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Evaluation of Session-based Recommendation Algorithms
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Recommender systems help users find relevant items of interest, for example on e-commerce or media
streaming sites. Most academic research is concerned with approaches that personalize the recommendations
according to long-term user profiles. In many real-world applications, however, such long-term profiles often
do not exist and recommendations therefore have to be made solely based on the observed behavior of a user
during an ongoing session. Given the high practical relevance of the problem, an increased interest in this
problem can be observed in recent years, leading to a number of proposals for session-based recommendation
algorithms that typically aim to predict the user’s immediate next actions.

In this work, we present the results of an in-depth performance comparison of a number of such algorithms,
using a variety of datasets and evaluation measures. Our comparison includes the most recent approaches
based on recurrent neural networks like GRU4REC, factorized Markov model approaches such as FIsm or FOSSIL,
as well as simpler methods based, e.g., on nearest neighbor schemes. Our experiments reveal that algorithms
of this latter class, despite their sometimes almost trivial nature, often perform equally well or significantly
better than today’s more complex approaches based on deep neural networks. Our results therefore suggest
that there is substantial room for improvement regarding the development of more sophisticated session-based
recommendation algorithms.

CCS Concepts: « Information systems — Recommender systems; « General and reference — Evalu-
ation;

Additional Key Words and Phrases: Session-based Recommendation; Sequential Recommendation; Deep
Learning; Factorized Markov Models, Nearest Neighbors

1 INTRODUCTION

Many of today’s online services use recommender systems to point their users or site visitors to
additional items that might be of interest to them. In academic research, the majority of works
is focusing on techniques that rely on long-term preference models to determine the items to
be presented to the user. However, in many application domains of recommender systems, such
long-term user models are often not available for a larger fraction of the users, e.g., because they are
first-time visitors or because they are not logged in. Consequently, suitable recommendations have
to be determined based on other types of information, usually the user’s most recent interactions
with the site or application. Recommendation techniques that rely solely on the user’s actions
in an ongoing session and which adapt their recommendations to the user’s actions are called
session-based recommendation approaches [Quadrana et al. 2018].

Amazon’s “Customers who bought ... also bought” recommendations can be considered an
extreme case of such a session-based approach. In this case, the recommendations are seemingly
only dependent on the item that is currently viewed by the user (and the purchasing patterns of
the community). A number of other techniques were proposed in the research literature, which do
not limit themselves to the very last action, but consider some or all user actions since the session
started. Some of these techniques only consider which events happened; others, in contrast, in
addition take the sequence of events into account in their algorithms. Besides the e-commerce

1A preliminary comparison of sequential recommendation algorithms was presented in our own previous work in [Jannach
and Ludewig 2017; Kamehkhosh et al. 2017].
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domain, a number of other application fields were in the focus in the literature, among them in
particular music, web page navigation, or travel and tourism.

In academia, sequential recommendation problems are typically operationalized as the task of
predicting the next user action. Experimental evaluations are usually based on larger, time-ordered
logs of user actions, e.g., on the users’ item viewing and purchase activities on an e-commerce
shop or on their listening history on a music streaming site. From an algorithmic perspective, early
approaches to predict the next user actions were based, for example, on sequential pattern mining
techniques. Later on, different types of more sophisticated methods based on Markov models were
proposed and successfully applied to the problem. Finally, in the most recent years, the use of
deep learning approaches based on artificial neural networks was explored as another solution.
Recurrent Neural Networks (RNN), which are capable of learning models from sequentially ordered
data, are a “natural choice” for this problem, and significant advances regarding the prediction
accuracy of such algorithms were reported in the recent literature [Devooght and Bersini 2017;
Hidasi and Karatzoglou 2017; Hidasi et al. 2016a,b; Tan et al. 2016].

Despite the growing number of papers on the topic in recent years, no true “standard” benchmark
data sets or evaluation protocols exist in the community. Therefore, it remains difficult to compare
the various algorithmic proposals, in particular as often different baseline algorithms are used in the
papers. And, for some of them it is also unclear if they are particularly strong. In our previous work
[Jannach and Ludewig 2017; Kamehkhosh et al. 2017], we could, for example, demonstrate that a
comparably simple k-nearest-neighbor method leads to similar or even better accuracy results than
a modern deep learning approach.

To establish a common base for future research, we performed an in-depth performance compar-
ison across multiple domains and datasets, which involved a number of comparably simple as well
as more sophisticated algorithms from the recent literature. Our results show that computationally
and conceptually simple methods often lead to predictions that are similarly accurate or even better
than those of today’s most recent techniques based on deep learning models. As a consequence, we
argue that researchers should take these simpler methods as alternative baselines into account when
developing novel session-based recommendation algorithms. Furthermore, our results suggest that
there is still substantial room for improvement regarding the development of more sophisticated
session-based recommendation algorithms.

This paper extends our previous works presented in [Jannach and Ludewig 2017; Kamehkhosh
et al. 2017] in a number of ways. First, we made experiments for a larger number of datasets
from different domains, using a richer set of performance measures. Second, we included recent
sequential recommendation algorithms like FISM and FOSSIL [He and McAuley 2016; Kabbur et al.
2013] in the evaluation as well as the latest version of GRU4REC [Hidasi et al. 2016a]. Third, we
designed a number of additional sequence-aware similarity measures for the previously proposed
session-based nearest neighbor method, which in most cases lead to significant performance gains.
Finally, we also propose a new method called Session-based Matrix Factorization (SFM), which yields
good results in some of the tested application domains.

The paper is organized as follows. Next, in Section 2, we discuss previous works and typical
application areas of session-based recommendation approaches. In Section 3, we provide technical
details about the algorithms that were compared in our work. Section 4 describes our evaluation
setup and Section 5 the outcomes of our experiments. To foster reproducible research on the topic,
we share the code of the used evaluation framework and the compared algorithms online.”

Zhttps://www.dropbox.com/sh/dbzmtq4zhzbj509/AACldzZQWbw-igKjcPTBI6 ZPAa?d1=0
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2 REVIEW OF SESSION-BASED RECOMMENDATION APPROACHES

Most of the approaches for session-based recommendation proposed in the literature implement
some form of sequence learning, see also [Quadrana et al. 2018] for a recent survey on the more
general class of sequence-aware recommenders. Early approaches were based on the identification
of frequent sequential patterns, which can be used at recommendation time to predict a user’s next
action. These early approaches were applied, for example, in the context of predicting the online
navigation behavior of users [Mobasher et al. 2002]. Later on, such pattern mining techniques were
also used for next-item recommendation problems in e-commerce or the music domain [Bonnin
and Jannach 2014; Hariri et al. 2012; Yap et al. 2012].

While frequent pattern techniques are easy to implement and lead to interpretable models, the
mining process can be computationally demanding. At the same time, finding good algorithm
parameters, in particular a suitable minimum support threshold, can be challenging. Finally, in
some application domains it seems that using frequent item sequences does not lead to better
recommendations than when using simpler item co-occurrence patterns [Bonnin and Jannach
2014]. In the context of this work, we investigate both sequential and co-occurrence patterns in
their simplest forms as baselines.

In many newer works, more sophisticated sequence learning approaches were proposed that
implement some form of sequence modeling. Such sequence modeling approaches are usually based
on Markov Chain (MC) models [Garcin et al. 2013; He et al. 2009; Hosseinzadeh Aghdam et al. 2015;
Mcfee and Lanckriet 2011], reinforcement learning (RL) and Markov Decision Processes (MDP)
[Moling et al. 2012; Shani et al. 2005; Tavakol and Brefeld 2014], or Recurrent Neural Networks
(RNN) [Du et al. 2016; Hidasi et al. 2016a,b; Liu et al. 2016; Soh et al. 2017; Song et al. 2016; Sordoni
et al. 2015; Twardowski 2016; Yu et al. 2016; Zhang et al. 2014]. Again, the typical application
scenarios of these methods include the e-commerce and the music recommendation domain.

An early approach based on an MDP model was proposed by [Shani et al. 2005]. It demonstrated
the value of using sequential data in an e-commerce scenario, but also showed that models based on
Markov Chains often cannot be directly applied due to data sparsity. Therefore, [Shani et al. 2005]
proposed different heuristics to overcome the problem. An additional challenge when using this
type of models is to decide how many preceding interactions should be considered when predicting
the next one. Some authors therefore use a mixture of Variable-order Markov Models (VMMs) or
context-trees to consider sequences of different lengths [Garcin et al. 2013; He et al. 2009]. Other
works, for example by [Hosseinzadeh Aghdam et al. 2015], rely on Hidden Markov Models (HMMs)
to overcome certain limitations of plain Markov Chain models. In [Moling et al. 2012; Shani et al.
2005], reinforcement learning was implemented based on MDPs, which made it possible to also
consider the reward for the shop in the recommendation process. To deal with the problem of the
explosion of the state space in such scenarios, [Tavakol and Brefeld 2014] proposed to model the
state space based on the sequence of item attributes in order to predict the characteristics of the
next item that the user will consider. In the context of the comparative analysis presented in this
paper, we limit ourselves to a simple MC-based method as a baseline, in particular because some
techniques like the one discussed by [Tavakol and Brefeld 2014] require the existence of knowledge
about certain item attributes.

The most recent works on sequence modeling are based on RNNs. [Zhang et al. 2014], for
example, used them for the prediction of user clicks in an advertisement scenario. [Hidasi et al.
2016a] were among the first to explore Gated Recurrent Units (GRUs) as a special form of RNNs
for the prediction of the next user action in a session. Their method called GRU4REC was later on
extended in different ways in [Hidasi and Karatzoglou 2017; Hidasi et al. 2016b] and [Quadrana et al.
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2017]. While [Hidasi et al. 2016a] reported substantial performance improvements over an item-
based k-nearest-neighbor (kNN) method when using their first version of GRU4REC, our previous
work [Jannach and Ludewig 2017] showed that a session-based nearest neighbor method also leads
to competitive accuracy results for the same problem setting. Since GRU4REC was substantially
improved since its initial version, we include the latest version of the method proposed by [Hidasi
and Karatzoglou 2017] in the performance comparison reported in this paper. Furthermore, given
our observations regarding the often competitive performance of conceptually simpler methods we
designed a number of variations of the basic session-based nearest neighborhood method from
[Jannach and Ludewig 2017], which we also considered in the experiments.

Another family of sequence modeling approaches relies on distributed item representations, e.g.,
in the form of latent Markov embeddings [Chen et al. 2012, 2013; Feng et al. 2015; Wu et al. 2013]
or distributional embeddings [Baeza-Yates et al. 2015; Djuric et al. 2014; Grbovic et al. 2015; Reddy
et al. 2016; Tagami et al. 2015; Vasile et al. 2016; Zheleva et al. 2010]. Embeddings are dense,
lower-dimensional representations that are derived from sequentially ordered data and encode
transition probabilities based on the observations in the original data. They were applied, for
example, in the domains of next-track music recommendation [Chen et al. 2012; Zheleva et al.
2010], recommendation of learning courses [Reddy et al. 2016], or next point-of-interest (POI)
recommendation [Feng et al. 2015]. However, a general challenge when using item embeddings
is that they can be computationally demanding and sometimes require substantial amounts of
training data to be effective. In the context of our work, we experimented with item embeddings as
an alternative representation of the user sessions. However, the usage of embeddings did not lead
to an improvement in terms of the prediction accuracy for our problem settings, which is why we
do not report the detailed outcomes of these experiments in this paper.

To overcome the limitations of pure sequence learning methods, a number of hybrid methods
were proposed that, for instance, combine the advantages of matrix factorization techniques with
sequence modeling approaches in the form of Factorized Markov Chains [Cheng et al. 2013; He
et al. 2016; He and McAuley 2016; Lian et al. 2013; Rendle et al. 2010]. [Rendle et al. 2010] proposed
the Factorized Personalized Markov Chain (rFPMc) approach as an early method for next-item
recommendations in e-commerce settings, where user interactions are represented as a three-
dimensional tensor (user, current item, next-item). Later on, variations of FPmMc were proposed and
successfully applied for a variety of application problems, e.g., by [Kabbur et al. 2013] and [He and
McAuley 2016]. Other hybrid techniques that, for example, use some form of clustering or Latent
Dirichlet Allocation in combination with a sequential recommendation method were proposed,
e.g., in [Hariri et al. 2012; Natarajan et al. 2013; Song et al. 2015], for the problems of next-track or
next-app recommendation. In our experimental evaluation, we include both the FPmMc method by
[Rendle et al. 2010] as well as the recent variations and improvements described by [Kabbur et al.
2013] (r1sm) and [He and McAuley 2016] (FoOssIL).

Besides pure session-based techniques, which solely consider a user’s action of the ongoing
session, there are also approaches that consider previous interactions of the same user in the
recommendation process. Such techniques are called session-aware according to the terminology
of [Quadrana et al. 2018]. Examples of such works include [Baeza-Yates et al. 2015; Billsus et al.
2000; Hariri et al. 2012; Jannach et al. 2017a, 2015a; Quadrana et al. 2017], and session-aware
approaches were applied for various application domains like e-commerce, music, news, or next-
app recommendation. Considering longer-term user preferences in these papers shows to be helpful
to improve the recommendations in the current, ongoing session. In some cases, like in [Jannach
et al. 2015a], it however turns out that the short-term user intents are much more important
than the longer-term models. In the research presented herein, we therefore exclusively focus on
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session-based recommendation scenarios. We however consider the combination of long-term and
short-term models as an important area for future research.

3 DETAILS OF THE INVESTIGATED METHODS

Based on these discussion, we include the following four types of techniques in our comparison of
session-based recommendation algorithms: simple heuristics as baseline methods, nearest-neighbor
techniques, recurrent neural networks, and factorization-based methods. The main input to all
methods is a training set of past user sessions, where each session consists of a set of sequentially
ordered actions of a given type, e.g., an item view event in an online shop or a consumption event
on a media streaming site. The models learned by the algorithms can then be used to predict the
next event in a given user session in the test set. In our evaluations, we follow a pragmatic approach
to determine user sessions—in case these are not provided in the datasets—and use user inactivity
times to determine session borders. The details for each dataset are described later in this paper.

Regarding the choice of the algorithms, we focus on collaborative filtering methods based on
implicit feedback signals, e.g., item view or music listening events. Depending on the specific
application, content-based and hybrid algorithms can be designed that use additional meta-data or
content features. Since these features are domain specific and such features are only available for
very few of our datasets, we limit ourselves to methods that do not rely on such types of data in
this paper.

3.1 Baseline Methods

We include the following baseline techniques in our comparison: a method that we call Simple
Association Rules (AR), first-order Markov Chains (mc), and a method that we named Sequential
Rules (sr). All baselines implement very simple prediction schemes, have a low computational
complexity both for training and recommending, and only consider the very last item of a current
user session to make the predictions. Furthermore, we include a prediction method based on
Bayesian Personalized Ranking (BPR-MF) proposed by [Rendle et al. 2009] as an alternative baseline.

3.1.1  Simple Association Rules (ArR). Simple Association Rules (AR) are a simplified version of
the association rule mining technique [Agrawal et al. 1993] with a maximum rule size of two. The
method is designed to capture the frequency of two co-occurring events, e.g., “Customers who
bought ... also bought”. Algorithmically, the rules and their corresponding importance are “learned”
by counting how often the items i and j occurred together in a session of any user.

Let a session s be a chronologically ordered tuple of item click events s = (s1, 2,3, .., Sm)
and S, the set of all past sessions. Given a user’s current session s with s|5| being the last item
interaction in s, we can define the score for a recommendable item i as follows, where the indicator
function 1g4(a, b) is 1 in case a and b refer to the same item and 0 otherwise.

lpl Ipl

1
scorear(i, s) = Z Z Z Leg(Ss)> Px) - 1eo(i, py) (1)
Zpesp Zllel 1EQ(S|S|’pX) “(Ipl = 1) PESy x=1y=1

In Equation 1, the sums at the right-hand side represent the counting scheme. The term at the
left-hand side normalizes the score by the number of total rule occurrences originating from the
current item s|5|. A list of recommendations returned by the AR method then contains the items
with the highest scores in descending order. No minimum support or confidence thresholds are
applied. In our implementation, as shared online, we create the rules in one iteration over the
training data and store them (sorted by weight) in nested maps to support fast lookups in the
recommendation phase. With this data structure, top-n recommendations can be created almost
instantaneously.
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3.1.2  Markov Chains (mc). The mc baseline can be seen as a variant of AR with a focus on
sequences in the data. Here, the rules are extracted from a first-order Markov Chain, see [Norris
1997], which describes the transition probability between two subsequent events in a session. In
our baseline approach, we simply count how often users viewed item q immediately after viewing
item p. Technically, the score for an item i given the current session s with the last event s/ can be
defined as a simplified version of Equation 1:

-1
1 2l

scoreyc(i,s) = P Z Z 1eg(S|s)> Px) * 1u(is px+1) (2)
Zpesp et l15Q(3|s|717x) PES, x=1

where the function 1:4(a, b) again indicates whether a and b refer to the same item or not. Here,
with the right-hand side of the formula, we count how often item i appears immediately after s,|.
The normalization term transforms the absolute count into a relative transition probability. In line
with AR, in our implementation the rules and weights are recorded in nested maps in one single
iteration over the training data to ensure short training times and to support the fast generation of
the recommendations.

3.1.3 Sequential Rules (sr). Finally, the sr method as proposed in [Kamehkhosh et al. 2017] is
a variation of Mc or AR respectively. It also takes the order of actions into account, but in a less
restrictive manner. In contrast to the Mc method, we create a rule when an item g appeared after
an item p in a session even when other events happened between p and q.

When assigning weights to the rules, we consider the number of elements appearing between p
and q in the session. Specifically, we use the weight function wg(x) = 1/(x), where x corresponds
to the number of steps between the two items.® Given the current session s, the sr method calculates
the score for the target item i as follows:

Pl x-1

Z Z Z 1EQ(3\S|aPy) 1pg(i, px) - wsr(x — y) (3

I
Zpesp przz 1EQ(3|S|,Px) "X peS, x=2y=1

1

scoresg(i,s) =

In contrast to Equation 1 for AR, the third inner sum only considers indices of previous item view
events for each session p. In addition, the weighting function wg(x) is added. Again, we normalize
the absolute score by the total number of rule occurrences for the current item s|). As for AR and
Mc, the algorithm was implemented using nested sorted maps, which can be created in a single
iteration over the training data.

