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Abstract

Shape-From-Silhouette (SFS) is a shape reconstruction method which constructs a 3D shape esti-
mate of an object using silhouette images of the object. The output of a SFS algorithm is known
as the Visual Hull (VH). Traditionally SFS is either performed on static objects, or separately at
each time instant in the case of videos of moving objects. In this paper we develop a theory of
performing SFS across time: estimating the shape of a dynamic object (with unknown motion) by
combining all of the silhouette images of the object over time. We first introduce a one dimen-
sional element called a Bounding Edge to represent the Visual Hull. We then show that aligning
two Visual Hulls using just their silhouettes is in general ambiguous and derive the geometric
constraints (in terms of Bounding Edges) that govern the alignment. To break the alignment am-
biguity, we combine stereo information with silhouette information and derive a Temporal SFS
algorithm which consists of two steps: (1) estimate the motion of the objects over time (Visual
Hull Alignment) and (2) combine the silhouette information using the estimated motion (Visual
Hull Refinement). The algorithm is first developed for rigid objects and then extended to articu-
lated objects. In the Part II of this paper we apply our temporal SFS algorithm to two human-related
applications: (1) the acquisition of detailed human kinematic models and (2) marker-less motion
tracking.
Keywords: 3D Reconstruction, Shape-From-Silhouette, Visual Hull, Across Time, Stereo, Tem-
poral Alignment, Alignment Ambiguity, Visibility.



1 Introduction

As its name implies Shape-From-Silhouette (SFS) is a method of estimating the shape of an object

from its silhouette images. The idea of using silhouettes for 3D shape reconstruction was first

introduced by Baumgart in 1974. In his PhD thesis [Bau74], Baumgart estimated the 3D shapes of a

baby doll and a toy horse from four silhouette images. Since then, different variations of the Shape-

From-Silhouette paradigm have been proposed. For example, Aggarwal et al. [MA83, KA86]

used volumetric descriptions to represent the reconstructed shape. Potmesil [Pot87], Noborio et

al. [NFA88] and Ahuja et al. [AV89] all suggested using an octree data structure to speed up SFS.

Shanmukh and Pujari derived the optimal positions and directions to take silhouette images for 3D

shape reconstruction in [SP91]. Szeliski built a non-invasive 3D digitizer using a turntable and

a single camera with Shape-From-Silhouette as the reconstruction method [Sze93]. In summary,

SFS has become a popular 3D reconstruction method for static objects.

The term Visual Hull (VH) has been used in a general sense by researchers for over a decade

to denote the shape estimated using the Shape-From-Silhouette principle: the intersection of the

visual cones formed by the silhouettes and camera centers. The term was first coined in 1991

by Laurentini [Lau91] who also published a series of subsequent papers studying the theoretical

aspects of Visual Hulls of 3D polyhedral [Lau94, Lau95] and curved objects [Lau99].

Estimating shape using SFS has many advantages. First of all, silhouettes are readily and eas-

ily obtainable, especially in indoor environment where the cameras are static and there are few

moving shadows. The implementation of most SFS methods is also relatively straightforward, es-

pecially when compared to other shape estimation methods such as multi-baseline stereo [OK93]

or space carving [KS00]. Moreover, the inherently conservative property (see Section 2.3) of the

shape estimated using SFS is particularly useful in applications such as obstacle avoidance in robot

manipulation and visibility analysis in navigation. These advantages have prompted a large num-

ber of researchers to apply SFS to solve other computer vision and graphics problems. Examples

include human related applications such as virtual human digitization [MTG97], body shape esti-
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Figure 1: (a) An image of a toy dinosaur and a bunch of bananas. (b) A 3D colored voxel model recon-

structed using 6 silhouette. Some details such as the legs and the horns of the dinosaur are missing. (c) A

model reconstructed using 36 silhouette images. A much better shape estimate is obtained. (d) A model

reconstructed using 66 silhouette images. An even better shape estimate is obtained.

mation [KM98], motion tracking/capture [DF99, BL00] and image-based rendering [BMMG99].

On the other hand, SFS suffers from the limitation that the shape estimated by SFS (the VH)

can be a very coarse approximation when there are only a few silhouette images, especially for

complex objects such as the dinosaur/bananas example shown in Figure 1(a). Figures 1(b), (c) and

(d) show respectively the (colored) voxel models of the dinosaur/bananas built using 6, 36 and 66

silhouette images. As can be seen, the shape model built using only 6 silhouette images is very

coarse, while much better shape estimates are obtained using 36 or 66 silhouettes.

Better shape estimates can only be obtained using SFS if the number of distinct silhouette

images is increased. The most common way to do so is the “across space” approach. By across

space, we mean increasing the number of physical cameras used. This approach, though simple,

may not be feasible in many practical situations due to financial or physical limitations. In this

paper we introduce and develop another approach: the “across time” approach. The across time

approach increases the number of effective silhouette images by capturing a number of silhouettes

from each camera over time (while the object is moving) and then combining all the silhouettes

(after compensating for the motion of the object) to reconstruct a refined Visual Hull of the object.

The remainder of this paper is organized as follows. In Section 2 a brief review of SFS and

the traditional ways of representing and constructing Visual Hulls are presented. In Section 3 we

introduce a new Visual Hull representation called the Bounding Edge representation and derive



an important property of the Bounding Edges called the Second Fundamental Property of Visual

Hulls ( ����� FPVH). In Section 4 we show that aligning two Visual Hulls using only the silhouettes is

inherently ambiguous and derive the geometric constraints which govern the alignment. We show

how photometric information (in the form of color images) can be used to break the alignment and

develop a temporal SFS algorithm for a rigid object as follows. We first combine the � ��� FPVH

with multi-camera stereo to extract 3D points called Colored Surface Points (CSPs) on the surface

of the object. Using an idea similar to the 2D image alignment problem as in [Sze94], we then

align the 3D CSPs with the 2D silhouette and color images to estimate the 6 DOF motion between

two Visual Hulls. The visibility issue is also discussed in Section 4. In Section 5 we extend our

temporal SFS algorithm to articulated objects using the Expectation-Maximization (EM) formula-

tion [DLR77] and imposing spatial coherency and temporal consistency. Both synthetic and real

experimental results are shown at the end of Sections 4 and 5. We conclude in Section 6 with a

brief discussion. In the Part II of this paper we apply our temporal SFS algorithm to two human-

related applications: (1) the acquisition of detailed human kinematic models and (2) marker-less

motion tracking.

2 Background

In this section we give a brief review of Shape-From-Silhouette (SFS). We first define the SFS

problem scenario and present two equivalent definitions of the Visual Hull (VH). We proceed to

describe two common ways of representing and constructing VHs.

2.1 Problem Scenario and Notation

Suppose there are � cameras positioned around a 3D object 	 . Let 
���
������������������������� ��� be

the set of silhouette images of the object 	 obtained from the � cameras at time  � . An example

scenario is depicted in Figure 2 with a head-shaped object surrounded by four cameras at time  �! .
It is assumed that the cameras are calibrated with "#
%$'&)(+* ,#-/. * ,#0 and 12
 being the perspective
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Figure 2: The Shape-From-Silhouette problem scenario: a head-shaped object 3 is surrounded by four

cameras at time 4 ! . The silhouette images and camera centers are represented by 5 
� and 6 
 respectively.

projection function and the center of camera � respectively. In other words 7 � "8
%$:9;& are the

2D image coordinates of a 3D point 9 in the �=<?> image. As an extension of this notation, " 
 $:@8&
represents the projection of a volume @ onto the image plane of camera � . Assume we have a

set of � silhouette images 
��A
� � and projection functions 
�"B
�� . A volume @ is said to exactly

explain 
��C
� � if and only if its projection onto the � <?> image plane coincides exactly with the

silhouette image � 
� for all �ED 
 �%��������������� ��� , i.e. " 
 $:@8& � � 
� . If there exists at least one non-

empty volume which explains the silhouette images exactly, we say the set of silhouette images is

consistent, otherwise we call it inconsistent.

2.2 Definitions of the Visual Hull

Here we present two different ways to define the Visual Hull [Che03]. Although these two defini-

tions are seemingly different, they are in fact equivalent to each other. See [Che03] for a proof.

Visual Hull Definition I (Intersecting Visual Cones): The Visual Hull F � with respect to a set

of consistent silhouette images 
��G
� � is defined to be the intersection of the � visual cones, each

formed by projecting the silhouette image � 
� into the 3D space through the camera center 1 
 .
This first definition, which is the most commonly used one in the SFS literature, defines the

Visual Hull as the intersection of the visual cones formed by the camera centers and the silhouettes.



Though this definition provides a direct way of computing the Visual Hull from the silhouettes (see

Section 2.4.1), it lacks information and intuition about the object (which forms the silhouettes). We

therefore also use a second definition [Lau91]:

Visual Hull Definition II (Maximally Exactly Explains): The Visual Hull F � with respect to a

set of consistent silhouette images 
�� 
� � is defined to be the largest possible volume which exactly

explains 
��A
� � for all �H�I����������������� � .

Generally for a consistent set of silhouette images 
��J
� � , there are an infinite number of vol-

umes (including the object 	 itself) that exactly explain the silhouettes. Definition II defines the

Visual Hull F � as the largest one among these volumes. Though abstract, this definition implic-

itly expresses a property of Visual Hull: the Visual Hull provides an upper bound on the object

which forms the silhouettes. To emphasize the importance of this property, we state it as the first

fundamental property of Visual Hulls.

2.3 First Fundamental Property of Visual Hulls

First Fundamental Property of Visual Hulls ( ��KL< FPVH): The object 	 that formed the silhouette
set �C
� lies completely inside the Visual Hull F � constructed from �A
� .

The � KL< FPVH is important as it gives us useful information on the object 	 in applications such

as robotic navigation or obstacle avoidance. The upper bound given by the Visual Hull gets tighter

if we increase the number of distinct silhouette images. Asymptotically if we have an infinite

number of every possible silhouette images of a convex object, the Visual Hull is exactly equal to

the object. If the object is not convex, the Visual Hull may or may not be equal to the object.

2.4 Representation and Construction

2.4.1 2D Surface Based Representation

For a consistent set of silhouette images, the Visual Hull can be (according to Definition I) con-

structed by intersecting the visual cones directly. By doing so, the Visual Hull is represented by



2D surface patches obtained from intersecting the surfaces of the visual cones. Although simple

and obvious in 2D, this direct intersection representation is difficult to use for general 3D ob-

jects. Recently Buehler et al. [BMMG99, MBR M 00, BMM01] proposed an approximate way to

compute the Visual Hull directly using the visual cone intersection method by approximating the

object as having polyhedral shape. Since polyhedral objects produce polygonal silhouette images,

their Visual Hulls consist of planar surface patches. However, for a general 3D object, its Visual

Hull consists of curved and irregular surface patches which are difficult to represent using simple

geometric primitives and are computational expensive and numerically unstable to compute.

