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Abstract. Recovery of three dimensional (3D) shape and motion of non-static scenes
from a monocular video sequence is important for applications like robot navigation
and human computer interaction. If every point in the scene randomly moves, it is im-
possible to recover the non-rigid shapes. In practice, many non-rigid objects, e.g. the
human face under various expressions, deform with certain structures. Their shapes
can be regarded as a weighted combination of certain shape bases. Shape and mo-
tion recovery under such situations has attracted much interest. Previous work on this
problem [6, 4, 13] utilized only orthonormality constraints on the camera rotations (ro-
tation constraints). This paper proves that using only the rotation constraints results
in ambiguous and invalid solutions. The ambiguity arises from the fact that the shape
bases are not unique because their linear transformation is a new set of eligible bases.
To eliminate the ambiguity, we propose a set of novel constraints, basis constraints,
which uniquely determine the shape bases. We prove that, under the weak-perspective
projection model, enforcing both the basis and the rotation constraints leads to a
closed-form solution to the problem of non-rigid shape and motion recovery. The accu-
racy and robustness of our closed-form solution is evaluated quantitatively on synthetic
data and qualitatively on real video sequences.

1 Introduction

Many years of work in structure from motion have led to significant successes in recovery
of 3D shapes and motion estimates from 2D monocular videos. Reliable systems exist for
reconstruction of static scenes. However, most natural scenes are dynamic and non-rigid:
expressive faces, people walking beside buildings, etc. Recovering the structure and motion of
these non-rigid objects is a challenging task. The effects of 3D rotation and translation and
non-rigid deformation are coupled together in image measurement. While it is impossible to
reconstruct the shape if the scene deforms arbitrarily, in practice, many non-rigid objects,
e.g. the human face under various expressions, deform with a class of structures.
One class of solutions model non-rigid object shapes as weighted combinations of certain

shape bases that are pre-learned by off-line training [2, 3, 5, 9]. For instance, the geometry of
a face is represented as a weighted combination of shape bases that correspond to various
facial deformations. Then the recovery of shape and motion is simply a model fitting problem.
However, in many applications, e.g. reconstruction of a scene consisting of a moving car and
a static building, the shape bases of the dynamic structure are difficult to obtain before
reconstruction.
Several approaches have been proposed to solve the problem without a prior model [6, 13,

4]. Instead, they treat the model, i.e. shape bases, as part of the unknowns to be solved. They
try to recover not only the non-rigid shape and motion, but also the shape model. This class
of approaches so far has utilized only the orthonormality constraints on camera rotations
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(rotation constraints) to solve the problem. However, as shown in this paper, enforcing
only the rotation constraints leads to ambiguous and invalid solutions. These approaches
thus cannot guarantee the desired solution. They have to either require a priori knowledge
on shape and motion, e.g. constant speed [10], or need non-linear optimization that involves
large number of variables and hence requires a good initial estimate [13, 4].
Intuitively, the above ambiguity arises from the non-uniqueness of the shape bases: a

linear transformation of a set of shape bases is a new set of eligible bases. Once the bases
are determined uniquely, the ambiguity is eliminated. Therefore, instead of imposing only the
rotation constraints, we identify and introduce another set of constraints on the shape bases
(basis constraints), which implicitly determine the bases uniquely. This paper proves that,
under the weak-perspective projection model, when both the basis and rotation constraints
are imposed, a closed-form solution to the problem of non-rigid shape and motion recovery is
achieved. Accordingly we develop a factorization method that applies both metric constraints
to compute the closed-form solution for the non-rigid shape, motion, and shape bases.

