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Cache-conscious Off-Line Real-Time Scheduling
for Multi-Core Platforms: Algorithms and
Implementation

Viet Anh Nguyen · Damien Hardy ·
Isabelle Puaut

Abstract Most schedulability analysis techniques for multi-core architectures as-
sume a single Worst-Case Execution Time (WCET) per task, which is valid in
all execution conditions. This assumption is too pessimistic for parallel applica-
tions running on multi-core architectures with local instruction or data caches, for
which the WCET of a task depends on the cache contents at the beginning of its
execution, itself depending on the tasks that were executed immediately before
the task under study.

In this paper, we propose two scheduling techniques for multi-core architectures
equipped with local instruction and data caches. The two techniques schedule a
parallel application modeled as a task graph, and generate a static partitioned non-
preemptive schedule, that takes benefit of cache reuse between pairs of consecutive
tasks. We propose an exact method, using an Integer Linear Programming (ILP)
formulation, as well as a heuristic method based on list scheduling.

The efficiency of the techniques is demonstrated through an implementation of
these cache-conscious schedules on a real multi-core hardware: a 16-core cluster of
the Kalray MPPA-256, Andey generation. We point out implementation issues that
arise when implementing the schedules on this particular platform. In addition, we
propose strategies to adapt the schedules to the identified implementation factors.

An experimental evaluation reveals that our proposed scheduling methods sig-
nificantly reduce the length of schedules as compared to cache-agnostic scheduling
methods. Furthermore, our experiments show that among the identified implemen-
tation factors, shared bus contention has the most impact.
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1 Introduction

Real-time embedded systems, i.e., those for which timing requirements prevail over
performance requirements, are now widespread in our everyday lives. In particular,
real-time applications can be found in cars, airplanes, spacecraft, nuclear plants.
With rising demand for applications that are increasingly compute-intensive and
parallel, the traditional single-core architectures are no longer a suitable choice for
deploying real-time systems. This limitation of single-core architectures is typically
referred to as the power-wall [49]. To overcome this barrier, leading chip manufac-
turers have introduced multi-core platforms, in which multiple cores are integrated
within a single chip. Multi-core platforms have been shown to improve energy-
efficiency and performance-per-cost ratio vs. single-core models [15], mainly by
exploiting thread-level parallelism. Examples of multi-core architectures include
the Kalray MPPA-256 [13], the Tilera Tile CPU line [51], and the Intel Xeon
Phi [44].

One of the important challenges of implementing safety-critical parallel ap-
plications on multi-core platforms is to guarantee that real-time constraints will
be met under all the possible execution conditions of the applications. It is too
difficult to precisely estimate the Worst-Case Execution Time (WCET) of tasks
that execute on multiple cores simultaneously. Thus, the traditional WCET es-
timation methods were designed for single-core architectures [52], accounting for
program execution paths and the characteristics of the core micro-architecture but
ignoring multi-core factors such as caches and buses that may be shared between
cores [14, 30]. Additionally, on architectures with local caches, the WCET of a
task is affected by the contents of the cache at the beginning of execution, which
in turn is affected by the task execution order. The net effect is that the WCET
of any particular task can no longer be computed in isolation—it depends on the
execution context of the task, including previous and concurrent tasks, which is
ultimately defined by the task scheduler. While it is possible to continue using the
traditional context-independent WCET, the results will be overly pessimistic. The
following example illustrates the high degree of variation in WCET that can be
caused solely by changes in the execution context.

Scenario 2 Scenario 1 
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Cache 

m n 

Cache m ? 

T1 Core 1 T2 

Cache 
cache miss cache hit 

Core 1 

Fig. 1 The influence of scheduling strategies on the WCET of tasks
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Motivating example. Let us consider an overly simplified parallel application
made of three tasks, named T1, T2, and T3, executing on a dual-core platform,
where each core is equipped with a unified private cache containing two lines. T1
and T2 access the same memory block, named m, whereas both the code and data
of T3 are independent of tasks T1 and T2. Assuming that the cache is empty
at the beginning of execution, we present two scenarios that demonstrate how
the scheduling strategy can affect the WCET of each task. In the first scenario,
illustrated in the left side of Figure 1, the request of T2 for the memory block m
is a cache miss, since at request time, the memory block has not been loaded in
the cache yet. In the second scenario, illustrated in the right side of Figure 1, the
request of T2 for the memory block m is a cache hit since the memory block was
already loaded into the cache by T1. In most machines a cache miss takes one or
more orders of magnitude (in cycles) than a cache miss since it requires loading
the requested data from main memory. Therefore, the worst-case execution time
of T2 in the second scenario is much lower than its worst-case execution time in
the first scenario.

This example shows that on architecture equipped with private caches, the
execution order of tasks along with their assignment to specific cores can have an
impact on the WCET of the tasks. Circularly, the task scheduler needs to know
the WCET of each task so that it can determine the feasible sequence of tasks
as assigned to specific cores. Therefore task scheduling and WCET estimation
for multi-core platforms are inter-dependent—it is a chicken-and-egg problem. By
making the scheduling strategies aware of the effect that execution context can
have on WCET, we believe that the overall efficiency of parallel applications can
be improved.

In this paper, we propose two cache-aware scheduling strategies that take ad-
vantage of cache reuse between pairs of consecutive tasks. Instead of assigning a
single WCET to each task, we assign a set in which each WCET is associated with
a task that could potentially precede it on the same core. This context-sensitive
WCET takes into account the variation in execution time caused by the contents
of the cache that remain after the preceding task completes. The objective of our
proposed scheduling strategies is to minimize the schedule length (known as the
makespan) by accounting for cache reuse. Throughout this paper we focus on a
single parallel application, modeled as a task graph, in which each node represents
a task and each edge represents a dependence relation between two tasks.

To further motivate our work, let us consider an example of scheduling an 8-
input Fast Fourier Transform application [4] on a 2-core platform. As shown in
Figure 2, in the task graph of the application, T2 and T3 feature code reuse since
they call the same function, and T2 and T6 feature data reuse since the output of
T2 is the input of T6. In that example, we observe a reduction in WCET of 10.7%
on average when taking into account the cache affinity between pairs of tasks that
may execute consecutively on the same core. By using the method to be presented
in Section 3 to generate the cache-conscious schedule for that application, we
observe an 8% reduction in the schedule length vs. its cache-agnostic equivalent.

Once the cache-conscious schedules are generated, our next objective is to
implement these schedules on real multi-core hardware using a Kalray MPPA-256
[13]. In the implementation stage, we first identify the implementation challenges
that arise when deploying those schedules on the platform, such as shared bus
contention, the effect of our time-driven scheduler itself, and the lack of hardware-
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Fig. 2 Task graph of a parallel version of a 8-input Fast Fourier Transform (FFT) applica-
tion [4]

implemented data cache coherence. These implementation factors require us to
make adjustments to our cache-conscious schedules. We thus propose a strategy
to adapt the cache-conscious schedules to the identified implementation factors,
such that the precedence relations of tasks are still satisfied, and the length of the
adapted schedules is minimized.

The main contributions of this paper are as follows:

– We argue the importance of accounting for the effect of private caches on the
WCET, and validate our position with experimental results.

– We propose an ILP-based scheduling method and a heuristic scheduling method
to statically find a time-driven, partitioned1, non-preemptive schedule of a par-
allel application modeled as a directed acyclic graph.

– We provide experimental results showing that the proposed scheduling tech-
niques result in shorter schedules than their cache-agnostic equivalents.

– We identify implementation issues that arise when implementing cache-conscious
schedules on the Kalray MPPA-256, and propose strategies for overcoming
them.

– We investigate the impact of various implementation factors on cache-conscious
schedules.

The rest of this paper is organized as follows. Section 2 gives the overview of
our hardware target, and describes the abstract model of the hardware platform,
as well as the task model used in cache-conscious schedule generation. Section 3
introduces two cache-conscious scheduling techniques: one based on an Integer Lin-
ear Programming (ILP) formulation and a heuristic based on list scheduling. The
implementation of cache-conscious schedules on the Kalray MPPA-256 is presented
in Section 4, where we describe the execution conditions of an application on the
platform and propose our time-driven scheduler implementation. We also identify

1 Note that although designed for multi-core platforms, our proposed techniques can also
be used on a single core to account for reuse among tasks executing on the same core.
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the implementation challenges that arise when deploying cache-conscious sched-
ules on the platform, and introduce our strategies for overcoming these issues. In
Section 5 we present an experimental evaluation of our proposed scheduling meth-
ods and our schedule implementation. Section 6 surveys related work. Finally, we
summarize the contents of the paper and provide directions for future work in
Section 7.

2 System model

2.1 Hardware model

Our target architecture is the Kalray MPPA-256 [13], more precisely its first gen-
eration, named Andey. The Kalray MPPA-256 is a clustered many-core platform
containing 288 cores which are organized into 16 compute clusters and 4 I/O clus-
ters. These clusters are interconnected with a dual 2D-torus Network on Chip
(NoC). In this study we generate cache-conscious schedules and implement them
on a single compute cluster. The overview of a Kalray MPPA-256 compute cluster
is given as follows.

