . For the conservative
but tight bound computation of period shifting amount, we classify possible preemp-
tions between τmaxR3 and τmaxS3 into three categories. The first is the preemptions that
affect the start times of both τ3 and τ1, which is the amount of τWCET

4 in Fig. 9. These
preemptions can be ignored for Ψ1,3 since those are considered in the computation of
τmaxS1 . The second is the preemptions from the tasks that finish earlier than τ1 such as
τ0 in Fig. 9, which should be considered for the Ψ1,3. The last is the preemptions from
the task that starts later than τ1 such as τ2 that is a descendant of τ1. These also can
be ignored since they cannot appear before τmaxS1 .

Based on these observations, we conservativley consider the tasks in the second
category in the period shifting computation to get a tighter bound than τmaxSi − τminRi :
that is

Ψt,i = τmaxRi − τminRi + δt,i (17)
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where δt,i =
∑
τpris >τpri

i
,τs∈Eτt

(⌈
Rτt+δt,i+Ψt,s

T pτs

⌉
−
⌈
Rτt−φ

r
t,s

T pτs

⌉)
· τWCET
s +∑

τs∈Tτt ,τ
pri
s >τpri

i
,(τmaxRt −δt,i≤τmaxRs <τmaxRt or τmaxRt −δt,i≤τmaxRs −T pτs<τmaxRt ) τ

WCET
s , and

Rτt = τmaxSt − τmaxRt .

LEMMA 4. Period shifting is conservative, which means that
⌈
τmaxFt −τmaxRt +Ψt,i

T pτi

⌉
is

an upper bound of preemption counts of τi in time window [τmaxRt , τmaxFt ].

PROOF. Conservativeness of period shifting is achieved if δt,i of equation (17) in-
cludes all tasks in the second category of tasks preempting τi before τmaxRt .

At first, consider the contribution from τs 6∈ Tτt to δt,i. Since the maximum preemp-
tion count of τt by τs ∈ Eτt is d t+Ψt,s

T ps
e for t time duration, τs appears dRτt+δt,i+Ψt,s

T ps
e

times during Rτt + δt,i. On the other hand, dRτt−φ
r
t,s

T ps
e is the number of preemptions

during Rτt , which is considered in τmaxSt computation. Therefore the appearance of τs
is bounded by

⌈
Rτt+δt,i+Ψt,s

T pτs

⌉
−
⌈
Rτt−φ

r
t,s

T pτs

⌉
times during δt,i.

Second, Consider τs ∈ Tτt . If τ releases > τmaxRt then τs either preempts τt as well as
τi (the first category) or is scheduled later than τt (the third category). So we need
to consider only τs that is released between τmaxRt − δt,i and τmaxRt . τmaxRt − δt,i <
τ releases ≤ τmaxRs < τmaxRt . So the worst case is to consider τs such that τmaxRt − δt,i <
τmaxRs < τmaxRt . If τmaxRt −δt,i becomes negative, , the previous instance of τs should be
considered with the following condition: τmaxRt − δt,i < τmaxRs −T pτs < τmaxRt . Q.E.D.

Consider Fig. 3. δ1,2 = τWCET
0 = 10 since τ0 satisfies the condition of the second term

of δ1,2, τmaxR1 − δ1,2 = 10 − 10 = 0 = τmaxR0 . Hence Ψ1,2 = τmaxR2 − τminR2 + δ1,2 =
0− 0 + 10 = 10.

Consider Fig. 9. δ1, 3 = τWCET
0 = 10. Since τmaxR1 − δ1,3 = 10 − 10 = 0 = τmaxR0 , τ0

is included in the second term of δ1,3. On the other hand, τ2 is excluded in δ1,3 since
10 = τmaxR1 < τmaxR2 = 40. τ4 6∈ Tτ1 has no contribution to δt,i since

(⌈
Rτ1+δ1,3+Ψ1,4

T pτ4

⌉
−⌈

Rτ1−φ
r
1,4

T pτ4

⌉)
= 1− 1 = 0. Hence Ψ1,3 = τmaxR3 − τminR3 + δ1,3 = 0− 0 + 10 = 10.

5.3. Holistic Phase Adjustment
In this section, we describe how we combine the period shifting technique and the
phase adjustment technique. There are three phase types considered in the phased
adjustment technique; request phase φrt,i, start phase φst,i, and finish phase φft,i. The
main difference between our holistic phase adjustment and the phase adjustment of the
Y&W method is that the phases in our technique can be negative: If phase is negative,
it acts like a period shifting.

If τt is a source task, request phase φrt,i for each task τi 6∈ Tτt is initialized to −Ψt,i,
which means that the start time of τt is maximally postponed by preemption of τi. In
this way, period shifting is merged with phase adjustment so that the request phase
can be negative.

If τt is a non-source task, the request phase φrt,i depends on the finish phases of
predecessors. If it is positive, it means the minimum distance from the release of τt to
the next release time of a preempting task τi; Fig. 10 illustrates the case where task τt
has two predecessors τp1 and τp2 .