2 Previous Work

Recovering 3D object structure and motion from 2D image sequences has a rich history. Var-
ious approaches have been proposed for different applications. The discussion in this section
will focus on the factorization techniques, which are most closely related to our work.
The factorization method was first proposed by Tomasi and Kanade [12]. First it applies

the rank constraint to factorize a set of feature locations tracked across the entire sequence.
Then it uses the orthonormality constraints on the rotation matrices to recover the scene
structure and camera rotations in one step. This approach works under the orthographic
projection model. Poelman and Kanade [11] extended it to work under the weak perspective
and para-perspective projection models. Triggs [14] generalized the factorization method to
the recovery of scene geometry and camera motion under the perspective projection model.
These methods work for static scenes.
Costeira and Kanade [8] extended the factorization technique to recover the structure of

multiple independently moving objects. This method factorizes the image locations of certain
features to separate different objects and then individually recovers their shapes. Wolf and
Shashua [16] derived a geometrical constraint, called the segmentation matrix, to reconstruct a
scene containing two independently moving objects from two perspective views. Vidal and his
colleagues [15] extended this approach for dynamic scenes containing multiple independently
moving objects. For reconstruction of dynamic scenes consisting of both static objects and
objects moving along fixed directions, Han and Kanade [10] proposed a factorization-based
method that achieves a unique solution with the assumption of constant velocities. A more
generalized solution to reconstructing the shapes that deform at constant velocity is presented
in [17].
Bregler and his colleagues [6] first introduced the basis representation of non-rigid shapes

to embed the deformation constraints into the scene structure. By analyzing the low rank
of the image measurements, they proposed a factorization-based method that enforces the
orthonormality constraints on camera rotations to reconstruct the non-rigid shape and mo-
tion. Torresani and his colleagues [13] extended the method in [6] to a trilinear optimization
approach. At each step, two of the three types of unknowns, bases, coefficients, and rotations,
are fixed and the remaining one is updated. The method in [6] is used to initialize the opti-
mization process. Brand [4] proposed a similar non-linear optimization method that uses an
extension of the method in [6] for initialization. All three methods enforce only the rotation
constraints and thus cannot guarantee an optimal solution. Note that both non-linear opti-
mization methods involve a large number of variables, e.g. the number of unknown coefficients
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equals the product of the number of images and the number of shape bases. The performance
relies on the quality of the initial estimate of the unknowns.

3 Problem Statement

Given 2D locations of P feature points across F frames, {(u, v)Tfp|f = 1, ..., F, p = 1, ..., P},
our goal is to recover the motion of the non-rigid object relative to the camera, including
rotations {Rf |f = 1, ..., F} and translations {tf |f = 1, ..., F}, and its 3D deforming shapes
{(x, y, z)Tfp|f = 1, ..., F, p = 1, ..., P}. Throughout this paper, we assume:
– the deforming shapes can be represented as weighted combinations of shape bases;
– the 3D structure and the camera motion are non-degenerate;
– the camera projection model is the weak-perspective projection model.

We follow the representation of [3, 6]. The non-rigid shapes are represented as weighted com-
binations of K shape bases {Bi, i = 1, ...,K}. The bases are 3 × P matrices controlling the
deformation of P points. Then the 3D coordinate of the point p at the frame f is

Xfp = (x, y, z)
T
fp = ΣK

i=1cfibip f = 1, ..., F, p = 1, ..., P (1)

where bip is the pth column of Bi and cif is its combination coefficient at the frame f . The
image coordinate of Xfp under the weak perspective projection model is

xfp = (u, v)
T
fp = sf (Rf · Xfp + tf ) (2)

where Rf stands for the first two rows of the fth camera rotation and tf = [tfxtfy]T is its
translation relative to the world origin. sf is the scalar of the weak perspective projection.
Replacing Xfp using Eq. (1) and absorbing sf into cfi and tf , we have

xfp =
(
cf1Rf ... cfKRf

)
·
(

b1p

...
bKp

)
+ tf (3)

Suppose the image coordinates of all P feature points across F frames are obtained.
We form a 2F × P measurement matrix W by stacking all image coordinates. Then W =
MB + T [11...1], where M is a 2F × 3K scaled rotation matrix, B is a 3K × P bases matrix,
and T is a 2F × 1 translation vector,

M =




c11R1 ... c1KR1

...
...

...
cF1RF ... cFKRF


 , B =




b11 ... b1P

...
...