2.1.1 Overview of a Kalray MPPA-256 compute cluster

A Kalray MPPA-256 compute cluster contains 17 identical VLIW (Very Long In-
struction Word) cores. The first 16 cores, referred to as processing elements (PEs),
are dedicated to general-purpose computations, while the 17th core, referred to as
resource manager (RM), manages processor resources for the entire cluster. Ad-
ditionally, a Kalray MPPA-256 compute cluster contains a Debug Support Unit
(DSU), a NoC Rx interface for receiving data, and a NoC Tx interface for trans-
mitting data (supported by a DMA − Directed Memory Access − engine).

As announced in [13], every core in the Kalray MPPA-256 is fully timing-
compositional [53]. Each core is equipped with a private instruction cache and a
private data cache of 8 KB each. Both are two-way associative with a Least Re-
cently Used (LRU) replacement policy. The default write policy of the data cache
is write-through. Data flushed from the data cache is not immediately commit-
ted to the shared memory—the flushed data is temporally held in a write buffer.
Since there is no hardware-implemented data cache coherence between cores, the
consistency of shared data between cores must be managed at the software level.

Tasks executing on different cores in the same cluster communicate through
the shared memory (SMEM), which comprises 16 independent memory banks of
128 KB each, for a total capacity of 2 MB. Each memory bank is associated with
a dedicated request arbiter that serves 12 bus masters: the D-NoC Rx interface,
the D-NoC Tx interface, the DSU, the RM core, and 8 PE pairs. Each bus master
has private paths connected to the 16 memory bank arbiters. The arbitration of
memory requests to SMEM’s banks is performed in 3 stages, depicted in Figure
3. The first two stages use a round-robin (RR) arbitration scheme. The first stage
arbitrates between memory requests from the instruction cache (IC) and the data
cache (DC) of each PE in a pair. In the second stage, the requests issued from
each PE pair compete against those issued from other PE pairs, the D-NoC Tx,
the DSU, and the RM. Finally, at the third stage, the requests compete against
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Fig. 3 SMEM memory request flow [13]

those coming from D-NoC Rx under static-priority arbitration, where the requests
from D-NoC Rx always have higher priority.

2.1.2 Abstract model of a Kalray MPPA-256 compute cluster

To improve the generality of our cache-conscious scheduling techniques and make
them usable on other architectures, we focus on a hardware model that abstracts
away as many architectural details of the Kalray MPPA-256 as possible. This
abstract model of a Kalray MPPA-256 compute cluster is illustrated in Figure 4.
All cores are homogeneous, and each core is equipped with a private instruction
cache and a private data cache. Tasks executing on different cores communicate
through the shared memory.

Furthermore, we assume that:

– Tasks access the shared bus without contention;
– There is no cost for triggering a task at any specific instant of time;

The overheads for bus contention and task triggering, as well as other hardware-
related overheads will be addressed in the implementation stage, to be presented
in Section 4.

2.2 Task model

We model an application as a Directed Acyclic Graph (DAG) [23], as illustrated
in Figure 2. A node in the DAG represents a task, and an edge represents a
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Fig. 4 Abstract model of a Kalray-MPPA 256 compute cluster
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precedence relation between the source and target tasks, and may also indicate
a transfer of information between them. A task can start executing only when
all its direct predecessors have finished executing, and after all data transmitted
from its direct predecessors are available. A task with no direct predecessor is an
entry task, whereas a task with no direct successor is an exit task. Without loss
of generality, it is assumed that there is a single entry task and a single exit task
per application.

The structure of the DAG is static, with no conditional execution of nodes.
The volume of data transmitted along the edges (possibly zero) is known offline.
Each task in the DAG is assigned a distinct integer identifier.

A communication for a given edge is implemented using transfers to and from
a dedicated buffer located in the shared memory. The worst-case cost for writing
data to and reading data from the buffer is integrated in the WCETs of the sending
and the receiving tasks.

Due to the effect of caches, each task τj is not characterized by a single WCET
value but instead by a set of WCET values. The set of WCET values for a task
contains: (i) its most pessimistic WCET value, noted WCETτj , observed when
there is no reuse of cache contents loaded by the task executed before on the
same core; (ii) its WCET when the task reuses data and/or instruction cache con-
tents from a directly preceding task on the same core. For example, the symbol
WCETτi→τj represents the WCET of task τj when τj reuses data and/or instruc-
tion cache contents from a directly preceding task τi on the same core. Note that
the definition of the WCET of a task in this paper differs from the traditional
definition, where the WCET of a task is simply the upper bound of its execution
time in isolation. In contrast, our definition of a task’s WCET is the upper bound
of its execution times when taking into account the cache contents left by the task
executed immediately before. Also note that for a task τj to benefit from cache
reuse from a task τi, τi has to be scheduled before τj on the same core (with no
task scheduled in between). However, the end time of τi needs not coincide with
the start time of τj . The scheduling algorithm may insert idle time between τi and
τj , for example to respect dependencies between tasks, while still taking benefit
of cache reuse.

3 Cache-conscious scheduling algorithms

Our proposed scheduling methods take as inputs (a) the number of cores available,
and (b) the DAG of a single parallel application decorated with context-sensitive
WCETs information for each task. The result is a time-driven, partitioned, non-
preemptive schedule of the application. More precisely, the schedule for each core
determines the start and finish times of all tasks assigned to the core. The ob-
jective is to find out schedules having the shortest possible length (also known as
makespan). We introduce two scheduling techniques:

– An ILP formulation which is capable of finding an optimal application’s sched-
ule whose the length is minimized under the considered assumptions (see Sec-
tion 3.1);

– A heuristic method based on list scheduling which is capable of finding a sched-
ule quickly (see Section 3.2). The length of the schedule is usually very close
to the optimal one, as demonstrated in our experiments in Section 5.
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Symbol Description Data type
τ The set of tasks of the parallel application set

dPred(τj) The set of direct predecessors of τj set
dSucc(τj) The set of direct successors of τj set
nPred(τj) The set of tasks that are neither direct nor indirect predeces-

sors of τj (τj excluded)
set

nSucc(τj) The set of tasks that are neither direct nor indirect successors
of τj (τj excluded)

set

K The number of cores of the processor integer
WCETτj The worst-case execution time of τj when not reusing cache

contents
integer

WCETτi→τj The worst-case execution time of τj when executing right after
τi

integer

sl The length of the generated schedule integer
wcetτj The worst-case execution time of τj integer
stτj The start time of τj integer
ftτj The finish time of τj integer
fτj Indicates if τj is the first task running on a core or not binary

oτi→τj Indicates if τj is a co-located task of τi and executes right
after τi or not

binary

Table 1 Notation used in the proposed scheduling methods

The notation we use to describe our scheduling methods is summarized in
Table 1. The first block defines notation for the task graph. A task τi is a direct
predecessor of a task τj if there is an edge from τi to τj in the task graph. A task
τi is an indirect predecessor of a task τj if there is an edge from τi to τj in the
transitive closure of the task graph. For instance, in the motivating example of
Figure 2, T1 is a direct predecessor of T2 and an indirect predecessor of T14. The
second block defines integer constants using upper-case letters. Finally, the third
block defines variables using lower-case letters.

3.1 Cache-conscious ILP formulation

In this section we present our formula for ILP in the context of cache-conscious
scheduling, which we call CILP for “Cache-conscious ILP”. Since cores are identical
in our abstract model, the execution time of a task is not affected by the properties
of the cores. Based on that observation, CILP focuses on constructing sequences
of co-located tasks, which includes defining the start time and the finish time of
each task in a sequence. Given these sequences, the assignment of tasks to cores
is straightforward (each sequence is simply assigned to a core).

The objective function of CILP is to minimize the schedule length sl of the
parallel application, which is expressed as follows:

minimize sl (1)

Since the schedule length for the parallel application has to be greater than or
equal to the finish time ftτj of any task τj , the following constraint is required:

∀τj ∈ τ,
sl ≥ ftτj

(2)
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The finish time ftτj of a task τj is equal to the sum of its start time stτj and
its worst case execution time wcetτj :

∀τj ∈ τ,
ftτj = stτj + wcetτj

(3)

In the above equation, variable wcetτj models the variation in WCET of a task
caused by private caches, and is computed as follows:

∀τj ∈ τ,

wcetτj = fτj ∗WCETτj +
∑

τi∈ nSucc(τj)
oτi→τj ∗WCETτi→τj

(4)

The multiplicative term on the left corresponds to the case where task τj
is the first task running on a core (fτj = 1). The summation term on the right
corresponds to the case where the task τj is scheduled just after another co-located
task τi (oτi→τj = 1). As shown later, only one of the binary variables among fτj
and oτi→τj will be set by the ILP solver, such that exactly one of these WCET
values will be assigned to τj . The assignment depends solely on the preceding task
(if any).

Constraints on the start time of tasks. A task can be executed only when all of
its direct predecessors have finished executing. In other words, the start time of a
task must be greater than or equal to the finish times of all its direct predecessors.