2.4.2 3D Volume Based Representation

Since it is difficult to intersect the surfaces of the visual cones of general 3D objects, other more

effective ways have been proposed to construct Visual Hulls. The approach which is used by most

researchers [Pot87,NFA88,AV89,Sze93] is volume based construction. Voxel-based SFS uses the

same principle of visual cone intersection. However, the Visual Hull is represented by 3D volume

elements (“voxels”) rather than 2D surface patches. The space of interest is divided into discrete

voxels which are then classified into two categories: inside and outside. The union of all the inside

voxels is an approximation of the Visual Hull. For a voxel to be classified as inside, its projection

on each and every one of the � image planes has to be inside or partially overlap the corresponding

silhouette image. If the projection of the voxel is totally outside any of the silhouette images, it is

classified as outside. One of the disadvantages of using discrete voxels to represent Visual Hulls is

that the voxel-based VH can be significantly larger than the actual VH (see [Che03] for details).

3 A 1D VH Representation: Bounding Edge

In Section 2 we described two common ways to represent Visual Hulls: two-dimensional surface

patches and three-dimensional discrete voxels. In this section, we propose a new representation

for Visual Hulls using a one-dimensional element called a Bounding Edge (BE).
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Figure 3: (a) The Bounding Edge NBO! is obtained by first projecting the ray PQO! onto 5 0! , 5 -! , 5SR! and then

re-projecting the segments overlapping with the silhouettes back into 3D space. N O! is the intersection of the

reprojected segments. (b) Two different views of the Bounding Edge representation of the Visual Hull of

the dinosaur/bananas object shown in Figure 1.

3.1 Definition of Bounding Edge

Consider a set of � silhouette images 
��G
� � at a given time instant  � . Let T O� be a point on the

boundary of the silhouette image �J
� . By projecting T O� into 3D space through the camera center

18
 , we get a ray U O� . A Bounding Edge V O� is defined to be the part of U O� such that the projection

of V O� onto the W <?> image plane lies completely inside the silhouette �JX� for all W D 
 ����������������� ��� .
Mathematically the condition can be expressed as

V O�#Y U O� and " X $ZV O� & Y � X� [ W D 
 ����������������� ���B\ (1)

Figure 3(a) illustrates the definition of a Bounding Edge at  ]! . A Bounding Edge can be computed

by first projecting the ray U O� onto the �_^ � silhouette images � X� � W �I����������������� � � Wa`�b� , and

then re-projecting the segments which overlap with � X� back into 3D space. The Bounding Edge is

the intersection of the reprojected segments. Note that the Bounding Edge V O� is not necessarily a

continuous line. It may consist of several segments if any of the silhouette images are not convex.

Hereafter, a Bounding Edge V O� is denoted by a set of ordered 3D vertex pairs as follows:



V O� �Iced �Gf O� $:gh& �]i f O� $Lgh&kj � g �l��� \�\�\ �nm O�po � (2)

where �Gf O� $:gh& and i f O� $Lgh& represent the start vertex and finish vertex of the g <?> segment of

the Bounding Edge respectively and m O� is the number of segments that V O� is comprised of. By

sampling points on the boundaries of all the silhouette images 
�� 
� � ��������������������� ��� , we can

construct a list of q � Bounding Edges that represents the Visual Hull F � . Figure 3(b) illustrates

the Bounding Edge representation of the VH of the dinosaur/bananas object shown in Figure 1(a).

3.2 Second Fundamental Property of Visual Hulls

The most important property of the Bounding Edge representation is that its definition captures

one aspect of Shape-From-Silhouette very naturally. To be precise, we state this property as

Second Fundamental Properties of Visual Hulls ( � ��� FPVH): Each Bounding Edge of the Visual
Hull touches the object (that formed the silhouette images) at at least one point.

The � ��� FPVH allows us to use Bounding Edges to represent one important aspect of the shape

information of the object that can be extracted from a set of silhouette images. Although being an

important property, the � ��� FPVH is often overlooked by researchers who usually focus on the � Kr<
FPVH. In the next chapter, we will show how the �%��� FPVH can be combined with stereo to locate

points on the surface of the object. A comparison of the advantages and disadvantages of the three

VH representations (surfaces, voxels and Bounding Edges) can be found in [Che03].

3.3 Related Work

In their image-based Visual Hull rendering work [BMMG99, MBR M 00, Mat01], Matusik et al.

proposed a ray-casting algorithm to render objects using silhouette images. Their way of inter-

secting the casting rays with the silhouette images is similar to the way our Bounding Edges are

constructed. However, there are two fundamental differences between their approach and the def-



inition of Bounding Edge. First, our Bounding Edges are originated only from points on the

boundary of the silhouette image while their casting rays can originate from anywhere, including

any point inside the silhouette. Second, their casting rays do not embed the important � ��� FPVH

as Bounding Edges do. In a separate paper [BMM01], Matusik et al. also proposed a fast way

to build polyhedral Visual Hulls. They based their idea on visual cone intersection but simplified

the representation and computation by approximating the actual silhouette as polygons (i.e. any

curved part of the silhouette is approximated by straight lines) which is equivalent to approximat-

ing the 3D object as polyhedral shape. Due to this approximation, their results are not the exact

surface-based representation discussed in Section 2.4.1 except for true polyhedral objects. Never-

theless their idea of calculating silhouette edge bins can be applied to speed up the construction

of Bounding Edges. Lazebnik et al. [LBP01] independently proposed a new way of representing

Visual Hulls. The edge of the “Visual Hull mesh” in their work is theoretically equivalent to the

definition of a Bounding Edge. However, they compute their edges after locating frontier and triple

points whereas we compute Bounding Edges directly from the silhouette images.

4 SFS Across Time: Rigid Objects

In this section we propose an algorithm for Shape-From-Silhouette across time for rigid objects. A

number of silhouettes from each camera are captured as the object moves across time and then used

to construct a refined VH. For example, for a system with � cameras and s frames, the effective

number of cameras would be increased to st� . This is equivalent to adding an additional $us8^ � &'�
physical cameras to the system.

There are two tasks to constructing Visual Hulls across time: (1) estimating the motion of the

object between successive time instants and (2) combining the silhouette images at different time

instants to get a refined shape of the object. In this section, we assume the object of interest is

rigid, but the motion of the object between frames is totally arbitrary and unknown. In Section 5

we will extend the algorithm to articulated objects. We refer to the task of computing the rigid



transformation as Visual Hull Alignment and the task of combining the silhouette images across

time as Visual Hull Refinement.

4.1 Visual Hull Alignment: Theory

To combine silhouette images across time, the motion of the object between frames is required.

For static objects, the problem may be simplified by putting the object on a precisely calibrated

turn-table so that the motion is known in advance [Sze93]. However for dynamic objects whose

movement we do not have control or knowledge of, we have to estimate the unknown motion

before we can combine the silhouette images across time. To be more precise, we state the Visual

Hull Alignment Problem as:

Visual Hull Alignment from Silhouette Images:

Suppose we are given two sets of consistent silhouette images 
�� 
� �v�H�I�%��������������� � �Iwx�I��� �y�
of a rigid object 	 from � cameras at two different time instants  ]! and  0 . Denote the Visual Hulls

for these silhouette sets by F � �zw{�|��� � . Without loss of generality, assume the first set of images


�� 
! � are taken when the object is at position and orientation of $:} � 0
¯
& while the second image set


��C
0 � is taken when the object is at $z~ ��� & . The problem of Visual Hull alignment is to find $z~ ��� &
such that there exists an object 	 which exactly explains the silhouettes at both times  � and the

relative position and orientation of 	 is related by $Z~ ��� & from  �! to  0 . Moreover, we say that the

two Visual Hulls F{! and F 0 are aligned consistently with transformation $z~ ��� & if and only if we

can find an object 	 such that Fe! is the Visual Hull of 	 at orientation and position $Z} � 0
¯
& and F 0

is the Visual Hull of 	 at orientation and position $z~ ��� & .
4.1.1 Visual Hull Alignment Ambiguity

Since it is assumed that the two sets of silhouette images are consistent and come from the same

object, there always exists at least one set of object 	 and motion $z~ ��� & (the true solution) that
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Figure 4: A 2D example showing the ambiguity of aligning Visual Hulls. Both cases (a) and (b) have the

same silhouettes at times 4 ! and 4 0 but they are formed from two different objects with different motions.

exactly explains both sets of silhouette images. We now show that aligning two Visual Hulls using

only the silhouette information is inherently ambiguous. This means that in general the solution is

not unique and there exists more than one set of $z~ ��� & which satisfies the alignment criterion. A

2D example is shown in Figure 4. In the figure, both (a) and (b) have the same silhouette image sets

(and hence the same Visual Hulls) at times  ]! and  0 . However, in (a), the silhouettes are formed by

a curved object with a pure translation between  �! and  0 , while in (b), the silhouettes are created

by a polygonal object with both a rotation (200 degrees) and a translation between  n! and  0 .
4.1.2 Geometric Constraints for Aligning 2D Visual Hulls

The motion ambiguity in Visual Hull alignment is a direct result of the indeterminacy in the shape

of the object. Although the alignment solution is not unique, there are constraints on the motion

and the shape of the object for a consistent alignment. In this section we discuss the geometrical

constraints for aligning two 2D Visual Hulls and in the next section extend them to 3D.

To state the constraints for aligning two 2D polygonal Visual Hulls F � �kw��I��� � of a 2D object

	 , let V O� be the edges of F � , �����A� ����$L@2& be the entity after applying transformation of $Z~ ��� & to

@ and ��� !���C� �r� $'& denotes the inverse transformation. Now using the 2D version of the ����� FPVH

(see [Che03] for details), the geometric constraints are expressed in the following Lemma 1:
1Proofs of all the lemmas in this paper can be found at [Che03].
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Figure 5: (a)(b) Two Visual Hulls of the same object at different positions and orientations. (c) All edges

satisfy Lemma 1 when the alignment �r�e�k��� is consistent, (d) Edges N !! , N R! , Np�! , � � !���t�?� � � � ��N !0 � , � � !�����?� � � � ��N 00 � ,� � !���t��� � � � ��Np�0 � all violate Lemma 1 and so the Visual Hulls are not aligned consistently.

