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Abstract
This paper provides counterexamples for the slack enforcement mechanisms to han-
dle segmented self-suspending real-time tasks by Lakshmanan and Rajkumar (Pro-
ceedings of the Real-Time and Embedded Technology and Applications Symposium 
(RTAS), pp 3–12, 2010).

1  Introduction

During the execution of a job, it may suspend itself, i.e., its computation ceases to 
process until certain activities are complete to be resumed. Such suspension behav-
ior can appear in complex cyber-physical real-time systems, e.g., multiprocessor 
locking protocols, computation offloading, and multicore resource sharing, as dem-
onstrated in (Chen et al. 2019, Sect. 2). The impact of self-suspension behavior has 
been investigated since 1990. However, the literature of this research topic before 
2015 has been flawed as reported in the review by Chen et al. (2019).

The review by Chen et al. (2019) examines the literature in details, but two unre-
solved issues are listed in their concluding remark. One of them has been recently 
resolved by Günzel and Chen (2020). The remaining open problem is regarding the 
correctness of the “slack enforcement mechanisms to shape the demand of a self-
suspending task so that the task behaves like an ideal ordinary periodic task” (Chen 
et al. 2019, Sect. 9.1), proposed by Lakshmanan and Rajkumar (2010) in 2010. This 
paper provides counterexamples, which show that their slack enforcement mecha-
nisms (1) may provoke deadline misses and therefore (2) do not guarantee the same 
worst-case response time as without slack enforcement when all higher priority self-
suspending tasks behave like ideal ordinary periodic tasks.
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The slack enforcement mechanisms by Lakshmanan and Rajkumar (2010) were 
argued to be applicable for one-segment self-suspending task systems under uni-
processor fixed-priority preemptive schedules. Specifically, they used the classical 
rate-monotonic priority assignment. They considered a set of implicit-deadline spo-
radic real-time tasks � = {�1,… , �n} , in which each task �i has its minimum inter-
arrival time Ti , where the relative deadline of �i is also Ti . A task �i is either an 
ordinary sporadic one with worst-case execution time Ci (without any suspension) 
or a one-segment self-suspending task with an execution pattern of (C1

i
, S1

i
,C2

i
) . That 

is, a job of a one-segment self-suspending task �i has a worst-case execution time C1

i
 

for its first computation segment �i,1 , then is suspended from the system for up to S1
i
 

time units, and then is resumed with its second computation segment �i,2 associated 
with its worst-case execution time C2

i
 . Note that we follow the notation used in the 

survey paper by Chen et al. (2019). We denote �i = ((C1

i
, S1

i
,C2

i
), Ti) if �i is a self-

suspending task and �i = ((Ci), Ti) if �i is an ordinary task without suspension.
It is well known that the suspension behavior of higher-priority tasks can result in 

more interference on a lower-priority task. There are three mechanisms developed in 
the literature to reduce the impact of the higher-priority tasks:

•	 Period enforcer proposed by Rajkumar Rajkumar (1991) intends to apply 
a runtime rule so that “it forces tasks to behave like ideal periodic tasks from 
the scheduling point of view with no associated scheduling penalties.” This is 
termed as dynamic online period enforcement in Sect. 4.3.1 in the survey paper 
Chen et al. (2019).

•	 Release guard Sun and Liu (1996) or release enforcement Huang and Chen 
(2016) mechanisms which enforce the computation segments to be released with 
a guaranteed minimum inter-arrival time. This is termed as static period enforce-
ment in Sect. 4.3.2 in the survey paper Chen et al. (2019).

•	 Slack enforcement proposed by Lakshmanan and Rajkumar (2010) intends to 
create execution enforcement for self-suspending tasks by utilizing the available 
slack so that a self-suspending task behaves like an ideal (ordinary) periodic task.