∀τj ∈ τ,∀τi ∈ dPred(τj),

stτj ≥ ftτi if dPred(τj) 6= ∅
stτj ≥ 0 otherwise

(5)

The final term in the above formula indicates that when a task has no prede-
cessor, its start time must be greater than or equal to zero.

When there is a co-located task τi scheduled to precede τj , such that τj cannot
start before τi finishes. In other words, the start time of τj must be greater than
or equal to the finish time of τi. Note that τj can be scheduled only after a task
τi that is neither its direct nor indirect successor.

∀τj ∈ τ,∀τi ∈ nSucc(τj),
stτj ≥ oτi→τj ∗ ftτi

(6)

In order to linearize equation (6), we use classical big-M notation, which is ex-
pressed as:

∀τj ∈ τ,∀τi ∈ nSucc(τj),
stτj ≥ ftτi + (oτi→τj − 1) ∗M

(7)

where M is a constant2 greater than any possible ftτj .

2 For the experiments, M is the sum of all tasks’ WCETs when not reusing cache contents,
to ensure that M is greater than the finish time of any task.
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Constraints on the execution order of tasks. A task is preceded by exactly one
other task on the same core unless it is the first scheduled task:

∀τj ∈ τ,∑
τi∈nSucc(τj)

oτi→τj + fτj = 1 (8)

The number of cores used is defined by the number of first scheduled tasks
(number of variables fτj equal to 1). Since the number of cores is K, the number
of cores used has to be at most K: ∑

τj∈τ
fτj ≤ K (9)

Finally, a task has at most one co-located task scheduled immediately succeed-
ing. This is expressed as:

∀τi ∈ τ, if nPred(τi) 6= ∅∑
τj∈nPred(τi)

oτi→τj ≤ 1 (10)

An ILP solver produces results to the mapping/scheduling problem in the form
of two sets of variables:

1. Task mapping is defined by variables fτj and oτi→τj , which represent sets of
co-located tasks along with the execution order within each set.

2. The static schedule for a core is defined by variables stτj and ftτj , which
represent the start and finish time of the tasks assigned to that core.

3.2 Cache-conscious list scheduling method (CLS)

Finding an optimal solution to a partitioned, non-preemptive scheduling problem
for a multi-core architecture is NP-hard [19], and does not scale with large number
of tasks, as shown in our experiments (see Section 5). Therefore, we developed a
heuristic scheduling method that efficiently produces schedules even for a large
number of tasks. This method is based on list scheduling (see [24] for a survey of
list scheduling methods).

Cache-conscious List Scheduling (CLS) begins with a list of tasks to be sched-
uled, scanning the list sequentially and scheduling each task without backtrack-
ing. For each task, CLS explores every potential core assignment that respects its
precedence constraints. The core which allows the earliest finish time of the task
is selected and the corresponding schedule is kept.

Task ordering in the list must follow a topological ordering (if τi is a direct
predecessor or an indirect predecessor of τj , τi appears before τj in the list). To
respect precedence constraints, the task sequence must follow a topological order-
ing. The list order is determined based on two classical metrics, both respecting
topological order by construction. They both define for each task a weight (twτj
for task τj), based on the task WCET, as defined below. The bottom level met-
ric defines for task τj the longest path from τj to the exit task (τj included),
accumulating task weights along the path:
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bottom levelexit = twexit

bottom levelτj = max(bottom levelτi + twτj ),∀τi ∈ dSucc(τj) (11)

The top level metric symmetrically defines for task τj the longest path from
the entry task to τj (excluding τj itself):

top levelentry = 0

top levelτj = max(top levelτi + twτi),∀τi ∈ dPred(τj) (12)

The use of the direct successor function dSucc in Equation 11 (respectively
direct predecessor function dPred in Equation 12) guarantees the topological or-
dering.

What distinguishes CLS from existing scheduling techniques is its consideration
of context-sensitive WCET coming from cache reuse. Since a task may have a
different WCET for each of its potential predecessors, the weight of a task is
defined to approximate the variability of its WCET. The weight twτj of a task τj
is defined as:

twτj =
1

K
∗minτi∈nSucc(τj)(WCETτi→τj ) + (1− 1

K
) ∗WCETτj (13)

This formula integrates the potential for the WCET of task τj to be reduced,
as well as the diminishing potential for WCET reduction as the number of cores
increases.

As will be shown in Section 5.2, neither of the two metrics consistently outper-
forms the other for all task graphs. For this reason we kept both variations. For
convenience, we define shorthand for specific forms of CLS:

– In CLS BL, tasks are sorted according to the bottom level metric. In case of
equality, the first tie-breaker is the top level metric, and remaining ties are
broken arbitrarily by task identifier.

– In CLS TL, tasks are sorted according to the top level metric, with ties broken
first by the bottom level metric and then by task identifier.

– CLS indicates the better choice among the bottom level and top level metrics;
i.e., the method giving the shorter schedule length for a particular task graph.

– NCLS is the cache-agnostic equivalent of CLS, and indicates the better choice
among the bottom level and top level metrics for a system with no consideration
of cache reuse. The weight of a task when using NCLS is its WCET ignoring
cache reuse.

4 Implementation of cache-conscious schedules on Kalray MPPA-256

In Section 3, only the effects of local caches were considered in the generation of
time-driven, cache-conscious schedules. In this section, we point out complications
that arise in the implementation of the schedules on a Kalray MPPA-256 compute
cluster. We also propose strategies to overcome these implementation factors.
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1 void sched ( u i n t 6 4 t tr iggerTime ){
2 u i n t 6 4 t curTimeStamp = 0 ;
3 do
4 {
5 // get the t iming in fo rmat ion from the g l o b a l c y c l e counter
6 curTimeStamp = k1 read dsu t imestamp ( ) ;
7 // check the c r i t e r i o n f o r e x i t i n g from the loop
8 } whi le ( curTimeStamp < t r iggerTime ) ;
9 }

Listing 1 The code of the sched function

4.1 Assumptions on execution conditions

To limit contention among tasks when accessing the SMEM of the Kalray MPPA-
256, we impose the following constraints:

– The code and data of the application must fit into the SMEM of the compute
cluster. The Resource Manager (RM) will load the application entirely onto
the cluster before the application starts, and will have no further role during
execution of the application.

– The application is executed in isolation on a compute cluster to avoid potential
contention from the NoC.

– Debug mode is prohibited to avoid contention from the Debug Support Unit
(DSU).

These constraints simplify contention on the shared bus, such that contention can
only occur between application tasks running on different cores (PEs). In other
words, the arbitration of memory requests to the SMEM’s banks is simplified
from the three stages described in Section 2.1.1 to just one stage, in which access
is granted according to an ordinary round-robin policy.

4.2 Time-driven scheduler

The Kalray MPPA-256 provides a timestamp global cycle counter for timing syn-
chronization between cores in the cluster. In order to trigger the execution of a
task at a specific instant of time, we implement a sched function (see Listing 1) to
be invoked just prior to the task. The sched function repeatedly checks the task
trigger time against the global cycle counter, and starts the task when it detects
that its trigger time has been reached.

4.3 Implementation challenges

Several complications arise in the implementation of time-driven, cache-conscious
schedules on the Kalray MPPA-256:

4.3.1 Cache pollution caused by the scheduler

As described in Section 4.2, an instance of the scheduling function is interleaved
between each pair of consecutive tasks on a given core. But since the data accessed
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by the scheduling function is unrelated to the task data, it effectively pollutes the
cache, thereby attenuating the potential benefit of cache reuse between tasks.
The net effect is an increase in the WCET which must be accounted for by our
scheduling algorithm.

4.3.2 Shared bus contention

In a Kalray MPPA-256 compute cluster, concurrent requests issued from different
cores to the same memory bank(s) compete against each other because each mem-
ory bank is equipped with only one requests arbiter. Therefore the delay induced
by shared bus contention must be taken into account. Note that a PE is consecu-
tively occupied by the executions of either the sched function or tasks mapped on
the PE. Therefore, it may happen that memory requests of a task compete against
those of both the tasks and the sched function executing in parallel with the task.

4.3.3 Delay to the start time of tasks because of scheduler

A task starts executing only when the sched function which precedes the task
terminates. In the worst case, the execution of the task can be postponed by (at
most) the amount of time that the sched function spent on its last iteration. As
a result, there may be a gap between the trigger time of a task and the actual
start time of the task (release jitter [27,37]). The delay in the start time of a task
affects its finish time, thus requiring the trigger time of every task to be updated
such that the precedence relation(s) are maintained.

4.3.4 Lack of hardware-implemented data cache coherence

The Kalray MPPA-256 does not provide hardware support for cache coherence be-
tween cores. In a compute cluster, tasks executing on different cores communicate
through the SMEM, and data in transit from the cache to the SMEM is temporar-
ily held in a write buffer before being committed to the SMEM. This delay may
cause communication between pairs of tasks executing on different cores to fail.