3.1.4 Bayesian Personalized Ranking (BPrR-mMF). To make our results comparable with previous
research, we finally include a prediction method based on BPR-MF as a baseline in our experi-
ments.’BPR-MF proposed by [Rendle et al. 2009] is a learning-to-rank method designed for implicit-
feedback recommendation scenarios. The method is usually applied for matrix-completion problem
formulations based on longer-term user-item interactions. In BPR-MF the matrix is factorized into
two smaller matrices of latent user and item features (W and H), optimizing the following criterion:

BPRopr = ) Ino(ryi—ru;) - Aol (4)

(u,i,j)€Ds
In the above formula, a ranking r,, ; for user u and item i is approximated with the dot product of the
corresponding rows in the matrices W and H (r,,; = (W, H;)). The model parameters ©® = (W, H)
are learned using stochastic gradient descent in multiple iterations over the dataset Dg, which
consists of triplets of the form (u, i, ), where (u, i) is a positive feedback pair and (u, j) is a sampled

30ther weighting functions, e.g., with a logarithmic decay, are possible as well. Using the linear function however led to the
best results, on average, in our experiments.
4The method was proposed by Hidasi et al. in the context of the GRU4REC method.
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negative example. The optimization criterion in Equation 4 aims to rank the positive sample (u, i)
higher than a non-observed sample (u, j).

To apply the method for the session-based recommendation scenario—where there are no long-
term user profiles—we attribute each session in the training set to a different user, i.e., each session
corresponds to a user in the user-item interaction matrix. At prediction time, we use the average of
the latent item vectors of the current session so far as the user vector.

Generally, BPR and other methods designed for the matrix-completion problems in their original
form, i.e., without considering the short-term session context, do not lead to competitive results in
session-based recommendation scenarios, as reported, e.g., in [Jannach et al. 2015a]. Therefore, we
do not consider such algorithms, e.g., traditional matrix factorization techniques, as baselines in
our experiments.

3.2 Nearest Neighbors

Despite their simplicity, nearest-neighbor-based approaches often perform surprisingly well as
discussed, e.g., by [Verstrepen and Goethals 2014] and in our previous work [Jannach and Ludewig
2017; Kamehkhosh et al. 2017]. We, therefore, include different nearest neighbor schemes in our
comparison. First, we consider a more traditional item-based variant, which was also employed as
a baseline method by [Hidasi et al. 2016a]. Furthermore, we evaluate three variations of a more
recent session-based nearest neighbor technique in our experiments.

3.2.1 Item-based kNN (iknN). The 1kNN method as used in [Hidasi et al. 2016a] only considers
the last element in a given session and then returns those items as recommendations that are most
similar to it in terms of their co-occurrence in other sessions. Technically, each item is encoded
as a binary vector, where each element corresponds to a session and is set to “1” in case the
item appeared in the session. The similarity of two items can then be determined, e.g., using the
cosine similarity measure, and the number of neighbours k is implicitly defined by the desired
recommendation list length.

Conceptually, the method implements a certain form of a “Customers who bought ... also bought”
scheme like the AR baseline. The use of the cosine similarity metric however makes it less susceptible
to popularity biases. Although item-to-item approaches are comparably simple, they are commonly
used in practice and sometimes considered a strong baselines [Davidson et al. 2010; Linden et al.
2003]. In terms of the technical implementation, all similarity values can be pre-computed and
sorted in the training process to ensure fast responses at recommendation time.’

3.2.2  Session-based kNN (sknn). Instead of considering only the last event in the current session,
the skNN method compares the entire current session with the past sessions in the training data
to determine the items to be recommended, see also [Bonnin and Jannach 2014; Hariri et al. 2012;
Lerche et al. 2016]. Technically, given a session s, we first determine the k most similar past sessions
(neighbors) N by applying a suitable session similarity measure, e.g., the Jaccard index or cosine
similarity on binary vectors over the item space [Bonnin and Jannach 2014]. In our experiments,
the binary cosine similarity measure led to the best results. As in [Jannach and Ludewig 2017],
using k = 500 as the number of neighbors to consider led to good performance results for many
datasets. Next, given the current session s, its neighbors N, and the chosen similarity function
sim(sy, sz) for two sessions s; and s,, the recommendation score for each item i can as defined by
[Bonnin and Jannach 2014]:

scoresenn(i, ) = Znen, sim(s, n) - 1,(i) 5)

SWe use the implementation published at https://github.com/hidasib/GRU4Rec.
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Here, the indicator function 1, (i) returns 1 if session n contains item i and 0 otherwise.

Scalability Considerations. Given a current session s, we cannot scan a potentially large set of
past sessions for possible neighbors in an online recommendation scenario. Therefore, in our
implementation of the algorithm, as described in [Jannach and Ludewig 2017] in more detail, we
rely on pre-computed in-memory index data structures and on neighborhood sampling to enable
fast recommendation responses. The index is used to quickly locate past sessions that contain a
certain item, i.e., the index allows us to retrieve possible neighbor sessions that contain at least
one element of the current session through fast lookup operations. On the other hand, sampling
only a smaller fraction of all past sessions in our experiments as potential neighbors has shown
to lead to comparably small accuracy compromises. In fact, in some domains like e-commerce,
only looking for neighbors in the most recent sessions—thereby capturing recent trends in the
community—proved to be very effective [Jannach et al. 2017b] and led to even better results than
when all past sessions were taken into account.

Our nearest neighbor implementations, therefore, have an additional parameter m, which de-
termines the size of the sample from which the neighbors of a target session are taken. In the
experiments reported in [Jannach and Ludewig 2017], it was, for example, sufficient to consider
only the 1,000 most recent sessions from several million existing ones.

Sequence-Aware Extensions: V-SKNN, S-SKNN, and SF-SkNN. The described sknN method does not
consider the order of the elements in a session when using the Jaccard index or cosine similarity as
a distance measure. Since the order of the elements might, however, be relevant in some domains
and since the user preferences might change within a single session depending on the already seen
items, we propose three variations of the skNN method.’

e Vector Multiplication Session-Based kNN (v-skNN): The idea of this variant is to put more
emphasis on the more recent events of a session when computing the similarities. Instead
of encoding a session as a binary vector as described above, we use real-valued vectors to
encode the current session. Only the very last element of the session obtains a value of
“17; the weights of the other elements are determined using a linear decay function that
depends on the position of the element within the session, where elements appearing earlier
in the session obtain a lower weight. As a result, when using the dot product as a similarity
function between the current weight-encoded session and a binary-encoded past session,
more emphasis is given to elements that appear later in the sessions.

Sequential Session-based kNN (s-skNN): This variant also puts more weight on elements
that appear later in the session. This time, however, we achieve the effect with the following
scoring function:

scores.sinn (i, $) = Znen, sim(s, n) - wu(s) - 1,(i) (6)

Here, the indicator function 1,(i) is complemented with a weighting function w,,(i, s), which
takes the order of the events in the current session s into account. The weight wy, (i, s) increases
when the more recent items of the current session s also appeared in a neighboring session n.
If an item s, is the most recent item of the current session s that also appears in the neighbor
session n, then the weight will be defined as w,(s) = x/|s|, where the index x indicates the

®We made additional experiments using other ways of encoding sequential information, e.g., by using embeddings of
sessions and items with the popular Word2Vec and Doc2Vec approaches. However, none of these variations led to better
accuracy results than the skNN method in our experiments. We therefore omit these results from our later discussions.
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Fig. 1. Architecture of the GRU4REC neural network, adapted from [Hidasi et al. 2016a].

position of s, within the session.” If, for example, the second-to-last item of the current
session with a length of 5 is the most recent item also included in the neighbor session n, the
weight would be w,, (i, s) = 4/5. Items from this neighbor can, therefore, potentially obtain a
higher score than, e.g., items from neighbor sessions that only include the third from last
item of the current session, which are assigned a weight of 3/5.

Sequential Filter Session-based kNN (sF-skNN): This method also uses a modified scoring
function, but in a more restrictive way. The basic idea is that given the last event (and related
item s5|) of the current session s, we only consider items for recommendation that appeared
directly after s|5| in the training data at least once.

scoresy-sknn (i, $) = Znen,sim(s, n) - 1n(s|s|s i) (7)

While the general scoring function is identical to the one of skNN (Equation 5), we use a
different implementation of the indicator function 1,(ss|, ). Here, 1 is only returned if there
exists any past session which contains the sequence (ss|, i), given s,/ is the item currently
viewed in the user’s current session s. Though the sequence (s, i) can be part of any past
session, the item i obviously still has to be a part of the neighbor session n for the indicator

function to return 1.

3.3 Neural Networks — GRU4REC

Approaches based on Recurrent Neural Networks (RNNs), as discussed in Section 2, represent the
most recently explored family of techniques for session-based recommendation problems. Among
these methods, GRU4REC is one of the latest deep learning approaches that was specifically designed
for session-based recommendation scenarios [Hidasi and Karatzoglou 2017; Hidasi et al. 2016a].

GRU4REC models user sessions with the help of an RNN with Gated Recurrent Units [Cho et al.
2014] in order to predict the probability of the subsequent events (e.g., item clicks) given a session
beginning. Figure 1 shows the general architecture of the network, in which the embedding, the
feedforward, and additional GRU layers are optional. In fact, the authors of the method found that
a single GRU layer of varying width led to the best performance in their experiments.

The input of the network is formed by a single item, which is one-hot encoded in a vector
representing the entire item space, and the output is a vector of similar shape that should give a

"Note that the weighting function is designed to work independently from the similarity function. We rely on the binary
session representation for the similarity calculation without considering the order of the items to ensure computational

efficiency.
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Fig. 2. lllustration of the session-parallel mini-batch scheme of GRu4REc, adapted from [Hidasi et al. 2016a].

ranking distribution for the subsequent item. Inbetween, the standard GRU layer keeps track of
a hidden state that encodes the previously occurring items in the same session. Therefore, while
training and predicting with the help of this network architecture, the items of a session have to be
fed into the network in the correct order and the hidden state of the GRUs has to be reset after a
session ends. In terms of the activation functions, the authors found tanh and the sigmoid function
to work best for the GRU and the ranking layer, respectively.

While the usage of RNNs for session-based, or more generally, sequential prediction problems is
a natural choice, the particular network architecture, the choice of the loss functions, and the use
of session-parallel mini-batches to speed up the training phase are key innovative elements of the
approach.

The model can be trained with stochastic gradient descent (SGD) using established optimizations
like ADAM, ADADELTA, RMSProp, or ADAGRAD [Duchi et al. 2011; Kingma and Ba 2014; Zeiler
2012]. As common in practice when optimizing deep neural networks, Hidasi et al. train the network
in batches. To ensure that the items or events are fed into the network in the correct order, they
propose the session-parallel mini-batch training scheme, which is illustrated in Figure 2. In the
training process, each part of a batch belongs to a specific session in the training data and the
network records a separate hidden state for each position. Whenever a session at a position in the
batch ends, the corresponding hidden state is reset and the next batch update includes the first
event of a new session at that position.

As usual, a number of hyper-parameters can be tuned, including, the learning rate, the layer
sizes, a momentum factor, and a drop-out factor to stabilize the network. The choice of the loss
function is another key to the quality of the recommendations of Gru4REc. The following loss
functions were designed or applied by the authors. In particular the latest function (MAX) proposed
by [Hidasi and Karatzoglou 2017] led to a significant performance improvement over the previous
ones.

o BPR: Bayesian Personalized Ranking (BPR), as discussed above, uses a pairwise ranking loss
function for the task of creating top-n recommendations. In GRU4REC, a generalized version
of this function is applied using the following formula:

1

Ls(7s,i, SN) = “Towl

- > loga(iei = F.)) ()

JESN
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In the loss function, the predicted rating 7, ; for the actual next item i given the current
session s is compared to a set of negative samples Sy with the goal of maximizing the
difference between them. Here, the sigmoid and logarithm functions are applied to represent
the proportion between the ranking of the negative and the positive example.

e TOP1I: This loss function was introduced by the authors of GRU4REC and can be seen as a
regularized approximation of the relative rank of a positive sample 7 ; and the negative
samples Sy:

N 1 . . .
Ls(Fs,i,SN) = Sal Z o(Fsj = Fs.i) + o (P2 ) )
JESN

Here, the proportion is approximated with the sigmoid function, and the regularization term
O'(ff’ ;) is added so that the score of the negative samples is directed to zero.

e MAX: In continuation of their work, the authors proposed a generic extension to these two
loss functions, where L, stands for a loss function like BPR or TOP1 defined above:

Lmax(fs,i» SN) = Ls(fs,i, {max fs,j}) (10)
JESN

Instead of using a sum of differences between the positive item’s rating 7; ; and the negative
samples Sy, only the highest rated negative sample maxjes,, 75, j from Sy is used to calculate
the loss. As this function has to be differentiable for SGD training, maxjes, is approximated
with the softmax function. The resulting functions BPR,4x and TOP1,,,, showed superior
performance when compared to the BPR and TOP1 functions [Hidasi and Karatzoglou 2017].

In our experiments, we used the GRU4REC (v2.0) implementation that the authors shared online.
The code is regularly maintained by the authors and includes the implementation of the GRU4REC
method, the code of their baseline algorithms, as well as the code for the evaluation procedure
proposed in [Hidasi et al. 2016a].

3.4 Factorization-based Methods

As described in Section 2, a number of (hybrid) factorization-based methods were proposed in
recent years for sequential recommendation problems. We include three existing methods from
the literature in our experiments, Factorized Personalized Markov Chains (FPMc) proposed by
[Rendle et al. 2010], F1sm by [Kabbur et al. 2013], and FossiL by [He and McAuley 2016]. Generally,
these methods aim at predicting the next actions of users, but were not designed for session-based
recommendation scenarios with anonymous users. We therefore describe for each method how we
applied them to our problem setting. In addition, we propose a novel factorization method called
Session-based Matrix Factorization (sMF), which relies on the BPR,;,q, and TOP1,,,, loss functions
as described above.

3.4.1 Factorized Personalized Markov Chains (Fpmc). The Fpmc method was designed for the
specific problem of next-basket recommendation. The problem consists of predicting the contents
of the next basket of a user, given his or her history of past shopping baskets. By limiting the basket
size to one item and by considering the current session as the history of baskets, the method can
be directly applied for session-based recommendation problems.

Technically, FPmMc combines mc and traditional user-item matrix factorization in a three dimen-
sional tensor factorization approach. As illustrated in Figure 3, the third dimension captures the
transition probabilities from one item to another.
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Fig. 3. Personalized transition cube, adapted from [Rendle et al. 2009].

Internally, a special form of the Canonical Tensor Decomposition is used to factor the cube into
latent matrices, which can then be used to predict a ranking in the following way:

Furi = (@ or D) + @t ot + @ op ) (1)
where 7, 1 ; is a score for item i with the preferences of user u when he or she previously examined
item I. The three-dimensional decomposition results in six latent matrices v**¥ representing the
latent factors for dimension X regarding dimension Y, e.g., vU-L are the user latent factors in terms
of the previously examined item and v"* the item latent factors regarding the previously examined
item. Accordingly, v;"" for example represents the factors for a single user u and Uf’L the factors
for item i, which are combined with the regular dot product ({g, b)) to calculate the ranking 7, ; ;.
Those latent factors are learned using SGD with the pairwise ranking loss function BPR.

In our problem setting, where we have no long-term user histories, each session in the training
data corresponds to a user. Once the model is trained, each new session therefore represents a user
cold-start situation. To apply the model to our setting, we estimate the session latent vectors as the
average of the latent factors of the individual items in the session. This approach was adopted also
by [Hidasi et al. 2016a] to apply BPR-MF to session-based recommendation scenarios.

3.4.2  Factored Item Similarity Models (Fism). This method is based on an item-item factorization,
which has the advantage of being directly applicable to our session-based cold-start scenario, where
no explicit user representation can be learned. However, Fism does not incorporate sequential
item-to-item transitions like FPmc does. Equation 12 shows the prediction function which [Kabbur
et al. 2013] trained using SGD to predict ratings, e.g., for the movie domain.

Fui = by +bi+ (1) D pig] (12)

JER;

Technically, for user u and item i, a score 7, ; is calculated as the sum of latent vector products p jqiT
between item i and the items R}, already rated by the user u. In our scenario, R}, corresponds to the
previously inspected items in a session. The terms b, and b; are bias terms and n?, specifies the
number of ratings by user u, which is combined with a parameter o to normalize the sum of vector
products to a certain degree. Instead of using the RMSE as an error metric, we use BPR’s pairwise
loss function when optimizing the top-n recommendations for the given implicit feedback scenario.
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3.4.3 Factorized Sequential Prediction with Item Similarity Models (FossiL). In this approach,
FISM is combined with factorized Markov chains to incorporate sequential information into the
model. The model can be described as shown in Equation 13 (from [He and McAuley 2016]):

personalized weighting

—_——
A T T
Fuli= Z Pig;i +  (wHw,) - nym; (13)
JeRi\{i} N
———— sequential dynamics

long-term preferences

Again, 7, 1 ; represents a rating for item i given a user u and his or her previously inspected item
I. The first term represents the long-term user preferences and corresponds to the Fism model in
Equation 12. Using a weighted sum with a global factor w and a personalized factor w,, the model
is extended by a factorized Markov chain to capture the sequential dynamics. In the last term of
Equation 13, a latent vector n; for item [ is multiplied with a latent vector m; for item i to factor in
the user-independent probability of item [ being followed by item i.

In our scenario, again, the sessions represent the users, R, corresponds to the current session
and BPR is used as the loss function to rank suitable items over negative examples.