However, it has been recently concluded by Chen and Brandenburg (2017) that 
“period enforcement Rajkumar (1991)  is not strictly superior (compared to the 
base case without enforcement) as it can cause deadline misses in self-suspending 
task sets that are schedulable without enforcement.” In the paper by Lakshmanan 
and Rajkumar (2010), they present a static and a dynamic version of slack enforce-
ment. Moreover, they provide a critical instant theorem to compute the worst-case 
response time for self-suspending tasks. Nelissen et al. (2015) later showed that the 
critical instant presented in Lakshmanan and Rajkumar (2010) is flawed. Despite 
that, the slack enforcement mechanisms proposed in Lakshmanan and Rajkumar 
(2010) can still be applied when worst-case response times are given beforehand. 
Hence, the correctness of the slack enforcement mechanism is not affected directly 
by the incorrect critical instant theorem in Lakshmanan and Rajkumar (2010). The 
review paper by Chen et  al. (2019) calls for more rigorous proofs to support the 
correctness of the mechanism as the proof of the key lemma of the slack enforce-
ment mechanisms in Lakshmanan and Rajkumar (2010) is incomplete. Since the 
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correctness of the slack enforcement mechanisms was unclear, to the best of our 
knowledge, there is no published work based on slack enforcement.

The ultimate goal of the period enforcer and the slack enforcement mechanisms 
is to ignore the self-suspension behavior of higher-priority tasks. This property is 
highly desirable in many practical applications in which self-suspensions are inevi-
table. Unfortunately, neither the period enforcer nor the slack enforcement mecha-
nisms can achieve the above ultimate goal, shown in Chen and Brandenburg (2017) 
and this paper. Moreover, we note that the release enforcement mechanisms do 
not have the above ultimate goal, but only aim for better and easier schedulability 
analyses.

2 � Misconception of the static slack enforcement mechanism

The static slack enforcement mechanism, as it is presented in (Lakshmanan and Raj-
kumar 2010, Section V), delays the second computation segment of each self-sus-
pending job generated by a self-suspending task �i , such that the processor indeed 
idles the maximal suspension time S1

i
 between both segments. Its formulation relies 

on the definition of level-i slack:
Definition of level-i slack in Section IV in Lakshmanan and Rajkumar (2010): 

The level-i slack over any time interval [t1, t2] (with t2 ≥ t1 ) is defined as the total 
time within [t1, t2] during which no tasks with priority greater than or equal to �i are 
executing. 	�  ◻

Definition of static slack enforcement in Section V in Lakshmanan and Rajkumar 
(2010): Static slack enforcement is defined as an execution control policy that delays 
the release of the second segment of a self-suspending task �i = ((C1

i
, S1

i
,C2

i
), Ti) 

such that the level-i slack between the two segments of �i is at least S1
i
 . � ◻

The work of Lakshmanan and Rajkumar (2010) does not explain how self-sus-
pending tasks may meet their deadlines utilizing this mechanism. In fact, the static 
slack enforcement is a source of deadline miss of self-suspending tasks, since the 
response time is increased if the slack is less than the suspension time. Figure  1 
shows a schedule where the static slack enforcement leads to a deadline miss: Con-
sider a task set �  with only two tasks �1 = ((1), 5) and �2 = ((1, 7, 2), 12) . At most 
one job of �1 interferes with each execution segment of �2 . Hence, the worst-case 
response time of �2 is 12, as depicted on the left hand side of Fig. 1. The level-2 

Fig. 1   Deadline miss with static slack enforcement
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slack in [2, 9] is 6 since �1 utilizes the processor for 1 time unit. To obtain level-2 
slack of 7 the second segment of the job of �2 is delayed. This leads to a deadline 
miss as depicted on the right hand side of Fig. 1. Moreover, since the schedule on 
the left hand side does not consider any suspension from the higher priority task �1 , 
this also shows that static slack enforcement does not guarantee the same worst-case 
response time as without enforcement when all higher priority self-suspending tasks 
behave like ideal ordinary periodic tasks.