Lemma 1: Given two 2D Visual Hulls Fe! and F 0 , the necessary and sufficient condition for them
to be aligned consistently with transformation $z~ ��� & is given as follows: No edge of �A���A� ����$:F{!]&
lies completely outside F 0 and no edge of F 0 lies completely outside �����A� ����$:F{!]& .

Figure 5(a)(b) shows examples of two 2D Visual Hulls of the same object. In (c), the alignment

is consistent and all edges from both Visual Hulls satisfy Lemma 1. In (d), the alignment is

inconsistent and the edges V !! , V R! , V �! , � � !���t��� � � � $:V !0 & , � � !���t��� � � � $:V 00 & , � � !���t��� � � � $ZV �0 & all violate Lemma 1.

Lemma 1 provides a good way to test if the alignment of two 2D VHs is consistent or not.

To illustrate how these constraints can be used in practice, two synthetic 2D Visual Hulls (poly-

gons) each with four edges (Figure 6) were generated and Lemma 1 was used to search for the

space of all consistent alignments. In 2D there are only three degrees of freedom (two in transla-

tion and one in rotation). The space of consistent alignments is shown in Figure 6. There are two

unconnected subsets of the solution space, clustered around two different rotation angles.

In order to extend Lemma 1 to 3D, consider the following variant of Lemma 1 for 2D objects:

Lemma 2: $z~ ��� & is a consistent alignment of two 2D Visual Hulls F�! and F 0 , constructed from
silhouette sets 
��A
� � � w������ � if and only if the following condition is satisfied : for each edgeV O! of �����C� �r�u$ZF�!n& , there exists at least one point 9 on V O! such that the projection of 9 onto the �=<?>
image lies inside or on the boundary of the silhouette ��
0 for all �H�I����������������� � .

Lemma 2 expresses the constraints in terms of the silhouette images rather than the Visual
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Figure 6: Two synthetic 2D Visual Hulls (each with four edges) and the space of consistent alignments.

Hull. For 2D objects, there is no significant difference between using Lemma 1 or Lemma 2 to

specify the alignment constraints because all 2D Visual Hulls can be represented by a polygon

with a finite number of edges. For 3D objects, however, the 3D version of Lemma 1 is not very

practical because it is difficult to represent a 3D Visual Hull exactly and completely (see [Che03]).

By expressing the geometrical constraints in terms of the silhouette images (Lemma 2) instead of

the Visual Hull itself (Lemma 1), the need for an exact and complete Visual Hull representation

can be avoided. In the next section, we extend Lemma 2 to 3D convex objects.

4.1.3 Geometric Constraints for Aligning 3D Visual Hulls

The geometric constraints for aligning two convex 3D VHs are expressed in the following lemma:

Lemma 3: For two convex 3D Visual Hulls F�! and F 0 constructed from silhouette sets 
��G
� � �/w;���� � , the necessary and sufficient condition for a transformation $z~ ��� & to be a consistent alignment
between F{! and F 0 is as follows: for any Bounding Edge V O! constructed from the silhouette image
set 
�� 
! � , there exists at least one point 9 on V O! such that the projection of the point � ���A� ��� $:9;& onto

the � <?> image lies inside or on the silhouette �G
0 for all �l� ����������������� � . Similarly, for any
Bounding Edge V O0 constructed from 
��A
0 � , there exists at least one point 9 on V O0 such that the

projection of the point � � !���A� �r� $Z9x& on the � <?> image lies inside or on the silhouette �G
! .
The condition in Lemma 3 is still necessary, but not sufficient, if either one or both of the two

Visual Hulls are non-convex. A counter example can be found in [Che03]. For general 3D objects,

Lemma 3 is useful to reject inconsistent alignments between two Visual Hulls but cannot be used



to prove if an alignment is consistent. Theoretically we can prove if an alignment is consistent

as follows. First transform the Visual Hulls using the alignment transformation and compute the

intersection of the two Visual Hulls. The resultant Visual Hull is then rendered with respect to all

the cameras at both times and compared with the two original sets of silhouette images. If the new

Visual Hull exactly explains all the original silhouette images, then the alignment is consistent. In

practice, however, this idea is computationally very expensive and is inappropriate as an algorithm

to compute the correct alignment between two 3D Visual Hulls. In Section 4.2.3, we will show

how the hard geometric constraints stated in Lemma 3 can be approximated by soft constraints and

combined with photometric consistency to align 3D Visual Hulls.

4.2 Resolving the Alignment Ambiguity

Since aligning Visual Hulls using silhouette images alone is ambiguous (see Section 4.1.1), addi-

tional information is required in order to find the correct alignment. In this section we show how

to resolve the alignment ambiguity using color information [CBK03]. First we combine the � ���
FPVH (introduced in Section 3) with stereo to extract a set of 3D points (which we call Colored

Surface Points) on the surface of the object at each time instant. The two sets of 3D Colored Sur-

face Points are then used to align the Visual Hulls through the 2D color images. We assume that

besides the set of silhouette images 
��G
� � , the set of original color images (which the silhouette

images were derived from) are also given and represented by 
�*=
� � .
4.2.1 Colored Surface Points (CSPs)

Although the Second Fundamental Property of Visual Hull tells us that each Bounding Edge

touches the object at at least one point, it does not provide a way to find this point. Here we

propose a simple (one-dimensional) search based on the stereo principle to locate this touching

point. If we assume the object is Lambertian and all the cameras are color balanced, then any

point on the surface of the object should have the same projected color in all of the color images.



In other words, for any point on the surface of the object, its projected color variance across the

visible cameras should be zero. Hence on a Bounding Edge, the point which touches the object

should have zero projected color variance. This property provides a good criterion for locating the

touching points. Hereafter we call these touching points as the Colored Surface Points (CSP).

To express the idea mathematically, consider a Bounding Edge V O� from the w <?> Visual Hull.

Since we denoted the Bounding Edge V O� by a set of ordered 3D vertex pairs ced �Gf O� $:gh& ��i f O� $:gh& j o
(Equation (2)), we can parameterize a point   O� $:g ��¡ & on V O� by two parameters g and ¡ , where

g D 
 �����������������nm O� � and ¢H£ ¡ £ � with

  O� $:g ��¡ & � �Gf O� $:gh&S¤ ¡¦¥ d i f O� $:gh&�^§�Gf O� $:gh& j \ (3)

Let ¨ 
� $:9;& be the projected color of a 3D point 9 on the �=<?> color image at time  � . The projected

color mean © O� $:g ��¡ & and variance ª O� $Lg ��¡ & of the point   O� $Lg ��¡ & are given as

© O� $:g ��¡ & � �« O�­¬ 
 ¨ 
� $Z  O� $Lg ��¡ &�& � ª O� $Lg ��¡ & � �« O�a¬ 

® ¨ 
� $Z  O� $:g ��¡ &�&�^¯© O� $Lg ��¡ &Z° 0 \ (4)

The projected color ¨ 
� $z  O� $:g ��¡ &�& from camera � is used in calculating the mean and variance

only if   O� $Lg ��¡ & is visible in that camera and « O� denotes the number of the visible cameras for

point   O� . The question of how to conservatively determine the visibility of a 3D point with respect

to a camera using only the silhouette images will be addressed shortly in Section 4.3. Figure 7(a)

illustrates the idea of locating the touching point by searching along the Bounding Edge.

In practice, due to noise and inaccuracies in color balancing, instead of searching for the point

which has zero projected color variance, we locate the point with the minimum variance. In other

words, we set the Colored Surface Point of the object on V O� to be   O� $+±g � ±¡ & where ±g and ±¡
minimizes ª O� $:g ��¡ & for ¢²£ ¡ £ ��� g D 
 �������������������]m O� � . This can be done by sampling

discretely and uniformly over the 1D parameter space of ¡ along each segment of the Bounding
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Figure 7: (a) Locating the touching point (Colored Surface Point) by searching along the Bounding Edge

for the point with the minimum projected color variance. (b) Two sets of CSPs for the dinosaur/bananas

example (see Figure 1) obtained at two time instants with different positions and orientations. Note that the

CSPs are sparsely sampled and there is no point-to-point correspondence between the two sets of CSPs.

Edge and search for the point with the minimum variance. Note that by choosing the point with the

minimum variance, the problem of tweaking parameters or thresholds of any kind is avoided. The

need to adjust parameters or thresholds is always a problem in other shape reconstruction methods

such as space carving [KS00] or multi-baseline stereo [OK93]. Space carving relies heavily on a

color variance threshold to remove non-object voxels and stereo matching results are sensitive to

the search window size. In our case, knowing that each Bounding Edge touches the object at at

least one point ( � ��� FPVH) is the key piece of information that allows us to avoid any thresholds.

In fact locating CSPs is a special case of the problem of matching points on pairs of epipolar lines

as discussed in [SG98, IHA02]. In [SG98] and [IHA02], points are matched on “general” epipolar

lines on which there may or may not be a matching point so a threshold and an independent

decision is needed for each point. To locate CSPs, points are matched on “special” epipolar lines

which guarantee to have at least one matching point so no threshold is required.

Since we use local texture information to extract CSPs, for texture-less surface there is am-

biguity in determining the correct positions of the CSPs. Unfortunately it is a common problem

to a lot of 3D reconstruction methods which depend on texture and there is no easy solution to

it. However, since CSPs are restricted to lie on the Bounding Edge, in practice if the positions of

the CSPs are incorrectly estimated in the texture-less region, the deviations are usually small and



have insignificant effects on our alignment algorithm to be discussed below. See Section 4.5 for

experimental validation and further discussion.

Hereafter, for simplicity we drop the notation dependence of g , ¡ , ± and denote (with a slight

abuse of notation) the CSPs   O� $+±g � ±¡ & by   O� and its color © O� $³±g � ±¡ & by © O� .
4.2.2 Alignment by Color Consistency

Suppose we have located two sets of Colored Surface Points at two different time instants  �! and

 0 . For example, Figure 7(b) shows two sets of CSPs for the dinosaur/bananas (see Figure 1)

obtained at two time instants at two different positions and orientations. Since the sets of CSPs

lie on their corresponding (rigid) Visual Hulls F�! and F 0 , the problem of aligning F{! and F 0 is

equivalent to aligning the two sets of CSPs. The question now is how can we align the two sets of

CSPs. Before answering this question, we have to point out two very important facts about CSPs.

First, the CSPs at each time instant are points on the occluding contours. This means that CSPs

are only sparsely sampled points on the surface of the object (as opposed to the 3D data points

acquired from laser range devices which produce densely sampled surface points on the object).