3.4.4 Session-based Matrix Factorization (smF). Finally, sMF is a novel factorization-based model
that we designed for the specific task of session-based recommendation. Similar to FossIL it combines
factorized Markov chains with classic matrix factorization. In addition, our method considers the
cold-start situation of session-based recommendation scenarios as follows.

In contrast to the traditional factorization-based prediction model r,, ; = py, qiT, in the sMF method,
we replace the latent user vector p, with a session preference vector s,, which is computed as an
embedding of the current session s:

Se = Mst - sT (14)
Here, the session s is as a binary vector similar to the representation in SKNN (see Section 3.2.2)
and Mgr is a transformation matrix of size |I| - |us|, which reduces the size of the binary session
vector (number of unique items |I|) to a specific latent vector size |s.|.

Based on the embedded session representation s., the prediction function is defined as shown in
Equation 15.

sequential dynamics
——

Fori=wi-( seq] +bui )+ A —wi)-( mm] +by; ) (15)
_
session preferences

The score 7 ; for a session s with the most recent item ! and an item i is computed as a
weighted combination of session preferences and sequential dynamics. Here, the session preferences
correspond to the long-term user preferences in the traditional matrix factorization model, i.e., the
embedded session latent vector s, for the current session s is multiplied with an item latent vector
q; for item i to compute a relevance score i regarding s. The sequential dynamics are captured
exactly as in Equation 13 for FossIL using latent representations for the currently inspected item
I and item i. Both partial scores are adjusted with a separate bias term by ; and combined in a
weighted sum with the factor w; dependent on item i.

To train this model, we incorporated some of the concepts from GRU4REC (see Section 3.3).
Specifically, we adopted ADAGRAD for SGD-based optimization, and used BPR,qx and TOP1 45
as loss functions. Furthermore, we integrated two additional concepts (and corresponding hyper-
parameters) in the training phase to avoid model over-fitting: a session drop-out factor and a
skip-rate. For a drop-out factor of 0.1, for example, each positive entry of the binary session input
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vector is set to 0 with a probability of 10%. The skip-rate, in contrast, describes how often not the
immediate next item in the log data should be used as a positive sample in the training process, but
the subsequent one. A skip rate of 0.1 therefore means that in 10 % of the cases the immediate next
item is skipped.

4 EXPERIMENT SETUP

In this section, we describe the details of our algorithm comparison in terms of to the used evaluation
protocol, the performance measures, and the evaluation datasets. All source code and pointers to
the public datasets are provided online to ensure reproducibility of our research.’

4.1 Evaluation Protocol and Performance Measures

The general computational task in session-based recommendation problems is to generate a ranked
list of objects that in some form “matches” a given session beginning. What represents a good
match, depends on the specific application scenario. It could be a set of alternative shopping items
in an e-commerce scenario or a continuation of given music listening session.

In offline evaluations for session-based recommendations, researchers often abstract from the
underlying purpose of the system [Jannach and Adomavicius 2016], e.g., if the recommender
should help discover something new or find alternatives to a currently inspected item. Instead, the
recorded user sessions are typically considered as a “gold standard” for the evaluation. To measure
the performance of an algorithm, researchers resort to assessing the capability of an algorithm to
predict the withheld entries of a session.

Different approaches are found in the literature to withhold certain entries of a session. In some
works, only the last element is hidden [Bonnin and Jannach 2014; Hariri et al. 2012], some propose
to “reveal” the first n elements of a session [Jannach et al. 2015a], while others, finally, evaluate their
approaches by iteratively revealing one entry after the other [Hidasi et al. 2016b]. We employed
the latter iterative revealing scheme in our experiments as it (i) conceptually includes both of the
other techniques and (ii) reflects the user journey throughout a session in the best way.

Selection of the Target Item and Accuracy Measures. We measured prediction accuracy in two
ways and correspondingly report the results in separate tables.

e First, to establish comparability with existing research, we use an evaluation scheme in which
the task is to predict the immediate next item given the first n elements. For each session, we
iteratively increment n, measure the hit rate (HR) and the Mean Reciprocal Rank (MRR), and
finally determine the average HR and MRR for all sessions for the different list lengths, as
done by [Hidasi et al. 2016b].

e Second, instead of focusing only on the next item, we made a measurement where we
considered all subsequent elements for the given session beginning, because all of them might
be relevant to the user. In this scheme, we used the standard information retrieval measures
precision and recall at defined list lengths. The number of given elements of the session is
also iteratively incremented as in the previously described evaluation scheme.

Sessionization strategies. Different strategies exist in the literature to split the user activity logs
into sessions. In some of the public datasets used in our evaluation, the activity logs were already
split up into sessions, i.e., each log entry was assigned a unique session ID (RSC15, Zalando). For
other datasets (RETAILR, NOWPLAYING, 30MUSIC, CLEF), we used a common heuristic-based
approach and considered a session as over after a defined user idle time, e.g., 30 minutes of user
inactivity [Cooley et al. 1999]. For the TMALL dataset, where the timetamps for the recorded events

8https://www.dropbox.com/sh/dbzmtq4zhzbj509/AACldzQ Wbw-igKjcPTBI6ZPAa?dl=0
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were only available at the granularity of a day, we considered all events of one day as belonging to
one session. Finally, for the two playlists dataset (AOTM, 8TRACKS), we considered all elements of
a playlist to be part of a session.

Training and Test Splits, Repeated Subsampling. [Hidasi et al. 2016b] used one single training-test
split. In the case of an e-commerce dataset, the data was split in a way that the sessions of all six
months except those of the very last day of the entire dataset were placed in the training set. The
last day was used for testing. We report the results of applying this evaluation scheme to ensure
comparability, e.g., with respect to the results obtained for the e-commerce dataset that was used
in their experiments.

Since such single-split setups have their limitations, we focus our discussion on the results that
were obtained when applying a sliding-window protocol, where we split the data into 5 slices of
equal size in days. For most e-commerce data, for example, we used the data of about one month
for training and the subsequent data (e.g., of one day) for testing (see Section 4.2 for the dataset
specific configurations). This allows us to make multiple measurements with different test sets.
We then evaluate the performance for each of these data samples and report the average of the
performance results for all slices. This latter protocol helps us reduce the danger that the observed
outcomes are the results of one particular train-test configuration.”

For the playlist datasets STRACKS and AOTM no timestamp information is available. For these
datasets we therefore applied a standard cross-validation procedure, where elements are randomly
assigned to the training and test sets. We did not use such a time-agnostic data splitting procedure
for the e-commerce and news datasets for different reasons. First, as the results will show, there
are strong temporal effects that should be considered in the recommendation process. Second, in
these domains, the set of items is not static and in particular in the news domain new items appear
constantly. Randomly splitting the sessions would then potentially result in the effect that future
interactions with not-yet-existing items would be considered in the training phase.

Additional Quality Factors. Since accuracy is not the only relevant quality factor in practice, we
made the following additional measurements, as was done by [Jannach and Ludewig 2017].

e Coverage: We report how many different items ever appear in the top-k recommendations.
This measure represents a form of catalog coverage, which is sometimes referred to as
aggregate diversity [Adomavicius and Kwon 2012].

o Popularity bias: High accuracy values can, depending on the measurement method, correlate
with the tendency of an algorithm to recommend mostly popular items [Jannach et al. 2015b].
To assess the popularity tendencies of the tested algorithms, we report the average popularity
score for the elements of the top-k recommendations of each algorithm. This average score is
the mean of the individual popularity scores of each recommended item. We compute these
scores based on the training set by counting how often each item appears in one of the
training sessions and by then applying min-max normalization to obtain a score between 0
and 1.

e Cold start: Some methods might only be effective when a significant amount of training data
is available. We, therefore, report the results of measurements where we artificially removed
parts of the (older) training data to simulate such situations.

9To ensure that the smaller size of those splits does not negatively affect the performance of the model-based approaches,
we tested the single-split configurations as well on all datasets. The obtained results are mostly in line with those obtained
with the sliding-window protocol and shown in Appendix D.
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o Scalability: Training modern machine learning methods can be computationally challenging,
and obtaining good results may furthermore require extensive parameter tuning. We, there-
fore, report the times that the algorithms needed to train the models and to make predictions
at runtime. In addition, we report the memory requirements of the algorithms.

By reporting quality factors coverage and popularity bias our aim is to emphasize that different
recommendation strategies can lead to quite different recommendations, even if they are similar
in terms of the prediction accuracy, see also [Jannach et al. 2015b]. Such multi-metric evaluation
approaches should also help practitioners to better understand the potential side effects of the
recommenders, e.g., reduced average sales diversity and additionally increased sales of top-sellers
[Lee and Hosanagar 2014]. It remains however difficult to aggregate the individual performance
factors into one single score, as the relative importance of the factors can depend not only on the
application domain, but also on the specific business model of the provider.

Parameter Optimization. Some of the algorithms that we tested require extensive (hyper-)parameter
tuning including smr and GRU4REC. Thus, we systematically optimized the parameters for those
algorithms for each dataset. Due to the computational complexity of the methods, we restricted the
layer size for GRU4REC as well as the number of latent factors for smr to 100 and used a randomized
search method with 100 iterations for the remaining parameters as described by [Hidasi and Karat-
zoglou 2017]. In each iteration, the learning rate, the drop-out factor, the momentum, and the loss
function were determined in a randomized process to find the maximum hit rate for a list length of
20. All optimizations were performed on special validation splits, which were created by splitting a
training set into a validation training and test set. For the simpler s-kNN-based approaches, we used
the same validation sets to manually adjust the number of neighbors and samples when applying
cosine similarity as the distance measure (except for v-skNN). The final parameters for each method
and dataset are provided in Appendix A.

4.2 Datasets

We made measurements for datasets from three different domains: e-commerce, music, and news.

E-Commerce Datasets. We used the following four e-commerce datasets.

e RSC15. This is one of the datasets that was used in [Hidasi et al. 2016a] and their later works.
It was published in the context of the ACM RecSys 2015 Challenge and contains recorded
click sequences (item views, purchases) for a period of six months. We use the label RSC15-S
to denote the dataset and measurement where only one single train-test split is used. For
RSC15, each split consists of 30 days of training and 1 day of test data.

e TMALL. This dataset was published in the context of the TMall competition and contains
interaction logs of the tmall.com website for one year. For TMALL, each split consists of 90
days of training and 1 day of test data.

e RETAILR. The e-commerce personalization company retailrocket published this dataset cover-
ing six month of user browsing activities, also in the context of a competition. For RETAILR,
each split consists of 25 days of training and 2 days of test data.

e ZALANDO. The final dataset is non-public and was shared with us by the fashion retailer
Zalando. It contains user logs of their shopping platform for a period of one year. In our
evaluation, we only considered the item view events as was done for the other e-commerce
datasets. For ZALANDO, each split consists of 90 days of training and 1 day of test data.

Table 1 shows an overview of the characteristics of the e-commerce datasets. Except for the
RSC15-S dataset, which we include to make our evaluation comparable with previous works [Hidasi
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Table 1. Characteristics of the e-commerce datasets. The values are averaged over all five non-overlapping
splits for each dataset, except for RSC15-S, where we only use one train-test split.

Dataset RSC15-S  RSC15 TMALL RETAILR ZALANDO
Actions 31.71IM 5.43M 13.42M 212,182 4.54M
Sessions 7.98M 1.38M 1.77M 59,962 365,126
Items 37,483 28,582 425,348 31,968 189,328
Timespan in Days 182 31 91 27 91
Actions per Session 3.97 3.95 7.56 3.54 12.43
Unique Items per Session 3.17 3.17 5.56 2.56 8.39
Actions per Day 174,222 175,063 149,096 7,858 50,410
Sessions per Day 43,854 44,358 19,719 2,220 4056

and Karatzoglou 2017; Jannach and Ludewig 2017], we report the average values after creating five
data splits as described above.

Media Datasets: Music and News. As in [Jannach and Ludewig 2017], we use the music domain
as an alternative area to evaluate session-based recommendation algorithms, because music is
commonly consumed within listening sessions in sequential order. We use the same datasets that
were used in [Jannach and Ludewig 2017], which consist of two sets of listening logs and two
datasets of user-created playlists. In addition, we made measurements using a dataset from the
news recommendation domain.

We in particular consider the news domain because it has certain distinct characteristics [Karimi
et al. 2018]. First, constantly new items become available for recommendation [Das et al. 2007; Liu
et al. 2010]. At the same time, items can also quickly become outdated. Second, previous research
indicates that short-term popularity trends can be important for the success of a recommender
[Ludmann 2017]. The experiments based on this dataset should therefore provide an indicator
if the general insights obtained from other domains generalize to a domain with very specific
characteristics.

o 8TRACKS and AOTM: These dataset include playlists created by music enthusiasts. The AOTM
dataset was collected from the Art-of-the-Mix platform and is publicly available [McFee and
Lanckriet 2012]. The non-public 8TRACKS) dataset was shared with us by the 8tracks.com
music platform. For all music datasets, each split consists of 90 days of training and 5 days of
test data.

e 30MUSIC and NOWPLAYING: The 30MUSIC dataset contains listening histories of the last.fm
music platform and was published by [Turrin et al. 2015]. The NOWPLAYING dataset was
created from music-related tweets, where users posted which tracks they were currently
listening [Zangerle et al. 2014].

o CLEF: The dataset was made available to participants of the 2017 CLEF NewsREEL challenge."
It consists of a stream of user actions (e.g., article reads) and article publication events, which
were collected by the company plista for several publishers. In our evaluation we only
considered the article read events. We used the data of the publisher with the largest amount
of recorded interactions (the popular German sports news portal Sport1'!). For CLEF, each
split consists of 5 days of training and 1 days of test data.

The statistics for the datasets from the media (music and news) domain are given in Table 2.

Ohttp://www.clef-newsreel.org/
Hhttps://www.sport1.de/
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Table 2. Characteristics of the music and news datasets. The values are again averaged over all five non-
overlapping splits.

8TRACKS 30MUSIC AOTM NOWPLAYING CLEF

Actions 1.50M 638,933 306,830 271,177 5.54M
Sessions 132,453 37,333 21,888 27,005 1.64M
Items 376,422 210,633 91,166 75,169 742
Timespan in Days 95 95 95 95 6
Actions per Session 11.32 17.11 14.02 10.04 3.37
Items per Session 11.31 14.47 14.01 9.38 3.17
Actions per Day 16,663 7,099 3,409 3,013 923,414
Sessions per Day 1,472 415 243 300 274,074
5 RESULTS

5.1 E-Commerce Datasets

Table 3 shows the MRR and Hit Rate results at a recommendation list length 20 for the four tested
e-commerce datasets. In addition, we report the results when applying the standard measures
precision and recall when considering all hidden elements in the rest of the session as described
above (see Table 4). Finally, we also report coverage and popularity statistics for each algorithm.

5.1.1 Accuracy Measures. The results when the task is to predict the immediate next element
in a session (as done in [Hidasi and Karatzoglou 2017; Jannach and Ludewig 2017]) are shown in
Tables 3a to 3e. The following observations in terms of the hit rate and the MRR can be made."”

o The lowest accuracy values are almost consistently achieved across all datasets by the family
of Factorized Markov Chain approaches (FisM, FPmMc and FOsSsIL) and the session-aware BPR-
MF variant. BPR-MF in fact often exhibits the best performance among these methods even
though it was not designed for sequential recommendation problems. In two cases, however,
the session-based BPR-MF variant led to very competitive results when the measurement was
taken at a recommendation list length of 1, although at the potential price of a high popularity
bias and low coverage. Apart from this phenomenon, our results indicate that the methods
that were designed under the assumption of longer-term and richer user profiles are often
not particularly well suited for the specifics of session-based recommendation problems.

o The simple pairwise association methods (AR and sr) mostly occupy the middle places in our
comparison. In most cases, it is preferable to consider the available sequentiality information
(Sr). Only for the TMALL dataset, where the transactions of an entire day are considered as a
session'®, and for RETAILR, the sequence-agnostic AR method is slightly better in terms of
the hit rate. In terms of the overall ranking, the trivial SR method is, to some surprise, among
the top-performing methods for two of the datasets in terms of the MRR, with good results
also for the hit rate. The mc method finally, is usually placed somewhere in the middle of
the ranking. Similar to the sr method, it is very strong in terms of the MRR for two of the
datasets.

o The performance of the newly-proposed smr method is very strong for the RSC15 and RSC15-
S dataset and in the middle ranges for the other datasets. The smF method consistently
outperforms the factorization-based methods from the literature, apparently due to the
embedding of the current user session.

12We provide additional results that were obtained for measurements taken at multiple list lengths in Appendix B.
131n the dataset, timestamps are only available at the granularity of days.
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Table 3. Hit rate (HR), Mean reciprocal rank (MRR), catalog coverage (COV), and the average popularity
(POP) for a list length of 20 obtained for the e-commerce datasets. The table rows are ordered by MRR@20.
The best values are highlighted in each column and, in case of accuracy measures, marked with a star when
the difference w.r.t. to the second-best performing method was statistically significant.