...
bK1 ... bKP


 , T =

(
tT
1 ... tT

F

)T
(4)

As in [10, 6], we position the world origin at the scene center and compute the translation
vector by averaging the image projections of all points. We then subtract it from W and
obtain the registered measurement matrix W̃ =MB.
Since W̃ is the product of the 2F × 3K scaled rotation matrix M and the 3K × P shape

bases matrix B, its rank is at most min{3K, 2F, P}. In practice, the frame number F and
point number P are usually much larger than the basis number K. Thus under the non-
degenerate cases, the rank of W̃ is 3K and K is determined by K = rank(W̃ )/3. We then
perform SVD on W̃ to get the best possible rank 3K approximation of W̃ as M̃B̃. This
decomposition is only determined up to a non-singular 3K × 3K linear transformation. The
true scaled rotation matrix M and bases matrix B are of the form,

M = M̃ ·G, B = G−1 · B̃ (5)
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where G is called the corrective transformation matrix. Once G is determined, M and B are
obtained and thus the rotations, shape bases, and combination coefficients are recovered.
All the procedures above, except obtaining G, are standard and well-understood [3, 6]. The

problem of nonrigid shape and motion recovery is now reduced to: given the measurement
matrix W , how can we compute the corrective transformation matrix G?

4 Metric Constraints

To compute G, two types of metric constraints are available and should be imposed: rotation
constraints and basis constraints. While using only the rotation constraints [6, 4] leads to
ambiguous and invalid solutions, enforcing both sets of constraints results in a closed-form
solution.

4.1 Rotation Constraints

The orthonormality constraints on the rotation matrices are one of the most powerful metric
constraints and they have been used in reconstructing the shape and motion for static objects
[12, 11], multiple moving objects [8, 10], and non-rigid deforming objects [6, 13, 4].
According to Eq. (5), MMT = M̃GGT M̃T . Let us denote GGT by Q. Then,

M̃2∗i−1:2∗iQM̃T
2∗j−1:2∗j = ΣK

k=1cikcjkRi ∗RT
j , i, j = 1, ...F (6)

where M̃2∗i−1:2∗i represents the ith two-row of M̃ . Due to orthonormality of rotation matrices,

M̃2∗i−1:2∗iQM̃T
2∗i−1:2∗i = ΣK

k=1c
2
ikI2×2, i = 1, ..., F (7)

where I2×2 is a 2× 2 identity matrix. Because Q is symmetric, the number of unknowns in Q
is (9K2 + 3K)/2. Each diagonal block of MMT yields two linear constraints on Q,

M̃2∗i−1QM̃T
2∗i−1 = M̃2∗iQM̃T

2∗i (8)

M̃2∗i−1QM̃T
2∗i = 0 (9)

For F frames, we have 2F linear constraints on (9K2+3K)
2 unknowns. It appears that, when

we have enough images, i.e. F ≥ (9K2+3K)
2 , there should be enough constraints to compute

Q via the least-square methods. However, it is not true in general. We will show that most of
these rotation constraints are redundant and they are inherently insufficient to determine Q.

4.2 Why Are Rotation Constraints Not Sufficient?

When the scene is static or deforms at constant velocities, the rotation constraints are suf-
ficient to solve the corrective transformation matrix G [12, 10]. However, when the scene
deforms at varying speed, no matter how many images are given or how many feature points
are tracked, the solutions of the constraints in Eq. (8) and Eq. (9) are inherently ambiguous.

Definition 1. A 3K × 3K symmetric matrix Y is called a block-skew-symmetric matrix, if
all the diagonal 3 × 3 blocks are zero matrices and each off-diagonal 3 × 3 block is a skew
symmetric matrix.

Yij =

(
0 yij1 yij2

−yij1 0 yij3

−yij2 −yij3 0

)
= −Y T

ij = Y T
ji , i �= j (10)

Yii = 03×3, i, j = 1, ...,K (11)
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Each off-diagonal block consists of 3 independent elements. Because Y is symmetric and has
K(K − 1)/2 independent off-diagonal blocks, it includes 3K(K − 1)/2 independent elements.
Definition 2. A 3K × 3K symmetric matrix Z is called a block-scaled-identity matrix, if
each 3× 3 block is a scaled identity matrix, i.e. Zij = λijI3×3, where λij is the only variable.