The point sparsity prohibits us from using well established 3D point alignment methods such as the

Iterative Closet Point (ICP) method [BM92, Zha94, RL01]. Secondly the only property common

of the two sets of CSPs is that they all lie on the surface of the object. There is no point-to-point

correspondence between any two sets of CSPs obtained at different time instants. Because of this,

alignment methods which are used in the structure-from-motion literature [TK92, PK92, QK96]

cannot be used to align the CSPs.

To solve the CSP alignment problem, we use an idea similar to that used to solve the 2D image

registration problem in [Sze94] (related idea has been proposed to register 3D laser range data with

camera images in [Whe96, KNZI02]). In our case, instead of registering a 2D image with another

2D image, we align 2D images ( 
�*y
0 � ) at time  0 with a “3D image” (the Colored Surface Points


�  O! � ) at time  �! through the projection functions 
�" 
 � . The error measure used is the sum of

squares of the color differences between the Colored Surface Points at time  n! and their projected



colors from the color images at time  0 and vice versa. Mathematically, let 
�*y
� � �C
� �   O� � © O� � ´G�
����������������� q � � �µ�¶�%��������������� � � w§�¶��� �·� be the two sets of data. To find the most color

consistent alignment $z~ ��� & , consider the color error function ¸ �º¹¼»%½O�¾ ! ¸ O !u� 0 ¤ ¹¿»yÀO?¾ ! ¸ O 0 � ! where

¸ O !u� 0 � ¬ 
 ¸ O
� 
!u� 0 � ¬ 


® ¨ 
 ! $Z~�Á�$Z  O0 ^ � &�&�^Â© O0 °�0 � ¸ O 0 � ! � ¬ 
 ¸ O
� 
0 � ! � ¬ 


® ¨ 
0 $z~¼  O! ¤ � &�^Â© O ! °�0J\ (5)

Here ¸ O � 
0 � ! represents the difference between the mean color © O ! of the Colored Surface Point   O!
at time  �! and its projected color ¨ 
0 $z~¼  O! ¤ � & in camera � at time  0 . Note that at time  0 , the

new position of   O! due to the motion of the object is ~¼  O! ¤ � . Likewise, ¸ O � 
!u� 0 is the difference

between the mean color © O 0 of   O0 and its projected color ¨·
! $z~ Á $z  O0 ^ � & in camera � at time  �! .
From now on, we refer to the error of aligning 3D points with the 2D images forward in time (e.g.

3D points at  �! and 2D images at  0 ) as the forward error. Similarly the error of aligning 3D points

with the 2D images backward in time (e.g. 3D points at  0 and 2D images at  �! ) is referred to as

the backward error. In the current example, ¸ O 0 � ! is the forward error while ¸ O !u� 0 is the backward

error. Just as when locating the CSPs on the Bounding Edge in Equation (4), the summations in

Equations (5) include the projected color of camera � only if the point of interest is visible in that

camera. The process of Visual Hull alignment by color consistency is illustrated in Figure 8.

If we parameterize ~ and � as Ã � ®ÅÄ ! � Ä 0 � Ä - � Ä R � Ä � � Ä­Æ ° Á , where
Ä ! � Ä 0 � Ä - are the Euler’s

angles of ~ and
Ä R � Ä � � Ä­Æ are the Ç ��È��]É components of � , the minimization of Equations (5) can

be solved by a variant of the Levenberg-Marquardt (LM) algorithm [DS83, PTVF93]:

1. With an initial estimate ÊÃ , calculate the Hessian matrix Ë � 
�Ì+Í � � and the difference
vector Î � 
QÏ·Í)� with g � « �I������������������Ð as

Ì=Í � � »�½¬O?¾ ! ¬ 

Ñ ¸ O � 
!u� 0Ñ ® ÃÒ°�Í

Ñ ¸ O � 
!u� 0Ñ ® Ã�° � ¤
»yÀ¬O?¾ ! ¬ 


Ñ ¸ O � 
0 � !Ñ ® ÃÒ°�Í
Ñ ¸ O � 
0 � !Ñ ® Ã�° � � (6)

Ï�Í � ^#� ® »%½¬O�¾ ! ¬ 
 ¸ O � 
!u� 0
Ñ ¸ O � 
!u� 0Ñ ® Ã�°�Í ¤ »yÀ¬O?¾ ! ¬ 
 ¸ O � 
0 � !

Ñ ¸ O � 
0 � !Ñ ® Ã�°�Í °Ó\ (7)
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Figure 8: Visual Hull Alignment using color consistency. The error between the colors of the 3D surface

points and their projected image colors is minimized.

2. Update the parameter ÊÃ by an amount Ô�Ã � $ZË ¤lÕ³}�& � ! Î , where Õ is a time-varying
stabilization parameter.

3. Go back to 1. until the estimate of ÊÃ converges.

Note that in calculating the Hessian matrix Ë and the difference vector Î in Equations (6) and (7),

the derivatives of the function ¨·
� (which maps a 3D point to its projected color in the image *=
� )

with respect to Ã are needed. Here we use a chain rule approach similar to that used for 2D

image registration in [Sze94]. The derivatives are approximated by multiplying the image gradient

(computed locally) with the camera projection matrix and the Jacobian of the transformed 3D point

with respect to the transformation parameters Ã .

For objects with large motion between frames, we initialize the algorithm by approximating

the two sets of CSPs at  �! and  0 each by an ellipsoidal shell. The initial estimate of the translation

vector � is then set as the relative positions of the centers of the two ellipsoids. Similarly the initial

guess for the rotation matrix ~ is set as the relative orientation of the two ellipsoids. This simple

initialization method works well for most objects when the rotation of the object is less than 90

degrees. For objects with small motion between frames, it is suffice to initialize the algorithm with

zero translation and rotation.



4.2.3 Alignment by Color Consistency and Geometrical Constraints

Since the above formulation for aligning two sets of CSPs is inspired by the 2D image registra-

tion problem [Sze94], the error measure in Equations (5)) is based solely on color consistency

(stereo). Though simple, this formulation does not take into account an important fact: the CSPs

lie on the surface of Visual Hulls whose alignment is governed by the geometric constraints stated

in Lemma 3. Here we show how the hard constraints of Lemma 3 can be converted into soft

constraints and combined with color consistency to align the CSPs.

Recall that Lemma 3 states that if $Z~ ��� & is a consistent alignment, then for any Bounding

Edge V O! , there exists at least one point 9 on V O! such that the projection of the transformed point

~Ö9×¤ � lies inside or on the boundary of all the silhouette images 
��J
0 � at time  0 and vice versa.

In fact 9 is the point where the object touches the Bounding Edge, which we have extracted as a

CSP. Hence the constraint is equivalent to saying that all of the transformed CSPs at time  n! must

lie inside or on the boundary of the silhouette images 
��J
0 � and vice versa. In practice, due to

noises and calibration errors, instead of applying this hard constraint directly to the optimization

procedures, we incorporate it as a soft constraint by minimizing the distance between the projected

CSP and the silhouettes as explained below.

Assume we have the same sets of data 
�*Ø
�Ù� �C
���   O�·� © O����´Ú�l����������������� q � �Q���l����������������� � ��w;���� �·� as before. Let $Z~ ��� & be an estimate of the rigid transformation. Consider first the calculation

of the forward error. For a CSP   O! (with color © O ! ) at time  �! , its 3D position at time  0 would be

~¼  O! ¤ � . Consider two different cases of the projection of ~�  O! ¤ � into the � <?> camera:

1. The projection lies inside the silhouette � 
0 . In this case, we use
® ¨ 
0 $Z~�  O! ¤ � &C^v© O ! ° 0 (the

color difference) as the error measure, where as defined before, ¨=
0 $:9;& is the projected color

of a 3D point 9 into the color image *y
0 . Otherwise, we set the color error to zero if the

projection of 9 lies outside � 
0 . We call this error the forward photometric error.

2. The projection lies outside �G
0 . In this case, we use the distance of the projection from ��
0 ,
represented by Ïy
0 $Z~�  O! ¤ � & as an error measure. The distance is zero if the projection lies



inside �A
0 . We call this error the forward geometric error.

Note that an approximation of the function Ï=
� can be obtained by applying the distance transform

to the silhouette image � 
� [Jai89]. Summing over all cameras in which   O! is visible, the forward

error measure of   O! with respect to $Z~ ��� & is given by

¸ O 0 � ! � ¬ 
 
�Û ¥ Ï 
0 $Z~�  O! ¤ � &S¤ ® ¨ 
0 $Z~�  O! ¤ � &�^Â© O ! °Ü0�� � (8)

where Û is a weighing constant. Equation (8) combines the color consistency constraint (stereo)

with the geometric constraint (Shape-From-Silhouette) using the weighing constant Û . Similarly,

the backward error measure of a CSP   O0 at time  0 is written as the sum of the backward photo-

metric and geometric errors:

¸ O !u� 0 � ¬ 
 
�Û ¥ Ï 
 ! $z~�Á�$z  O0 ^ � &�&S¤ ® ¨ 
 ! $Z~�Á�$Z  O0 ^ � &�&�^¯© O0 ° 0 �B\ (9)

The problem of estimating $z~ ��� & is now turned into the problem of minimizing the sum of the

forward and backward error

Ý{Þ�ß~ � � ¸ � Ý{Þ�ß~ � � » ½¬ O?¾ ! ¸ O !u� 0 ¤
» À¬O?¾ ! ¸ O 0 � ! � (10)

which can be solved using the same Iterative LM algorithm described in Section 4.2.2. Hereafter,

we refer to this Visual Hull across time algorithm as the temporal SFS algorithm (for rigid objects)

and summarize the steps as follows:

Temporal SFS Algorithm for Rigid Objects

1. Construct the Bounding Edges 
�V O� � from the silhouette images 
�� 
� � at  � where w;�º��� � .
2. Extract a set of Colored Surface Points 
�  O� � © O� � at  � from the list of Bounding Edges 
�V O� �

and the color images 
�* O� � .
3. Initialize the translation and rotation parameters by ellipsoid fitting.

4. Apply the Iterative LM algorithm (Section 4.2.2) to minimize the sum of the forward and



backward errors in Equation (10) with respect to the (6D) motion parameters until conver-

gence is attained or for a fixed maximum number of iterations.

Note that in calculating the photometric error, setting the color error to zero if the projection

of 9 lies outside �A
0 may introduce instability in the optimization process due to the discontinuity

of the photometric error at the boundary of the silhouettes. Although this instability problem did

not happen in our experiments in Section 4.5, it can be avoided by setting the photometric error to

transition smoothly to zero outside the silhouette boundary.