Communication failures can occur in the case that a task is assigned to a dif-
ferent core than its predecessor and starts executing right after the termination
of its predecessor. At the time that a task starts executing, the most recent data
which the task intends to receive from its predecessor may not have been com-
mitted to the SMEM yet. As a result, the task may operate on obsolete data.
In order to overcome this issue, all memory stores of the sending task must be
committed to the SMEM before its termination. This can be done by inserting
synchronization instructions at the end of each task. These instructions, which
are available natively in the Kalray MPPA-256, include builtin k1 wpurge() and

builtin k1 fence(). The former instruction requests the write buffer flush to the
shared memory, while the latter waits for all data to be committed to the shared
memory.

Additionally, communication failures can occur if the communication buffers
between a pair of tasks are not aligned properly. Data misalignment may cause
a task to accidentally acquire data that was stored by unrelated computations.
This issue can be resolved by aligning all communication buffers on data cache
line boundaries.
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Fig. 5 The overheads induced on the execution of a task

4.4 Adapting our time-driven, cache-conscious schedules

The implementation factors mentioned in Section 4.3 introduce overheads on the
execution of tasks. As illustrated in Figure 5, the overheads include:

– Reduction in cache reuse due to cache pollution.
– Delay in the start time of tasks.
– Overhead of flushing the write buffer to the shared memory.
– Shared bus contention.

Section 3 presented algorithms for generating a cache-conscious schedule without
accounting for these implementation factors. Here we present a technique, also
based on ILP, that updates the tasks trigger times of the initial schedule (shifts
them in the future) to account for these overheads. These modifications of trigger
times maintain the per-core execution order of tasks of the initial schedule, and
ensure that precedence relation constraints between the tasks remain satisfied.
We refer to the adjusted schedule as an adapted cache-conscious schedule. Figure
6 illustrates the adapted cache-conscious schedule with its adjusted WCET and
task trigger time. The technique proposed to shift task trigger times is in the
following called ACILP, for adapted cache-conscious ILP .

Notation used in the ILP formulation. Extending the set of symbols from Table 1
for managing the task graph, Table 2 introduces the following new symbols:

– The first section of the table defines notation that represents strictly the theo-
retical factors of cache-conscious scheduling (omitting reference to implementa-
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tion factors). B(τj) represents the task executing on the same core and imme-
diately preceding τj , C(τj) represents the core to which τj is assigned, LT (cj)
represents the last task running on core cj , and c represents the set of cores to
which tasks are assigned.

– The second section defines predetermined parameters using upper case letters.

The symbols WCET
over\cont
τj and MRτj represent the worst-case execution

time of τj , and the maximum number of memory requests issued in the execu-

tion of τj , respectively. As illustrated in Figure 5, both WCET
over\cont
τj and

MRτj account for overheads caused by all the implementation factors except
for the delay from shared bus contention. The overhead estimation is detailed
in Section 5.3.1. Additionally, the symbol DMEM stands for the upper bound
of memory access latency in the absence of contention (to be explained in
Section 5.1).

– The third section defines variables using lower case letters. Similar to CILP,
we use symbols such as sl and ftτj for the schedule length and the finish time
of τj in the adapted cache-conscious schedule, respectively. The symbol ttτj ,
represents the trigger time of τj . The symbol ttτj represents the same concept
as stτj (start time) in the initial schedule generation. We used a different
symbol simply because the values of ttτj and stτj are not the same (ttτj ≥ stτj
due to the consideration of implementation overheads). The symbol denoted as
wcetoverτj (as illustrated in Figure 5) stands for the worst-case execution time

of τj accounting for shared bus contention. The remaining symbols ocontentionτj ,

δ
cj
τj , δτj , and intf

cj
τj focus on contentions affecting τj .

Fig. 6 An example of adapted cache-conscious schedule
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Symbol Description Data type
B(τj) Set of co-located task immediately preceding τj set
C(τj) Core to which τj is assigned integer
c The set of cores to which tasks are assigned set

LT (cj) The last running task on core cj integer

WCET
over\cont
τj The worst-case execution time of τj , adjusted for all overheads

caused by the implementation issues except for shared bus
contention

integer

MRτj The total number of memory requests issued by τj integer
DMEM The upper bound of memory access latency, excluding con-

tention delay
integer

sl The total duration of the adjusted cache-conscious schedule integer
ttτj The trigger time of τj integer
ftτj The finish time of τj integer

ocontentionτj
The overhead induced on the execution of τj by shared bus
contention

integer

wcetoverτj
The worst-case response time of τj integer

δ
ck
τj The maximum number of memory accesses issued from core

ck that could interfere with the execution of τj

integer

δτj The maximum number of memory accesses that interfere with
the execution of τj

integer

intf
ck
τj Indicates if the memory accesses from core ck interfere with

the execution of τj or not
binary

Table 2 Notations used in the ILP formulation in the adapted stage

ILP formulation to account for the implementation factors (ACILP). ACILP re-
tains both the objective function and the constraints between schedule length and
task finish time from the original CILP (presented in Section 3.1).

The finish time ftτj of τj is the sum of its trigger time ttτj and its worst-case
execution time wcetoverτj , which now accounts for shared bus contention.

∀τj ∈ τ,
ftτj = ttτj + wcetoverτj

(14)

To complete the ILP formulation, we first present constraints for computing
the trigger time of tasks, then we present constraints for computing the worst-case
execution time of tasks that account for shared bus contention.

Constraints on task trigger time. If τj has any direct predecessors (notated as τi ∈
dPred(τj)), then τj cannot begin execution until after those tasks have finished.
In order to maintain the precedence relations among tasks, the trigger time of the
task must be greater than or equal to the finish time of all its direct predecessors.
The same constraint is introduced if τj has a co-located task that immediately
precedes it (notated as τi ∈ B(τj)).

∀τj ∈ τ, dPred(τj) 6= ∅ ∨B(τj) 6= ∅,
∀τi ∈ dPred(τj) ∨ τi ∈ B(τj),

ttτj ≥ ftτi

(15)
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When a task has no predecessor and is the first task running on a core, the
trigger time of the task must be greater than or equal to zero.

∀τj ∈ τ, dPred(τj) = ∅ ∧B(τj) = ∅,
ttτj ≥ 0.

(16)

Constraints on the worst-case execution time to account for shared bus contention.
As announced in [13], every core in Kalray MPPA-256 is fully timing composi-
tional. The worst-case execution time of τj can safely account for the shared bus
contention wcetoverτj by computing the sum of:

– the worst-case execution time of τj , adjusted for overheads caused by all the im-

plementation factors except shared bus contention (denoted asWCET
over\cont
τj );

– shared bus contention induced on τj (denoted as ocontentionτj ).

∀τj ∈ τ,

wcetoverτj = WCET over\contτj + ocontentionτj

(17)

Let us denote δτj the maximum number of memory requests (from all cores)
that could delay the execution of τj , and DMEM the upper bound of memory
access latency in a contention free situation. The shared bus contention delay
induced on τj is computed as:

ocontentionτj = δτj ∗DMEM, (18)

Let us denote as δckτj the maximum number of memory requests issued from core
ck 6= C(τj) that interfere with the execution of τj . Considering memory requests
of all cores (ck ∈ c ∧ ck 6= C(τj)) that delay the execution of τj , we compute δτj
as follows:

δτj =
∑

ck∈c∧ck 6=C(τj)

δckτj (19)

To compute δckτj , we need to determine whether the memory requests of τj
compete against those issued from ck or not (represented as a binary variable
intfckτj ).

Since the sched function precedes every task, there will always be some code
(task or scheduler) executing up to the point that the last task completes (i.e.,
either the execution of the sched function or the execution of a task). In order to
ensure that all possible contentions are captured, we always account for potential
interference between task τj and the operations on core ck, except when τj is trig-
gered after the termination of the last task running on ck (represented by LT (ck)).
If τj and LT (ck) are constrained by a precedence relation, we can predetermine
the value of intfckτj , as follows:

– if τj is either a direct predecessor or an indirect predecessor of LT (ck), τj must
start executing before LT (ck). In this case, intfckτj = 1;

– if τj is either a direct successor or an indirect successor of LT (ck), τj has to
start executing after the termination of LTck . In this case, intfckτj = 0.
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If τj and LT (ck) do not have any precedence relation, the determination of intfckτj
is presented as following condition:

intfckτj =

{
0 if ttτj ≥ ftLT (ck)

1 if ttτj < ftLT (ck)

(20)

To restate the above condition in classical big-M notation:

∀τj ∈ τ,∀ck ∈ c ∧ ck 6= C(τj), τj /∈ allPred(LT (ck)) ∧ τj /∈ allSucc(LT (ck))

ftLT (ck) − ttτj ≥ 1−M ∗ (1− intfckτj )

ftLT (ck) − ttτj ≤M ∗ intf
ck
τj

(21)
where M , is a constant3 greater than any possible ftLT (ck).
To reduce the computational effort of solving the ILP formulation, when mem-

ory requests issued by τj are determined to compete against those from ck, intfckτj =
1, we assume that all memory requests of τj are delayed according to δckτj = MRτj .
We formulate δckτj as follows:

δckτj = intfckτj ∗MRτj (22)

5 Experimental evaluation

The experimental evaluation is divided into three parts.