Because Z is symmetric, the total number of variables in Z equals the number of independent
blocks, K(K + 1)/2.

Theorem 1. The general solution of the rotation constraints in Eq. (8) and Eq. (9) can
be expressed as Q̃ = GHGT , where G is the desired corrective transformation matrix, and
H = Y + Z, with Y a block-skew-symmetric matrix, and Z a block-scaled-identity matrix.

Proof. The solution Q̃ of Eq. (8) and Eq. (9) can be represented as GΛGT , since G is a
non-singular square matrix. Now we need to prove that Λ must be in the form of H, i.e. the
summation of Y and Z.
According to Eq. (7),

M̃2∗i−1:2∗iQ̃M̃T
2∗i−1:2∗i = M2∗i−1:2∗iΛM

T
2∗i−1:2∗i

= αiI2×2, i = 1, ..., F (12)

where αi is an unknown scalar depending on only the coefficients. Divide Λ into 3× 3 blocks,
Λkj (k,j=1,...,K). Combining Eq. (4) and (12), we have

RiΣ
K
k=1(c

2
ikΛkk +ΣK

j=k+1cikcij(Λkj + ΛT
kj))R

T
i = αiI2×2, i = 1, ..., F (13)

Denote the 3× 3 symmetric matrix ΣK
k=1(c

2
ikΛkk+ΣK

j=k+1cikcij(Λkj +ΛT
kj)) by Γi. Let Γ̃i be

the homogeneous solution of Eq. (13), i.e. RiΓ̃iR
T
i = 02×2. Since Ri consists of the first two

rows of the ith rotation matrix, let ri3 denote the third row. Due to orthonormality of Ri,

Γ̃i = rT
i3δi + δT

i ri3 (14)

where δi is an arbitrary 1 × 3 vector. Apparently Γi = αiI3×3 is a particular solution of
Eq. (13). Therefore the general solution of Eq. (13) is

Γi = ΣK
k=1(c

2
ikΛkk +ΣK

j=k+1cikcij(Λkj + ΛT
kj)) = αiI3×3 + βiΓ̃i (15)

where βi is a scalar. Now let us prove βiΓ̃i has to be zero. Because Q̃ = GΛGT is the general
solution on all images, Eq. (15) must be satisfied for any set of the coefficients and rotations.
For any two frames i and j that are formed by the same 3D shapes, i.e. same coefficients, but
different rotations Ri and Rj , according to Eq. (15), we have

αiI3×3 + βiΓ̃i = αiI3×3 + βj Γ̃j ⇐⇒ βiΓ̃i − βj Γ̃j = 03×3 =⇒ Rj(βiΓ̃i − βj Γ̃j)R
T
j = 02×2 (16)

According to Eq. (14), we have RjΓ̃jR
T
j = 02×2, thus

Rj(βiΓ̃i)R
T
j = 02×2 (17)

Because Rj can be any rotation matrix, βiΓ̃i has to be zero for any frame. Therefore,

ΣK
k=1(c

2
ikΛkk +ΣK

j=k+1cikcij(Λkj + ΛT
kj)) = αiI3×3 (18)

Because Eq. (18) must be satisfied for any set of the coefficients, the solution is

Λkk = λkkI3×3 (19)

Λkj + ΛT
kj = λkjI3×3, k = 1, ...,K; j = k + 1, ...,K (20)
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where λkk and λkj are arbitrary scalars. According to Eq. (19), the diagonal block Λkk is a
scaled identity matrix. From Eq. (20), Λkj − λkj

2 I3×3 = −(Λkj − λkj

2 I3×3)T , i.e. Λkj − λkj

2 I3×3

is skew-symmetric. Therefore the off-diagonal block Λkj equals the summation of a scaled
identity block, λkj