Since the phase computation is performed per task independently, the finish phases
of the predecessor tasks may be different from each other. When we compute the re-
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Fig. 10. An illustrative example of holistic phase adjustment computation

quest phase φrt,i and the predecessor tasks see different next request times of τi, we
have to take the earliest next request time of τi among predecesors for the conser-
vative computation. In Fig. 10, two predecessors τp1 and τp2 of τt see different next
request times of τi: φfp1,i + τmaxFp1 and φfp2,i + τmaxFp2 . since φfp1,i + τmaxFp1 < φfp2,i + τmaxFp2 ,
we take φfp1,i + τmaxFp1 as the next request time of τi seen by τt, and φrt,i becomes
(φfp1,i + τmaxFp1 ) − τmaxRt , which means the distance from τmaxRt to the next request
time of τi.

Note that the inherited phase adjustment can be negative. The negative phase,
which acts like a period shifing, cannot be smaller than −Ψt,i. Thus we choose the
maximum among the phase adjustment inherited from its predecessors and −Ψt,i. We
formulate φrt,i as follows;

φrt,i =


−Ψt,i,

if τt is a aource task
or ∃τp∈pred(τt)(τ

proc
p 6= τproct )

max
(
−Ψt,i, min

τp∈pred(τt)
(φfp,i + τmaxFp )− τmaxRt

)
, otherwise

(18)
where pred(τt) is the immediate predecessor set of task τt. In case there is a prede-

cessor mapped to a different processor, φrt,i is set to −Ψt,i for conservative computation.
Based on φrt,i and τmaxSt , before computing τmaxFt , the start phase φst,i for each task

τi 6∈ Tτt is computed as follows:

φst,i =

{
(φrt,i + τmaxRt )− τmaxSt , if τi 6∈ Eτt(

(φrt,i + τmaxRt )− τmaxSt

)
mod T pτi , otherwise (19)

When τi belongs to Eτt , or τi ∈ Eτt , the start phase is made positive by modulo oper-
ation to find the distance to the earliest future invocation of τi. Otherwise, The start
phase φst,i can be negative as φrt,i.

Similarly, the finish phase φft,i is formulated based on φst,i and τmaxFt as follows:

φft,i =

{
(φst,i + τmaxSt )− τmaxFt , if τi 6∈ Eτt or τproct ∈ N(

(φst,i + τmaxSt )− τmaxFt

)
mod T pτi , otherwise (20)

Since there is no preemption during the execution of τt when τproct ∈ N , finish phase
refers to the same invocation of the preempting task as the start phase. The finish
phase φft,i is computed after τmaxFt computation and will be used for the request phases
of successors. In the example of Fig. 10, φrt,i and φst,i see the same invocation since the
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difference (φrt,i + τmaxRt ) − τmaxSt is yet positive. On the other hand, φft,i sees the next
invocation of τi, since the invocation of τi seen by φst,i appears during the execution
of τt. In that case, the time difference from τmaxFt becomes negative and the modulo
operation finds the positive distance to the next invocation.

LEMMA 5. Phase adjustments φrt,i, φst,i, and φft,i are conservative.

PROOF. We prove it by induction. First, when task τt is a source task, φrt,i is −Ψt,i

and it is conservative according to Lemma 4. When τi 6∈ Eτt , φst,i and φft,i are computed
directly from φrt,i by changing the time reference from the release time to the start time
(τmaxSt ) and (τmaxFt ) respectively in equations (19) and (20). So the consevativeness of
the request phase is inherited to the start phase and the finish phase. When τi ∈ Eτt ,
φst,i and φft,i are computed referring to the next release time of τi from τmaxSt and τmaxFt .
Since the worst case preemption scenario to the preempted task is the periodic invoca-
tion of the preempting task after the worst case request phase, mod T pτi operations in
(19) and (20) find the closest request time of τi from τmaxSt and τmaxFt once the request
phase is decided. It completes the initial step of the induction process.

Second, we prove the conservativeness of φrt,i, φst,i, and φft,i of non-source task τt,
assuming that for all τp ∈ pred(τt), φfp,is are conservative. If τproct 6= τproci , then φrt,i is
−Ψt,i and it is conservative. Otherwise, we find the closest release time of τi from the
finish phase φfp,is of predecessors, by (18). Hence φrt,i is conservative since φfp,is are all
conservative and the minimum value is chosen. The proof for φst,i, and φft,i is similar to
the case that task τt is a source task. Q.E.D.

6. OPTIMIZATION TECHNIQUES
In this section, we describe two optimization techniques to tighten the time bounds by
removing infeasible preemptions.

6.1. Exclusion Set Management
The exclusion technique manages for each task τi a set EX τi which includes tasks that
are guaranteed to have no possibility of preempting τi. It is obvious that successor
tasks belong to this set. If τi always preempts one of the predecessors of τs, τs cannot
preempt τi since it will always be scheduled after τi. In addition, if τj is excluded by τi,
then all τs ∈ EX τj are also excluded by τi. In summary, the exclusion set EX τi becomes

EX τi = {τs|τs ∈ descendant(τi) or τi ∈
⋃

τp∈ancestor(τs)

(Aτp ∩ Fτp) or τs ∈
⋃

τj∈EX τi

EX τj}

(21)
where ancestor(τs) is a set of ancestors of τs and descendant(τi) is a set of descendants

of τi. Since there is a cyclic dependency in (21), iterative computation is required for
EX τi , initially defined by descendant(τi). After time bound computation, it is updated
using Aτi and Fτi . Sets Aτt , Bτt , Dτt , Fτt and Gτt are modified to have an additional
condition τs 6∈ EX τt . It is obvious that the exclusion technique does not affect the
conservativeness of the proposed technique.