(a) RSC15 (b) TMALL
Metrics MRR@20 HR@20 COV@20 POP@20 Metrics MRR@20 HR@20 COV@20 POP@20
GRU4REC 0.308 *0.683 0.504 0.054 S-SKNN *0.185 0.387 0.467 0.025
SR 0.304 0.653 0.668 0.072 S-KNN 0.182 *0.404 0.381 0.026
SMF 0.302  0.666 0.565 0.055 V-SKNN 0.179  0.373 0.464 0.024
MC 0.300 0.642 0.645 0.070 BPR-MF 0.159  0.204 0.723 0.057
AR 0.289 0.636 0.630 0.093 SF-SKNN 0.136 0.216 0.436 0.018
V-SKNN 0.283  0.653 0.619 0.079 GRU4REC 0.129  0.277 0.151 0.035
S-SKNN 0.272  0.602 0.655 0.072 AR 0.129  0.262 0.509 0.021
SF-SKNN 0.270  0.589 0.619 0.066 SR 0.128 0.242 0.569 0.021
S-KNN 0.266 0.621 0.634 0.073 SMF 0.121  0.261 0.261 0.036
IKNN 0.208 0.486 0.755 0.041 MC 0.116  0.200 0.498 0.019
FPMC 0.201 0.363 0.975 0.055 FPMC 0.101 0.119 0.880 0.005
BPR-MF 0.176  0.235 0.911 0.088 IKNN 0.051  0.150 0.728 0.007
FISM 0.115 0.162 0.974  0.008 FISM 0.024 0.037 0.752 0.003
FOSSIL 0.062 0.190 0.917 0.048 FOSSIL 0.001 0.004 0.598 0.016
(c) RETAILR (d) ZALANDO
Metrics MRR@20 HR@20 COV@20 POP@20 Metrics MRR@20 HR@20 COV@20 POP@20
S-SKNN *0.345 *0.591 0.596 0.056 SR 0.304 0.483 0.586 0.061
V-SKNN 0.338 0.573 0.575 0.060 MC 0.303  0.455 0.513 0.060
S-KNN 0.337 0.583 0.566 0.058 IKNN 0.275  0.405 0.714 0.037
BPR-MF 0.303  0.357 0.824 0.060 GRU4REC 0.267 0.468 0.304 0.101
FPMC 0.273  0.320 0.929 0.022 SMF 0.267  0.447 0.362 0.107
SF-SKNN 0.260 0.358 0.403 0.035 AR 0.258  0.467 0.467 0.089
SR 0.245 0.419 0.524 0.042 SF-SKNN 0.249 0.438 0.432 0.057
GRU4REC 0.243  0.480 0.602 0.060 V-SKNN 0.233 *0.521 0.432 0.096
AR 0.241 0.439 0.544 0.053 S-SKNN 0.219  0.499 0.435 0.087
MC 0.230 0.359 0.411 0.035 S-KNN 0.172  0.456 0.309 0.093
SMF 0.225  0.459 0.449 0.085 BPR-MF 0.104 0.162 0.609 0.058
IKNN 0.107  0.240 0.584 0.033 FPMC 0.051 0.075 0.812 0.021
FISM 0.075 0.132 0.848 0.018 FISM 0.004 0.011 0.624  0.020
FOSSIL 0.022 0.058 0.753 0.127 FOSSIL 0.002 0.005 0.671 0.034

Table 4. Precision (P@20) and Recall (R@20) for the e-commerce datasets.
The rows are ordered by the P@20 values for the TMALL data set, which

e) RSC15-S . . . .

(e) led to a relatively consistent ranking of the algorithms.
Dataset RSC15
Metric  MRR@20 HR@20 Dataset RSC15 TMALL ROCKET  ZALANDO
GRU4REC 0.312 0.719 Metric P@20 R@20 P@20 R@20 P@20 R@20 P@20 R@20
SMF 0.309  0.713 SKNN 0.086 0.464 0.095 0.312 0.056 0.478 0.074 0.202
SR 0.308  0.690 V-SKNN  0.092 0.494 0.088 0.291 0.055 0.462 0.076 0.207
V-SKNN 0.274  0.675 sMr 0.092 0.501 0.068 0.230 0.047 0.397 0.062 0.175
SKNN 0.250 0.641

GRU4REC  0.085 0.470 0.068 0.233 0.046 0.400 0.065 0.181
SR 0.089 0.488 0.052 0.193 0.038 0.342 0.060 0.174
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e GRU4REC is consistently among the top five algorithms in this comparison in terms of the hit
rate and exhibits competitive performance results also with respect to the MRR. The method
is outperforming all other methods on the RSC15(-S) datasets in terms of the hitrate and is
competitive w.r.t. the MRR, where the differences between the top-performing methods are
tiny. On the other datasets, the accuracy results of GRU4REC are, however, often significantly
lower than those of the best-performing methods.'*

e For each of the datasets, one of the proposed neighborhood-based methods was usually
the winner in terms of the hit rate and the MRR (except for RSC15(-S) and the MRR on
ZALANDO). Using one of the variants that considers sequentiality information is usually
favorable, except for the case of the TMALL dataset. The most consistent performance of
the neighborhood-based methods is achieved with the v-skNN method which uses a specific
sequence-aware similarity measure that gives more weight to the most recent interactions.
Generally, the results suggest that there is even room for further improvement in the context
of the neighborhood-based methods. In the experiments reported in this work, we could, for
example, observe that using a slightly different similarity measure already led to substantial
performance improvements for some of the datasets.

Precision and Recall for the Remaining Session. The ranking of the best-performing algorithms
when evaluating all subsequent elements of a session (not only the immediate next click) and
measuring precision and recall is given in Table 4. We report the detailed results for all algorithms
for all measurements in the appendix.

The obtained results are mostly in line with the previously reported observations. The best
performance is achieved by the neighborhood-based methods, with v-skNN working very well
across all datasets. Differently from the previous measurement, GRU4REC shows a lower performance
for the RSC-15 dataset than the other methods. This is probably due to the fact that GRU4REC is
optimized to predict the immediate next action. Generally, which type of accuracy measurement—
focusing on the prediction of the immediate next element or considering the prediction of any
item that is relevant in the session as a success—is more appropriate, depends on the application
domain. Our results show that the kNN-based methods are successful in both forms, i.e., they are
often good at predicting the next element while, at the same time, they many times include more
items that are relevant for the given session than, e.g., GRU4REC.

Impact of Different List Lengths. To see if the recommendation list length at which the measure-
ment is taken has an influence on the algorithm ranking, we varied the length from 20 to 1. Figure
4a and Figure 4b show how the best algorithms perform for the TMALL and RETAILR datasets
when different list lengths are used in the evaluation. The results show that the ranking of the
algorithms can in fact be affected by the change of the list length.

Specifically, the differences between the nearest-neighbor methods and the GrRU4REC and sr
methods becomes gradually smaller for shorter list lengths. This is not too surprising because
both GrRU4REC and sr focus on the prediction of the immediate next action and often lead to better
performance values in terms of the MRR. Since the particular evaluation protocol here also only
focuses on the correct prediction of the next item, the effect might however be overemphasized
due to the specific measurement method. An interesting observation is that at list length 1, BPR-MF
and to some extent the FPMc method lead to the best results for some e-commerce datasets. In the
case of BPR-MF, this however comes at the price of a high popularity tendency of the algorithm and
a comparably low coverage (see Table 15 in Appendix B).

14We applied the Wilcoxon signed-rank test (a = 0.05) to determine the significance of differences between the two best
performing approaches for each dataset.
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Fig. 4. Hit rate (HR) for two of the e-commerce datasets when reducing the recommendation list length from
20 to 1.

5.1.2  Cold-Start and Sparsity Effects. Previous experiments on the RSC15 dataset revealed that
discarding major parts of the older data has no strong impact on the prediction accuracy, at least in
the e-commerce domain [Jannach and Ludewig 2017]. We therefore made additional experiments
to analyze the effects in more depth. Figure 5a and Figure 5b show the results of this simulation for
two of the e-commerce datasets.
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Fig. 5. HR@20 for two e-commerce datasets when artificially reducing the size of the training set from 60
days to 1 day.

The results for the RSC15-S (single-split) dataset (Figure 5a) are in line with what was previously
reported in [Jannach and Ludewig 2017]. In the e-commerce domain, the user behavior seems to
be strongly influenced by recent sales trends, an effect that was also reported in [Jannach et al.
2017b]. Discarding most of the historical data has almost no influence on the resulting hit rates.
This behavior is similar for all compared algorithms. Only in the extreme case when only the
data of the last few days is considered, the performance of the algorithms degrades. A similar
observation can be made for the TMALL dataset. Generally, the observations also explain why the
recency-based neighborhood sampling approach implemented in the KNN methods does not have a
strong negative effect on the accuracy. In fact, focusing on the most recent sessions when looking
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for similar neighbors has shown to have a positive effect in [Jannach and Ludewig 2017], when
compared to a random neighborhood selection scheme.

Considering other Types of Events. In the reported experiments, the models were trained with
past item view events and we also predicted the next view event for a given session beginning.
This choice was made to make our work comparable with previous research. Additional types of
events (e.g., “add-to-wishlist”, “add-to-cart”) can easily incorporated as positive preference signals
into the investigated algorithms. How to weight the different types of signals nd how to interpret
signals like “remove-from-wishlist” is an area for future research.

Depending on the domain, also different types of events might be in the focus as well in the
prediction phase. In the experiments reported here, we predict item views. In our previous research
on the topic [Jannach and Ludewig 2017], we also made experiments in which we focused on the
prediction of purchase events. In these experiments, the ranking of the algorithms was similar for the
item prediction and the purchase prediction tasks. However, some previous research suggests that
view-based collaborative filtering algorithms lead to sometimes quite different recommendations
than purchase-based ones and also differ in their effectiveness [Lee and Hosanagar 2014]. In general,
the choice of the prediction target should therefore be made with the goal of the recommender in
mind, e.g., increase user attention and click-through-rates vs. increasing sales, see, e.g., [Jannach
and Hegelich 2009].

5.1.3 Coverage and Popularity Bias. The results listed in Table 3a to Table 3d show that in
terms of the coverage (or: aggregate diversity), the factorization-based methods consistently lead
to the highest values, i.e., they place the largest number of different items into the top-n lists of
the users. GRU4REC represents in all datasets, except RETAILR, the other extreme and seems to
focus its recommendations on a comparably narrow range of items. In particular in the case of
the TMALL dataset, the coverage of the item space of GRU4REC is as low as 0.15, i.e., the top-20
recommendations for all given sessions in the test set cover only 15 % of the available items. To
what extent low coverage is undesired, again depends on the specific application domain.

Not many consistent patterns can be identified with regard to the popularity biases of the different
algorithms. BPR-MF, as was previously discussed by [Jannach et al. 2015b], has a comparably strong
tendency to focus on generally popular items. Our newly proposed smF method exhibits a similar
tendency across all datasets. The Fpmc method usually represents the other end of the spectrum.
The tendency of the many of the other algorithms to recommend popular items seems to strongly
depend on the dataset characteristics. According to our previous work [Jannach and Ludewig 2017],
the basic skNN method tends to recommend slightly more popular items than GrRU4REC. In this new
series of measurements, this is, however, not consistently the case across the datasets.

5.2 Media Datasets

Table 5, Table 6, and Table 7 show the results for the music and news domains, respectively.

Accuracy. The accuracy results generally exhibit similar patterns as the results obtained for the
e-commerce datasets. For these datasets, however, the winning strategy more strongly depends on
the chosen measure. When the MRR is used as a performance measure, often the trivial baselines
SR or AR lead to the best results. In terms of the hitrate, in contrast, usually one of the nearest
neighbor methods again performs best.

With respect to the MRR measure also GRU4REC exhibited very competitive performance, except
for the 8TRACKS and AOTM datasets, where the highest MRR values were achieved with the AR
and the skNN method. Looking at the playlist datasets (§$TRACKS and AOTM), the comparably good
results of the sequence-agnostic AR and SKNN strategy indicate that the ordering of the tracks is
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Table 5. Hit rate (HR), Mean reciprocal rank (MRR), catalog coverage (COV), and the average popularity
(POP) for a list length of 20 tested on the music datasets. The tables show the top ten algorithms ordered by
MRR@20. The best results are highlighted and significant differences are marked with a star.

(a) NOWPLAYING

Metrics MRR@20 HR@20 COV@20 POP@20
SR 0.105 0.203 0.466 0.025
GRU4REC 0.102  0.197 0.433 0.052
MC 0.097 0.158 0.294 0.028
SF-SKNN 0.095 0.165 0.277 0.031
SMF 0.088 0.183 0.242 0.092
V-SKNN 0.078  0.255 0.428 0.064
S-SKNN 0.078 *0.262 0.415 0.062
AR 0.071 0.208 0.453 0.051
S-KNN 0.069 0.243 0.301 0.069
IKNN 0.057 0.182 0.580 0.029
(c) 30MUSIC
Metrics MRR@20 HR@20 COV@20 POP@20
SR *0.238  0.332 0.389 0.023
MC 0.232  0.284 0.204  0.021
GRU4REC 0.226  0.326 0.345 0.056
SF-SKNN 0.208 0.286 0.185 0.022
SMF 0.178 0.284 0.151 0.105
V-SKNN 0.110 0.382 0.317 0.054
IKNN 0.109 0.297 0.460 0.023
S-SKNN 0.108 *0.386 0.293 0.052
AR 0.096  0.309 0.352 0.039
S-KNN 0.090 0.344 0.191 0.057

(b) 8TRACKS
Metrics MRR@20 HR@20 COV@20 POP@20
AR *0.0071 0.0255  0.4529 0.0912
SMF 0.0064 0.0230 0.1527 0.0864
SR 0.0063 0.0170  0.4967 0.0531
SF-SKNN  0.0063 0.0118  0.3049 0.0362
V-SKNN 0.0057 0.0352  0.4080 0.1194
S-KNN 0.0053 *0.0375  0.2430 0.1079
IKNN 0.0050 0.0176  0.6956 0.0245
GRU4REC  0.0050 0.0189  0.0692 0.1222
S-SKNN 0.0047 0.0293  0.4509 0.0806
MC 0.0046 0.0098  0.3496 0.0320
(d) AOTM
Metrics MRR@20 HR@20 COV@20 POP@20
SMF 0.0111 0.0297  0.2456  0.1998
SF-SKNN  0.0110 0.0144  0.3558 0.0508
SR 0.0076 0.0195 0.5864 0.0533
GRU4REC ~ 0.0071 0.0156  0.4652 0.1151
MC 0.0063 0.0132  0.3803  0.0497
AR 0.0059 0.0233  0.5531 0.1049
V-SKNN 0.0054 0.0377  0.5362 0.1397
S-SKNN 0.0054 0.0397 0.5356 0.1289
S-KNN 0.0053 *0.0429  0.2802 0.1677
IKNN 0.0049 0.0186 0.7879 0.0472

Table 6. Precision (P@20) and Recall (R@20) for the music datasets. The results are ordered by P@20 for
8TRACKS, which represents the largest music dataset in our evaluation.

Dataset LFM 8TRACKS 30MUSIC AOTM

Metric P@20 R@20 P@20 R@20 P@20 R@20 P@20 R@20
V-SKNN  0.0717 0.1909 0.0122 0.0308 0.1094 0.2321 0.0133 0.0361
SKNN 0.0680 0.1824 0.0117 0.0313 0.1035 0.2140 0.0155 0.0440
SMF 0.0499 0.1453 0.0086 0.0218 0.0746 0.1655 0.0084 0.0259
SR 0.0501 0.1465 0.0055 0.0140 0.0878 0.2010 0.0053 0.0146
GRU4REC  0.0272 0.0810 0.0037 0.0095 0.0404 0.0988 0.0010 0.0027

Table 7. Hit rate (HR), Mean reciprocal rank (MRR), Precision (P), Recall (R), item coverage (COV), and
average popularity (POP) results for a list length of 20 on the CLEF dataset (ordered by MRR@20).

Metrics ~ MRR@20 HR@20 COV@20 POP@20 P@20 R@20
SMF 0.234 0.706 0.650 0.083  0.062 0.527
V-SKNN 0.224 0.776 0.621 0.083 0.068 0.584
SR 0.223 0.672 0.655 0.093  0.058  0.502
GRU4REC 0.220 0.568 0.174 0.094 0.072  0.626
S-KNN 0.219  0.778 0.613 0.084 0.066 0.577

not too important for the playlist creators. Among the neighborhood-based methods, v-skNN was
again consistently among the top-performing methods. When looking at the standard precision and
recall measurements for the five best-performing approaches in Table 6, we can see that v-SKNN is
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Fig. 6. Hit rate (HR) for two of the music datasets when reducing the result list length from 20 to 1.

the winning strategy across all datasets and that GRU4REC is again less effective for this particular
measurement.

Finally, looking at the news domain, the average results shown in Table 7 in general confirm
the trends observed for the other datasets. The v-skNN method is top-performing on almost all
measures. GRU4REC also works comparably well on this dataset, especially on the precision and
recall measures. Again, however, we can also observe a comparably low level of coverage and
a comparably high tendency to recommend popular items. In contrast to all other domains and
datasets however, when looking at the results of the individual splits for the CLEF dataset, we
could observe that those are subject to large fluctuations. Depending on the day that was chosen
for testing, the ranking of the algorithms in terms of the accuracy measures changes drastically,
which we could not observe for any other dataset.

As mentioned in Section 4, we conducted additional single split experiments to ensure that the
reduced amount of training data in the sliding window protocol does not affect the performance of
the model-based approaches. The single-split results in Appendix D reveal GRU4REC as the best-
performing approach for this particular dataset, which was also the case for two of the individual
splits. Thus, even though such large fluctuations did only occur in the news domain, this is an
indicator that applying a single-split evaluation protocol can easily lead to “random” and misleading
results.

The effects when considering different list lengths for two of the datasets is shown in Figure
6a (NOWPLAYING) and Figure 6b (8TRACKS). In contrast to the e-commerce datasets, the relative
ranking of the algorithms even changes when the list lengths become shorter. For both datasets,
the GRU4REC method and the very simple AR and srR methods, respectively, are better in terms of
the hit rate when it comes to very short list lengths. Considering the good results for the MRR for
these methods (Table 5a and Table 5b), this was expected. Again, the good performance of certain
methods can be explained by the fact that these methods are optimized to predict the immediate
next item of a given session.

Cold-Start and Sparsity Effects. An interesting effect can be observed when older data is discarded
to simulate sparsity effects. Figure 7a and Figure 7b show the results for the 8TRACKS and NOW-
PLAYING datasets, respectively.'” While for the STRACKS playlist dataset the accuracy values more

15The other media datasets did not exhibit any notable particularities.
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Fig. 7. HR@20 for two music datasets when incrementally reducing the size of the training set to 1 day.

or less consistently decrease when older data is discarded, we can observe an increase in accuracy
for the NOWPLAYING dataset. Remember that this dataset is based on the analysis of user posts
on Twitter about their current listening behavior. Obtaining the highest accuracy values when
only considering the very last days means that this dataset is strongly dominated by short-term
popularity trends and that the recommendation of older, non-trending tracks is detrimental to the
accuracy results.