– In the first part, we present experimental conditions. We describe properties of
the benchmarks used in the experiment. Additionally, we present the method
used for estimating WCETs and the number of cache misses of tasks. Fur-
thermore, we describe experimental environment containing information of the
ILP solver and the machine used for running the ILP solver and the proposed
heuristic scheduling algorithm.

– In the second part, we evaluate the quality of generated cache-conscious sched-
ules and required time for generating them. The objective is to evaluate the
maximum schedule length reduction attainable by our proposed cache-conscious
scheduling methods for any multi-core architectures equipped with local caches.
Therefore, in this study, we ignore implementation factors, such as hardware
sharing, the effects of the time-driven scheduler, and the lack of hardware-
implemented data cache coherence. Those implementation issues will be ad-
dressed in the third part of the evaluation.

– In the third part, we first validate the functional and temporal correctness
of applications when executing on a Kalray MPPA-256 compute cluster. We
then quantify the impact of the overheads caused by different implementation
factors on adapted cache-conscious schedules. Finally, we evaluate performance
of our proposed ACILP formulation in both terms of quality of adapted cache-
conscious schedules and required time for generating the schedules.

3 For the experiments, M is the sum of the worst-case execution time of all tasks adjusted
for worst-case shared bus contention. Specifically, the total number of memory requests that
interfere with the execution of τj is equal to MRτj ∗ (|c| − 1), where |c| is the number of cores
to which tasks are assigned. This ensures M will be greater than the finish time of any task.
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Benchmark
(directed acyclic
graph)

No. of
tasks

No. of
Edges

Max. graph
width

Ave. graph
width

Graph
Depth

AudioBeam 20 33 15 3.3 6
Autocor 12 18 8 2.4 5

Beamformer 42 50 16 4.2 10
BitonicSort 50 66 4 2.1 24

Cfar 67 129 64 16.8 4
ChannelVocoder 264 512 201 33 8

Cholesky 95 148 11 2.3 41
ComparisonCounting 37 67 32 6.2 6

DCT 13 15 3 1.3 10
DCT 2D 10 11 2 1.3 8

DCT 2D reference fine 148 280 64 18.5 8
Des 247 468 48 9.9 25

FFT coarse 192 254 64 12.8 15
FFT fine 2 115 150 16 3.7 31

FFT medium 131 204 16 4.7 28
FilterBank 34 45 8 2.4 14
FmRadio 67 85 20 5.6 12

IDCT 16 19 3 1.3 12
IDCT 2D 10 11 2 1.3 8

IDCT 2D reference fine 548 1072 256 68.5 8
Lattice 45 53 2 1.3 36

MergeSort 31 37 8 2.6 12
Oversampler 36 61 16 3.6 10

RateConverter 6 6 2 1.2 5
VectorAdd 5 4 2 1.3 4

Vocoder 71 94 7 2.2 32

Table 3 Summary of the characteristics of StreamIt benchmarks in our case studies.

5.1 Experimental conditions

Benchmarks. In our experiments, we use 26 benchmarks of the StreamIt bench-
mark suite [48]. StreamIt is a programming environment that facilitates the pro-
gramming of streaming applications, and was selected because it provides bench-
marks with explicit parallelism and data transfers. We modified the StreamIt com-
pilation toolchain (code generation step) to obtain task graphs compatible with
our task model.

The characteristics of the task graphs are summarized in Table 3. In the table,
the maximum width of a task graph is defined as the maximum number of tasks
with the same rank4. The maximum width defines the maximum parallelism in
the benchmark. The average width is an average of the number of tasks for all
ranks. The average width defines the average parallelism of the application. The
higher the average width, the better the potential to benefit from a high number
of cores. The depth of a task graph is defined as the longest path from the entry
task to the exit task.

Additional information on the benchmarks is reported in Table 4. Reported
information is the code size for the entire application, the average code size per
task, the standard deviation of code sizes (the higher the number, the higher the

4 The rank of a task is defined as the longest path in terms of the number of nodes to reach
that task from the entry task.
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Benchmark
Code size (Bytes) Communicated data

(Bytes)
Entire application µ / σ of tasks µ

AudioBeam 38076 1458 / 1897 6
Autocor 12348 1014 / 538 66

Beamformer 333424 1879 / 718 10
BitonicSort 57952 1154 / 503 9

Cfar 181808 1906 / 5513 6
ChannelVocoder 302012 881 / 159 6

Cholesky 87336 916 / 667 22
ComparisonCounting 33564 893 / 840 20

DCT 23180 1188 / 831 8
DCT 2D 17248 1704 / 1101 9

DCT 2D reference fine 120392 724 / 145 12
Des 212808 783 / 185 12

FFT coarse 418576 2161 / 467 52
FFT fine2 122428 1060 / 574 9

FFT medium 178660 1358 / 408 27
FilterBank 101096 834 / 192 4
FmRadio 374812 1072 / 679 4

IDCT 24336 1507 / 1239 7
IDCT 2D 17608 1740 / 1063 9

IDCT 2D reference fine 452924 802 / 154 7
Lattice 37812 817 / 274 5

MergeSort 34208 1088 / 366 16
Oversampler 56824 777 / 115 4

RateConverter 12348 683 / 247 11
VectorAdd 3080 593 / 148 4

Vocoder 125272 1064 / 1319 6

Table 4 The size of code and communicated data for each benchmark (average µ and standard
deviation σ).

variability of the code sizes of tasks in the application), and the average amount
of data communicated between tasks.

WCET and the number of cache misses estimation. Many techniques exist for
WCET analysis [52] and could be used in our study to estimate WCETs and the
gains resulting from cache reuse. At the moment doing the experiment, there is no
publicly available WCET analysis tool for the Kalray MPPA-256. Furthermore,
WCET estimation is not at the core of our scheduling methods. Therefore, we
obtain WCET values by using measurements on a compute cluster of the Kalray
MPPA-256. Measurements were performed on one core of the platform, with no
activity on the other cores, providing fixed inputs for each task. The execution
time of a task is retrieved using the platform’s global cycle counter. The effect of
reading the timestamp counter on the execution time of a task turned out to be
negligible as compared to the execution time of the task. We further observed that
thanks to the determinism of the architecture, when running a task several times
in the same execution context (10 times in our experiments), the execution time
is constant (the same behavior was reported in [29]).

Additionally, in order to record the number of cache misses, we use two per-
formance counters supported by the Kalray MPPA-256. One counts the number
of instruction cache misses, the other one counts the number of data cache misses.
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Benchmark

WCET in cycles
(w/o cache
reuse)
(µ/σ)

Weighted av-
erage WCET
reduction

AudioBeam 1479.0 / 2869.6 13.3
Autocor 3163.0 / 1855.1 5.5
Beamformer 4896.9 / 2950.2 4.5
BitonicSort 678.0 / 391.6 22.8
Cfar 2767.0 / 11612.7 13.0
ChannelVocoder 8084.5 / 26265.9 3.8
Cholesky 1512.5 / 3152.3 10.7
ComparisonCounting 1249.6 / 1477.5 14.4
DCT 718.3 / 685.0 19.1
DCT 2D 812.7 / 741.4 18.6
DCT 2D reference fine 1072.6 / 1519.2 17.1
Des 893.2 / 1236.2 23.4
FFT coarse 3465.9 / 3062.3 9.8
FFT fine 2 745.5 / 469.6 19.5
FFT medium 1470.7 / 1456.3 11.6
FilterBank 3634.0 / 3701.0 4.6
FmRadio 2802.5 / 2652.1 5.5
IDCT 687.7 / 632.9 21.2
IDCT 2D 805.6 / 743.5 18.7
IDCT 2D reference fine 1538.5 / 3864.9 14.9
Lattice 515.6 / 381.8 28.6
MergeSort 1010.4 / 662.1 17.4
Oversampler 4195.3 / 684.5 6.5
RateConverter 19779.0 / 34471.5 0.9
VectorAdd 923.8 / 979.6 20.1
Vocoder 804.1 / 1227.8 15.8

Table 5 Tasks’ WCETs (average µ / standard deviation σ) without cache reuse and weighted
average WCET reduction

Experimental environment. We use Gurobi optimizer version 6.5 [17] for solving
our proposed ILP formulations. The solving time of the solver is limited to 20
hours. The ILP solver and heuristic scheduling algorithms are executed on 3.6
GHz Intel Core i7 CPU with 16GB of RAM.

5.2 Evaluation the performance of cache-conscious schedules generation

5.2.1 Context-sensitive WCET information

For each task, we record its execution time when not reusing cache contents, as well
as its execution time when executed after any possible other task5. Note that the
way the benefit of cache reuse is evaluated also captures other (minor) hardware
effects such as pipeline effects.