6.2. Duplicate Preemption Elimination
In our baseline technique, preemptions may occur redundantly; Fig. 11 (a) shows an
elaborated example that experiences two types of duplicate preemptions. The first type
of duplicate preemption may occur between tasks in the same task graph in case a
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higher priority task has large release time variation. In the scheduling time bound
analysis, we detect the preemption possibility by checking if a higher priority task can
be released during task execution. In Fig. 11 (a), τ5 can preempt both τ4 and τ8 because
its release time varies between 20 and 75.

The second type of duplicate preemption occurs between tasks in different task
graphs. In the phase adjustment technique, it is assumed that a preempting task pre-
empts a predecessor task first. In the example of Fig. 11, τ0 preempts τ4 and phase
adjustment is performed afterwards. The request phase of τ7 to τ0 is reset to −Ψ7,0

since τ7 and τ0 are assigned to different processors, according to equation (18). Since
the request phase of τ8 is inherited from τ7, τ8 experiences another preemption by τ0.

As a result, the WCRT is overestimated as illustrated in Fig. 11 (a) that contains
both types of duplicate preemptions.
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Fig. 11. An example of common preemption elimination

To avoid duplicate preemptions, we devised an optimization that traces back the
schedule and moves duplicate preemptions from ancestors to a target task. The pro-
posed optimization heuristic is based on the abstruse fact that later preemption gives
worse response time than earlier preemption when there are duplicate preemptions,
which is stated in Theorem 2 below.

Algorithm 1 presents the psuedo code of the proposed heuristic. It is invoked by
RemoveDP (τt) (lines 1-7) where τt is the task whose schedule time bound is computed.
T rt represents how much the release time of τt is reduced by removing duplicate pre-
emptions, and T st represents how much preemption delay caused by other task graphs
should be moved from predecessors to τt. We recursively trace back the schedule of crit-
ical path (lines 9 and 22) where τc and τcri1 represent currently visited task and the
parent task of τc on the critical path, respectively. We initialize T rt to zero and repeat
RecursiveRemoveDP until T rt is converged.

In algorithm 1, PCt,i means the preemption count from τi to τt. Boolean flag detectt
checks if the release time of task τt cannot be reduced as much as the removed preemp-
tion time due to a predecessor mapped to a different PE. The boolean flag is inherited
to the successors.

Let the currently visited task be τc in the recursive call, RecursiveRemoveDP . At
first, we compute the amount of duplicate preemptions from tasks in the same task
graph which can preempts both τc and τt (lines 13-14), where those tasks belong to set
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ALGORITHM 1: Algorithm of duplicate preemption elimination
1 Procedure RemoveDP(τt)
2 T rt = T st = 0
3 repeat
4 T st = 0
5 T rt = RecursiveRemoveDP (τt, τt, φ)
6 until T st or T rt is changed
7 Procedure RecursiveRemoveDP(τc, τt, Iτt)
8 find τcri1 that satistifes (τcri1 ∈ pred(τc), τ

maxF
cri1 = maxτp∈pred(τc) τ

maxF
p )

9 find τcri2 that satistifes (τcri2 ∈ pred(τc), τ
maxF
cri2 = maxτp∈pred(τc)−{τcri1} τ

maxF
p )

10 Tr = Te = 0
11 if τc 6= τt then
12 Te is increased by

∑
τs∈Jτc

τWCET
s

13 Iτt = Iτt ∪ Jτc
14 if ∃τp(τp ∈ pred(τt), τ

maxF
p = τmaxRt , detectp) then

15 Te and T st are increased by
∑

τs∈Kτc
PCc,s · τWCET

s

16 Iτt = Iτt ∪ Kτc
17 end
18 end
19 if τc is a source task then
20 return Te
21 end
22 Tr = RecursiveRemoveDP (τcri1, τt, Iτt)
23 if τc 6= τt then
24 Tr = max

(
0, Tr −

∑
τs∈Lτc

min(τWCET
s , τmaxFs − (τmaxRc − Tr)

)
25 end
26 if τcri2 is not found then
27 return Tr + Te
28 else
29 return min(Tr, τ

maxF
cri1 − τmaxFcri2 ) + Te)

30 end

Jτc = {τs|τs ∈ Dτc ∪ Gτc , τs 6∈ Iτt , τs 6∈ EX τt , τprocs = τproct , τpris > τprit , τmaxRt − T rt <
τmaxFs }. Even though preemption from the same task can be seen several times on the
critical path, we need to consider only the recent preemption in this recursive function.
Thus we manage task set Iτt while traversing the critical path in order to consider
only the recent preemption. If detectp value for τt is true, we also move the duplicate
preemptions from tasks in the other task graphs to τt (lines 15-18), where those tasks
belong to set Kτc = {τs|τs 6∈ Tτt , PCc,s 6= 0, τs 6∈ Iτt , τprocs = τproct , τpris > τprit }. After
computation of the amount of duplicate preemptions, RecursiveRemoveDP is called
recursively for the critical path predecessor τcri1, and we get the returned value as
Tr (line 22), which is the possible release time reduction of τc. However, there can
be additional preemptions if τc is released at τmaxRc − Tr. We conservatively find the
amount of additional preemptions and reduce Tr (line 23), where a task that incurs
additional preemption belongs to set Lτc = {τs|τs 6∈ Dτc ∪ Gτc , τs ∈ Tτc , τs 6∈ EX τc , τs 6∈
ancestor(τc), τ

proc
s = τprocc , τpris > τpric , τminSs ≤ τmaxRc , τmaxRc − Tr < τmaxFS }. For the

non-preemptive scheduling policy, the condition τpris > τpric is removed in Lτc . Note
that release time reduction can be bounded by the other predecessors. If there is more
than two predecessors of τc, we bound the reduced release time with the second largest
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finish time among the predecessors (lines 25-26). Note that T rt is used in the formula
of Jτc . Hence we set T rt to zero initially and repeat RemoveDP until T rt is converged.