Coverage and Popularity Bias. In terms of coverage (see Table 5), the findings for datasets from
the media domain are also mostly in line with those for the e-commerce datasets. The ranking of the
algorithms varies largely across the datasets. The differences are, however, often less pronounced.
Regarding the popularity tendency of the algorithms, methods that are based on pairwise sequences
(sr and Mc) in most cases lead to the recommendation of lesser known items, while nearest-neighbor-
based techniques quite often focus on the recommendation of comparably popular objects.

5.3 Computational Complexity & Memory Usage

The methods included in our comparison vary largely in terms of the computational complexity and
their memory requirements. Since neighborhood-based methods do not scale well when applied in a
naive manner, we used implementation variants that rely on neighborhood sampling and specific in-
memory data structures. The comparison of skNN method and GRU4REC in [Jannach and Ludewig
2017] showed that, with such an implementation, recommendations can be quickly computed
at prediction time with nearest neighbor methods, even though the prediction performance of
model-based techniques like GRU4REC could not be achieved.

To enable comparability with previous research [Jannach and Ludewig 2017], we report the
running times and memory demands for the single-split RSC15-S dataset, which is also the largest
one in terms of the recorded user actions. Additionally, we include the 8TRACKS dataset, which is
rather small compared to RSC15-S in terms of the number of events, but has the largest product
catalog of all datasets. Table 8 shows the times required for training the model (if applicable), the
time needed to compute a recommendation at prediction time, and the memory requirements for
the internal data structures. The reported results were obtained when using an Intel Core i7 4790K
processor with 32GB of DDR3-1600 memory and a Nvidia GeForce GTX 960 graphics card with
2GB of memory. The following observations can be made.
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Table 8. Overview of Computation Times and Memory Requirements for the RSC15-S dataset and the first
split of the 8TRACKS dataset, ordered in terms of required training times for the RSC15-S dataset.

Dataset RSC15-S 8TRACKS

Technique/Metric ~ Train. (min)  Pred. (ms) Mem. (MB) Train.  Pred. Mem.
MC 0.77 3.34 38 0.05 14.71 144
S-KNN 1.24 33.05 6051 0.04 52.96 353
S-SKNN 1.26 30.26 6051 0.05 51.01 353
V-SKNN 1.30 32.67 6051 0.04 52.43 353
SF-SKNN 1.72 29.82 6254 0.06 18.82 493
SR 2.41 3.14 54 0.18 15.88 284
AR 3.00 3.36 40 0.28 15.79 257
FISM 356.84 8.40 4937 35.07 60.72 387
GRU4REC (GPU) 385.35 7.43 59 19.08  58.08 588
BPR-MF 392.60 8.37 8009 42.69  65.15 771
smF (GPU) 446.66 14.02 1640 77.50  43.36 1805
FPMC 469.39 9.08 6786 60.92  71.58 1302
FOSSIL 499.19 10.56 4987 50.99 64.91 582

Running Times. The simple methods in our comparative evaluation need from less than one to
about three minutes of “training” (e.g., co-occurrence counting or in-memory data structure setup)
for the RSC15-S dataset. The factorization-based methods and the deep learning based method,
on the other hand, need about 6 to 8 hours to learn a model for the single data split. Note that
while the deep learning method GRU4REC and the factorization-based approach smr do not take the
longest absolute time in this comparison, they are the only method for which the computations
are done on the GPU. Running GRU4REC, for example, on a CPU tripled the computation times
according to the measurements in [Jannach and Ludewig 2017].

Looking at the times needed to compute a single recommendation list, given a session beginning,
we can observe that the simple rule-based methods AR, Mc, and sRr are among the fastest ones
with prediction times at about 3 ms for the RSC15-S dataset. The factorization-based methods
and GRU4REC are also very efficient, with prediction times mostly below 10 ms on average. The
nearest-neighbor methods are slower for this task as they have to consider the neighbors in the
prediction process. Since the neighbors can be determined through fast lookup operations, the
overall prediction time even for the more elaborate s-skNN and v-SKNN similarity schemes never
exceeds 33 ms for creating a recommendation list.

Looking at the 8TRACKS dataset with its large number of items, we can, however, see that the
prediction times for many algorithms, including GRU4REC and several of the factorization-based
ones significantly increase, while the prediction time for the neighborhood models only doubles.
In the end, making the neighborhood-based computations is at least as fast as computing the
predictions based on the offline-trained models. Overall, due to the used in-memory data structures
and through the neighborhood sampling approach, such neighborhood models are also suited under
the narrow time constraints of real-time recommendations. Differently from other methods, newly
arriving interaction signals can be easily included in the underlying model without re-training
[Jugovac et al. 2018].

Memory Requirements. In terms of the memory requirements, the rule-based methods Ar, mc,
and sr that basically record item co-occurrences of size two require the least memory, i.e., below
100 megabytes. Also the memory demands of GRU4REC are very low in this comparison, and
GRU4REC occupies only about 60 MB of memory on the graphics card for the RSC15-S dataset.
The factorization-based methods and the neighborhood methods, in contrast, have substantially
higher memory requirements. The lookup data structures of the neighborhood-based methods, for



Evaluation of Session-based Recommendation Algorithms 27

example, in our implementation occupy about 6 GB of memory. When additional recency-based
sampling is applied, which according to the analyses above does not hurt accuracy, these demands
could, however, be substantially lowered.

For some algorithms, the memory requirements largely depend on the characteristics of the
datasets. Looking at the numbers for the sTRACKS dataset, which covers over 300,000 different
items (in contrast to the about 30,000 of the RSC15 dataset), we see that in particular the memory
demand of GRU4REC substantially increases with the number of items. As a result, GRU4REC’s
network even needs more memory than neighborhood-based methods for this dataset. Given these
observations it seems promising to implement additional data sampling strategies within the more
complex methods—as we did for the nearest neighbor methods—to decrease their computational
demands.

6 CONCLUSION AND FUTURE DIRECTIONS
6.1 Summary of Main Insights

Being able to predict the user’s short-term interest in an online session is a highly relevant problem
in practice, which has raised increased interest also in the academic field in recent years. Even
though a number of different algorithmic approaches were proposed over the years, no standard
benchmark datasets and baseline algorithms exist today. In this work, we have compared a number
of very recent and computationally complex algorithms for session-based recommendation with
more light-weight approaches based, e.g., on session neighborhoods. The experimental analyses
on a number of different datasets show that in many cases one of the simpler methods is able to
outperform even the most recent methods based on recurrent neural networks in terms of the
prediction accuracy. At the same time, the computational demands of these methods can be kept
comparably low when using in-memory cache data structures and data sampling.

Overall, the results, therefore, indicate that additional research is required with respect to the
development of sophisticated models that are more flexible in terms of how much sequential
information is contained in the training data. This is in particular the case as several improvements
for the nearest-neighbor methods can be imagined as well. In this work, we could for example
observe that already using a different similarity measure, as done in the v-skNN method, can lead
to substantial performance improvements for different datasets. As a side result, we noticed that
using the latent feature vectors of the items of the current session for sequential factorization-based
methods does not lead to high accuracy values and that such methods are usually not strong
baselines when comparing session-based algorithms.

Currently, constantly new deep learning-based algorithms for session-based recommendation
are proposed, e.g., [Liu et al. 2018] and [Li et al. 2018], which, for example, report improvements
over GRU4REC. We performed an initial evaluation of the STAMP method proposed in [Liu et al.
2018]. Our first results indicate that STAMP does not outperform the trivial sr technique in terms of
the MRR on the Diginetica dataset that was used for the evaluation in [Liu et al. 2018]. The STAMP
method, however, seems to be advantageous in terms of the hit rate for this particular dataset.

Generally, it is of course surprising that a recent and popular RNN-based method is not sub-
stantially better than longer-existing nearest neighbor approaches. We believe that this might be a
result of the fact that for the specific task of session-based recommendation no “standard” existed
so far with respect to baseline techniques and evaluation protocols. With this work, our aim is to
contribute better baselines to benchmark session-based algorithms in the future. A limitation of
our work in some sense is that we could not identify one best baseline method across all settings
and datasets. While we would identify at least one very-well performing simpler method for each
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dataset, the relative performance of the algorithms seems depend on a number of factors, which
are not yet fully understood.

Nevertheless, as the simple baseline approaches AR, sr, and s-KNN are computationally cheap
and easy to test, their results obtained for a given dataset can potentially be used as an indicator for
the general characteristics that a more complex model should aim to implement. If it, for example,
turns out that sr is the best performing baseline method, GRU4REC, an extension to GRU4REC or a
different sequential model might probably be a good choice. In contrast, a good performance of
S-KNN indicates that a more sophisticated model should not necessarily focus too much on the
order of the items in a session.

6.2 Future Directions

From an algorithmic perspective, we believe that future complex models should consider more than
the last event in a session when making the next-item prediction. Even in GRU4REC, the previous
items of a session are only considered implicitly through the hidden states in the prediction process.
Our neighborhood models are in most cases much better when they consider all events in a session,
albeit with a focus on the most recent interactions. In that context and in particular for longer
sessions, it might also be helpful to detect interest changes that happen within an individual session.
This could, for example be achieved by considering semantic information (e.g., meta-data or content
features) about the items of the session, as was done, for example, in [Hariri et al. 2012] or [Hidasi
et al. 2016b]. Recent advances in the area of deep learning might be particularly helpful in this
context to extract such content features, e.g., from text, images, or videos, and to use this information
in hybrid approaches. Furthermore, the work in this paper focused on item-view events and more
research is required to understand how to leverage other types of user actions like “add-to-wishlist”
or “add-to-cart” in the learning and prediction process. With that information at hand, also other
types of prediction problems can be addressed, e.g., whether or not a session will lead to a purchase
or if there is a high probability that the user will abandon the session.

Going beyond the current session, more research also seems required in the area of session-aware
recommendation and the consideration of previous sessions of the current user. Open questions in
this area are, for example, how to model general long-term user preferences (e.g., towards certain
brands in e-commerce), how to detect user-individual preference drifts, or how to identify a subset
of past sessions that are good predictors for the current one. This latter aspect was for example
explored in [Lerche et al. 2016] in the context of using recommendations as reminders. In addition,
more elaborate strategies than static weighting schemes can be envisioned when combining short-
term and long-term models. The importance weights, could for example be determined based on
the length of the current session or the specific items that were considered.

Besides the consideration of signals at the individual user level, future research might also explore
the incorporation of additional contextual factors or short-term trends in the community as a whole,
when predicting the relevance of individual items. Recent works [Jannach and Ludewig 2017;
Jannach et al. 2017b; Tan et al. 2016] for example showed that considering short-term popularity
trends and recency effects can lead to significant performance improvements in the e-commerce
domain. Item recency (freshness) also plays a particular role in other domains such as music and
news recommendation, and more work is required to understand how to integrate these aspects in
today’s recommendation algorithms.

Finally, since the relative performance of the different algorithms tested in our work sometimes
varies across different datasets, more research is required to understand in which situations certain
algorithms are better suited than others. These insights can then be further used to inform the design
of hybrid recommendation approaches, which have shown to lead to the highest recommendation
accuracy for session-based recommendation also in [Jannach and Ludewig 2017]. Generally, many
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factors can influence the performance of a certain recommendation algorithm. [Adomavicius and
Zhang 2012] have, for example, made a number of important analyses aiming to relate dataset
characteristics, e.g., rating distributions and dataset sizes, with prediction accuracy. In the context
of session-based recommendation problems, additional factors may have an influence, for example,
the existence and strength of the sequential patterns that can be found in the data. Furthermore,
often domain-specific aspects like item freshness and general item popularity might play important
roles and should be further explored in future research.
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A  PARAMETER CONFIGURATIONS

Table 9. Parameters for algorithm cru4rec for all datasets.

Dataset layer_size objective Ir  momentum drop_out
RSC15 100 BPRjmax 0.20 0.5 0.0
TMALL 100 TOPlyax  0.05 0.0 03
RETAILROCKET 100 TOPlpmax 015 0.3 0.0
8TRACKS 100 TOPlpmax 0.10 0.0 0.7
AOTM 100 BPRyax  0.10 0.3 0.1
NOWPLAYING 100 BPRpax  0.10 0.5 0.1
30MUSIC 100  TOPlgax 0.10 0.1 0.1
ZALANDO 100 BPRpax  0.20 0.1 0.1
CLEF 100 TOPlpmax 0.20 0.2 0.5
LASTFM 100 BPRyax 015 0.4 0.3

Table 10. Parameters used for the smr algorithm for all datasets.

Dataset layer_size objective Ir  momentum drop_out  skip
RSC15 100 TOPlax  0.085 0.2 0.30  0.00
TMALL 100 BPRpmax 0015 0.6 0.00  0.00
RETAILROCKET 100 BPRpmax 0.045 0.1 040 0.20
8TRACKS 100 TOPlpmax 0.010 0.5 0.30  0.35
AOTM 100 BPRyax  0.090 0.8 0.40  0.20
NOWPLAYING 100 TOPlpax  0.055 0.2 0.40  0.20
30MUSIC 100 TOPlmax  0.100 0.1 020 0.20
ZALANDO 100 TOPlmax 0.030 03 025  0.00
CLEF 100 BPRyax  0.050 0.0 0.40  0.25
LASTFM 100 TOPlpax 0015 0.3 0.15  0.45

Table 11. Parameters used for the v-skNN algo- Table 12. Parameters used for the SKNN, s-SKNN,

rithm for all datasets. and sF-skNN algorithm for all datasets.
Dataset K  samples Dataset K samples
RSC15 200 2000 RSC15 500 1000
TMALL 200 2000 TMALL 100 500
RETAILROCKET 200 2000 RETAILROCKET 100 500
ZALANDO 200 2000 ZALANDO 100 500
8TRACKS 200 2000 8TRACKS 100 500
AOTM 200 2000 AOTM 100 500
NOWPLAYING 100 1000 NOWPLAYING 100 500
30MUSIC 100 1000 30MUSIC 100 500
CLEF 100 1000 CLEF 100 500

LASTFM 200 2000 LASTFM 100 500
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B FULL RESULT TABLES

Table 13. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the RSC15 dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

GRU4REC 0.308 0.683 0.504 0.054 0.301 0.591 0.431 0.058
SR 0.304 0.653 0.668 0.072 0.298 0.569 0.592 0.073
SMF 0.302 0.666 0.565 0.055 0.295 0.575 0.486 0.058
MC 0.300 0.642 0.645 0.070 0.295 0.562 0.584 0.071
AR 0.289 0.636 0.630 0.093 0.283 0.550 0.548 0.091
V-SKNN 0.283 0.653 0.619 0.079 0.277 0.563 0.534 0.081
5-SKNN 0.272 0.602 0.655 0.072 0.267 0.531 0.543 0.077
SF-SKNN 0.270 0.589 0.619 0.066 0.266 0.524 0.545 0.074
S-KNN 0.266 0.621 0.634 0.073 0.259 0.526 0.520 0.078
IKNN 0.208 0.486 0.755 0.041 0.203 0.408 0.671 0.046
FPMC 0.201 0.363 0.975 0.055 0.198 0.311 0.908 0.056
BPR-MF 0.176 0.235 0.911 0.088 0.175 0.223 0.793 0.079
FISM 0.115 0.162 0.974 0.008 0.114 0.149 0.917 0.012
FOSSIL 0.062 0.190 0.917 0.048 0.058 0.135 0.806 0.047

Algorithm ~ MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

GRU4REC 0.285 0.470 0.355 0.062 0.263 0.371 0.180 0.180
SR 0.283 0.457 0.503 0.075 0.262 0.365 0.182 0.182
SMF 0.280 0.459 0.406 0.061 0.258 0.364 0.177 0.177
MC 0.280 0.452 0.506 0.073 0.259 0.362 0.181 0.181
AR 0.268 0.438 0.455 0.092 0.248 0.348 0.171 0.171
V-SKNN 0.261 0.446 0.451 0.084 0.239 0.351 0.154 0.154
S-SKNN 0.252 0.424 0.437 0.082 0.231 0.333 0.153 0.153
SF-SKNN 0.252 0.421 0.457 0.081 0.232 0.332 0.154 0.154
S-KNN 0.244 0.411 0.417 0.084 0.224 0.322 0.149 0.149
IKNN 0.190 0.315 0.566 0.050 0.174 0.244 0.121 0.121
FPMC 0.191 0.261 0.774 0.058 0.183 0.226 0.148 0.148
BPR-MF 0.174 0.214 0.630 0.070 0.172 0.205 0.144 0.144
FISM 0.112 0.135 0.810 0.019 0.110 0.126 0.096 0.096
FOSSIL 0.052 0.092 0.653 0.046 0.047 0.067 0.031 0.031

Table 14. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the RSC15-S dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10  HR@10 COV@10  POP@10

SMF 0.309 0.713 0.512 0.052 0.301 0.606 0.414 0.054
GRU4REC 0.308 0.719 0.350 0.033 0.301 0.609 0.277 0.034
SR 0.308 0.690 0.512 0.038 0.301 0.591 0.407 0.038
MC 0.296 0.667 0.518 0.039 0.289 0.567 0.413 0.039
AR 0.281 0.655 0.473 0.045 0.273 0.543 0.374 0.043
V-SKNN 0.274 0.675 0.427 0.037 0.266 0.562 0.328 0.039
S-SKNN 0.266 0.667 0.417 0.035 0.258 0.548 0.309 0.038
SF-SKNN 0.260 0.670 0.446 0.037 0.251 0.545 0.339 0.039
S-KNN 0.250 0.641 0.398 0.036 0.242 0.521 0.293 0.038