Ideally the weighing constant Û in Equations (8) and (9) should be set based on the relative ac-

curacy between camera calibration and color balancing. However since such accuracy information

is difficult to obtain, we instead determine Û experimentally. Using a synthetic data set (see Sec-

tion 4.5.1) with ground-truth motion, we apply the above temporal SFS algorithm with different

values of Û and choose the one which gives the best estimation results as compared to the ground-

truth motion. Once the optimal Û is found, it is fixed and used for all the experiments discussed in

Section 4.5 (and Part II of this paper). Although this experimental approach of determining Û may

not be optimal, in practice it works well for a wide varieties of sequences.

4.3 Visibility

4.3.1 Determining Visibility for Locating CSPs

To locate the Colored Surface Points using Equation (4), the visibility of the 3D point   O� $Lg ��¡ &
with respect to all � cameras is required. Here, we present a way to determine the visibilities

conservatively using only the silhouette images. Suppose we are given a 3D point 9 and a set of

silhouette images 
��A
� � with camera centers 
�1Ò
Q� and projection functions 
�"B
%$'&�� . The following

lemma then holds:

Lemma 4: Let "pXZ$:9;& and "pXL$Z18
�& be the projections of the point 9 and the � <?> camera center 12

on the (infinite) image plane of camera W . If the 2D line segment joining " X $Z9x& and " X $:1 
 & does
not intersect the silhouette image � X� , then 9 is visible with respect to camera � at time  � .
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Figure 9: (a) Visibility of points with respect to cameras using Lemma 4. (b) An example where 6 � is

behind 6 ! . The correct line to be used in Lemma 4 is the outer segment which passes through infinity

instead of the direct segment.

Figure 9(a) gives examples where the points 9G! � 9 0 and 9 - are visible with respect to cam-

era 2. The converse of Lemma 4 is not necessarily true: the visibility cannot be determined if the

segment joining " X $Z9x& and " X $Z1 
 & intersects the silhouette � X� . One counter example is shown in

Figure 9(a). Both points 9A! and 9 0 project to the same 2D point 7 on the image plane of camera

1 and the segment joining 7 and " ! $:1 R & intersects with � !! . However, 9C! and 9 0 have different

visibilities with respect to camera 4 ( 9 0 is visible while 9C! is not). Note that special attention must

be given to situations in which camera center 1�
 lies behind camera center 1ÒX . In such cases, the

correct line segment to be used in Lemma 4 is the outer line segment (passing through infinity)

joining "pXL$Z9x& and "pXL$Z18
�& rather than the direct segment. An example is given in Figure 9(b).

Though conservative, there are two advantages of using Lemma 4 to determine visibility for

locating CSPs. First, Lemma 4 uses information directly from the silhouette images, avoiding the

need to estimate the shape of the object for the visibility test. Secondly, recall that to construct a

Bounding Edge V O� , we start with the boundary point T O� of the � <?> silhouette. Hence all the points

on V O� project to the same 2D point T O� on camera � which implies all points on the Bounding

Edge V O� have the same set of conservative visible images. This property ensures that the color

consistencies of points on the same Bounding Edge are calculated from the same set of images.

Accuracy in searching for the touching point   O� is increased because the comparisons are made

using the same images for all of the points on the same Bounding Edge.
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Figure 10: The “Reverse approach” of applying Lemma 4 to determine visibility of �xàáO!tâ � with respect

to ã�5 
0·ä . The camera centers are inversely transformed by �r� Á �nåJ� Á ��� and then projected onto ã�5 
! ä . The

visibility can then be determined by checking if the lines joining æ�O ! and the projections of the transformed

camera centers intersect with 5 !! exactly as in Lemma 4.

4.3.2 Determining Visibility During Alignment

To perform the alignment using Equation (10), we have to determine the visibility of the trans-

formed 3D point ~¼  O! ¤ � with respect to the cameras at time  0 (and vice versa the visibility

for the transformed point ~ Á $Z  O0 ^ � & with respect to the cameras at time  �! ). Naively, we can

just apply Lemma 4 to the transformed point ~¼  O! ¤ � directly. In practice, however, this “direct

approach” does not work for the following reason. Since the CSP   O! lies on the surface of the

object, the projection of the transformed point ~¼  O! ¤ � should lie inside the silhouettes at time  0 ,
unless it happens to be on the occluding contour of the object again at  0 such that its projection

lies on the boundary of some of the silhouette images. Either way, this means that no matter where

the camera centers are, the line joining the projection of ~�  O! ¤ � and the camera centers almost

always intersects the silhouettes. Hence, the visibility of the point   O! at  0 will almost always be

treated as indeterminable by Lemma 4 due to its over-conservative nature.

Here we suggest a “reverse approach” to deal with this problem. Instead of applying the trans-

formation $Z~ ��� & to the point   O! , we apply the inverse transform $z~ÖÁ � ^#~eÁ � & to the camera

centers and project the transformed camera centers into the one silhouette image (captured at  �! )
where   O! is originated from as shown in Figure 10. Lemma 4 is then applied to the boundary point

T O ! (which generates the Bounding Edge V O! that   O! lies on) and the projections of the transformed

camera centers to determine the visibility. Since the object is rigid, the reverse approach generates



the correct visibility of ~�  O! ¤ � with respect to the cameras at  0 as the direct approach when

$z~ ��� & is the correct alignment.

4.4 Visual Hull Refinement

After estimating the alignment across time, the rigid motion 
y$z~ � ��� � &�� is used to combine the s
sets of silhouette images 
��G
�S�����l����������������� � �aw;�º����������������� s�� to get a tighter upper bound on

the shape of the object. By fixing  �! as the reference time, we combine 
��G
� � �Jw;� � ������������� s with


�� 
! � by considering the former as “new” silhouette images captured by additional cameras placed

at positions and orientations transformed by $z~ � ��� � & . In other words, for the silhouette image

�C
� captured by camera � at time w , we use a new perspective projection function "8
��ç ! derived

from "/
 through the rigid transformation $z~ � ��� � & . As a result, the effective number of cameras is

increased from � to ��s .

4.5 Experimental Results

Two types of sequences are used to demonstrate the validity of our alignment and refinement algo-

rithm. Firstly, a synthetic sequence is used to obtain a quantitative comparison of several aspects

of the the algorithm. Two sets of experiments are run on the synthetic sequence. Experiment Set A

compares the effectiveness of using (1) Colored Surface Points to align Visual Hulls with (2) voxel

models created by Shape-From-Silhouette and (3) Space Carving [KS00]. Experiment Set B stud-

ies how the alignment accuracy is affected by each component, color and geometry in the error

measure in Equations (8) and (9). After we have tested our alignment algorithm on synthetic data,

sequences of real objects are used in Section 4.5.2 for a qualitative evaluation on data with real

noise, calibration errors and imperfectly color balanced cameras. Note that in all of the sequences

discussed in this paper, the motion of the object is aligned with respect to the first frame of the

sequence and we use the alignment results of frame w ^ � to initialize the alignment of frame w .
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Figure 11: (a) The torso object and some of the input images of camera 1 of the synthetic torso sequence.

(b) Graphs of the average RMS errors in rotation and translation against the threshold used in SC. The

bottom half of the figure illustrates the amplified part of the graph near the optimal threshold value (0.108).

Using Bounding Edges (the red dashed line) is always more accurate than using SC in alignment, even with

the optimal threshold.

4.5.1 Synthetic Data Set: Torso Sequence

A synthetic data set was created using a textured computer mesh model resembling the human

torso. The model was moved under a known trajectory for twenty two frames. At each time instant,

images of six cameras ( � �èÐ ) with known camera parameters were rendered using OpenGL. A

total of 22 sets of color and silhouette images were generated. The textured mesh model and some

input images for camera 1 at a variety of frames are shown in Figure 11(a).

Experiment Set A: BE/CSP versus SFS and SC

In Experiment Set A three algorithms were implemented to show the effectiveness of using Bound-

ing Edges/Colored Surface Points to align Visual Hulls compared to using voxel models created by

Shape-From-Silhouette (SFS) and Space Carving (SC) [KS00]. Basically all the three algorithms

use the same alignment procedure described in Section 4.2.2 but with input data (surface points)

obtained from three different ways. In the first algorithm, BEs and CSPs are extracted and used as

the input data for the alignment. In the second algorithm, a voxel model is built from the silhouette

images using voxel-based SFS. Surface voxels are extracted and colored by back-projecting onto



the color images. The centers of the colored surface voxels are then treated as input data points

for alignment. In the third algorithm, a voxel model is first built using SFS (as in the second al-

gorithm) and further refined by Space Carving (SC). The centers of the surface voxels (which are

already colored by SC) are used as input data for the alignment. Note that in all of the above three

algorithms, only the color error measure is used in the optimization equations.

To investigate the effect of the space carving threshold (which determines if a voxel is carved

away or not) on alignment, we vary the threshold value from 0 to 4.0 to generate the input data

(see the description of the second algorithm above) and compare the estimated motion parameters

with the ground-truth values. Graphs of the average RMS errors in the rotation and translation

parameters against the threshold are shown as the blue dotted-dashed lines in Figure 11(b). When

the threshold is too small, many correct voxels are carved away, resulting in a voxel model much

smaller than the actual object. When the threshold is too large, extra incorrect voxels are not carved

away, leaving a voxel model bigger than the actual object. In both cases, the wrong data points

extracted from the incorrect voxel models cause errors in the alignment process. The optimal

threshold value is found to be around 0.108 and the graph is amplified in the vicinity of this value

in the bottom part of Figure 11(b). As a comparison, the average RMS errors for the rotation and

translation parameters obtained from using BEs and CSPs is drawn as the horizontal red dashed

line. With the optimal SC threshold, the performance of using SFS+SC voxel models is comparable

but less accurate than that of using Bounding Edges and Colored Surface Points. The results of the

estimation of the Y-axis rotation angle and the X-component of translation at each frame using the

SFS+SC input data with the optimal threshold are plotted as thick blue dotted lines in Figure 12(a)

while the results of using the SFS surface centers as input data are plotted as magenta dotted-

dashed lines. Also, the estimated parameters of using BEs/CSPs as input data are plotted as red

dashed lines with asterisks, together with the ground-truth motion in solid black lines in the same

figure. As can be seen, alignment using the SFS voxel model is much less accurate than using

BEs/CSPs. SC with the optimal threshold performs well, but not quite as well as using BEs/CSPs.