We note that the proof related to the static slack enforcement mechanism was 
provided in a technical report but not in the published paper Lakshmanan and Raj-
kumar (2010). We are therefore not able to explain the reason which causes the 
misconception.

3 � Misconception of the dynamic slack enforcement mechanism

The dynamic slack enforcement mechanism, presented in (Lakshmanan and Rajku-
mar 2010, Section IV), ensures that no deadline misses occur in the delayed task by 
calculating the response time of each job during runtime and comparing it with the 
worst case:

Definition of dynamic slack enforcement in Sect. IV in Lakshmanan and Raj-
kumar (2010): Dynamic slack enforcement is an execution control policy that 
delays the release of the second segment of a self-suspending sporadic task 
�i = ((C1

i
, S1

i
,C2

i
), Ti) to the latest time t, such that �i can still meet its normal (non-

execution-controlled) worst-case response time Ri . 	�  ◻

For the correctness of the dynamic slack enforcement algorithm in Lakshmanan 
and Rajkumar (2010), they formulate the following two properties, based on their 
Lemma 4 and Lemma 5.

•	 Property P1 If a task �i ∈ �  under static-priority preemptive scheduling has a 
worst-case response time (WCRT) of Ri , applying the slack enforcement mecha-
nism makes its WCRT always the same or shorter.

•	 Property P2 The worst-case response time (WCRT) Ri of �i under the dynamic 
slack enforcement mechanism and static-priority preemptive scheduling is not 
longer than the WCRT in the corresponding scenario by considering only �i ’s 
suspension behavior and treating all higher-priority tasks as non-self-suspending 
tasks.

In other words, Property P1 states that the slack enforcement is superior to the orig-
inal fixed-priority scheduler. Moreover, Property P2 implies that the suspension 
behavior of the higher-priority tasks can be neglected when the slack enforcement 
mechanism is applied. We show that none of these properties holds by providing a 
counterexample.

Consider the following sporadic task set � = {�1,… , �4} with four tasks:

–	 �1 = ((1), 7),
–	 �2 = ((10), 24),
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–	 �3 = ((1, �, 1), 36 + �),
–	 �4 = ((2, 5, 2), 36 + 2�),

where 0 < 𝛿 < 0.5 . We apply rate-monotonic fixed-priority scheduling, i.e., �1 has 
the highest priority, whereas �4 has the lowest priority.

In Appendix A, we discuss the worst-case response times of �3 and �4 . In par-
ticular, we show that the worst-case response time of �3 is 15 + � . Moreover, by 
replacing suspension of �3 by execution, we show that the worst-case response 
time of �4 is upper bounded by 36 + � as depicted in Fig. 2. However, the concrete 
example in Fig. 3 demonstrates that the dynamic slack enforcement mechanism 
presented in Lakshmanan and Rajkumar (2010) leads to a deadline miss of �4 
since T4 < 37 . According to the dynamic slack enforcement mechanism, the sec-
ond computation segment of �3 is delayed to the latest time such that it still meets 
its worst-case response time of 15 + � , i.e., no later than 12 + 15 + � = 27 + � . 
This disproves Property P1.

For Property P2 we consider the schedule depicted in Fig. 4, which treats all 
higher priority tasks as non-suspending tasks. Since the obtainable schedules 
without suspension of �3 are a subset of the obtainable schedules of �  with sus-
pension, the worst-case response time of �4 is again bounded by 36 + � . However, 
we have already shown that dynamic slack enforcement leads to a deadline miss. 
This disproves Property P2.