Table 5 summarizes the statistical numbers of obtained execution times. This
table shows the average and standard deviation of tasks’ WCET when having no

5 A task τj can possibly execute after another task τi if the sequence < τi, τj > may exist in
a valid schedule regarding precedence constraints between tasks. This means that τi is neither
a direct nor indirect successor of τj in the task graph, i.e. τi ∈ nSucc(τj) according to the
notation introduced in Table 1
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cache reuse (the higher the standard deviation, the higher the variability of the
WCET of tasks in the application). It also shows the weighted average WCET
reduction for each benchmark, computed as follows. For each task τj we calculate
its average WCET reduction in percent:

rτj = 100 ∗

∑
τi∈nSucc(τj)

WCETτj −WCETτi→τj
WCETτj

|nSucc(τj)|
(23)

Equation 23 considers for a task τj all tasks τi that may be scheduled imme-
diately before τj by the scheduler, i.e. all tasks in set nSucc(τj) (not successors of
τj in the task graph), as defined in Table 1.

We observed that tasks with small WCET have important WCET reductions
when considering cache reuse. On the other hand, they have low impact on sched-
ule length because of their low WCET. Consequently, we weighted each WCET
reduction by its WCET ignoring cache reuse, yielding to the following definition
of weighted average reduction:

wr =

∑
τj∈τ (rτj ∗WCETτj )∑

τj∈τ WCETτj
(24)

Regarding the cost of estimating context-sensitive WCETs of tasks due to
cache reuse, we observed that the worst profiling time is 10 minutes for the most
complex benchmark structure IDCT 2D reference fine. The benchmark contains
548 tasks, and 219238 pairs of tasks that may be executed one after the other
(with respect to precedence constraints).

5.2.2 Benefits of cache-conscious scheduling

We show that cache-conscious scheduling, should it be implemented using an
ILP formulation (CILP) or a heuristic method (CLS), yields to shorter schedules
than equivalent cache-agnostic methods. This is shown by comparing how much is
gained by CILP as compared to NCILP, the same ILP formulation as CILP except
that cache effect is not taken into account (variable wcetτj is systematically set
to the cache-agnostic WCET, WCETτj ). The gain is evaluated by the following
equation, in which sl stands for the schedule length:

gain =
slNCILP − slCILP

slNCILP
∗ 100. (25)

The gain is also evaluated using a similar formula for the heuristic method
CLS (shorter schedule results for CLS BL and CLS TL) as compared to its cache-
agnostic equivalent.

Results are reported in Figure 7 and Figure 8 for a 16 cores architecture. In
Figure 7, only results for the benchmarks for which the optimal solution was found
in a time budget of 20 hours are depicted. These figures show that both CILP and
CLS reduce the length of schedules, and this for all benchmarks. The gain is
11% on average for CILP and 9% on average for CLS. As expected, the higher
reductions are obtained for the benchmarks with the higher weighted average
WCET reduction as defined in Table 5.
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Fig. 7 Gain of CILP as compared to NCILP (gain =
slNCILP − slCILP

slNCILP
∗100) on a 16 cores

system

5.2.3 Comparison of exact (CILP) and heuristic (CLS) scheduling techniques

We compare CILP and CLS according to two metrics: quality of generated sched-
ules, estimated through their length (the shorter the better) and time required to
generate the schedules. All results are obtained on a 16 cores system.
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Fig. 8 Gain of CLS as compared to NCLS (gain =
slNCLS − slCLS

slNCLS
∗ 100) on a 16 cores

system
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Benchmarks sl CILP sl CLS time CILP (s) time CLS (s) gap (%)
AudioBeam 20746o 20746 < 1 < 1 0.00

AutoCor 17455o 17455 < 1 < 1 0.00
Beamformer 29778o 29803 2 < 1 0.08
BitonicSort 15445o 15616 78 < 1 1.11

Cfar 120370f 120476 72000 < 1
ChannelVocoder x 302933 72000 < 1

Cholesky 113474o 114539 < 1 < 1 0.94

ComparisonCounting 19618f 19640 72000 < 1
DCT 6613o 6613 < 1 < 1 0.00

DCT2D 5856o 5867 < 1 < 1 0.19

DCT 2D reference fine 33337f 32572 72000 < 1

Des 100632f 98596 72000 < 1
FFT coarse x 134873 72000 < 1
FFT fine 2 30007o 30326 66984 < 1 1.06

FFT medium 89782f 87144 72000 < 1
FilterBank 47083o 47185 15 < 1 0.22
FmRadio 29969o 30125 4376 < 1 0.52

IDCT 7268o 7268 < 1 < 1 0.00
IDCT2D 5803o 5826 < 1 < 1 0.40

IDCT 2D reference fine x 101970 72000 1
Lattice 13253o 14217 < 1 < 1 7.27

MergeSort 14501o 14563 1 < 1 0.43
Oversampler 39143o 39279 8 < 1 0.35

RateConverter 117278o 117278 < 1 < 1 0.00
VectorAdd 3704o 3704 < 1 < 1 0.00

Vocoder 32759o 32916 9 < 1 0.48
Average 0.72

- x: no solution is found in 20 hours
- f: feasible solution is found
- o: optimal solution is found

Table 6 Comparison of CILP and CLS (schedule length and run time of schedules generation
in seconds)

Table 6 gives the length of generated schedules (slCILP and slCLS), the run
time of schedule generation (in seconds) and the gap (in percent) between the
schedules length, computed by the following formula:

gap =
slCLS − slCILP

slCILP
∗ 100. (26)

The shorter the gap, the closer CLS is from CILP. The gap between CLS and
CILP is given only when CILP finds the optimal solution in a time budget of 20
hours.

The table shows that CLS offers a good trade-off between efficiency and quality
of its generated schedules. CLS generates schedules very fast as compared to CILP
(i.e., about 1 second for the biggest task graph IDCT 2D reference fine which con-
tains 548 tasks). When scheduling big task graphs, such as DES , ChannelVocoder ,
and IDCT 2D reference fine CILP is unable to find the optimal solution in 20
hours, which is expected because the problem of finding the optimal solution to
a partitioned, non-preemptive scheduling problem on a multi-core architecture is
NP-hard [19, 32]. When CILP finds the optimal solution, the gap between CILP
and CLS is very small (0.7% on average).
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wcetT 6 −wcetT1→T 6

wcetT 6
*100 = 37.3

wcetT 9 −wcetT 4→T 9

wcetT 9
*100 = 50.1

wcetT 6 −wcetT 5→T 6

wcetT 6
*100 = 22.6

wcetT 9 −wcetT 7→T 9

wcetT 9
*100 = 31.3

Fig. 9 The reuse pattern found in the Lattice benchmark

The highest gap (7.3%) is observed for the Lattice benchmark. It can be ex-
plained that the WCETs of tasks in the Lattice benchmark are small and the
benchmark contains a reuse pattern (illustrated in Figure 9) where reuse is higher
between indirect predecessors than between direct predecessors. For example, the
reduction of the WCET of T6 when executed directly after T1 on the same core6

(37.3%) is higher than when executed directly after T5 on the same core (22.6%).
Similarly, the reduction of the WCET of T9 when executed directly after T4 on
the same core (50.1%) is higher than when executed directly after T7 on the same
core (31.3%). For such an application, the static sorting of CLS never places indi-
rect precedence-related tasks (for which the higher reuse occurs) contiguously in
the list, and then does not fully exploit the cache reuse present in the application.

5.2.4 Impact of the number of cores on the gain of CLS against NCLS

We evaluate the gain in terms of schedule lengths of CLS against its cache-agnostic
equivalent when varying the number of cores. The results are depicted in Figure 10
for a number of cores from 2 to 64.

In the figure, we can observe that whatever the number of cores, CLS always
outperforms NCLS, meaning that our proposed method is always able to take ad-
vantage of the WCET reduction due to cache reuse to reduce schedules length.
Another observation is that the gain decreases when the number of cores increases,
up to a given number of cores. This behavior is explained by the fact that when in-
creasing the number of cores, the tasks are spread among cores which provides less
opportunity to exploit cache reuse since exploiting the parallelism of the applica-
tion is more profitable. However, even in that situation, the reduction of schedules
length achieved by CLS against NCLS is most of the time significant.

6 Note that executing T6 directly after T1 on the same core is not a violation of precedence
constraints between tasks, provided that tasks T2 to T5 are assigned to another core, and
there is an idle time between the end of T1 and the start of T6.
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Fig. 10 Impact of the number of cores on the gain of CLS against NCLS
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5.2.5 Comparison of schedules length for CLS TL and CLS BL

We study the impact of the sorting technique of the list scheduling technique on
quality of schedules. Figure 11 depicts the ratio of the length of the schedule gen-

erated by CLS TL to that of CLS BL as slRatioCLS TL/CLS BL =
slCLS TL

slCLS BL
for

each benchmark. A ratio of 1 indicates that the two techniques generate schedules
with identical length. Results are given for different numbers of cores (4, 8, 16, 32
and 64).

The figure shows that there is no method which dominates the other for
all benchmarks. Furthermore, the length of schedules generated by CLS TL and
CLS BL are most of the time very close to each other if not identical. The expla-
nation is that both CLS TL and CLS BL scan tasks in some topological orders.
With task graphs having a small width, there is a small number of possible topo-
logical orderings of tasks. With task graph having a large width, the WCETs of
most tasks having the same rank are correlated since those tasks in the SteamIt
benchmarks execute the same piece of code. Therefore, with task graphs having
those properties different orderings of tasks results in slight changes in the final
schedules length.