Refer to the example in Fig. 11. For task τ8, we trace back the schedule of tasks τ7,
τ4, τ3, and τ1 in order when we call RemoveDP (τ8). When τ4 is visited, We find out
that τ0 ∈ Kτ4 and τ5 ∈ Jτ4 , and both task can preempt τ8. We remove those duplicate
preemptions, then the maximum release time of τ7 is reduced to τmaxR7 −Tr = 40. When
returning to τ7, We can know that τ6 ∈ Lτ7 so that the start time of τ7 cannot be earlier
than the maximum finish time of τ6, which is τmaxR7 − (Tr−τmaxF6 − (τmaxR7 −Tr)) = 50.
Finally, we know that τ8 can be released at τmaxR8 −T rt = 60 after removing all duplicate
preemptions of its predecessors, which is the actual worst case.

The HPA equations need to be modified after Algorithm 1 is applied. We call
RemoveDP (τt) after τmaxRt computation and set the reduced maximum release time
τ̂maxRt to τmaxRt − T rt . Then τmaxRt is replaced by τ̂maxRt in equations (9),(10), and sets
Bτt and Dτt . The terms τmaxFs − τmaxRt and τmaxSt − τmaxRt + 1 − φrt,s in the formula of
Delayht is changed to τmaxFs − τ̂maxRt and max (0, τmaxSt − τmaxRt ) + 1− φrt,s respectively.
And the request phase is not reset to the period shifting value in equation (18) when
there is a predecessor mapped to different processors. The sets Bτt and Dτt have an
additional condition τs 6∈ ancestor(τt) since τ̂maxRt can be smaller than the finish times
of predecessors. τmaxSt is changed to have the initial value of τ̂maxRt and is bounded by
τmaxRt . And τmaxSt is changed to add T st that is the sum of removed preemptions from
the tasks in the other task graphs as follows:

τmaxSt = max(τmaxRt , τ̂maxRt + T st +Delaylt +Delayht ) (22)

THEOREM 2. Algorithm 1 that removes the duplicate preemptions from the ances-
tors in the critical path preserves the conservativeness of the schedule time bound.

PROOF. Refer to the electronic appendix for the proof.

7. OVERALL HPA ALGORITHM
Now we ready to summarize the overall algorithm of the proposed technique. We com-
pute the schedule time bounds of tasks and phase adjustment values until all time
bounds are converged. The algorithm 2 shows the outermost iterative routine that
integrates all computations.

ALGORITHM 2: HPA overall algorithm
1 Procedure HPA

2 period shifting Ψi,j = T jτj for every task pair (τi, τj)

3 exclusion set EX τi = descendant(τi) for every task τi
4 repeat
5 foreach task τt in topological and priority descending order do
6 compute τminRt , τminSt , and τminFt

7 compute τmaxRt , τ̂maxRt , ∀τi 6∈Tτtφ
r
t,i, τmaxSt , ∀τi 6∈Tτtφ

s
t,i, τmaxFt , and ∀τi 6∈Tτtφ

f
t,i

8 end
9 update Ψi,j for every task pair (τi, τj)

10 update EX τi for every task τi
11 until any value is changed and ∀T(RT ≤ T d)

At first, period shifting and exclusion set are initialized (lines 2-3). Then we itera-
tively compute the time bounds of tasks (lines 5-8). Tasks are visited according to the
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topological order first and priority descending order among independent tasks. Each
time bound and phase is computed in the written order. After the time bound com-
putation, period shifting and exclusion set set are updated (lines 9-10). This process
is repeated until every value is converged. If there is a task graph that violates its
deadline, we stop the iteration since it is not schedulable (line 11).

8. EXPERIMENTS
As the reference RTA technique, we implemented the Y&W method following the
pseudo code in [Yen and Wolf 1998]. For comparison with MAST and SymTA/S, we
use available tools; MAST suite [Harbour 2001] and pyCPA [Diemer and Axer 2012]
that is a freely available compositional performance analysis tool similar to SymTA/S.
The actual WCRT, which is denoted as Optimal, was obtained by an ILP-based ap-
proach [Kim et al. 2012]. The proposed HPA technique is available on-line [Choi et al.
2014].

Table I. WCRT estimation results for simple examples in Fig. 3, 4, 5,
6, and 11

HPA Y&W MAST pyCPA Optimal
T0 in Fig. 3 40 35 40 50 40
T0 in Fig. 4 130 110 130 270 130
T0 in Fig. 5 140 150 140 300 140
T0 in Fig. 6 70 100 × 210 70
T0 in Fig. 11 100 120 × 310 100

Table I shows the comparison results for the examples shown in this paper. As dis-
cussed in Section 4, the Y&W method fails to find the WCRT for the examples of Fig. 3
and Fig. 4. MAST gives tight WCRT results for linear graphs, but no result for Fig.
6 and Fig. 11 since it supports only chain-structured graphs, and pyCPA provides
highly overestimated results for all examples, since it pessimistically uses response
time analysis ignoring the task dependency between processing elements. Note that
the proposed HPA technique gives the optimal WCRT results for all these examples.