2 I3×3, and a skew-symmetric block, Λkj− λkj

2 I3×3. This statement concludes
the proof: Λ equalsH, the summation of a block-skew-symmetric matrix Y and a block-scaled-
identity matrix Z, i.e. the general solution of the rotation constraints is Q̃ = GHGT . ��
BecauseH consists of 2K2−K independent elements: 3K(K−1)/2 from Y andK(K+1)/2

from Z, the solution space has 2K2 − K degrees of freedom. It explains why the rotation
constraints are sufficient in rigid cases (K = 1) but lead to ambiguous solutions when the
scene is non-rigid (K > 1). This conclusion is also confirmed by our experiments. If every
solution in the space is a valid solution of Q, then even if the ambiguity exists, we can compute
an arbitrary solution in the space to solve the problem. However, the space contains many
invalid solutions. Specifically, since Q = GGT must be positive semi-definite, when H is not
positive semi-definite, the solutions Q̃ = GHGT are not valid. For example, when H only
consists of a block-skew-symmetric matrix Y , the solutions Q̃ = GY GT are invalid because
Y is not positive semi-definite.

4.3 Basis Constraints

Are there other constraints that we can use to remove the ambiguity of the rotation con-
straints? For static scenes, a variety of approaches [12, 11] utilize only the rotation constraints
and succeed in determining the correct solution. Intuitively, the only difference between non-
rigid and rigid situations is that the non-rigid shape is a weighted combination of certain shape
bases. This observation suggests that the ambiguity is related to the basis representation. Can
we impose constraints on the bases to eliminate the ambiguity?
The shape bases are non-unique because any non-singular linear transformation on them

yields a new set of eligible bases. However, if we find K frames including independent shapes
and treat those shapes as a set of bases, the bases are determined uniquely1. We denote those
frames as the first K images in the sequence and the corresponding coefficients are

cii = 1, i = 1, ...,K

cij = 0, i �= j, i = 1, ...,K, j = 1, ...,K (21)

For any three-column of G, gk, k = 1, ...,K, according to Eq. (5),

M̃gk =

(
c1kR1

...
cFkRF

)
k = 1, ...,K (22)

We denote gkgk
T by Qk. Then,

M̃2∗i−1:2∗iQkM̃
T
2∗j−1:2∗j = cikcjkRiR

T
j (23)

Thus Qk satisfies the rotation constraints in Eq. (8) and Eq. (9). Besides, combining Eq. (21)
and Eq. (23), we obtain another 4(K − 1)F basis constraints on Qk:

M̃2∗i−1QkM̃
T
2∗j−1 =

{
1, i = j = k
0, (i, j) ∈ ω1

(24)

M̃2∗iQkM̃
T
2∗j =

{
1, i = j = k
0, (i, j) ∈ ω1

(25)

M̃2i−1QkM̃
T
2∗j = 0, (i, j) ∈ ω1 or i = j = k (26)

M̃2iQkM̃
T
2∗j−1 = 0, (i, j) ∈ ω1 or i = j = k (27)

1 We can find K frames in which the shapes are independent, by examining the singular values of
their image projections.
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where ω1 = {(i, j)|i = 1, ...,K, j = 1, ..., F, and i 	= k}.

5 A Closed-Form Solution

Due to Theorem 1, enforcing the rotation constraints on Qk leads to the ambiguous solution
Q̃ = GHGT . This section will prove that enforcing the basis constraints eliminates the ambi-
guity on Q̃ and determines a closed-form solution. Note that we assume that the 3D structure
and camera motion are both non-degenerate, i.e. the rank of W̃ is 3K.
By definition, each 3×3 block Hij (i, j = 1, ...,K) of H contains four independent entries,

Hij =

(
h1 h2 h3

−h2 h1 h4

−h3 −h4 h1

)
(28)

Lemma 1 Under non-degenerate situations, Hij is a zero matrix if,

RiHijR
T
j =

(
ri1

ri2

)
Hij

(
rj1

T rT
j2

)
= 02×2 (29)