Algorithm MRR@5 HR@5 COV@s POP@5 MRR@3 HR@3 MRR@1 HR@1

SMF 0.284 0.476 0.320 0.056 0.259 0.368 0.177 0.177
GRU4REC 0.283 0.473 0.207 0.037 0.259 0.369 0.175 0.175
SR 0.284 0.468 0.308 0.040 0.262 0.371 0.179 0.179
MC 0.273 0.444 0.314 0.041 0.252 0.354 0.174 0.174
AR 0.257 0.422 0.283 0.046 0.236 0.333 0.163 0.163
V-SKNN 0.248 0.429 0.242 0.042 0.225 0.329 0.145 0.145
5-SKNN 0.240 0.414 0.221 0.041 0.218 0.318 0.142 0.142
SF-SKNN 0.233 0.406 0.246 0.042 0.210 0.307 0.137 0.137
S-KNN 0.224 0.390 0.207 0.041 0.203 0.297 0.133 0.133
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Table 15. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the TMALL dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

5-SKNN 0.185 0.387 0.467 0.025 0.181 0.330 0.309 0.027
S-KNN 0.182 0.404 0.381 0.026 0.177 0.334 0.249 0.029
V-SKNN 0.179 0.373 0.464 0.024 0.175 0.312 0.320 0.026
BPR-MF 0.159 0.204 0.723 0.057 0.159 0.197 0.534 0.076
SF-SKNN 0.136 0.216 0.436 0.018 0.135 0.203 0.338 0.022
GRU4REC 0.129 0.277 0.151 0.035 0.125 0.225 0.109 0.039
AR 0.129 0.262 0.509 0.021 0.126 0.217 0.358 0.024
SR 0.128 0.242 0.569 0.021 0.125 0.206 0.421 0.023
SMF 0.121 0.261 0.261 0.036 0.118 0.213 0.193 0.039
MC 0.116 0.200 0.498 0.019 0.114 0.178 0.391 0.022
FPMC 0.101 0.119 0.880 0.005 0.100 0.114 0.730 0.007
IKNN 0.051 0.150 0.728 0.007 0.048 0.112 0.575 0.008
FISM 0.024 0.037 0.752 0.003 0.023 0.032 0.586 0.003
FOSSIL 0.001 0.004 0.598 0.016 0.001 0.003 0.457 0.021

Algorithm  MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

5-SKNN 0.173 0.267 0.196 0.031 0.161 0.217 0.119 0.119
S-KNN 0.168 0.264 0.161 0.032 0.156 0.212 0.113 0.113
V-SKNN 0.167 0.251 0.218 0.029 0.157 0.207 0.118 0.118
BPR-MF 0.157 0.189 0.343 0.097 0.156 0.181 0.134 0.134
SF-SKNN 0.132 0.182 0.243 0.026 0.127 0.160 0.101 0.101
GRU4REC 0.119 0.177 0.078 0.043 0.112 0.145 0.086 0.086
AR 0.120 0.175 0.235 0.027 0.113 0.145 0.089 0.089
SR 0.120 0.170 0.286 0.026 0.114 0.144 0.091 0.091
SMF 0.112 0.168 0.140 0.041 0.105 0.138 0.079 0.079
MC 0.111 0.151 0.284 0.025 0.106 0.131 0.086 0.086
FPMC 0.100 0.109 0.540 0.010 0.099 0.105 0.093 0.093
IKNN 0.044 0.079 0.403 0.009 0.039 0.058 0.025 0.025
FISM 0.023 0.028 0.419 0.004 0.022 0.026 0.019 0.019
FOSSIL 0.001 0.002 0.310 0.028 0.001 0.002 0.001 0.001

Table 16. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the RETAILROCKET dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

S-SKNN 0.345 0.591 0.596 0.056 0.341 0.537 0.480 0.066
V-SKNN 0.338 0.573 0.575 0.060 0.334 0.519 0.474 0.069
S-KNN 0.337 0.583 0.566 0.058 0.333 0.528 0.445 0.068
BPR-MF 0.303 0.357 0.824 0.060 0.303 0.352 0.627 0.072
FPMC 0.273 0.320 0.929 0.022 0.272 0.309 0.777 0.026
SF-SKNN 0.260 0.358 0.403 0.035 0.259 0.350 0.373 0.046
SR 0.245 0.419 0.524 0.042 0.243 0.386 0.458 0.050
GRU4REC 0.243 0.480 0.602 0.060 0.238 0.415 0.478 0.066
AR 0.241 0.439 0.544 0.053 0.238 0.390 0.449 0.061
MC 0.230 0.359 0.411 0.035 0.228 0.343 0.383 0.045
SMF 0.225 0.459 0.449 0.085 0.221 0.393 0.360 0.092
IKNN 0.107 0.240 0.584 0.033 0.105 0.202 0.505 0.038
FISM 0.075 0.132 0.848 0.018 0.074 0.112 0.672 0.019
FOSSIL 0.022 0.058 0.753 0.127 0.020 0.043 0.560 0.150

Algorithm ~ MRR@5  HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@I1 HR@1

5-SKNN 0.332 0.470 0.344 0.076 0.318 0.406 0.247 0.247
V-SKNN 0.326 0.455 0.348 0.078 0.312 0.396 0.245 0.245
S-KNN 0.324 0.458 0.316 0.080 0.310 0.396 0.242 0.242
BPR-MF 0.302 0.345 0.417 0.083 0.300 0.337 0.267 0.267
FPMC 0.271 0.298 0.560 0.032 0.269 0.289 0.251 0.251
SE-SKNN 0.257 0.331 0.311 0.058 0.250 0.302 0.208 0.208
SR 0.236 0.337 0.354 0.059 0.225 0.288 0.176 0.176
GRU4REC 0.229 0.345 0.350 0.072 0.215 0.285 0.161 0.161
AR 0.230 0.331 0.333 0.071 0.218 0.280 0.170 0.170
MC 0.224 0.308 0.322 0.056 0.215 0.270 0.171 0.171
SMF 0.211 0.322 0.270 0.099 0.198 0.264 0.148 0.148
IKNN 0.099 0.159 0.388 0.042 0.091 0.127 0.065 0.065
FISM 0.071 0.094 0.474 0.023 0.069 0.083 0.058 0.058
FOSSIL 0.019 0.032 0.377 0.171 0.017 0.024 0.012 0.012
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Table 17. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the ZALANDO dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SR 0.304 0.483 0.586 0.061 0.302 0.462 0.433 0.066
MC 0.303 0.455 0.513 0.060 0.302 0.441 0.412 0.066
IKNN 0.275 0.405 0.714 0.037 0.273 0.385 0.532 0.041
GRU4REC 0.267 0.468 0.304 0.101 0.265 0.433 0.239 0.103
SMF 0.267 0.447 0.362 0.107 0.265 0.418 0.282 0.108
AR 0.258 0.467 0.467 0.089 0.256 0.435 0.337 0.090
SF-SKNN 0.249 0.438 0.432 0.057 0.249 0.430 0.348 0.068
V-SKNN 0.233 0.521 0.432 0.096 0.230 0.482 0.296 0.096
5-SKNN 0.219 0.499 0.435 0.087 0.216 0.456 0.280 0.092
S-KNN 0.172 0.456 0.309 0.093 0.167 0.380 0.201 0.097
BPR-MF 0.104 0.162 0.609 0.058 0.103 0.152 0.415 0.069
FPMC 0.051 0.075 0.812 0.021 0.050 0.067 0.629 0.022
FISM 0.004 0.011 0.624 0.020 0.004 0.008 0.444 0.020
FOSSIL 0.002 0.005 0.671 0.034 0.002 0.004 0.493 0.036

Algorithm  MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

SR 0.298 0.429 0.290 0.069 0.287 0.382 0.211 0.211
MC 0.298 0.415 0.292 0.069 0.289 0.377 0.218 0.218
IKNN 0.270 0.362 0.349 0.047 0.264 0.335 0.205 0.205
GRU4REC 0.259 0.389 0.182 0.100 0.247 0.337 0.177 0.177
SMF 0.259 0.380 0.210 0.104 0.249 0.333 0.183 0.183
AR 0.250 0.393 0.233 0.088 0.237 0.338 0.159 0.159
SF-SKNN 0.245 0.403 0.249 0.074 0.232 0.348 0.142 0.142
V-SKNN 0.222 0.422 0.197 0.092 0.205 0.346 0.095 0.095
5-SKNN 0.207 0.388 0.174 0.095 0.189 0.311 0.095 0.095
S-KNN 0.154 0.290 0.125 0.103 0.137 0.216 0.079 0.079
BPR-MF 0.102 0.141 0.247 0.083 0.099 0.130 0.073 0.073
FPMC 0.049 0.061 0.434 0.025 0.048 0.056 0.042 0.042
FISM 0.004 0.006 0.290 0.021 0.004 0.005 0.003 0.003
FOSSIL 0.002 0.003 0.333 0.037 0.002 0.002 0.001 0.001

Table 18. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the 8TRACKS dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

AR 0.0071 0.0255 0.4530 0.0912 0.0066 0.0173 0.3178 0.1075
SMF 0.0064 0.0231 0.1528 0.0864 0.0058 0.0148 0.1076 0.0916
SR 0.0064 0.0171 0.4967 0.0531 0.0061 0.0125 0.3645 0.0636
SF-SKNN 0.0064 0.0119 0.3049 0.0363 0.0063 0.0102 0.2439 0.0517
V-SKNN 0.0057 0.0352 0.4081 0.1194 0.0048 0.0211 0.2523 0.1353
S-KNN 0.0053 0.0376 0.2431 0.1080 0.0041 0.0198 0.1544 0.1153
IKNN 0.0051 0.0177 0.6956 0.0245 0.0047 0.0124 0.5101 0.0267
GRU4REC 0.0050 0.0189 0.0693 0.1223 0.0045 0.0118 0.0512 0.1326
5-SKNN 0.0048 0.0293 0.4509 0.0807 0.0040 0.0182 0.2741 0.0961
MC 0.0046 0.0099 0.3496 0.0321 0.0045 0.0079 0.2756 0.0402
BPR-MF 0.0002 0.0004 0.6138 0.0088 0.0002 0.0003 0.4253 0.0131
FOSSIL 0.0001 0.0002 0.6703 0.0084 0.0001 0.0002 0.4941 0.0121
FPMC 0.0000 0.0001 0.7608 0.0031 0.0000 0.0001 0.5729 0.0035
FISM 0.0000 0.0001 0.6210 0.0027 0.0000 0.0000 0.4460 0.0028

Algorithm ~ MRR@5  HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@I1 HR@1

AR 0.0057 0.0108 0.1998 0.1251 0.0049 0.0073 0.0032 0.0032
SMF 0.0051 0.0092 0.0753 0.0958 0.0045 0.0064 0.0031 0.0031
SR 0.0056 0.0090 0.2395 0.0744 0.0051 0.0069 0.0038 0.0038
SF-SKNN 0.0060 0.0083 0.1794 0.0690 0.0057 0.0071 0.0047 0.0047
V-SKNN 0.0034 0.0102 0.1496 0.1364 0.0022 0.0048 0.0004 0.0004
S-KNN 0.0026 0.0079 0.0975 0.1065 0.0016 0.0033 0.0004 0.0004
IKNN 0.0041 0.0078 0.3293 0.0286 0.0035 0.0053 0.0022 0.0022
GRU4REC 0.0039 0.0070 0.0385 0.1414 0.0034 0.0050 0.0023 0.0023
5-SKNN 0.0026 0.0081 0.1404 0.1028 0.0016 0.0034 0.0004 0.0004
MC 0.0043 0.0062 0.2022 0.0493 0.0040 0.0051 0.0032 0.0032
BPR-MF 0.0002 0.0003 0.2576 0.0203 0.0002 0.0002 0.0001 0.0001
FOSSIL 0.0001 0.0001 0.3338 0.0178 0.0001 0.0001 0.0001 0.0001
FPMC 0.0000 0.0001 0.3879 0.0043 0.0000 0.0000 0.0000 0.0000

FISM 0.0000 0.0000 0.2952 0.0030 0.0000 0.0000 0.0000 0.0000
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Table 19. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the AOTM dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SMF 0.0111 0.0298 0.2457 0.1998 0.0105 0.0205 0.1795 0.2085
SE-SKNN 0.0111 0.0145 0.3559 0.0508 0.0110 0.0139 0.3022 0.0686
SR 0.0077 0.0195 0.5864 0.0533 0.0073 0.0149 0.4481 0.0599
GRU4REC 0.0072 0.0157 0.4653 0.1151 0.0070 0.0125 0.3550 0.1131
MC 0.0063 0.0133 0.3803 0.0498 0.0062 0.0112 0.3198 0.0602
AR 0.0059 0.0233 0.5532 0.1049 0.0053 0.0146 0.4003 0.1178
V-SKNN 0.0055 0.0378 0.5363 0.1397 0.0043 0.0208 0.3357 0.1550
5-SKNN 0.0055 0.0397 0.5357 0.1289 0.0042 0.0209 0.3228 0.1475
S-KNN 0.0054 0.0429 0.2802 0.1678 0.0038 0.0200 0.1785 0.1666
IKNN 0.0049 0.0187 0.7880 0.0473 0.0045 0.0122 0.5777 0.0481
FOSSIL 0.0007 0.0027 0.5529 0.0978 0.0006 0.0017 0.3717 0.1139
BPR-MF 0.0005 0.0018 0.5659 0.0968 0.0005 0.0012 0.3550 0.1180
FPMC 0.0003 0.0007 0.7851 0.0264 0.0003 0.0006 0.5867 0.0289
FISM 0.0001 0.0004 0.6172 0.0272 0.0001 0.0002 0.4296 0.0288

Algorithm  MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

SMF 0.0097 0.0149 0.1265 0.2136 0.0091 0.0118 0.0070 0.0070
SF-SKNN 0.0109 0.0130 0.2306 0.0875 0.0107 0.0121 0.0096 0.0096
SR 0.0068 0.0107 0.3015 0.0626 0.0062 0.0081 0.0047 0.0047
GRU4REC 0.0067 0.0102 0.2432 0.1141 0.0063 0.0085 0.0045 0.0045
MC 0.0059 0.0089 0.2449 0.0681 0.0055 0.0072 0.0042 0.0042
AR 0.0046 0.0089 0.2543 0.1318 0.0039 0.0059 0.0024 0.0024
V-SKNN 0.0027 0.0085 0.1927 0.1592 0.0016 0.0034 0.0004 0.0004
5-SKNN 0.0025 0.0077 0.1718 0.1558 0.0014 0.0028 0.0005 0.0005
S-KNN 0.0021 0.0063 0.1108 0.1549 0.0011 0.0022 0.0005 0.0005
IKNN 0.0038 0.0073 0.3591 0.0500 0.0033 0.0051 0.0020 0.0020
FOSSIL 0.0005 0.0010 0.2311 0.1308 0.0005 0.0007 0.0003 0.0003
BPR-MF 0.0004 0.0007 0.1900 0.1403 0.0004 0.0005 0.0003 0.0003
FPMC 0.0003 0.0004 0.3884 0.0325 0.0003 0.0003 0.0003 0.0003
FISM 0.0001 0.0001 0.2743 0.0311 0.0000 0.0000 0.0000 0.0000

Table 20. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the 30MUSIC dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SR 0.2377 0.3323 0.3893 0.0232 0.2363 0.3120 0.2913 0.0273
MC 0.2318 0.2844 0.2038 0.0205 0.2314 0.2780 0.1804 0.0265
GRU4REC 0.2264 0.3257 0.3447 0.0556 0.2249 0.3042 0.2423 0.0567
SF-SKNN 0.2079 0.2856 0.1854 0.0219 0.2078 0.2834 0.1634 0.0302
SMF 0.1777 0.2843 0.1508 0.1048 0.1756 0.2547 0.1117 0.1062
V-SKNN 0.1099 0.3819 0.3170 0.0538 0.1040 0.3002 0.1944 0.0573
IKNN 0.1086 0.2971 0.4596 0.0226 0.1053 0.2501 0.3122 0.0249
5-SKNN 0.1077 0.3856 0.2931 0.0515 0.1014 0.2975 0.1759 0.0569
AR 0.0960 0.3088 0.3524 0.039%4 0.0911 0.2395 0.2375 0.0433
S-KNN 0.0898 0.3443 0.1912 0.0574 0.0832 0.2501 0.1155 0.0637
BPR-MF 0.0427 0.0580 0.4521 0.0281 0.0425 0.0548 0.2792 0.0381
FPMC 0.0293 0.0359 0.6544 0.0078 0.0291 0.0334 0.4556 0.0085
FISM 0.0029 0.0047 0.4676 0.0084 0.0028 0.0038 0.3052 0.0089
FOSSIL 0.0029 0.0100 0.3347 0.0297 0.0027 0.0073 0.1919 0.0436

Algorithm ~ MRR@5  HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@I1 HR@1

SR 0.2326 0.2845 0.1920 0.0294 0.2270 0.2601 0.2005 0.2005
MC 0.2298 0.2663 0.1467 0.0309 0.2270 0.2544 0.2043 0.2043
GRU4REC 0.2215 0.2796 0.1629 0.0557 0.2162 0.2564 0.1835 0.1835
SF-SKNN 0.2062 0.2726 0.1318 0.0371 0.2009 0.2499 0.1614 0.1614
SMF 0.1712 0.2223 0.0817 0.1057 0.1655 0.1970 0.1405 0.1405
V-SKNN 0.0882 0.1813 0.1165 0.0612 0.0727 0.1125 0.0442 0.0442
IKNN 0.0956 0.1788 0.1961 0.0248 0.0837 0.1265 0.0523 0.0523
5-SKNN 0.0851 0.1753 0.1043 0.0629 0.0701 0.1086 0.0428 0.0428
AR 0.0803 0.1580 0.1466 0.0476 0.0686 0.1063 0.0413 0.0413
S-KNN 0.0689 0.1424 0.0691 0.0714 0.0566 0.0877 0.0344 0.0344
BPR-MF 0.0421 0.0515 0.1523 0.0518 0.0414 0.0483 0.0356 0.0356
FPMC 0.0289 0.0317 0.2872 0.0096 0.0286 0.0303 0.0272 0.0272
FISM 0.0028 0.0034 0.1859 0.0095 0.0027 0.0030 0.0025 0.0025