Fig. 2   Fixed-priority schedule of �  for achieving an upper bound on the worst-case response time of �4 
by replacing suspension of �3 by execution (marked in blue)

Fig. 3   Fixed-priority schedule of �  with dynamic slack enforcement on �3 which leads to a deadline-miss 
(marked in red)
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We note that the stated properties for the dynamic slack enforcement mechanism 
are invalidated even if the mechanism is restricted to periodic or synchronous task 
sets due to the following consideration. Let � = 0.2 and consider �  to be a synchro-
nous periodic task set, i.e., job releases are aligned with the previous deadline and 
the first job release of each task is at time 0. In this case the release pattern from 
Fig. 3 starts from time 393,120, i.e., 393,120 is an integer multiple of 7, 24 and 36.4, 
and 10, 860 ⋅ 36.2 − 393, 120 = 12 . Hence, the dynamic slack enforcement causes a 
deadline miss of �4 at time 393,120+36.4.

Source of misconception We believe that the main source of the misconception 
of the dynamic slack enforcement mechanism is inherited from the misconception 
of the critical instant theorem for self-suspending task systems, claimed in Lak-
shmanan and Rajkumar (2010). They argued that the dynamic slack enforcement 
mechanism makes the second computation segment released as late as possible and 
therefore does not worsen the schedulability of lower-priority tasks. However, this is 
an incorrect argument. Our counterexample is based on a condition:

•	 If task �3 interferes with only one computation segment of a job of �4 , the 
response time of the job of �4 is at most 36 + �.

•	 If task �3 interferes with two computation segments of a job of �4 , the response 
time of the job of �4 can be up to 37.

The dynamic slack enforcement mechanism delays the second computation segment 
of �3 in this counterexample and forces the latter case to take place, whilst the origi-
nal fixed-priority scheduler has a safe worst-case response time of 36 + �.

This is the counterpart of the misconception of the critical instant theorem 
claimed in Lakshmanan and Rajkumar (2010). Imagine that we split task �3 into two 
ordinary sporadic tasks �1

3
 and �2

3
 that do not suspend themselves, both with execu-

tion time 1 and minimum inter-arrival time 36. If we apply the (incorrect) critical 
instant theorem in Lakshmanan and Rajkumar (2010), the worst-case response time 
of �4 follows exactly Fig.  4. However, the actual worst-case for this pattern is to 
release �1

3
 and �2

3
 so that each of them interferes with one computation segment of �4 , 

i.e., exactly Fig. 3.
The proof of Lemma 4 in Lakshmanan and Rajkumar (2010) is incorrect because 

the proof did not inspect the impact of the two computation segments of �3 on the 

Fig. 4   Fixed-priority schedule of �  for achieving the worst-case response time of �4 when all higher pri-
ority tasks have no suspension
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two computation segments of �4 in this counterexample. It solely argues that 
Ins
j
(R) = I1

j
(R) + I2

j
(R) (here, the notation is directly from Lakshmanan and Rajku-

mar (2010)), i.e., for an interval length R the interference Ins
j
(R) =

⌈

R

Tj

⌉

(C1

j
+ C2

j
) is 

always equal to I1
j
(R) + I2

j
(R) =

⌈

R

Tj

⌉

C1

j
+

⌈

R

Tj

⌉

C2

j
 . This is irrelevant to a formal 

proof of the worst-case response time. A correct treatment in the proof should ana-
lyze the worst-case response times of a task for both cases, e.g., using the iterative 
approach like time demand analysis (TDA), and demonstrate their equivalence.

We also note that our counterexample does not follow the call for a rigorous proof 
of Lemma 4 in Lakshmanan and Rajkumar (2010) by Chen et al. (2019). The main 
argument in Chen et al. (2019) was due to the incomplete proof of the level-i busy 
period, which is irrevalent in our counterexample.

Appendix A: Analysis of Sect. 3

The following analysis consists of two parts. At first we derive the worst-case 
response time of �3 as foundation for the response time analysis of �4 . Afterwards we 
provide a bound on the response time of �4 which is sufficient for the counterexam-
ple in Sect. 3.