For extensive comparison, we generate graphs randomly; the number of task graphs
varies from 3 to 5, the number of total tasks from 30 to 50, and the number of process-
ing elements from 3 to 5. The τBCET and τWCET of each task are randomly selected in
the range of [500, 1000] and [τBCET ,τBCET × 1.5] respectively. The period and jitter of
task graphs are randomly chosen but repaired to be schedulable if needed. Note that
the problem size is too big to find optimal WCRTs with an ILP-based approach.

Table II. Comparison with the Y&W method and pyCPA for 100 random
examples

Win Tie Lose Max% Min(%) Avg(%)
vs Y&W 193 200 1 39.42 -0.69 3.86

vs pyCPA 394 0 0 359.00 16.85 157.60

Table II shows the comparison results with the Y&W method and pyCPA. For the
comparison with the Y&W method, we assume that all processing elements use the
preemptive scheduling policy, and there is no jitter of input arrival. Since tasks may
have multiple predecessors or successors, MAST is excluded in this comparison. The
total number of task graphs is 394 in 100 randomly generated examples. The first
column shows how many cases the HPA technique produces a tighter bound than the
other methods. Similarly, the second and the third columns show how many cases HPA
technique produces an equivalent bound and a looser bound. Columns Max, Min, and
Avg indicate the maximum, minimum, and average WCRT estimation gaps between
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HPA and the other approaches. HPA gives tighter bounds than the Y&W method for
almost half of task graphs. A looser bound than the Y&W method was found for one
task graph only with very small estimation gap, 0.69%. pyCPA provides highly over-
estimated WCRT results for all task graphs, which are on average 2.57 times larger
than the results of HPA.

Table III. Comparison with MAST and pyCPA for 100 random exam-
ples

Win Tie Lose Max% Min(%) Avg(%)
vs MAST 393 8 6 104.31 -4.48 18.95
vs pyCPA 406 1 0 295.16 0.00 44.83

For the comparison with MAST, we create another 100 random examples that are
restricted to chain-structured graphs. In contrast to the previous experiment, random
examples can have arbitrary mixture of preemptive and non-preemptive processing
elements, and the jitter of input arrival is allowed. The number of total task graphs is
407. As shown in Table III, HPA shows remarkable performance advantage over the
other methods. HPA provides tighter bounds than MAST and pyCPA in most cases.

Experiments are futher conducted to examine how the performance of the proposed
HPA technique scales as the number of tasks, the number of graphs, and the execution
time variation increases, compared with the other methods. The results are depicted
in Fig. 12, 13, and 14, respectively. In these experiments, the default ranges of the
number of processing elements, the number of task graphs, and the number of total
tasks are set to [5,10], [5,7], and [30,50] respectively. For the left graphs in three fig-
ures, random examples are generated to have no jitter and only preemptive processing
elements to compare with the Y&W method and pyCPA. For the right graphs, the task
graphs in random examples are restricted to chain-structed graph but non-preemptive
processing elements are allowed to compare with MAST and pyCPA. For all graphs in
three figures, right y axis indicates the average WCRT estimation gap between HPA
and pyCPA. For left(right) graphs, left y axis indicates the average WCRT estimation
gap between HPA and the Y&W method(MAST). for each data point, the average value
is obtained from 100 random examples.
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Fig. 12. WCRT estimation gap increases as the number of total tasks increases

Fig. 12 shows the change of estimation gap while varing the number of total tasks
from 10 to 100. The estimation gap increases by the number of total tasks. For the
right graph that uses chain-structed graph, the estimation gap is increased linearly,
which confirms that HPA handles the effect of dependency effectively.

Fig. 13 shows the result of experiment that varies the number of task graph from 2
to 10 while fixing the number of total tasks to 100. In this experiment, the estimation
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Fig. 13. WCRT estimation gap decreases as the number of task graphs increases with the same number of
tasks in total

gap decreases. It is because that as the task dependency decreases as well, the inter-
application interference considered by the RTA analysis becomes dominant over intra-
application interference that is computed by the schedule time bound analysis.
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Fig. 14. WCRT estimation gap change graphs with variation of τ
WCET

τBCET
ratio

The performance variation over the τWCET

τBCET
ratio from 1 to 10 is shown in Fig. 14. The

figure shows that the execution time variation does not incurs any meaningful change
in the performance gap.
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Fig. 15. Distribution graphs of the estimated WCRT from the HPA

Fig. 15 shows the distribution of the estimated WCRTs from HPA with 300 randomly
generated examples that have arbitrary mixture of preemptive and non-preemptive
scheduling policies and no restriction on the graph topology. Fig. 15 (a) shows the
distribution with small size examples and Fig. 15 (b) with large size examples. For
small(large) size examples, the ranges of the number of processing elements, the num-
ber of task graphs, and the number of total tasks are set to [2,3]([5,10]), [1,3]([5,7]), and
[10,15](60,100), respectively. We also performed Monte-Carlo simulation to obtain the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:24 J. Choi et al.