The results of all the motion (translation and rotation) parameters can be found in [Che03].
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Figure 12: (a) Alignment results for the Y-axis rotation angle and the X-component of translation estimated

at each frame (time) from Experiment Set A with different inputs: BEs/CSPs (red dashed lines with aster-

isks), SFS voxel models (magenta dotted-dashed lines), SFS+SC voxel models with the optimal threshold

(blue thick dotted lines) and the ground-truth motion (solid black lines). Using BEs/CSPs is better than

using either SFS or SFS+SC. (b)(c)(d) Graphs of the refinement errors (missing and extra voxels) against

the total number of frames used. Using BEs/CSPs has a lower error ratio than using either SFS or SFS+SC.

To study the effect of alignment on refinement, the parameters estimated by the alignment

algorithms were used to refine the shape of the torso model using the voxel-based SFS method as

described in Section 4.4. The size of voxels used was 7.8mm x 7.8mm x 7.8mm whereas the size

of the original torso mesh model was approximately 542mm x 286mm x 498 mm. Since the mesh

model cannot be used directly to compare with the refined voxel models, we converted the original

mesh model into an reference voxel model and used it to quantify the refinement results. We are

interested in two types of error voxels: (1) extra and (2) missing voxels. Due to the conservative

nature of SFS, any voxel model constructed with finite number of silhouette images will always

have extra voxels as compared to the actual object (the reference voxel model in this case) and

the number of extra voxels decreases with the number of images used. On the other hand, since

the synthetic silhouettes are perfect, missing voxels are the results of (1) voxel decision problem

around the boundary of the silhouettes (see [Che03] for details) and (2) misalignment of motion

across frames. Since the effect of the boundary problem is the same for all of the algorithms, the



number of missing voxels indicates how the misalignment affects the refinement.

The quantitative refinement results are plotted in Figures 12(b) and (c) which show respectively

the number of extra and missing voxels between the refined shapes and the object voxel models

against the total number of frames used. Figure 12(d) illustrates the ratio of total incorrect (missing

plus extra) to total voxels. In all of the refinement results, the number of extra voxels decreases as

the number of frames used increases as discussed above because a tighter Visual Hull is obtained

with an increase in the number of silhouette images. However, the number of missing voxels also

increases as the number of frames used increases due to alignment errors which remove correct

voxels during construction. From the figure it can be seen that the number of missing voxels is

very large if the alignments are way off (e.g. the magenta dotted-dashed curve for the SFS voxel

centers or the blue dotted curves with ’+’ markers for SFS+SC with threshold 30% lower than the

optimal value). The best refinement results are the ones using the motion parameters estimated

using BEs/CSPs (the red dashed lines with asterisks in Figures 12(b)(c)(d)).

Experiment Set B: Effect of Error Measure on the Alignment Accuracy

Experiment Set B investigates the effect of using color consistency and the geometric constraints as

error measure on the alignment accuracy. In the first algorithm, only the error from the geometrical

constraints is used (i.e. the first term ÏØ
0 $Z~�  O! ¤ � & in Equation (8)). In the second algorithm, only

the error caused by the color inconsistency is used (i.e. the second term
® ¨=
0 $Z~h  O! ¤ � &Ú^¦© O ! ° 0 in

Equation (8)). In the third algorithm, both errors are used. The results for the Y-axis rotation angle

and the X-axis translation component are shown in Figures 13(a). In the figure, the ground-truth

motion values are drawn with solid black lines, the results obtained from using both geometric

constraints and color consistency are drawn with magenta dotted lines with an inverted triangle,

the results with only the geometric constraints are drawn with blue dashed-dotted lines with circle,

and the results with only color consistency are drawn with red dashed lines with asterisks. As

expected, the results of using both error components are the best, followed by the results using

only the color consistency. The results obtained using only the geometric constraints are the worst

of the three. As discussed in Section 4.1.1, aligning Visual Hulls using only geometric (silhouette)
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Figure 13: (a) Results of the Y-axis rotation angle and the X-component of translation estimated at each

frame for Experiment Set B with different error measures: geometric constraints only (blue dashed-dotted

lines with circle), color consistency only (red dashed lines with asterisks), both geometric constraints and

color consistency (magenta dotted lines with inverted triangle). The solid black lines represents the ground-

truth motion . The results obtained using both error components are the best followed by the results using

only the color consistency. Due to the alignment ambiguity, the results using only the geometrical constraints

are the worst of the three. (b)(c)(d) The refinement errors (missing and extra voxels) against the total number

of frames used. Using both the color consistency and the geometric constraints has lower error than just

using either one of them.

information is inherently ambiguous. This means that if color consistency (the second term of

Equation (8)) is not used, there may be more than one global minimum to Equation (10) (see

the 2D example in Figure 6). Under such situations, optimizing Equation (10) may converge to

a global minimum other than the actual motion of the object. This explains why the results of

using only the silhouette information are not as good as using only color information, or both the

silhouette and color information.

The refinement results of Experiment Set B are plotted in Figures 13(b)(c)(d) which illustrate

respectively the extra and missing voxels and the ratio of total incorrect (missing plus extra) to total

voxels against the total number of frames used for refinement. The results are the best with the

motion parameters estimated using both the color consistency and the geometric constraints (the
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Figure 14: Pooh Data Set. (a) Some of the input images from camera 1. (b) Colored surface points at 4 ! .
(c) Unaligned Colored Surface Points from all frames. (d) Aligned Colored Surface Points of all frames.

(e) SFS model at 4 ! (6 images used). (f) SFS refined shape at 4 Æ (36 images used). (g) SFS refined shape at4 ! � (90 images used). See Pooh.mpg for a movie illustrating these results.

magenta dotted lines with inverted triangle). Again just using the color consistency is better than

just using geometric constraints. A video clip Torso.mpg 2 shows one of the six input image se-

quences, the unaligned and aligned Colored Surface Points and the temporal refinement/alignment

results using BEs/CSPs computed with both the geometric and photometric error measures.

2All of the movie clips can be found at http://www.cs.cmu.edu/˜german/research/Journal/IJCV/Theory/. Lower

resolution versions of some of the movies are also included in the supplementary movie SFSAT Theory.mpg.



4.5.2 Real Data Sets: Toy Pooh and Dinosaur/Bananas

A. Pooh Sequence: The first test object is a toy (Pooh) with six calibrated cameras. The toy is

placed on a table and moved to new but unknown positions and orientations manually in each

frame. A total of fifteen frames are captured from each camera. The input images of camera 1 at

several times are shown in Figure 14(a). The CSPs extracted at time  ]! are shown in Figure 14(b).

Figures 14(c) and (d) show respectively the unaligned and aligned Colored Surface Points from

all fifteen frames. It can be seen that since some part of the body of the toy is uniform in color, the

positions of a few CSPs are not correctly estimated. However, since there are only a few of them

and their deviations are small, the alignment is still very accurate. This shows the robustness of our

alignment algorithm that as long as the number of incorrect CSPs are small, the algorithm works

well. Refinement is done using the voxel-based SFS method. Figures 14(e),(f) and (g) illustrate

the refinement results at time instants  �! (6 images),  Æ (36 images) and  �! � (90 images). The

improvement in shape is very significant from  �! when 6 silhouette images are used to  �! � when

90 silhouette images are used. The video clip Pooh.mpg shows some of the input sequences, the

unaligned/aligned CSPs and the temporal refinement/alignment results for this sequence.

B. Dinosaur-Banana Sequence: The objects used in the second real data set are the toy di-

nosaur/bananas shown in Figure 1(a). Six cameras are used and the dinosaur/bananas are placed

on a turn-table with unknown rotation axis and rotation speed. Fifteen frames are captured and the

alignment and refinement results are shown in Figure 15. The video clip Dinosaur-Banana.mpg

shows one of the six input image sequences, the unaligned/aligned Colored Surface Points and the

temporal refinement/alignment results of the Dinosaur-Banana Sequence. Note that we have also

applied the temporal SFS algorithm for rigid objects to sequences of a person standing rigidly on

a turn-table. The results will be presented in Part II of this paper when we describe a system for

building kinematic models of humans.
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Figure 15: Dinosaur-Banana Sequence. (a) Example input images. (b) Unaligned Colored Surface Points

from all frames. (c) Aligned Colored Surface Points from all frames. (d) SFS model at 4 ! (6 images used).

(e) SFS refined shape at 4 Æ (36 images used). (f) SFS refined shape at 4 ! � (90 images used). There is

significant shape improvement from (d) to (f). See Dinosaur-Banana.mpg for movie illustration.

4.5.3 Related Work

Despite the popularity of SFS as a shape reconstruction method at single time instant, little work

has been done in extending it across time. The work most related to ours is by Cipolla, Wong and

Mendonca [MWC00, WC01b, WC01a] who study the problem of estimating structure and motion

of a smooth object undergoing circular motion from silhouette profiles. They assume a single

camera which is weakly calibrated (i.e. with known intrinsic but unknown extrinsic parameters).

Either the camera (on a robotic arm) or the object (on a turntable) performs unknown circular

motion while the silhouette images are taken. In [MWC01] symmetric properties of the surface

of revolution swept by the rotating object are used to recover the revolution axis, leading to the

estimation of homographies and full epipolar geometries between images using one-dimensional

search. In [WC01b], they identity and estimate the frontier points (see [JAP94] for the definition)

on the silhouette boundary and use them to estimate the circular motion between images. Once the

motion has been estimated, the object shape can be reconstructed using the classic SFS method.

Another group of researchers, lead by Ponce [JAP94, JAP95, VKP96] have also studied the



problem of recovering the motion and shape of a smooth curved object from silhouette images.

They define a local parabolic structure on the surface of the object and use that, together with

epipolar geometry, to locate corresponding frontier points on three silhouette images. The motion

between the images is then estimated using a two-step nonlinear minimization. In contrast to these

algorithms, our approach has two advantages: (1) no shape assumptions are made about the object

and (2) no assumptions are made about the motion (i.e. it does not have to be infinitesimal).

5 SFS Across Time: Articulated Objects

In this section we extend our temporal SFS algorithm to articulated objects. An object is articulated

if it consists of a set of rigidly moving parts connected to each other at certain articulation points.