Response time of �3 : To analyze the worst-case response time R3 of task �3 , we 
consider the suspension-oblivious schedule where suspension is replaced by compu-
tation. Using the time demand function for this case yields a worst-case response 
time of W3(15 + �) = (2 + �) +

⌈

15+�

7

⌉

1 +

⌈

15+�

24

⌉

10 = 15 + � . This also bounds the 
worst case response time of �3 in the case with suspension, i.e., R3 ≤ 15 + � . The 
schedule in Fig. 5 shows a case where the response time is actually 15 + � . We con-
clude that R3 = 15 + � . Moreover, we note that the worst-case offset of the second 
computation segment of �3 is 13 + � since 1 +

⌈

13

7

⌉

1 +

⌈

13

24

⌉

10 = 13 is the worst-
case response time of the first computation segment.

Response time of �4 : To analyze the worst-case response time of �4 , we con-
sider a concrete fixed-priority preemptive schedule of �  . Suppose that the first 
job J of �4 is released at time a4 and finished at time f4 . We bound the response 
time of J and prove that in any circumstances f4 − a4 ≤ T4 . When this property 
holds, we can remove the first job of �4 in the schedule and use the same argu-
ment to bound the response time of every job of �4 inductively.

Fig. 5   Worst-case schedule for the response time of �1, �2 and �3
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Suppose that the schedule is busy from t0 to a4 with t0 ≤ a4 and the proces-
sor idles right prior to t0 . Such a time point t0 exists. Since the job of �4 released 
at time a4 is not constrained by the inter-arrival time constraint T4 of �4 , we can 
move its release time to t0 . After this change of arrival time, the schedule remains 
unchanged, but the response time of the job J is increased. For notational brevity, 
we set t0 to 0 in this proof.

As a fundamental tool for our analysis we use the time demand function on 
each computation segment of �4 . For a segment of J let I be the interference of �3 
during the segment. We define the time demand function for that segment by

If there exists some t ∈ [0, T4] with W∗
4
(t, I) ≤ t , this is an upper bound on the 

response time R∗
4
(I) of that segment, i.e., R∗

4
(I) ≤ t.

To derive an upper bound on the worst-case response time of �4 which is suf-
ficient for the counterexample, we fix the releases of the job segments of �4 and 
replace the suspension in �3 by execution. This conversion does not decrease the 
response time of J. We call the new task �obl

3
 the suspension-oblivious �3 with 

worst-case execution time 2 + � . If there is some busy interval [x,  0] before 0 
(choose the smallest x possible), then we move the release of J to x. This does not 
change the schedule and only increases the response time of J. Moreover, after 
this procedure only jobs which are released at or after the release of J can inter-
fere with J. Therefore, we delete all jobs released before the release of J without 
changing the response time of J.

The remaining analysis is to analyze the worst-case response time of �4 under 
the interference of three ordinary sporadic tasks �1, �2, �obl3

 , which can be achieved 
by adopting the response time analysis in Nelissen et al. (2015). We use the time 
demand function from Eq. (1) on each segment of J. If a job of �3 interferes with a 
segment of J, then the worst-case response time of that segment is

since W∗
4
(17 + �, 2 + �) = 17 + � . If no job of �3 interferes with the segment, then its 

worst-case response time is

since W∗
4
(14, 0) = 14 . If no job of �3 interferes with J, then J is finished after at most 

R∗
4
(0) + 5 + R∗

4
(0) ≤ 33 time units. If only the first job of �3 interferes with J, then 

the total worst-case response time is at most R∗
4
(2 + �) + 5 + R∗

4
(0) ≤ 36 + � . We 

note that the second job of �3 can not interfere with J since it is released when J is 
already finished.

Funding  Open Access funding enabled and organized by Projekt DEAL. This work has been supported 
by Deutsche Forschungsgemeinschaft (DFG), as part of Sus-Aware (Project No. 398602212).

(1)W∗
4
(t, I) = 2 +

⌈

t

7

⌉

1 +

⌈

t

24

⌉

10 + I.

(2)R∗
4
(2 + �) ≤ 17 + �

(3)R∗
4
(0) ≤ 14
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