There is a significant difference between CLS TL and CLS BL only in two
cases, ChannelVocoder on 4 cores and FmRadio on 8 cores. The distances between
the length of the schedules generated by CLS TL and CLS BL in these cases are
then 3% and 8% respectively. It shows that in some special cases, the change in
the order of tasks in the list significantly affects the mapping of tasks, hence the
quality of generated schedules. Since both CS TL and CLS BL generate schedules
very fast, we have throughout this paper always used both and selected the best
result obtained.

5.3 Evaluation of the cache-conscious schedules implementation

In the evaluation we use four benchmarks 7, named AudioBeam, AutoCor, Fm-
Radio, and MergeSort.

5.3.1 Overheads and number of memory accesses estimation

The overhead induced on τj by cache pollution, noted as ocache pollutionτj , is com-
puted by subtracting the worst-case execution time of τj when considering the
execution of the sched function before the task (WCET cpoτj ) from its worst-case

execution time when ignoring the execution of the function (WCETτj
8).

ocache pollutionτj = WCET cpoτj −WCETτj (27)

The WCET cpoτj is estimated according to the execution order of τj , which is
available at the implementation stage. If τi is the task executing on the same core

7 With those benchmarks we do not have to modify the code of tasks to have a communica-
tion buffer per pair of communicating tasks. It is very costly to modify the code of the other
benchmarks for having the same property.

8 Note that the symbol WCETτj has different meaning with the one used in Section 3. Here,
WCETτj is predetermined according to its known execution order.
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and immediately preceding τj , we record the execution time of τj when the task is
executed according to the following order: τi → sched(0) → τj . Since during the
execution of the sched function the contents of caches do not change after the first
iteration of the function, we pass zero to the input of the function.

Regarding the delay to the start time of a task τj , noted as odelay schedτj , we
measure the WCET of one iteration of the sched function. For measuring the
value, we pass zero to the input of the function, and execute the function in
isolation. We observed that odelay schedτj = 258 cycles. We also observed that the
maximum number of cache misses of one iteration of the sched function is 10. Since
the timestamp of the global cycle is stored at a specific address of the SMEM,
one iteration of the function takes one more access to the SMEM to retrieve the
information. Therefore, the maximum number of memory requests of one iteration
of the sched function is 11.

The write buffer is 8-way fully associative (8 bytes per each way), the memory
access granularity is 8 bytes, and the memory access latency for accessing 8 bytes
in case contention free is 10 cycles [5]. The upper bound of the cost for flushing the
write buffer to the SMEM when contention free, noted as oWB flush

τj , is 80 cycles.
Besides, the upper bound of the memory accesses for flushing the write buffer to
the SMEM is 8.

Additionally, the overhead induced on τj due to shared bus contention, noted
as ocontentionτj , is a variable in the ACILP formulation. Therefore, its value can be
retrieved from the solution file of the Gurobi optimizer (after solving ACILP).

Furthermore, the upper bound of memory access latency when contention free,
noted as DMEM , is equal to the cost for loading an instruction cache line from the
SMEM to the instruction cache. Since an instruction cache line contains 64 bytes
and it takes 9 cycles with 8 bytes fetched on each consecutive cycle for accessing
the SMEM when contention free, the cost for loading an instruction cache line
from the SMEM to the instruction cache is 17 cycles.

5.3.2 Validation of the functional correctness and the timing correctness of the
implementation

Functional correctness. For validating the functional correctness of the imple-
mentation, we compare the outputs produced by each benchmark when executing
in sequential order, i.e., all tasks are executed on one core, and when executing in
parallel, i.e., tasks are executed according to their mapping and their scheduling
information given in the adapted cache-conscious schedule. We observed the same
outputs when executing benchmarks in sequential and when executing in parallel.

Temporal correctness. For validating the temporal correctness of the imple-
mentation, we record the actual start time and the actual finish time of every task
when executing on a Kalray MPPA-256 compute cluster according their mapping
and their schedule. We observed that precedence constraints between tasks are
satisfied.

5.3.3 Quantification of the impact of different implementation factors on adapted
cache-conscious schedules

The impact of an implementation factor on the adapted cache-conscious schedule
is reflected by the fraction of the overall overhead induced on tasks (caused by
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T4 

T2 T3 

T1 

Fig. 12 The schedule graph constructed based on the scheduling information in the adapted
cache-conscious schedule as depicted in Figure 6

the factor) to the schedule length. However, tasks are executed in parallel, so
that in general the schedule length is not a linear combination of the execution
time of a set of tasks. Therefore, for our quantification, instead of relying on the
schedule length, we used the length of the longest path of the schedule, which is
the accumulation of the execution time of tasks along the path.

In order to determine the longest path of the schedule, we construct a schedule
graph based on the scheduling information of tasks in the schedule. In the schedule
graph, each node represents a task. Two nodes are connected by an edge if the task
represented by the sink node is triggered after the execution of the task represented
by the source node. Figure 12 shows the schedule graph constructed based on the
scheduling information of tasks in the adapted schedule which was illustrated in
Figure 6. The weight of a node is the execution time of a task represented by the
node, while the weight of every edge is zero. We use implicit-path enumeration
technique (IPET) [25] to find the longest path of the schedule graph. We denote
the set of tasks that lay on the longest path as τcp, and the length of the longest
path as slsg.

The impact of cache pollution on the adapted cache-conscious schedule, noted
as oocache pollution, is quantified as:

oocache pollution =

∑
τj∈τcp

ocache pollutionτj

slsg
(28)

The symbols and the quantification of the impact of the other implementation
issues on the adapted schedule are done in the same way.

Furthermore, we compute the fraction of the effective execution of tasks (i.e.,
the execution time of tasks when completely ignoring all implementation issues)

to the length of the schedule graph as

∑
τj∈τcp

WCETτj

slsg
.

The impact of different implementation issues on the adapted cache-conscious
schedules of all benchmarks in the study for 2, 4, 8, and 15 cores9 is shown in
Figure 13. The impact caused by cache pollution is negligible. It is expected since
the sched function is quite simple so that its execution introduces very small noise
on the caches contents. Besides, since the execution of the sched function is short,
the delay to the start time of tasks due to the execution of the function is small.

9 Only 15 out of the 16 cores of the cluster are used in our implementation on the Kalray
MPPA, because one core is dedicated to the spawning of the tasks on the cluster cores.
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Fig. 13 The impact of different implementation factors on the adapted cache-conscious
schedules

Additionally, the overall overhead induced on every task in τcp by write buffer
flushing is very small. The reason is twofold: (i) communicating tasks are likely
to be assigned to the same core to benefit from data reuse and in this situation
no flush is needed; (ii) the cost for flushing the write buffer to the SMEM is
small as compared to the execution time of tasks. As compared to the impact of
those implementation factors, shared bus contention has the highest impact on the
adapted schedules. The impact of shared bus contention tends to increase when the
number of cores increases. The reason is that when the number of cores increases,
the number of concurrent tasks tends to increase, which likely introduces more
interference to the execution of tasks.

5.3.4 Evaluation performance of ACILP

In this section we evaluate the ability of ACILP to account for contentions, through
a comparison with the work [42], having simimar objectives as ACILP. The work
described in [42] transforms a contention-free static time-driven schedule to ac-
count for interference. In this work, a double fixed-point algorithm is proposed,
which iteratively updates the WCET of tasks with contention delays and updates
the trigger time of tasks accordingly (with respect to their execution order and
their precedence relations) until that information is stable. In their double fixed-
point algorithm, every task is forced to be triggered as soon as possible. However,
in ACILP tasks at the near end of schedules are considered to be triggered at
the time at which shared bus contention induced on the tasks is reduced. With
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Benchmark No.
of cores

Schedule length (cycle) Derivation time (s)
Gain (%)

ACILP [42] ACILP [42]

AudioBeam

2 32278 32278 < 1 < 1 0
4 38868 39251 < 1 1 0.98
8 53190 53467 < 1 < 1 0.52
15 78516 78516 4 < 1 0

Autocor

2 28579 28579 < 1 < 1 0
4 27938 27938 < 1 < 1 0
8 33330 33330 < 1 < 1 0
15 33330 33330 < 1 < 1 0

FmRadio

2 125750 125750 < 1 1 0
4 100005 100308 < 1 2 0.3
8 99709 99997 4 3 0.29
15 129643 130102 42 6 0.35

MergeSort

2 28002 28002 < 1 < 1 0
4 32401 32401 < 1 < 1 0
8 41195 41457 < 1 < 1 0.63
15 41195 41457 < 1 < 1 0.63

Table 7 Performance comparison between ACILP and the double fixed-point algorithm pro-
posed in [42]

that concern, ACILP is expected to generate shorter schedules than the double
fixed-point algorithm.

Modifying [42] to take into account the same simple contention model as in our
work, in which all memory requests of tasks which are involved in contentions are
delayed, we compare schedule length and required time for generating schedules
when using ACILP and the double fixed-point algorithm.