A good example of an articulated object is the human body (if we approximate the body parts as

rigid). Given CSPs of a moving articulated object, recovering the shape and motion requires two

inter-related steps: (1) correctly segmenting the CSPs to each part of the object and (2) estimating

the shape and motion of the individual parts. To solve this problem, we employ an idea similar to

that used for multiple-layer motion estimation in [SA96]. The rigid parts of the articulated object

are first modeled as separate and independent of each other. With this assumption, we iteratively

(1) assign the extracted CSPs to different parts of the object based on their motions and (2) apply

the rigid temporal SFS algorithm to align each part across time. Once the motions of the parts have

been recovered, an articulation constraint is applied to estimate the joint positions. Note that this

iterative approach can be categorized as belonging to the Expectation Maximization framework

[DLR77]. The whole algorithm is explained below using a two-part, one-joint articulated object.

5.1 Problem Scenario

Consider an unknown one-joint articulated object 	 which consists of two rigid parts @ and é as

shown in Figure 16 at two time instants  �! and  0 . Assume CSPs of the whole object have been

extracted from the color and silhouette images of � cameras, denoted by 
�*=
�t� �C
���   O��� © O�Q� w¼�
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Figure 16: A two-part articulated object at two time instants 4 ! and 4 0 .
��� �·� . Furthermore, treating @ and é as two independently moving rigid objects allows us to

represent the relative motion of @ between  �! and  0 as $Z~¼ê0 ��� ê0 & and that of é as $z~Öë0 ��� ë0 & . Now

consider the following two complementary cases.

5.2 Alignment with known Segmentation

Suppose we have segmented the CSPs at  � into two groups belonging to part @ and part é ,

represented by ì ê� and ì ë� respectively for both wh�_��� � . By applying the rigid object temporal

SFS algorithm described in Section 4.2.3 (Equation (10)) to @ and é separately, estimates of the

relative motions $z~ ê0 ��� ê0 & � $z~ ë0 ��� ë0 & can be obtained.

5.3 Segmentation with known Alignment

Assume we are given the relative motion $Z~�ê0 ��� ê0 & � $z~¿ë0 ��� ë0 & of @ and é from  �! to  0 . For a CSP

  O! at time  �! , consider the following two error measures:

¸ O � ê0 � ! � �« O � ê! ¬ 
 
�Û ¥ Ï 
0 $z~ ê0   O! ¤ � ê0 &S¤ ® ¨ 
0 $z~ ê0   O! ¤ � ê0 &�^Â© O ! ° 0 � � (11)

¸ O � ë0 � ! � �« O � ë! ¬ 
 
�Û ¥ Ï 
0 $Z~Öë0   O! ¤ � ë0 &S¤ ® ¨ 
0 $z~¿ë0   O! ¤ � ë0 &�^Â© O ! ° 0 �B\ (12)



Here ¸ O � ê0 � ! is the error of   O! with respect to the color/silhouette images at  0 if it belongs to part @ .

Similarly ¸ O � ë0 � ! is the error if   O! lies on the surface of é . In these expressions the summations are

over those cameras where the transformed point is visible and « O � ê! and « O � ë! represent the number of

visible cameras for the transformed points ~hê0   O! ¤ � ê0 and ~Öë0   O! ¤ � ë0 respectively. By comparing

the two errors in Equations (11) and (12), a simple strategy to classify the point   O! is:

  O! D
íîîîîîîîï îîîîîîîð
ì ê ! if ¸ O � ê0 � !2ñ×ò ¥ ¸ O � ë0 � !ì ë ! if ¸ O � ë0 � ! ñµò ¥ ¸ O � ê0 � !ì2ó! otherwise

� (13)

where ¢Ö£ ò £ � is a thresholding constant and ì ó ! contains all the CSPs which are classified as

neither belonging to part @ nor part é . Similarly, the CSPs at time  0 can be classified using the

errors ¸ O � ê!u� 0 and ¸ O � ë!u� 0 . In practice, the above decision rule does not work very well on its own because

of image/silhouette noise and camera calibration errors. Fortunately we can use spatial coherency

and temporal consistency to improve the segmentation.

To use spatial coherency, the notion of a spatial neighborhood has to be defined. Since it

is difficult to define a spatial neighborhood for the scattered CSPs in 3D space (see for example

Figure 7(b)), an alternate way is used. Recall (in Section 3.1) that each CSP   O! lies on a Bounding

Edge which in turn corresponds to a boundary point T O ! of the silhouette image �A
! . We define two

CSPs   O! and   O M !! as “neighbors” if their corresponding 2D boundary points T O ! and T O M !! are

neighboring pixels (in 8-connectivity sense) in the same silhouette image. This neighborhood

definition allows us to easily apply spatial coherency to the CSPs. From Figure 17(a) it can be seen

that different parts of an articulated object usually project onto the silhouette image as continuous

outlines. Inspired by this property, the following spatial coherency rule (SCR) is proposed.

Spatial Coherency Rule (SCR): If   O! is classified as belonging to part @ by Equation (13), it
stays as belonging to part @ if all of its g left and right immediate “neighbors” are also classified
as belonging to part @ by Equation (13), otherwise it is reclassified as belonging to ì;ó! , the group
of CSPs that belongs to neither part @ nor part é . The same procedure applies to part é .
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Figure 17: Spatial Coherency Rule removes spurious segmentation errors.

Figure 17(a) shows how the SCR can be used to remove spurious segmentation errors. The sec-

ond constraint we utilize to improve the segmentation results is temporal consistency as illustrated

in Figure 17(b). Consider three successive frames captured at  � � ! ,  � and  � M ! . For a CSP   O� , it

has two classifications due to the motion from  � � ! to  � and the motion from  � to  � M ! . Since   O�
either belongs to part @ or é , the temporal consistency rule (TCR) simply requires that the two

classifications have to agree with each other:

Temporal Consistency Rule (TCR): If   O� has the same classification by SCR from  � � ! to  � and

from  � to  � M ! , the classification is maintained, otherwise, it is reclassified as belonging to ì ó� , the
group of CSPs that belongs to neither part @ nor part é .

Note that SCR and TCR not only remove wrongly segmented points, but they also remove some

of the correctly classified CSPs. Overall though they are effective because less but more accurate

data is preferred to abundant but inaccurate data, especially in our case where the segmentation has

a great effect on the motion estimation.

5.4 Initialization

As common to all iterative EM algorithms, initialization is always a problem [SA96]. Here we

suggest two different approaches to start our algorithm. Both approaches are commonly used in



the layer estimation literature [SA96, KK01]. The first approach uses the fact that the 6 DOF

motion of each part of the articulated object represents a single point in a six dimensional space. In

other words, if we have a large set of estimated motions of all the parts of the object, we can apply

a clustering algorithms to these estimates in the 6D space to separate the motion of each individual

part. To get a set of estimated motions for all the parts, the following method can be used. The

CSPs at each time instant are first divided into subgroups by cutting the corresponding silhouette

boundaries into arbitrary segments. These subgroups of CSPs are then used to generate the motion

estimates using the VH alignment algorithm, each time with a randomly chosen subgroup from

each time instant. Since this approach requires the clustering of points in a 6D space, it performs

best when the motions between different parts of the articulated object are relatively large so that

the motion clusters are distinct from each other.

The second approach is applicable in situations where one part of the object is much larger

than the other. Assume, say, part @ is the dominant part. Since this assumption means that most

of the CSPs of the object belong to @ , the dominant motion $z~ ê ��� ê & of @ can be approximated

using all the CSPs. Once an approximation of $z~ ê ��� ê & is available, the CSPs are sorted in terms

of their errors with respect to this dominant motion. An initial segmentation is then obtained by

thresholding the sorted CSPs errors.

For a sequence of s frames, although we can initialize the segmentation of all frames together

using one step, it is impractical especially when s is large. Instead we use a simpler approach and

initialize the segmentation independently and separately using two (consecutive) frames at a time.

Experimental results (see Section 5.7) show that this works well for different types of sequences.

5.5 Summary: Iterative Algorithm

Although we have described the algorithm above for an articulated object with two rigid parts, it

can be generalized to apply to objects with ô parts provided ô is known. The following summa-

rizes our iterative algorithm to estimate the shape and motion of parts @ and é over s frames:



Iterative Temporal SFS Algorithm for Articulated Objects

1. Initialize the segmentation of the s sets of CSPs.

2. Iterate the following two steps until convergence (or for a fixed number of iterations):

2a. Given the CSP segmentation 
�ì ê� � ì ë� � , recover the relative motions $z~¼ê� ��� ê� & and

$Z~ ë� ��� ë� & of @ and é over all frames w;� � � \�\�\ � s using the rigid object temporal SFS

algorithm described in Section 4.2.3.

2b. Repartition the CSPs according to the estimated motions by applying Equation (13),

followed by the intra-frame SCR and then inter-frame TCR for all frame w;�I�%� \�\�\ � s .

5.6 Joint Location Estimation

After recovering the motions of parts @ and é separately, the point of articulation between them

is estimated. Suppose we represent the joint position at time  n! as õ ë! . Since õ ë! lies on both @
and é , it must satisfy the motion equation from  �! to  0 as ~Öê0 õ ë! ¤ � ê0 � ~Öë0 õ ë! ¤ � ë0 . Putting

together similar equations for õ ë! over s frames, we get

ö÷÷÷÷÷÷÷ø
~ ê0 ^§~ ë0

...

~¿êùe^§~¿ëù

úüûûûûûûûý õ ë! �
ö÷÷÷÷÷÷÷ø
� ë0 ^ � ê0

...� ë ùÖ^ � ê ù

úüûûûûûûûý \ (14)

The least squares solution of Equation (14) can be computed using Singular Value Decomposition.

5.7 Experimental Results

5.7.1 Synthetic Data Set

We use an articulated mesh model of a virtual computer human body as the synthetic test subject.

To generate a set of test sequences, the computer human model is programmed to only move one

particular joint and the images of the movements are rendered using OpenGL. Since only one joint
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Figure 18: Input images and results for the right elbow and right hip joints of the synthetic virtual human.

For each joint, the unaligned CSPs from different frames are drawn with different colors. The aligned and

segmented CSPs are shown with two different colors to show the segmentation. The estimated articulation

point (joint location) is indicated by the black sphere.

(and one body part) is moved at each time, we can consider the virtual human body as an one-link

two part articulated object. A total of eight sets of data sequences (each set with 8 cameras) are

generated, corresponding to the eight joints: left/right shoulder, elbow, hip and knee. For each of

these synthetic sequences, we applied the articulated temporal SFS algorithm to recover the shape,

motion and the joint location of the virtual human. Since the size of the whole body is much

larger than a single part, the dominant motion initialization method is used. Figure 18 shows some

input images from one of cameras and the segmentation/alignment/joint estimation results for the

right elbow and right hip joints. As can be seen, our iterative segmentation/alignment algorithm

performs well and the joint positions are estimated accurately in both cases. Table 1 compares

the ground-truth with the estimated joint positions for all the 8 synthetic sequences. The absolute

distance errors between the ground-truth and the estimated joints locations are small (averaging

about 26mm) when compared to the size of the human model ( þ 500mm x 200mm x 1750mm).