FOSSIL 0.0023 0.0048 0.0914 0.0634 0.0019 0.0031 0.0011 0.0011
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Table 21. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the NOWPLAYING dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SR 0.1053 0.2033 0.4656 0.0247 0.1031 0.1712 0.3605 0.0284
GRU4REC 0.1018 0.1970 0.4331 0.0516 0.0995 0.1632 0.3261 0.0529
MC 0.0971 0.1582 0.2936 0.0284 0.0960 0.1417 0.2547 0.0347
SF-SKNN 0.0954 0.1647 0.2773 0.0311 0.0945 0.1524 0.2369 0.0414
SMF 0.0882 0.1825 0.2417 0.0916 0.0859 0.1484 0.1847 0.0960
V-SKNN 0.0785 0.2552 0.4283 0.0639 0.0737 0.1861 0.2904 0.0719
S-SKNN 0.0777 0.2622 0.4149 0.0624 0.0725 0.1880 0.2727 0.0699
AR 0.0710 0.2076 0.4531 0.0511 0.0672 0.1518 0.3261 0.0584
S-KNN 0.0689 0.2429 0.3007 0.0690 0.0637 0.1676 0.1962 0.0759
IKNN 0.0569 0.1822 0.5799 0.0294 0.0534 0.1321 0.4313 0.0308
BPR-MF 0.0392 0.0621 0.5903 0.0672 0.0387 0.0547 0.3764 0.0843
FPMC 0.0331 0.0470 0.7865 0.0154 0.0327 0.0418 0.5833 0.0190
FOSSIL 0.0136 0.0432 0.5950 0.0336 0.0127 0.0302 0.4035 0.0389
FISM 0.0108 0.0183 0.6451 0.0110 0.0105 0.0145 0.4551 0.0123

Algorithm  MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

SR 0.0988 0.1395 0.2490 0.0305 0.0938 0.1173 0.0760 0.0760
GRU4REC 0.0958 0.1352 0.2282 0.0540 0.0913 0.1154 0.0726 0.0726
MC 0.0935 0.1236 0.2024 0.0409 0.0904 0.1099 0.0751 0.0751
SF-SKNN 0.0921 0.1344 0.1856 0.0518 0.0876 0.1149 0.0665 0.0665
SMF 0.0818 0.1181 0.1358 0.0985 0.0774 0.0985 0.0614 0.0614
V-SKNN 0.0651 0.1213 0.1819 0.0786 0.0562 0.0819 0.0381 0.0381
5-SKNN 0.0632 0.1181 0.1657 0.0771 0.0544 0.0790 0.0371 0.0371
AR 0.0611 0.1060 0.2114 0.0672 0.0543 0.0763 0.0379 0.0379
S-KNN 0.0556 0.1048 0.1226 0.0825 0.0476 0.0695 0.0318 0.0318
IKNN 0.0477 0.0884 0.2869 0.0317 0.0416 0.0615 0.0265 0.0265
BPR-MF 0.0378 0.0482 0.2043 0.0995 0.0367 0.0433 0.0314 0.0314
FPMC 0.0321 0.0371 0.3807 0.0238 0.0316 0.0346 0.0293 0.0293
FOSSIL 0.0113 0.0195 0.2502 0.0439 0.0102 0.0148 0.0069 0.0069
FISM 0.0102 0.0122 0.2934 0.0143 0.0100 0.0111 0.0092 0.0092

Table 22. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the CLEF dataset (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10  HR@10 COV@10  POP@10

SMF 0.234 0.706 0.650 0.083 0.222 0.529 0.582 0.097
MC 0.225 0.687 0.732 0.095 0.213 0.514 0.705 0.123
V-SKNN 0.224 0.776 0.621 0.082 0.211 0.596 0.566 0.113
SR 0.223 0.672 0.655 0.093 0.212 0.513 0.608 0.123
GRU4REC 0.220 0.568 0.174 0.094 0.212 0.462 0.129 0.118
S-KNN 0.219 0.778 0.613 0.084 0.205 0.588 0.545 0.122
AR 0.216 0.666 0.724 0.100 0.204 0.490 0.656 0.148
IKNN 0.188 0.596 0.746 0.059 0.177 0.436 0.722 0.047
FPMC 0.171 0.598 0.847 0.082 0.159 0.414 0.721 0.093
FOSSIL 0.166 0.571 0.963 0.079 0.155 0.417 0.864 0.093
FISM 0.129 0.403 0.997 0.080 0.122 0.297 0.963 0.108

Algorithm  MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@I HR@1

SMF 0.198 0.354 0.511 0.109 0.176 0.255 0.117 0.117
MC 0.190 0.339 0.653 0.144 0.170 0.249 0.113 0.113
V-SKNN 0.185 0.404 0.495 0.154 0.154 0.264 0.076 0.076
SR 0.189 0.337 0.542 0.146 0.169 0.246 0.111 0.111
GRU4REC 0.195 0.331 0.101 0.138 0.177 0.252 0.118 0.118
S-KNN 0.179 0.394 0.476 0.164 0.148 0.254 0.070 0.070
AR 0.183 0.339 0.559 0.215 0.161 0.242 0.102 0.102
IKNN 0.159 0.300 0.669 0.046 0.138 0.209 0.084 0.084
FPMC 0.138 0.258 0.601 0.108 0.120 0.178 0.078 0.078
FOSSIL 0.136 0.268 0.703 0.101 0.119 0.195 0.064 0.064
FISM 0.109 0.201 0.857 0.140 0.096 0.142 0.064 0.064
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Table 23. Precision (P) and Recall (R) results for a list length of 20, 10, 5, and 3 on the TMALL dataset (sorted

by P@20).

Algorithm  P@20 R@20 P@10 R@10 P@5 R@5 P@3 R@3
S-KNN 0.095 0.312  0.141  0.257 0.196 0.199 0.235 0.156
S-SKNN 0.094 0.263 0.139  0.215 0.191 0.165 0.229  0.129
V-SKNN 0.091  0.291  0.131  0.239 0.186 0.187 0.230 0.150
SMF 0.068  0.230  0.099 0.184 0.139 0.141 0.172 0.113
GRU4REC  0.068 0.233  0.098 0.187 0.137 0.143 0.170  0.115
AR 0.057 0.173  0.082 0.138 0.115 0.106 0.143  0.085
SR 0.052  0.193  0.081 0.162 0.121 0.131  0.158  0.109
IKNN 0.043  0.112  0.059 0.082 0.077 0.057 0.091  0.042
SP-SKNN 0.041 0.136 0.072 0.125 0.116 0.108 0.154  0.092
M 0.036 0.124 0.058 0.107 0.090 0.089 0.119 0.075
BPR-MF 0.027 0.113  0.050 0.108 0.092 0.102 0.142  0.097
FPMC 0.015  0.078 0.028 0.073 0.050 0.068 0.077  0.064
FISM 0.009 0.046 0.015 0.042 0.027 0.038 0.040 0.035
FOSSIL 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 24. Precision (P) and Recall (R) results for a list length of 20, 10, 5, and 3 on the RETAILROCKET dataset

(sorted by P@20).

Table 25. Precision (P)
(sorted by P@20).

Algorithm  P@20 R@20 P@10 R@10 P@5 R@5 P@3 R@3
5-SKNN 0.057 0.480 0.096 0.434 0.156 0.376 0.214  0.326
S-KNN 0.056  0.478  0.095 0.433 0.152 0.373  0.208  0.323
V-SKNN 0.055 0.462 0.093 0.417 0.152 0.364 0.209 0.316
SMF 0.047 0.397 0.074 0.335 0.113  0.271 0.148  0.219
GRU4REC 0.046  0.400 0.073  0.339 0.111 0.271 0.143  0.215
AR 0.041  0.360 0.068 0.318 0.109 0.268 0.147  0.225
SR 0.038  0.342  0.067 0.313  0.110  0.269 0.149  0.227
M 0.030  0.284 0.056 0.271  0.097 0.242 0.136  0.210
SF-SKNN 0.030  0.285 0.057 0.280 0.105 0.263 0.156  0.240
BPR-MF 0.029  0.286 0.056 0.282 0.107 0.277 0.172  0.272
IKNN 0.026  0.199  0.042 0.167 0.061 0.129  0.077  0.103
FPMC 0.023  0.253 0.043 0.246 0.083 0.239 0.133  0.233
FOSSIL 0.006  0.057 0.009 0.045 0.012 0.032 0.016  0.025
FISM 0.005 0.059 0.008 0.045 0.011 0.034 0.014  0.027

and Recall (R) results for a list length of 20, 10, 5, and 3 on the ZALANDO dataset

Algorithm  P@20 R@20 P@10 R@10 P@5 R@5 P@3 R@3
V-SKNN 0.076  0.219  0.129 0.195 0.210 0.168 0.282  0.141
S-SKNN 0.075  0.217  0.127 0.192  0.198  0.159  0.252  0.127
S-KNN 0.074  0.202 0.115 0.169 0.164 0.130 0.196  0.098
GRU4REC 0.065 0.181  0.109 0.161 0.181 0.141  0.247  0.120
SMF 0.062  0.175 0.103  0.154 0.169 0.133  0.228  0.112
AR 0.060 0.179  0.105 0.161 0.178 0.141  0.241  0.118
SR 0.060 0.174 0.106  0.161 0.185 0.146  0.260  0.127
MC 0.054 0.167 0.100  0.157 0.176  0.142 0.246  0.123
SF-SKNN 0.053  0.165 0.101  0.160 0.182  0.147 0.254  0.129
IKNN 0.045 0.134 0.080 0.122  0.137 0.109 0.196  0.096
BPR-MF 0.026  0.089 0.048 0.084 0.088 0.078 0.133  0.072
FPMC 0.016  0.060  0.029 0.055 0.051 0.051 0.078  0.047
FOSSIL 0.009 0.026 0.013 0.020 0.018 0.015 0.023  0.011
FISM 0.007  0.028 0.013 0.024 0.021 0.021 0.031 0.018
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Table 26. Precision (P) and Recall (R) results for a list length of 20, 10, 5, and 3 on the 8TRACKS dataset

(sorted by P@20).

Table 27. Precision (P) and Recall (R)

by P@20).

Algorithm P@20 R@20 P@10 R@10 P@5 R@5 P@3 R@3
V-SKNN 0.0122  0.0308 0.0138  0.0184  0.0125 0.0084  0.0109  0.0047
S-KNN 0.0117  0.0313  0.0119  0.0171  0.0090  0.0067  0.0059  0.0026
S-SKNN 0.0100  0.0266  0.0114  0.0162  0.0097  0.0070  0.0065  0.0029
AR 0.0087  0.0219  0.0112  0.0147  0.0136  0.0090  0.0155  0.0062
SMF 0.0086  0.0218  0.0104  0.0135 0.0118  0.0078  0.0126  0.0052
IKNN 0.0060  0.0149  0.0077  0.0102  0.0092  0.0063  0.0103  0.0043
SR 0.0055  0.0140  0.0077  0.0099  0.0098  0.0067 0.0111 0.0046
GRU4REC 0.0037  0.0095  0.0046  0.0061  0.0056  0.0039  0.0064  0.0027
SF-SKNN 0.0032  0.0081  0.0052  0.0067  0.0079  0.0052  0.0104  0.0042
MC 0.0025 0.0064 0.0036  0.0048  0.0051  0.0035  0.0065  0.0028
FOSSIL 0.0021  0.0043  0.0024  0.0025 0.0027 0.0013  0.0029  0.0009
BPR-MF 0.0018  0.0037  0.0021  0.0020  0.0022 0.0011  0.0019  0.0006
FPMC 0.0005  0.0012  0.0008  0.0009 0.0012  0.0007 0.0016  0.0006
FISM 0.0004  0.0008  0.0004 0.0005 0.0004 0.0002 0.0005 0.0002

results for a

list length of 20, 10, 5, and 3 on the AOTM dataset (sorted

Algorithm  P@20 R@20 P@10  R@10 P@5 R@5 P@3 R@3
S-KNN 0.0155  0.0440  0.0157  0.0214  0.0099  0.0058  0.0056  0.0023
V-SKNN 0.0133  0.0361  0.0145 0.0196  0.0118  0.0078  0.0106  0.0056
§-SKNN 0.0125  0.0353  0.0122  0.0178  0.0084  0.0065 0.0054  0.0027
SMF 0.0084  0.0259  0.0105 0.0163  0.0130  0.0104  0.0143  0.0070
AR 0.0066  0.0183  0.0082  0.0119  0.0095 0.0068  0.0107  0.0049
IKNN 0.0056  0.0155  0.0069  0.0102  0.0082  0.0062  0.0090  0.0043
SR 0.0053  0.0146  0.0070  0.0098  0.0082  0.0061  0.0092  0.0041
SF-SKNN 0.0024  0.0074  0.0043  0.0068 0.0075 0.0062 0.0108  0.0055
M 0.0022  0.0069 0.0034 0.0056 0.0049  0.0043 0.0060 0.0033
FOSSIL 0.0012  0.0036  0.0013  0.0023  0.0015 0.0013  0.0017  0.0008
GRU4REC 0.0010  0.0027  0.0011  0.0015 0.0014  0.0008  0.0015  0.0005
BPR-MF 0.0004  0.0018  0.0005 0.0012  0.0005 0.0007  0.0005  0.0005
FISM 0.0004  0.0013  0.0005  0.0007  0.0005 0.0004 0.0004  0.0002
FPMC 0.0002  0.0007  0.0003  0.0006  0.0004 0.0004 0.0005  0.0004

Table 28. Precision (P) and Recall (R) results for

(sorted by P@20).

a list length of 20, 10, 5, and 3 on the 30MUSIC dataset

Algorithm  P@20 R@20 P@10  R@I0 P@5 R@5 P@3 R@3
V-SKNN 0.1117  0.2438  0.1585  0.1948  0.1947  0.1371  0.2239  0.1044
S-SKNN 0.1110  0.2353  0.1439  0.1672  0.1431 0.0832 0.1344  0.0458
S-KNN 0.1035  0.2140  0.1295  0.1462  0.1283  0.0722  0.1216  0.0402
IKNN 0.0935  0.2023  0.1336  0.1611  0.1529  0.1015  0.1585  0.0651
AR 0.0914  0.1923  0.1244  0.1435 0.1354 0.0825 0.1386  0.0514
SR 0.0878  0.2010  0.1393  0.1750  0.1884  0.1353  0.2204  0.1042
SMF 0.0746  0.1655  0.1025  0.1272  0.1290  0.0876 0.1451  0.0626
GRU4REC 0.0404  0.0988  0.0627  0.0856  0.0932  0.0715 0.1236  0.0611
SP-SKNN 0.0319  0.0865  0.0591  0.0852  0.1027 0.0793  0.1447  0.0702
MC 0.0313  0.0852  0.0553  0.0811  0.0928 0.0743  0.1333  0.0679
BPR-MF 0.0172  0.0340  0.0290  0.0292  0.0442  0.0227 0.0569  0.0185
FOSSIL 0.0123  0.0188  0.0134 0.0117  0.0134  0.0055 0.0099  0.0027
FPMC 0.0046  0.0146  0.0079  0.0126  0.0137  0.0110  0.0205  0.0100
FISM 0.0015  0.0036  0.0019  0.0022  0.0025 0.0014 0.0025  0.0009
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Table 29. Precision (P) and Recall (R) results for a list length of 20, 10, 5, and 3 on the NOWPLAYING dataset
(sorted by P@20).

Algorithm P@20 R@20 P@10 R@10 P@5 R@5 P@3 R@3
S-SKNN 0.0726  0.1944  0.0890  0.1296  0.0950  0.0694  0.0935  0.0405
V-SKNN 0.0718  0.1909  0.0900  0.1303  0.1048  0.0873  0.1169  0.0633
S-KNN 0.0680  0.1824  0.0841 0.1186  0.0868  0.0622  0.0890  0.0362
AR 0.0554  0.1551  0.0724  0.1086  0.0876  0.0705  0.0968  0.0491
SR 0.0501  0.1465 0.0717  0.1132  0.0945 0.0826  0.1080  0.0614
SMF 0.0499  0.1453  0.0668  0.1043  0.0840  0.0709  0.0966  0.0525
IKNN 0.0492  0.1385  0.0639  0.0974  0.0755 0.0608  0.0809  0.0405

SF-SKNN 0.0280  0.0903  0.0495  0.0816  0.0761  0.0660  0.0992  0.0539
GRU4REC 0.0272  0.0810  0.0383  0.0601  0.0523  0.0444  0.0636  0.0343

MC 0.0250  0.0845  0.0415  0.0724  0.0625 0.0573  0.0810  0.0473
FOSSIL 0.0169  0.0412  0.0229  0.0291  0.0308  0.0204  0.0359  0.0149
BPR-MF 0.0156  0.0393  0.0231  0.0328  0.0358  0.0275  0.0492  0.0240
FPMC 0.0061  0.0244 0.0102  0.0211  0.0171  0.0181  0.0248  0.0161
FISM 0.0023  0.0077  0.0033  0.0064 0.0051  0.0053  0.0072  0.0044

Table 30. Precision (P) and Recall (R) results for a list length of 20, 10, 5, and 3 on the CLEF dataset (sorted by
P@20).