WCRT empirically by sampling graph instances 200 million times for each example.
Optimal WCRTs are found with an ILP-based approach only for small size examples.
Fig. 15 (a) depicts the distribution of the WCRTs obtained from Monte-Carlo simu-
lation and HPA, normalized by optimal WCRTs. The x axis indicates the normalized
value (%) and the y axis presents the number of examples. Note that both Monte-
Carlo simulation and HPA provide results close to the actual WCRT in majority cases.
But Monte-Carlo simulation may not find the true WCRT despite 200 million times of
simulation, which confirms the need of conservative estimation techniques. For large
size examples, the distribution results from HPA are normalized by the near-WCRTs
obtained from Monte-Carlo simulation in Fig. 15 (b) since optimal WCRTs cannot be
obtained. Since Monte-Carlo simulation gives underestimated WCRTs, the amount of
overestimation might be quite exaggerated. It shows that the estimated WCRT from
HPA may have about 100% overestimation on average.
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Fig. 16. Average running time graph with average number of iteration

Finally, we measure the running time of HPA on 3.4 GHz i7 machine with 8GB
main memory and the iteration number of convergence to verify the scalability of the
proposed technique. We vary the number of total tasks from 10 to 150 and use 100
randomly generated examples for each number of total tasks. The average values are
plotted in Fig. 16, where the left y-axis and the right y-axis indicate the running time
of HPA and Y&W in micro seconds, respectively. The numbers labeled to the graph of
the HPA indicate the average numbers of iterations for convergence. Every example
was converged within maximum 20 iterations. Although HPA is slower than the Y&W
method by an order of magnitude, both methods show similar scalability as shown in
Fig. 16.

9. CONCLUSION
In this paper, we addressed a very challenging problem that is to tightly estimate
the worst case response time of an application in a distributed embedded system. It
is shown that a state-of-the-art technique, Y&W method, fails to find a conservative
WCRT bound. Thus we propose a hybrid performance analysis (HPA) method that com-
bines the scheduling time bound analysis and the response time analysis to consider
inter-task interference between different tasks. It finds a conservative and tight WCRT
bound, considering task dependency, execution time variation, arbitrary mixture of
fixed-priority preemptive and non-preemptive processing elements, and input jitters.
Experimental results show that it produces tighter bounds than the Y&W method,
MAST, and pyCPA. Convergence and scalability of the proposed technique are con-
firmed empirically. Since it is an iterative technique with tens of non-linear formulas,
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it is a very difficult problem to prove the convergence formally, which is left as a future
work.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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Online Appendix to:
A Hybrid Performance Analysis Technique for Distributed Real-Time
Embedded Systems

JUNCHUL CHOI, Seoul National University
HYUNOK OH, Hanyang University
SOONHOI HA, Seoul National University

A. PROOFS FOR OPTIMIZATION TECHNIQUES
We prove that the optimization technique of duplicate preemption elimination pre-
serves the conservativeness of the HPA technique. It is a rather long proof. We will
make several definitions, lemmas, and theorems in this section.

DEFINITION A.1. pe(τt)[x, y] is defined as the sum of execution time of tasks of
which priority is higher than τt from time x to time y. Formally,

pe(τt)[x, y] =
∑

τs∈Spe(τt)[x,y]

min(y, τfinishs )−max(x, τstarts )

where Spe(τt)[x,y] = {τs|τpris > τprit , (x ≤ τstarts < y or x < τfinishs ≤ y)} for preemptive
scheduling and Spe(τt)[x,y] = {τs|(τpris > τprit or τ starts < τstartt ), (x ≤ τstarts < y or x <

τfinishs ≤ y)} for nonpreemptive scheduling.

The following two lemmas hold and their proofs are trivial.

LEMMA A.1. 0 ≤ pe(τt)[x, y] ≤ y − x.
LEMMA A.2. pe(τt)[x, z] = pe(τt)[x, y] + pe(τt)[y, z].

THEOREM A.1. for all τt, if τ releaset ≤ τmaxRt −∆ then it always holds that τfinisht ≤
τmaxFt −∆ + pe(τt)[τ

maxR
t −∆, τmaxRt ].

PROOF. We prove it by contradiction. Suppose that τfinisht exists such that τfinisht >

τmaxFt − ∆ + pe(τt)[τ
release
t , τfinisht ] where τ releaset ≤ τmaxRt − ∆. It is obvious that

τmaxFt ≥ τmaxRt + τWCET
t + pe(τt)[τ

maxR
t , τmaxFt ] and τfinisht ≤ τ releaset + τWCET

t +

pe(τt)[τ
release
t , τfinisht ], by Definition A.1.

τfinisht > τmaxFt −∆ + pe(τt)[τ
maxR
t −∆, τmaxRt ]

≥ τmaxRt + τWCET
t + pe(τt)[τ

maxR
t , τmaxFt ]−∆ + pe(τt)[τ

maxR
t −∆, τmaxRt ]

= τmaxRt + τWCET
t −∆ + pe(τt)[τ

maxR
t −∆, τmaxFt ].

Thus,

τ releaset +τWCET
t +pe(τt)[τ

release
t , τfinisht ] > τmaxRt +τWCET

t −∆+pe(τt)[τ
maxR
t −∆, τmaxFt ].