The input images, CSPs and the results for the left hip and knee joints are shown in the movie

Synthetic-joints-leftleg.mpg.



Joints Ground-truth (x, y, z) Estimated (x, y, z) Distance
positions (in mm) positions (in mm) error (in mm)

Left Shoulder (199.61, 66.06, 1404.75) (203.40, 54.06, 1403.80) 12.62
Right Shoulder (-200.34, 66.06, 1404.75) (-206.09, 73.87, 1398.53) 11.52

Left Elbow (411.75, -116.60, 1333.54) (412.98, -119.61, 1323.23) 10.81
Right Elbow (-407.00, 146.01, 1258.53) (-398.89, 178.54, 1288.19) 44.76

Left Hip (87.02, 43.32, 974.75) (92.16, 40.46, 976.77) 6.22
Right Hip (-91.65, 42.37, 979.51) (-85.20, -2.13, 965.11) 47.21
Left Knee (251.57, -438.03, 853.29) (285.14, -432.44, 857.50) 34.29

Right Knee (-143.90, -399.59, 723.32) (-102.92, -393.13, 741.42) 45.27

Table 1: The ground-truth and estimated positions of the eight body joints for the synthetic sequences. The

absolute errors (averaging about 26mm) is small compared to the actual size of the model ( ÿ 500mm x

200mm x 1750mm).

5.7.2 Real Data Sets

Two different data sets with real objects were captured. The first real data set contains two separate,

independently moving rigid objects while the second real data set investigates the performance of

our articulated temporal SFS algorithm for the joint estimation for a real person.

A. Two Separately Moving Rigid Objects: Pooh-Dinosaur Sequence

The Pooh and dinosaur from Section 4.5.2 are used to test the performance of our iterative CSP

segmentation/motion estimation algorithm on two separate and independently moving rigid ob-

jects. Eight calibrated cameras ( � ��� ) were used in this Pooh-Dinosaur sequence. Both toys are

placed on the floor and individually moved to new but unknown positions and orientations manu-

ally in each frame. Fourteen frames were captured for each camera. Since the two objects are of

comparable size but with large relative motion, we use the first initialization approach (clustering

of motions) as described in Section 5.4 to initialize the alignment. Figure 19(a) shows some of the

input images of camera 3. The segmentation/alignment results using our temporal SFS algorithm

are illustrated in Figures 19(b)-(f). Figure 19(b) shows the unaligned CSPs for all the 14 frames.

Figure 19(c) shows the aligned and segmented CSPs. The figures demonstrate that our algorithm

correctly segments the CSPs as belonging to each object. The alignments of both toys are also ac-

curate except those of the dinosaur from frame 6 to frame 9 when the dinosaur rolled over. In those
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Figure 19: The Pooh-Dinosaur sequence. (a) Some of the input images from camera 3. (b) The unaligned

CSPs from all frames. (c) The aligned and segmented CSPs. (d) SFS refined voxel models at 4 ! (8 silhouette

images are used). (e) SFS refined voxel models at 4 � (40 silhouette images are used). (f). SFS refined voxel

models at 4 ! - (104 silhouettes are used for the toy Pooh and 72 silhouette images are used for the dinosaur).

frames, our alignment algorithm failed as the rotation angles were too large (around 90 degrees).

However, the alignment recovers after frame 9 when the dinosaur is upright again.

The shapes of the two toys were refined by SFS using the estimated motions in the same fashion

as discussed in Section 4.4. Note that to refine the objects, there is no need to segment (which is

difficult to do due to occlusion) the silhouettes as belonging to which object as long as the motions

of the objects are significantly different from each other for at least one frame. The voxels that do

not belong to the dinosaur, say, would be carved away by SFS over time as they do not follow the

motion of the dinosaur. Figures 19(d),(e) and (f) illustrate the SFS refined voxel models of both

objects at  �! ,  � and  �! - respectively. Since the alignment data for the dinosaur from frame 6 to

frame 9 are inaccurate, those frames were not used to refine the shape of the dinosaur. As can be

seen, significant shape improvement is obtained from  ]! to  �! - . The video clip Pooh-Dinosaur.mpg

shows the input images from one of the eight cameras, the unaligned/aligned/segmented CSPs and

the temporal refinement results.
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Figure 20: Input images and results for the left elbow and left hip joints of SubjectE. For each joint, the

unaligned CSPs from different frames are drawn with different colors. The aligned and segmented CSPs are

shown with two different colors to show the segmentation. The estimated articulation point (joint location)

is indicated by the black sphere.

B. Joints of Real Human

In the second set of real data, we used videos of a person (SubjectE) to qualitatively test the

performance of our articulated object temporal SFS algorithm for joint location estimation. Eight

sequences (each with 8 cameras) corresponding to the movement of the left/right shoulder, elbow,

hip, knee joints of SubjectE were captured. In each sequence, SubjectE only moves one of her

joints so that in that sequence her body can be considered as an one-joint, two part articulated

object, exactly as the synthetic data set. Again, the dominant motion initialization method is used.

Some of the input images and the results of segmentation/alignment/position estimation for two

joints (left elbow and left hip) are shown in Figure 20. As can be seen, the motion, the segmentation

of the body parts, and the joint locations are all estimated correctly in both sequences. Some of the

input images, the CSPs and the segmentation/estimation results of the right arm joints for SubjectE

can be found in the movie clip SubjectE-joints-rightarm.mpg. Note that the joint estimation

results for another two subjects SubjectG and SubjectS can be found in Part II of this paper when

we discuss our human body kinematic modeling system.



5.7.3 Related Work

Though the work by Krahnstoever in [KYS01, KYS03] uses only monocular images, their idea

is very similar to ours in the sense that it is also based on the the layered motion segmenta-

tion/estimation formulation [SA96]. They first perform an EM-like segmentation/motion estima-

tion of 2D regions on monocular images of the articulated object and then model the articulated

parts by 2D cardboard models. As common to other monocular methods, their approach does not

handle occlusion and has difficulties estimating the motion of objects which do not contain rotation

around an axis perpendicular to the image plane.

6 Conclusion

In this paper we have developed a theory of performing Shape-From-Silhouette across time for

both rigid objects and articulated objects undergoing arbitrary and unknown motion. We first

studied the ambiguity of aligning two Visual Hulls, and then proposed an algorithm using stereo

to break the ambiguity. We first represented each Visual Hull using Bounding Edges. Colored

Surface Points are then located on the Bounding Edges by comparing color consistencies. The

Colored Surface Points are used to estimate the rigid motion of the object across time, using a 2D

images/3D points alignment algorithm. Once the alignment has been computed, all of the images

are considered as being captured at the same instant. The refined shape of the object can then be

obtained by any reconstruction method such as SFS or Space Carving.

Our algorithm combines the advantages of both SFS and Stereo. A key principle behind SFS,

expressed in the Second Fundamental Property of Visual Hulls, is naturally embedded in the defi-

nition of the Bounding Edges. The Bounding Edges incorporated, as a representation for the Visual

Hull, a great deal of the accurate shape information that can be obtained from the silhouette im-

ages. To locate the touching surface points, multi-image stereo (color consistency among images)

is used. Two major difficulties of doing stereo : visibility and search size are both handled naturally

using the properties of the Bounding Edges. The ability to combine the advantages of both SFS and



Stereo is the main reason why using Bounding Edges/Colored Surface Points gives better results in

motion alignment than using voxel models obtained from SFS or SC (see Section 4.5.1). Another

disadvantage of using voxel models and Space Carving is that each decision (voxel is carved away

or not) is made individually for each voxel according to a criterion involving thresholds. On the

contrary, in locating colored surface points on Bounding Edges, the decision (which point on the

Bounding Edge touches the object) is made cooperatively (by finding the point with the highest

color consistency) along all the points on the Bounding Edge, without the need of adjusting thresh-

olds. In summary, the information contained in Bounding Edges/Colored Surface Points is more

accurate than that contained in voxel models constructed from SC/SFS. In parameter estimation,

few but more accurate data is always preferred over abundant but less inaccurate data, especially

in applications such as alignment.

We also extended our Temporal SFS algorithm to (piecewise rigid) articulated objects and

successfully applied it to solve the problems of segmenting CSPs and recovering the motions of

two independently moving rigid objects and joint positions estimation for the human body. The

advantage of our algorithm is that it solves the difficult problem of shape/motion/joint estimation

by a two-step approach: first iteratively recover the shape (in terms of CSP) and the motion of the

individual parts of the articulated object and then locate the joint using a simple motion constraint.

The separation of the joint estimation and the motion estimation greatly reduces the complexity of

the problem. Since our algorithm uses motion to segment the CSPs, it fails when the relative motion

between the parts of the articulated objects is too small. Moreover, due to the EM formulation of

the algorithm, the convergence of the algorithm depends on the initial estimates of the motion

parameters. When the initial motion estimates are too far from the correct values, the algorithm

may fall into a local minimum. Finally, although the algorithm can be generalized to apply to

objects with ô parts, in practice it does not work well when there are more than four parts due to

the local minimum problem.

In Part II of this paper we will show how our Temporal SFS algorithms can be used to build

a kinematic model of a person, consisting of detailed shape and precise joint information. The



kinematic model is then used to perform vision-based (markerless) motion capture.

6.1 Future Work

While our temporal SFS algorithm can be used to recover the motion and shape of moving rigid

and articulated objects, a lot of naturally occurring objects are non-rigid or deformable. A rational

future direction is to extend our temporal SFS algorithms to deformable objects such as a piece of

cloth or a crawling caterpillar. There are two major difficulties in extending temporal SFS to non-

rigid objects. The first difficulty, which is common to other surface-point-based 3D shape/motion

estimation methods [ACLS94], is to assume suitable shape and motion models for the object. The

choice of the deformable model is critical and depends on the application. The second difficulty

is caused by the fact that since our temporal SFS algorithm is not feature-based, the CSPs are not

tracked over time and there is no point-to-point correspondence between two sets of CSPs extracted

at different instants. Hence, it is unclear how the chosen deformable model can be applied to the

CSPs across time. Despite these difficulties, the possibility of extending temporal SFS to non-rigid

objects is worth studying as it would help solve important non-rigid tracking problems in computer

vision.
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