Proof. First we prove that the rank ofHij is at most 2. Due to the orthonormality constraints,

Hij =
(
rT

i3 δT
j

)( δi

rj3

)
(30)

where ri3 = ri1 × ri2, rj3 = rj1 × rj2, δi and δj are two arbitrary 1× 3 vectors. Both matrices
on the right side of Eq. (30) are at most of rank 2. Thus the rank of Hij is at most 2.
Next, we prove h1 = 0. Since the rank of Hij is less than its dimension, 3, its determinant,

h1(
∑4

i=1 hi
2), equals 0. Therefore h1 must be 0 and Hij is a skew-symmetric matrix.

We then prove h2 = h3 = h4 = 0. Since h1 = 0, we rewrite Eq. (29) as follows:(
ri1 · (h × rj1) ri1 · (h × rj2)
ri2 · (h × rj1) ri2 · (h × rj2)

)
= 02×2 (31)

where h = (−h4 h3 −h2). Eq. (31) means that the vector h is located in the intersection of the
four planes determined by (ri1, rj1), (ri1, rj2), (ri2, rj1), and (ri2, rj2). Under non-degenerate
situations, ri1, ri2, rj1, and rj2 do not lie in the same plane, hence the four planes intersect
at the origin, i.e. h = (−h4 h3 − h2) = 01×3. Therefore Hij is a zero matrix. ��
According to Lemma 1, we derive the following theorem,

Theorem 2. Enforcing both basis constraints and rotation constraints results in a unique
solution Q̃ = gkgk

T , where gk is the kth three-column of G.

Proof. Due to Theorem 1, by enforcing the rotation constraints, we achieve the solution
Q̃ = GHGT . Thus M̃Q̃M̃T =MHMT , and

M2∗i−1:2∗iHMT
2∗j−1:2∗j = ΣK

k1=1Σ
K
k2=1cik1cjk2RiHk1k2R

T
j , i, j = 1, ..., F (32)

According to Eq. (21),

M2∗i−1:2∗iHMT
2∗j−1:2∗j = RiHijRj

T , i, j = 1, ...,K (33)

Due to the basis constraints in Eq. (24) to (27),

RkHkkRk
T = I2×2 (34)

RiHijRj
T = 02×2, i, j = 1, ...,K, and i �= k, j �= k (35)

By definition, Hkk = λkkI3×3, where λkk is a scalar. Due to Eq. (34), λkk = 1 and Hkk = I3×3.
From Lemma 1 and Eq. (35), Hij is a zero matrix when i, j = 1, ...,K, and i 	= k, j 	= k.
Thus Q̃ = GHGT = (g1, ..., gK)H(g1, ..., gK)T = (0, ..., 0, gk, 0, ...0)(g1, ..., gK)T = gkg

T
k . ��



8 Jing Xiao et al.

Now we have proved that, by enforcing both rotation and basis constraints, i.e. solving Eq. (8)
to (9) and (24) to (27) by the least square methods, a closed-form solution, Q̃ = Qk =
gkg

T
k , k = 1, ...,K, is achieved. Then gk, k = 1, ...,K can be recovered by decomposing

Qk via SVD. We project g′ks to the common coordinate system and determine the corrective
transformation G = (g1, ..., gK). According to Eq. (5), we recover the shape bases B = G−1B̃,
the scaled rotation matrix M = M̃G, and thus the rotations and coefficients.

6 Performance Evaluation

(a) (b) (c)

(d) (e) (f)

Fig. 1. A static cube and 3 points moving along straight lines. (a) Input image. (b) Ground truth
3D shape. (c) Reconstruction by the closed-form solution. (d) Reconstruction by the method in [6].
(e) Reconstruction by the method in [4] after 4000 iterations. (f) Reconstruction by the tri-linear
method [13] after 4000 iterations.

The performance of the closed-form solution is evaluated in a number of experiments.