Algorithm P@20 R@20 P@10 R@10 P@5 R@5 P@3 R@3

GRU4REC 0.072  0.626  0.100 0.454 0.128 0.298 0.144 0.204
V-SKNN 0.069 0.593 0.089 0.413 0.108 0.262 0.119  0.180
S-SKNN 0.066  0.579 0.086  0.404 0.097 0.244 0.101  0.154
S-KNN 0.066  0.577  0.085 0.399 0.096 0.241 0.099  0.152
SF-SKNN 0.064 0.565 0.082 0.390 0.095 0.241 0.098 0.151
SMF 0.062  0.527 0.084 0.377 0.107 0.246  0.120  0.167
FPMC 0.060  0.515 0.078 0.347 0.093 0.216 0.110  0.154
MC 0.059  0.510 0.081 0.368 0.107 0.251 0.119  0.170
FOSSIL 0.059  0.504 0.075 0.33¢  0.090 0.205 0.103  0.143
AR 0.058  0.506 0.080 0.364 0.101  0.239 0.115  0.170
SR 0.058  0.502  0.081 0.366 0.108 0.251 0.115  0.162
FISM 0.058  0.506  0.077  0.357 0.095 0.227 0.105 0.156
IKNN 0.050  0.418 0.065 0.290 0.086 0.197 0.099 0.141
BPR-MF 0.016  0.147 0.024 0.120 0.042 0.105 0.062  0.094

D ADDITIONAL SINGLE SPLIT RESULTS

Table 31. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the TMALL dataset with a single split (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

S-SKNN 0.181 0.385 0.560 0.019 0.177 0.329 0.375 0.021
S-KNN 0.177 0.398 0.461 0.020 0.173 0.334 0.306 0.022
V-SKNN 0.169 0.353 0.570 0.019 0.166 0.298 0.405 0.021
SF-SKNN 0.141 0.237 0.577 0.015 0.140 0.220 0.441 0.018
SMF 0.140 0.298 0.461 0.023 0.136 0.245 0.341 0.023
AR 0.131 0.254 0.628 0.019 0.128 0.214 0.457 0.021
SR 0.131 0.243 0.683 0.019 0.129 0.209 0.507 0.020
GRU4REC 0.123 0.263 0.171 0.029 0.120 0.213 0.117 0.032
MC 0.123 0.214 0.673 0.018 0.121 0.188 0.516 0.019
IKNN 0.049 0.147 0.801 0.006 0.047 0.111 0.644 0.006

Algorithm  MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

S-SKNN 0.168 0.265 0.240 0.023 0.157 0.215 0.112 0.112
S-KNN 0.163 0.263 0.199 0.024 0.151 0.209 0.106 0.106
V-SKNN 0.158 0.241 0.282 0.023 0.148 0.199 0.109 0.109
SF-SKNN 0.136 0.194 0.309 0.020 0.131 0.168 0.101 0.101
SMF 0.129 0.195 0.244 0.024 0.122 0.160 0.092 0.092
AR 0.123 0.174 0.312 0.023 0.117 0.147 0.094 0.094
SR 0.124 0.173 0.348 0.021 0.118 0.148 0.095 0.095
GRU4REC 0.114 0.169 0.082 0.034 0.107 0.139 0.083 0.083
MC 0.117 0.160 0.361 0.021 0.113 0.139 0.092 0.092

IKNN 0.042 0.077 0.471 0.007 0.038 0.056 0.024 0.024
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Table 32. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the RETAILROCKET dataset with a single split (sorted by
MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

S-SKNN 0.333 0.580 0.272 0.051 0.329 0.524 0.170 0.060
S-KNN 0.332 0.571 0.250 0.052 0.329 0.520 0.155 0.061
V-SKNN 0.327 0.582 0.272 0.061 0.323 0.520 0.172 0.069
SF-SKNN 0.301 0.463 0.224 0.036 0.299 0.444 0.168 0.049
SR 0.270 0.504 0.299 0.047 0.267 0.452 0.201 0.054
SMF 0.270 0.557 0.313 0.056 0.264 0.479 0.198 0.061
AR 0.265 0.485 0.286 0.058 0.261 0.425 0.189 0.064
MC 0.261 0.468 0.250 0.040 0.258 0.425 0.184 0.049
GRU4REC 0.260 0.559 0.291 0.055 0.254 0.475 0.187 0.062
IKNN 0.121 0.284 0.334 0.031 0.118 0.238 0.219 0.036

Algorithm  MRR@5 HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

5-SKNN 0.320 0.456 0.098 0.069 0.305 0.391 0.236 0.236
S-KNN 0.320 0.453 0.090 0.070 0.305 0.386 0.242 0.242
V-SKNN 0.313 0.446 0.104 0.075 0.298 0.383 0.230 0.230
SE-SKNN 0.293 0.399 0.110 0.060 0.281 0.346 0.230 0.230
SR 0.257 0.379 0.123 0.062 0.244 0.322 0.184 0.184
SMF 0.252 0.388 0.119 0.067 0.234 0.309 0.177 0.177
AR 0.253 0.366 0.115 0.074 0.240 0.310 0.187 0.187
MC 0.250 0.366 0.121 0.059 0.236 0.308 0.180 0.180
GRU4REC 0.240 0.377 0.114 0.069 0.223 0.300 0.164 0.164
IKNN 0.111 0.185 0.131 0.041 0.103 0.154 0.067 0.067

Table 33. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the ZALANDO dataset with a single split (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SR 0.306 0.498 0.525 0.059 0.304 0.473 0.381 0.060
MC 0.304 0.469 0.504 0.052 0.302 0.452 0.381 0.055
IKNN 0.271 0.410 0.597 0.033 0.269 0.388 0.432 0.036
GRU4REC 0.267 0.483 0.290 0.073 0.265 0.442 0.223 0.074
AR 0.265 0.483 0.431 0.073 0.262 0.450 0.311 0.073
SMF 0.253 0.463 0.329 0.075 0.250 0.422 0.248 0.076
SE-SKNN 0.251 0.451 0.419 0.046 0.250 0.440 0.323 0.053
V-SKNN 0.237 0.517 0.396 0.077 0.234 0.478 0.275 0.076
5-SKNN 0.224 0.510 0.395 0.066 0.221 0.464 0.257 0.068
S-KNN 0.181 0.461 0.301 0.069 0.176 0.392 0.197 0.071

Algorithm ~ MRR@5  HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

SR 0.299 0.435 0.256 0.058 0.287 0.384 0.210 0.210
MC 0.298 0.422 0.262 0.056 0.288 0.379 0.216 0.216
IKNN 0.266 0.363 0.287 0.040 0.258 0.330 0.199 0.199
GRU4REC 0.258 0.394 0.167 0.073 0.245 0.336 0.174 0.174
AR 0.256 0.404 0.216 0.069 0.243 0.347 0.163 0.163
SMF 0.243 0.372 0.182 0.074 0.230 0.317 0.163 0.163
SE-SKNN 0.245 0.406 0.227 0.057 0.231 0.345 0.143 0.143
V-SKNN 0.226 0.419 0.185 0.071 0.208 0.343 0.103 0.103
S-SKNN 0.211 0.391 0.161 0.070 0.193 0.311 0.100 0.100
S-KNN 0.164 0.300 0.124 0.074 0.147 0.226 0.087 0.087
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Table 34. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the 8TRACKS dataset with a single split (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

AR 0.0135 0.0410 0.7769 0.0399 0.0126 0.0276 0.5772 0.0545
SR 0.0123 0.0329 0.8875 0.0243 0.0116 0.0233 0.7261 0.0302
SMF 0.0115 0.0476 0.0772 0.1197 0.0102 0.0290 0.0556 0.1303
V-SKNN 0.0110 0.0490 0.7180 0.0290 0.0098 0.0313 0.5317 0.0322
MC 0.0101 0.0234 0.8365 0.0152 0.0098 0.0179 0.7050 0.0179
S-KNN 0.0098 0.0438 0.6122 0.0272 0.0086 0.0267 0.4343 0.0298
S-SKNN 0.0097 0.0402 0.8543 0.0197 0.0087 0.0265 0.6465 0.0238
GRU4REC 0.0095 0.0376 0.0593 0.1930 0.0085 0.0231 0.0445 0.2140
SF-SKNN 0.0089 0.0217 0.7713 0.0157 0.0086 0.0171 0.6555 0.0219
IKNN 0.0072 0.0251 0.9852 0.0063 0.0066 0.0165 0.8756 0.0069

Algorithm MRR@5 HR@5 COV@s POP@5 MRR@3 HR@3 MRR@1 HR@1

AR 0.0114 0.0185 0.3933 0.0774 0.0104 0.0140 0.0078 0.0078
SR 0.0107 0.0166 0.5237 0.0374 0.0099 0.0128 0.0078 0.0078
SMF 0.0087 0.0172 0.0406 0.1401 0.0073 0.0113 0.0044 0.0044
V-SKNN 0.0079 0.0167 0.4041 0.0324 0.0063 0.0097 0.0040 0.0040
MC 0.0092 0.0134 0.5477 0.0216 0.0086 0.0107 0.0070 0.0070
S-KNN 0.0068 0.0128 0.3056 0.0267 0.0055 0.0074 0.0044 0.0044
5-SKNN 0.0070 0.0137 0.3984 0.0256 0.0057 0.0079 0.0043 0.0043
GRU4REC 0.0073 0.0140 0.0336 0.2350 0.0062 0.0093 0.0040 0.0040
SF-SKNN 0.0080 0.0131 0.5072 0.0286 0.0074 0.0101 0.0052 0.0052
IKNN 0.0058 0.0107 0.6635 0.0075 0.0051 0.0075 0.0034 0.0034

Table 35. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the AOTM dataset with a single split (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SE-SKNN 0.0275 0.0440 0.8591 0.0828 0.0273 0.0403 0.7673 0.1025
SMF 0.0204 0.0468 0.9262 0.0941 0.0197 0.0361 0.8294 0.0941
GRU4REC 0.0154 0.0427 0.6523 0.1665 0.0146 0.0312 0.5081 0.1759
SR 0.0152 0.0449 0.9439 0.1061 0.0143 0.0318 0.8140 0.1143
MC 0.0134 0.0348 0.8996 0.0813 0.0128 0.0262 0.7889 0.0902
AR 0.0119 0.0426 0.8523 0.1409 0.0109 0.0283 0.6723 0.1536
V-SKNN 0.0104 0.0721 0.7971 0.1567 0.0083 0.0415 0.6049 0.1662
IKNN 0.0100 0.0384 0.9854 0.0482 0.0090 0.0242 0.8660 0.0490
S-SKNN 0.0095 0.0737 0.8917 0.1192 0.0071 0.0406 0.6652 0.1322
S-KNN 0.0087 0.0740 0.6400 0.1414 0.0059 0.0345 0.4599 0.1416

Algorithm MRR@5 HR@5 COV@s POP@5 MRR@3 HR@3 MRR@1 HR@1

SE-SKNN 0.0267 0.0360 0.6205 0.1192 0.0257 0.0315 0.0212 0.0212
SMF 0.0186 0.0280 0.6845 0.0927 0.0175 0.0232 0.0132 0.0132
GRU4REC 0.0134 0.0225 0.3629 0.1840 0.0121 0.0166 0.0087 0.0087
SR 0.0130 0.0217 0.6154 0.1226 0.0118 0.0167 0.0083 0.0083
MC 0.0119 0.0198 0.6326 0.0985 0.0109 0.0151 0.0078 0.0078
AR 0.0095 0.0178 0.4853 0.1689 0.0083 0.0127 0.0052 0.0052
V-SKNN 0.0051 0.0174 0.4490 0.1646 0.0027 0.0067 0.0001 0.0001
IKNN 0.0079 0.0153 0.6629 0.0499 0.0067 0.0103 0.0040 0.0040
5-SKNN 0.0035 0.0124 0.4265 0.1392 0.0016 0.0040 0.0000 0.0000

S-KNN 0.0028 0.0096 0.3142 0.1387 0.0014 0.0033 0.0001 0.0001
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Table 36. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the 30MUSIC dataset with a single split (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SR 0.2690 0.3744 0.5904 0.0373 0.2672 0.3499 0.4619 0.0389
MC 0.2653 0.3302 0.4001 0.0283 0.2646 0.3203 0.3455 0.0340
GRU4REC 0.2354 0.3651 0.4029 0.0665 0.2334 0.3372 0.3077 0.0669
SMF 0.2145 0.3614 0.3974 0.0608 0.2121 0.3275 0.3013 0.0605
SF-SKNN 0.2123 0.3320 0.3404 0.0284 0.2118 0.3258 0.2929 0.0366
IKNN 0.1352 0.3412 0.6758 0.0219 0.1319 0.2943 0.5043 0.0234
V-SKNN 0.1192 0.4134 0.4384 0.0589 0.1130 0.3263 0.2911 0.0599
AR 0.1157 0.3518 0.5352 0.0437 0.1107 0.2810 0.3886 0.0456
5-SKNN 0.1153 0.4119 0.4195 0.0544 0.1087 0.3190 0.2681 0.0593

S-KNN 0.0938 0.3609 0.2848 0.0595 0.0869 0.2626 0.1799 0.0658

Algorithm MRR@5 HR@5 COV@s POP@5 MRR@3 HR@3 MRR@1 HR@1

SR 0.2629 0.3179 0.3270 0.0387 0.2572 0.2930 0.2282 0.2282
MC 0.2625 0.3051 0.2790 0.0374 0.2590 0.2900 0.2332 0.2332
GRU4REC 0.2286 0.3011 0.2289 0.0653 0.2212 0.2688 0.1830 0.1830
SMF 0.2064 0.2851 0.2200 0.0587 0.1981 0.2488 0.1583 0.1583
SF-SKNN 0.2083 0.3013 0.2364 0.0432 0.1987 0.2598 0.1507 0.1507
IKNN 0.1215 0.2176 0.3427 0.0227 0.1084 0.1600 0.0700 0.0700
V-SKNN 0.0958 0.1972 0.1927 0.0630 0.0785 0.1202 0.0494 0.0494
AR 0.0985 0.1905 0.2579 0.0493 0.0849 0.1304 0.0519 0.0519
5-SKNN 0.0913 0.1881 0.1700 0.0660 0.0745 0.1135 0.0471 0.0471
S-KNN 0.0719 0.1481 0.1129 0.0742 0.0589 0.0904 0.0367 0.0367

Table 37. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the NOWPLAYING dataset with a single split (sorted by
MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

SR 0.0856 0.1825 0.4629 0.0309 0.0831 0.1466 0.3390 0.0346
MC 0.0813 0.1474 0.3576 0.0248 0.0798 0.1255 0.2833 0.0287
SF-SKNN 0.0787 0.1602 0.3015 0.0264 0.0774 0.1431 0.2383 0.0333
SMF 0.0782 0.1881 0.3560 0.0322 0.0753 0.1454 0.2585 0.0332
GRU4REC 0.0771 0.1792 0.2202 0.0523 0.0742 0.1370 0.1647 0.0568
V-SKNN 0.0670 0.2291 0.3358 0.0445 0.0624 0.1627 0.2248 0.0497
5-SKNN 0.0669 0.2406 0.3436 0.0407 0.0618 0.1674 0.2186 0.0468
AR 0.0647 0.1866 0.4137 0.0381 0.0613 0.1378 0.2869 0.0441
S-KNN 0.0604 0.2241 0.2312 0.0453 0.0554 0.1512 0.1487 0.0509
IKNN 0.0467 0.1554 0.5526 0.0144 0.0437 0.1120 0.3960 0.0145

Algorithm ~ MRR@5  HR@5 COV@5 POP@5 MRR@3 HR@3  MRR@1 HR@1

SR 0.0789 0.1146 0.2290 0.0390 0.0744 0.0949 0.0584 0.0584
MC 0.0769 0.1041 0.2090 0.0336 0.0738 0.0903 0.0610 0.0610
SF-SKNN 0.0737 0.1157 0.1743 0.0403 0.0682 0.0914 0.0500 0.0500
SMF 0.0705 0.1085 0.1799 0.0341 0.0658 0.0879 0.0491 0.0491
GRU4REC 0.0700 0.1053 0.1196 0.0604 0.0651 0.0839 0.0510 0.0510
V-SKNN 0.0543 0.1019 0.1465 0.0543 0.0466 0.0677 0.0316 0.0316
5-SKNN 0.0532 0.1017 0.1329 0.0523 0.0450 0.0655 0.0306 0.0306
AR 0.0555 0.0947 0.1830 0.0531 0.0499 0.0701 0.0350 0.0350
S-KNN 0.0472 0.0888 0.0936 0.0560 0.0402 0.0578 0.0282 0.0282

IKNN 0.0384 0.0724 0.2597 0.0141 0.0332 0.0494 0.0214 0.0214




Evaluation of Session-based Recommendation Algorithms 45

Table 38. Hit rate (HR), Mean reciprocal rank (MRR), item coverage (COV), and average popularity (POP)
results for a list length of 20, 10, 5, 3, and 1 on the CLEF dataset with a single split (sorted by MRR@20).

Algorithm  MRR@20 HR@20 COV@20 POP@20 MRR@10 HR@10 COV@10 POP@10

GRU4REC 0.253 0.724 0.154 0.051 0.242 0.564 0.123 0.064
SR 0.213 0.623 0.754 0.055 0.202 0.451 0.715 0.084
MC 0.213 0.625 0.755 0.056 0.202 0.459 0.724 0.080
SMF 0.207 0.646 0.765 0.042 0.194 0.472 0.709 0.042
V-SKNN 0.197 0.683 0.756 0.053 0.183 0.487 0.682 0.080
S-SKNN 0.190 0.670 0.764 0.052 0.175 0.463 0.682 0.081
S-KNN 0.186 0.661 0.760 0.052 0.172 0.453 0.675 0.083
SF-SKNN 0.179 0.636 0.750 0.052 0.165 0.433 0.680 0.082
AR 0.178 0.631 0.733 0.058 0.164 0.435 0.653 0.103
IKNN 0.158 0.510 0.796 0.009 0.148 0.363 0.757 0.010

Algorithm MRR@5 HR@5 COV@s POP@5 MRR@3 HR@3 MRR@1 HR@1

GRU4REC 0.219 0.384 0.101 0.088 0.195 0.280 0.132 0.132
SR 0.183 0.308 0.636 0.110 0.167 0.238 0.113 0.113
MC 0.184 0.325 0.652 0.110 0.165 0.241 0.107 0.107
SMF 0.172 0.300 0.639 0.023 0.155 0.225 0.104 0.104
V-SKNN 0.160 0.316 0.585 0.082 0.137 0.215 0.081 0.081
5-SKNN 0.154 0.304 0.595 0.101 0.133 0.208 0.077 0.077
S-KNN 0.151 0.298 0.592 0.103 0.130 0.205 0.076 0.076
SF-SKNN 0.145 0.284 0.593 0.104 0.126 0.199 0.072 0.072
AR 0.143 0.278 0.517 0.170 0.125 0.198 0.070 0.070
IKNN 0.131 0.242 0.673 0.010 0.117 0.179 0.073 0.073
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