τ releaset + pe(τt)[τ
release
t , τmaxRt −∆] + pe(τt)[τ

maxR
t −∆, τfinisht ]

> τmaxRt −∆ + pe(τt)[τ
maxR
t −∆, τmaxFt ].

c© 2010 ACM 1539-9087/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000
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τ releaset + pe(τt)[τ
release
t , τmaxRt − ∆] > τmaxRt − ∆ since pe(τt)[τmaxRt − ∆, τmaxFt ] ≥

pe(τt)[τ
maxR
t −∆, τfinisht ].

τmaxRt − ∆ < τ releaset + pe(τt)[τ
release
t , τmaxRt − ∆] ≤ τmaxRt − ∆ since

pe(τt)[τ
release
t , τmaxRt −∆] ≤ τmaxRt −∆− τ releaset .

It is a contradiction. Hence τfinisht ≤ τmaxFt −∆+pe(τt)[τ
maxR
t −∆, τmaxRt ]. Q.E.D.

Theorem A.1 explains how much the maximum finish time can be reduced if the
maximum release time decreases. Since the release time depends on the finish times
of predecessor tasks, the theorem presents the effect of the finish time of predecessor
tasks onto the finish time of the target task. This theorem will be generalized later in
theorem A.2.

Hereafter, pe(τt,∆) denotes pe(τt)[τmaxRt −∆, τmaxRt ] for brevity.
It is trivial that if a predecessor task always finishes early then the target task

is released early. Therefore, for τs ∈ pred(τt), if ∀τfinishs
(τfinishs ≤ τmaxFs −∆τs) then

τ releaset ≤ maxτs∈pred(τt) (τmaxFs −∆τs).

DEFINITION A.2. ancestor(τt) is a set of ancestors of τt, formally ancestor(τt) =⋃
i≥1 pred

i(τt), where predi(τt) =
⋃
τs∈predi−1(τt)

pred(τs) an d
pred1(τt) = pred(τt).

DEFINITION A.3. succ(τt) is the immediate successor set of task τt, formally
succ(τt) = {τc|τt ∈ pred(τc)}.

DEFINITION A.4. descendant(τt) is a set of descendants of τt, formally
descendant(τt) =

⋃
i≥1 succ

i(τt), where succi(τt) =
⋃
τs∈succi−1(τt)

succ(τs) and
succ1(τt) = succ(τt).

DEFINITION A.5. path(τs, τd) = descendant(τs)
⋂
ancestor(τd).

Now we will examine the effect of the early finish time of an ancestor task to the
finish time of the target task. In theorem A.1, we examine the relation between the
release time and the finish time which also explains the finish times between prede-
cessor tasks and the target task. We will extend it to the effect between an ancestor
task and the target task. If we apply theorem A.1 repeatedly, we can compute how
much the maximum finish time reduction is inherited from an ancestor task to the
target task.

THEOREM A.2. For τa ∈ ancestor(τt), if ∀τfinisha
(τfinisha ≤ τmaxFa −∆τa + pe(τa,∆τa))

then always τfinisht ≤ τmaxFt −∆τt + pe(τt,∆τt), where ∆τm = maxτi∈pred(τm) (τmaxFi )−
maxτi∈pred(τm) (τmaxFi −∆τi + pe(τi,∆τi)). Note that ∆τm = 0 if there is no predecessor.

PROOF. We will prove it by induction. First, τfinisha ≤ τmaxFa − ∆τa + pe(τa,∆τa).
Assume that τfinishi ≤ τmaxFi − ∆τi + pe(τi,∆τi). For τm ∈ succ(τi),
τ releasem = maxτi∈pred(τm) τ

finish
i ≤ maxτi∈pred(τm) τ

maxF
i −∆τi + pe(τi,∆τi). Let ∆τm =

maxτi∈pred(τm) (τmaxFi )−maxτi∈pred(τm) (τmaxFi −∆τi + pe(τi,∆τi)).

Since τmaxRm = maxτi∈pred(τm) τ
maxF
i ,

τ releasem = max
τi∈pred(τm)

τfinishi ≤ max
τi∈pred(τm)

τmaxFi −∆τi + pe(τi,∆τi)
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= max
τi∈pred(τm)

(τmaxFi )−∆τm = τmaxRm −∆τm .

By theorem A.1, τfinishm ≤ τmaxFm −∆τm + pe(τm,∆τm) since τ releasem ≤ τmaxRm −∆τm .
Q.E.D.

Theorem A.2 tells us that the contribution of the maximum finish time reduction of
an ancestor task diminishes as it propagates to the child tasks. To utilize theorem A.2,
we define the new reduced finish time τ̂maxFt by reducing the finish time of a task τa
by ∆ as following:

DEFINITION A.6. τ̂maxFt,∆τa←∆ = τmaxFt − ∆τt + pe(τt,∆τt), where ∆τm =

maxτi∈pred(τm) τ
maxF
i −maxτi∈pred(τm) τ̂

maxF
i,∆τa←∆ if ∆τa is ∆.

By definition A.6 and theorem A.2, τfinisht ≤ τ̂maxFt if ∀τfinisha , τfinisha ≤ τ̂maxFa . To
avoid the duplicate preemptions, we define a common preemptor set as cp(τa, τt).