6.1 Comparison with Three Previous Methods

We first compare the solution with three related methods [6, 4, 13] in a simple noiseless setting.
Fig.1 shows a scene consisting of a static cube and 3 moving points. The measurement consists
of 10 points: 7 visible vertices of the cube and 3 moving points. The 3 points move along the
axes at varying speed. This setting consists of K = 2 shape bases, one for the static cube
and another for the moving points. Their image projections across 16 frames from different
views are given. One of them is shown in Fig.1.(a). The corresponding ground truth structure
is demonstrated in Fig.1.(b). Fig.1.(c) to (f) show the structures reconstructed using the
closed-form solution, the method in [6], the method in [4], and the tri-linear method [13],
respectively. While the closed-form solution achieves the exact reconstruction with zero error,
all three previous methods result in apparent errors, even for such a simple noiseless setting.
Fig.2 demonstrates the reconstruction errors of the previous work on rotations, shapes, and
image measurements. The errors are computed relative to the ground truth.
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Fig. 2. The relative errors on reconstruction of a static cube and 3 points moving along straight
lines. (Left) By the method in [6]. (Middle) By the method in [4] after 4000 iterations. (Right) By
the trilinear method [13] after 4000 iterations. The range of the error axis is [0%, 100%]. Note that
our solution achieves zero reconstruction errors.

6.2 Quantitative Evaluation on Synthetic Data

Our approach is then quantitatively evaluated on the synthetic data. We evaluate the accuracy
and robustness on three factors: deformation strength, number of shape bases, and noise level.
The deformation strength shows how close to rigid the shape is. It is represented by the
mean power ratio between each two bases, i.e. meani,j

(
max(‖Bi‖,‖Bj‖)
min(‖Bi‖,‖Bj‖)

)
. Larger ratio means

weaker deformation, i.e. the shape is closer to rigid. The number of shape bases represents
the flexibility of the shape. A bigger basis number means that the shape is more flexible.
Assuming a Gaussian white noise, we represent the noise strength level by the ratio between
the Frobenius norm of the noise and the measurement, i.e. ‖noise‖

‖W̃‖ . In general, when noise
exists, a weaker deformation leads to better performance, because some deformation mode is
more dominant and the noise relative to the dominant basis is weaker; a bigger basis number
results in poorer performance, because the noise relative to each individual basis is stronger.
Fig.3.(a) and (b) show the performance of our algorithm under various deformation

strength and noise levels on a two bases setting. The power ratios are respectively 20, 21,
..., and 28. Four levels of Gaussian white noise are imposed. Their strength levels are 0%,
5%, 10%, and 20% respectively. We test a number of trials on each setting and compute the
average reconstruction errors on the rotations and 3D shapes, relative to the ground truth.
Fig.3.(c) and (d) show the performance of our method under different numbers of shape bases
and noise levels. The basis number is 2, 3, ... , and 10 respectively. The bases have equal powers
and thus none of them is dominant. The same noise as in the last experiment is imposed.
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Fig. 3. (a)&(b) Reconstruction errors on rotations and shapes under different levels of noise and
deformation strength. (c)&(d) Reconstruction errors on rotations and shapes under different levels
of noise and various basis numbers. Each curve respectively refers to a noise level. The range of the
error axis is [0%, 20%].
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In both experiments, when the noise level is 0%, the closed-form solution always recovers
the exact rotations and shapes with zero error. When there is noise, it achieves reasonable
accuracy, e.g. the maximum reconstruction error is less than 15% when the noise level is
20%. As we expected, under the same noise level, the performance is better when the power
ratio is larger and poorer when the basis number is bigger. Note that in all the experiments,
the condition number of the linear system consisting of both basis constraints and rotation
constraints has order of magnitude O(10) to O(102), even if the basis number is big and the
deformation is strong. Our closed-form solution is thus numerically stable.

6.3 Qualitative Evaluation on Real Video Sequences

(a) (b) (c)

(d) (e) (f)

Fig. 4. Reconstruction of three moving objects in the static background. (a)&(d) Two input images
with marked features. (b)&(e) Reconstruction by the closed-form solution. The yellow lines show the
recovered trajectories from the beginning of the sequence until the present frames. (c)&(f) Recon-
struction by the method in [4]. The yellow-circled area shows that the plane, which should be on top
of the slope, is mistakenly located underneath the slope.