All benchmarks in the study are scheduled on 2, 4, 8, and 15 cores. Table 7
presents the length of the adapted schedules and required time for generating the
schedules by using ACILP and the double fixed-point algorithm. The gain in term
of schedule length reduction, which shows the benefit of ACILP as compared to
the double fixed-point algorithm is computed as:

gain =
sldoublefixed−point − slACILP

sldoublefixed−point
∗ 100 (29)

Table 7 shows that ACILP has slight gains in some cases, i.e., the highest gain is
0.98% when scheduling AudioBeam on 4 cores, and is never inferior to the double
fixed-point algorithm. The result is expected since ACILP only has chances to
reduce contention induced on tasks at the nearly end of schedules.

Regarding required time for generating the adapted schedules, both ACILP and
the double fixed-point algorithm produce schedules very fast. For all benchmarks
in the study, the longest solving time of ACILP is 42 seconds, whereas the longest
time that the double fixed-point algorithm takes to generate a schedule is 6 seconds,
in the case of scheduling FmRadio benchmark on 15 cores.

6 Related work

Schedule generation. Schedulability analysis techniques rely on the knowledge of
the WCET of tasks. Originally designed for single-core architectures, static WCET
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estimation techniques were extended recently to cope with multi-core architec-
tures. Most research has focused on modeling shared resources (e.g., shared caches,
shared bus, shared memory) in order to capture interferences between tasks which
execute concurrently on different cores [2,8,18,20,26]. Most extensions of WCET
estimation techniques for multi-cores produce a WCET for a single task in the
presence of concurrent executions on the other cores. By construction, those ex-
tensions do not account for cache reuse between tasks as our scheduling techniques
do. The scheduling techniques we propose have to rely on WCET estimation tech-
niques to estimate the effect of local caches on tasks’ WCETs.

Some WCET estimation techniques pay attention to the effect of private caches
on WCETs. In [31], when analyzing the timing behavior of a task, Nemer et al.
take into account the set of memory blocks that has been stored in the instruction
cache (by the execution of previous tasks on the same core) at the beginning
of its execution. Similarly, Potop-Butucaru et al. [39], assuming task mapping
on cores known, jointly perform cache analysis and timing analysis of parallel
applications. These two WCET estimation techniques assume task mapping on
core and task schedule on each core known. In this paper, in contrast, task mapping
and scheduling are selected to take benefit of cache reuse to have the shortest
possible schedule length.

Much research effort has been spent on scheduling for multi-core platforms.
Research on real-time scheduling for independent tasks is surveyed in [11]. This
survey gives a taxonomy of multi-core scheduling strategies: global vs. partitioned
vs. semi-partitioned, preemptive vs. non preemptive, time-driven vs. event-driven.
The scheduling techniques we propose in this paper generate offline time-driven
partitioned non-preemptive schedules. Most scheduling strategies surveyed in [11]
are unaware of the hardware effects and consider a fixed upper bound on tasks’
execution times. In contrast, the scheduling techniques we propose in this paper
address the effect of private caches on tasks’ WCETs. Our work integrates this
effect in the scheduling and mapping problem by considering multiple WCETs
for each task depending on their execution contexts (i.e. caches contents at the
beginning of their execution).

Some scheduling techniques that are aware of hardware effects were proposed
in the past. They include techniques that simultaneously schedule tasks and the
messages exchanged between them [1, 7, 41, 46]; such techniques take into consid-
eration the Network-On-Chip (NoC) topology in the scheduling process.

Some other techniques aim at scheduling tasks in a way that minimizes con-
tentions when accessing shared resources (e.g., shared bus, shared caches) [6, 12,
16, 22, 28, 43]. For example, in [12, 43], they jointly perform shared resources con-
tention modeling and tasks mapping/scheduling for multi-core platforms. Ding et
al. [12] focus on shared caches contention, whereas Rouxel et al. [43] pay atten-
tion to shared bus contention. In those works, tasks are mapped and scheduled,
such that the contention delays induced on them are minimized, thus minimiz-
ing schedule length. Approaching from a different direction, Martinez et al. [28]
modify existed schedules by introducing slack time between the execution of pairs
of tasks consecutively assigned to the same core. This modification aims at limit-
ing the contention between concurrent tasks contained in the existing schedules.
Besides, some approaches [5,34–36,54] schedule tasks according to predictable exe-
cution models that guarantee spatial/temporal isolation between co-running tasks.
For example, Becker et al. [5] take the advantage of memory privatization features
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available in the Kalray MPPA-256 to separately allocate private memory (includes
code and data) of tasks. Besides, they design a scheduling policy to schedule the
execution of tasks (which comply with a PREM-like model [34]), such that the
memory requests of tasks are free from contention. The authors of [22] propose a
technique for reducing memory interference using a partitioning of DRAM banks
and co-locating memory-intensive tasks on the same processor. Our scheduling
solutions in this paper differ from those works because we pay attention to the
effect of private caches on tasks’ WCETs. On the other hand, because our objec-
tive was to concentrate on the effects of private caches, in a first step we used a
simple contention model, yielding to contention delays less precise than the ones
proposed in [9,10,21]. Using more precise contention models is left for future work.
Compared with our previous work [33], in this paper we consider practical, imple-
mentation related overheads, that are evaluated on a Kalray MPPA-256 compute
cluster.

Having the same interest as us in utilizing data reuse between tasks, in [45]
Suhendra et al. jointly consider task scheduling and memory allocating for multi-
core systems equipped with scratchpad memory (SPM). In the work, the most
frequently accessed data are allocated in SPM, and tasks are scheduled properly to
reduce the accesses latency to the off-chip memory. As compared to the approach,
our scheduling methods take into account both instruction and data reuse between
pairs of tasks, and schedule them in order to get benefit in term of WCET reduction
from cache reuse.

Related studies also address the effect of private caches when scheduling tasks
on multi-core architectures [38, 47, 50]. However, they are based on global and
preemptive scheduling techniques, in which the cost of cache reload after being
preempted or migrated has to be accounted for. Compared to these works, our
technique is partitioned and non preemptive. We believe such a scheduling method
allows us to have better control on cache reuse during scheduling. Furthermore,
[38] and [47] focus on single core architectures while our work targets multi-core
architectures.

Schedule implementation. In the literature most scheduling techniques for multi-
core hardware focus on handling shared resources contention (see [14] for the sur-
vey). In this paper, we pointed out that along with shared resources contention, the
effect of time-driven scheduler and the lack of hardware-implemented data cache
coherence are important factors that need to be considered in the implementation
of time-driven, cache-conscious schedules on a multi-core hardware (especially the
Kalray MPPA-256).

As compared to the works that address shared resources contention, our in-
tent is not to mitigate the contention, but rather to integrate the contention into
existing contention-free schedules. Having the same objective, in [42] Rihani et al.
propose the double-fixed point algorithm. As explained in Section 5.3, the algo-
rithm does not produce adapted schedules with shortest schedules length, as our
proposed ACILP formulation does.
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7 Conclusion

In this paper, we first studied the problem of scheduling a single parallel application
on a multi-core platform subjected to the effect of private caches. Two scheduling
techniques, including an optimal and a heuristic one, have been proposed to gener-
ate static, time-driven, partitioned, non-preemptive schedules. We experimentally
showed the benefit in term of schedule length reduction when taking into account
context-sensitive WCETs per task (due to cache reuse) in scheduling.

Secondly, we implemented time-driven cache-conscious schedules on a cluster
of the Kalray MPPA-256. We pointed out the implementation issues arising when
implementing the schedules on the platform, which are summarized as:

– cache pollution and the delay to the start time of tasks caused by the execution
of the time-driven scheduler;

– shared bus contention;
– lack of hardware-implemented data cache coherence.

Additionally, we proposed an ILP formulation to adapt time-driven, cache-conscious
schedules to the implementation factors. Experimental validation has shown the
functional and the temporal correctness of our implementation and the efficiency
of our proposed ILP formulation. Additionally, we observed that shared bus con-
tention is the most impacting factor on the adapted schedules among the other
ones.

We see several opportunities to further improve/extend this work. The work
presented in this paper currently proceeds in two steps. A schedule that ignores all
implementation factors (contention, jitter) is first generated. It is updated in the
second step to account for these implementation factors. Proposing an integrated
approach, that in particular integrates contention delays from the start, is an
interesting direction for future work.

In addition, we can take more benefit from cache reuse between tasks. A task
can reuse the workloads of several tasks executed preceding it, but not necessar-
ily of the task executed immediately preceding it. We believe that if those reuses
are considered, the advantage of cache-conscious scheduling strategies can be fur-
ther improved. We envision two approaches to exploit the cache reuse. The first
approach is to take into account the reduction in the WCET of a task when ex-
ecuted after several tasks rather than after only the task executed immediately
before. Since the number of possible execution orders of tasks needed to be con-
sidered increases, estimating context-sensitive WCETs of tasks and scheduling
tasks becomes more complex. The second approach is to use cache locking tech-
niques [3,40] in order to ensure that the useful workloads of tasks are still located
in the caches until the task referring to them starts executing. Additionally, tasks
scheduling has to be jointly performed with cache locking in order to fully exploit
the benefit from cache reuse.
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