DEFINITION A.7. For τa ∈ ancestor(τt), cp(τa, τt) = {τs|τpris >

max(τpria , τprit ), τmaxFs ≥ τminRt , τminRs ≤ τmaxFa }.

If a preemption task can preempt both τa and τt then τfinisht is larger when it pre-
empts τt rather than τa.

THEOREM A.3. If a common preemptor τp can preempt ancestor task τa and target
task τt completely, then always it produces no smaller finish time of τt when τp preempts
τt than τa.

PROOF. The reduced maximum finish time of τt is τ̂maxFt,∆τa←τWCET
p

when τp does not
preempt τa but preempts τt. It is τ̂maxFt,∆τt←τWCET

p
when τp does not preempt τt but pre-

empts τa. Since τa is an ancestor of τt, τ̂maxFt,∆τa←τWCET
p

≥ τ̂maxFt,∆τt←τWCET
p

. Hence, it produces
no smaller finish time to preempt τt than τa. Q.E.D.

Let us consider a case that a preemption task τp can preempt τa and τt, but τt par-
tially. Even in this case, τp can always preempt τa fully since τfinishp ≥ τ releaset ≥ τfinisha .
Then we may need to compare τ̂maxFt,∆τa←τWCET

p
with τ̂maxFt,∆τt←maxP (τt,τp) where maxP (τt, τp)

indicates the maximum partial preemption time of τt by τp. Even in this case, surpris-
ingly, preempting τt always provides larger finish time than the partial preemption
case, which is stated by theorem A.4.

THEOREM A.4. If a common preemptor τp can preempt an ancestor task τa fully
and the target task τt partially, it always produces no smaller finish time bound of τt
when τp preempts τt rather than τa.

PROOF. Assume that δ indicates the smallest partial preemption time between τp
and τt. So, δ = τmaxFp − τmaxRt ≤ τWCET

p .

(1) If τp preempts τa then τt finishes earlier than τmaxFt − δ.
(2) If τp preempts τt then assume that τ releaset ≤ τmaxRt − ε. Then τfinisht ≤ τmaxFt − ε+

pe(τt, ε).
(a) If ε ≤ τWCET

p − δ then pe(τt, ε) = ε, and τmaxFt − ε+ pe(τt, ε) = τmaxFt .
(b) If τWCET

p − δ < ε then pe(τt, ε) ≥ τWCET
p − δ. Since ε ≤ τWCET

p by theorem A.2,
τmaxFt − ε+ pe(τt, ε) ≥ τmaxFt − τWCET

p + τWCET
p − δ = τmaxFt − δ.
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Hence, in both cases 2a and 2b, the preemption of τt provides no smaller maximum
finish time of τt.

Now, we consider multiple ancestor tasks which have multiple common preemption
tasks. We define a unique common preemptor set, ucp(τa, τp), to indicate the closest
ancestor with the common preemption task as following.

DEFINITION A.8.

ucp(τa, τt) = cp(τa, τt)−
⋃

τm∈path(τa,τt)

cp(τm, τt).

Then multiple ancestors may have different common preemption tasks. To consider
the cascaded scheduling effect as a whole, we redefine ∆τa . We introduce δτa which
denotes the reduced time by moving common preemption tasks from τa to τt. δτa is
statically computed. ∆τa indicates a variable used in definition A.6. The finish time of
τm is contributed by the early finish time of ancestor tasks of τm and δτm . The total ∆m

is defined as following:

DEFINITION A.9. ∆τm = maxτi∈pred(τm) τ
maxF
i −maxτi∈pred(τm) τ̂

maxF
i + δτm , where

δτm =
∑
τs∈ucp(τm,τt) min(τWCET

s , τmaxFs − τmaxRt ).

Finally, we define pe(τt,∆) which indicates the occupied time from τmaxRt −
∆ to τmaxRt . Although pe(τt,∆) shows the exact time, it is varying at run
time. Therefore, we need to compute its bound. Although we use its bound, the
previous theorems hold. Since pe(τt,∆) ≤ min(∆,maxpe(τt)[τ

maxR
t − ∆, τmaxRt ])

where maxpe(τt)[x, y] =
∑
τpris >τprit ,τmaxFs ≥x,τminSs ≤y min(τWCET

s , y − τminSs , τmaxFs − x),
min(∆,maxpe(τt)[τ

maxR
t −∆, τmaxRt ]) is used as the bound of pe(τt,∆).

DEFINITION A.10. pe(τt,∆) = min(∆,maxpe(τt)[τ
maxR
t −∆, τmaxRt ]),

where maxpe(τt)[x, y] =
∑
τpris >τprit ,τmaxFs ≥x,τminSs ≤y min(τWCET

s , y − τminSs , τmaxFs − x).

THEOREM A.5. Algorithm 1 that removes the duplicate preemptions from the an-
cestors in the critical path preserves the conservativeness of the schedule time bound.

PROOF. By replacing variables in definition A.6 by definitions A.9 and A.10, we can
compute the tighter time bound with moving the common preemption tasks from the
ancestors. The conservativeness is guaranteed by Theorems A.3 and A.4 since pre-
empting τt rather than ancestor τa produces a larger time bound. The difference be-
tween the proof and the actual technique is that duplicate preemption elimination
technique traverses only the critical path, not all ancestors. Even though common pre-
emptions of the ancestors not in the critical path remain, our technique is still conser-
vative. Q.E.D.
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