Finally we examine our approach qualitatively on a number of real video sequences. One
example is shown in Fig.4. The sequence was taken of an indoor scene by a handheld camera.
Three objects, a car, a plane, and a toy person, moved along fixed directions and at varying
speeds. The rest of the scene was static. The car and the person moved on the floor and the
plane moved along a slope. The scene structure was composed of two bases, one for the static
objects and another for the moving objects. 32 feature points tracked across 18 images were
used for reconstruction. Two of the them are shown in Fig.4.(a) and (d).
The rank of W̃ was estimated in such a way that after rank reduction 99% of the energy

was kept. The basis number is automatically determined by K = rank(W̃ )/3. The camera
rotations and dynamic scene structure are then reconstructed. To evaluate the reconstruction,
we synthesize the scene appearance viewed from one side, as shown in Fig.4.(b) and (e). The
wireframes show the structure and the yellow lines show the trajectories of the moving objects
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from the beginning of the sequence until the present frames. The reconstruction is consistent
with our observation, e.g. the plane moved linearly on top of the slope. Fig.4.(c) and (f) show
the reconstruction using the method in [4]. The shapes of the boxes are distorted and the
plane is incorrectly located underneath the slope, as shown in the yellow circles. Note that
occlusion was not taken into account when rendering these images, thus in the regions that
should be occluded, e.g. the area behind the slope, the stretched texture of the occluding
objects appears.
Human faces are highly non-rigid objects and 3D face shapes can be represented as

weighted combinations of certain shape bases that refer to various facial expressions. They
thus can be reconstructed by our approach. One example is shown in Fig.5. The sequence
consists of 236 images that contain expressions like eye blinking and mouth opening. 60 fea-
ture points were tracked using an efficient Active Appearance Model (AAM) method [1].
Fig.5.(a) and (d) display two input images with marked features. Their corresponding shapes
are reconstructed and shown from novel views in Fig.5.(b) and (e). Their corresponding 3D
wireframe models shown in Fig.5.(c) and (f) demonstrate the recovered facial deformations
such as mouth opening and eye closure. Note that the feature correspondence in these ex-
periments was noisy, especially for those features on the sides of face. The reconstruction
performance of our approach demonstrates its robustness to the image noise.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Reconstruction of face shapes with expressions. (a)&(d) Input images. (b)&(e) Reconstructed
face shapes seen from novel views. (c)&(f) The wireframe models demonstrate the recovered facial
deformations such as mouth opening and eye closure.

7 Conclusion and Discussion

This paper proposes a closed-form solution to the problem of non-rigid shape and motion
recovery from single-camera video using the least square and factorization methods. In par-
ticular, we have proven that enforcing only the rotation constraints results in ambiguous and
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invalid solutions. We thus introduce the basis constraints to remove this ambiguity. We have
also proven that imposing both metric constraints leads to a unique reconstruction of the
non-rigid shape and motion. The performance of our algorithm is demonstrated by experi-
ments on both simulated data and real video data. Our algorithm has also been successfully
applied to separate the local deformations from the global rotations and translations in the
3D motion capture data [7].
Currently, our approach does not consider the degenerate deformation modes of 3D shapes.

A deformation mode is degenerate, if it limits the shape to deform in a plane, i.e., the rank
of the corresponding basis is less than 3. For example, if a scene contains only one moving
object that moves along a straight line, the deformation mode referring to the linear motion is
degenerate, because the corresponding basis (the motion vector) is of rank 1. It is conceivable
that the ambiguity cannot be completely eliminated by the basis constraints and enforcing
both metric constraints is insufficient to produce a closed-form solution in such degenerate
cases. We are now exploring how to extend the current approach to recovering the non-rigid
shapes that deform with degenerate modes. Another limitation of our approach is that we
assume the weak perspective projection model. It would be interesting to see if the proposed
approach could be extended to the full perspective projection model.
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