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ABSTRACT

In this report we discuss the 2D-3D pose estimation problem of 3D free-
form contours. In our scenario we observe objects of any 3D shape in an
image of a calibrated camera. Pose estimation means to estimate the rel-
ative position and orientation (containing a rotation R and translation 7)
of the 3D object to the reference camera system. The fusion of modeling
free-form contours within the pose estimation problem is achieved by using
the conformal geometric algebra. The conformal geometric algebra is a ge-
ometric algebra which models entities as stereographic projected entities in
an homogeneous model. This leads to a linear description of kinematics on
the one hand and projective geometry on the other hand. To model free-
form contours in the conformal framework we use twists to model cycloidal
curves as twist-depending functions and interpret n-times nested cycloidal
curves as functions generated by 3D Fourier descriptors. This means, we use
the twist concept to apply a spectral domain representation of 3D contours
within the pose estimation problem. We will show that twist representations
of objects can numerically efficient and easily be applied to the pose estima-
tion problem. The pose problem itself is formalized as implicit problem and
we gain constraint equations, which have to be fulfilled with respect to the
unknown rigid body motion. Several experiments visualize the robustness
and real-time performance of our algorithms.






CONTENTS

1. Introduction . . ... ... ... ....
1.1 Preliminary work . . . ... .. ..
1.2 Algebraiccurves. . . . . . ... ..

2. Curves in conformal geometric algebra

2.1 Introduction to conformal geometric algebra . . . . . . . ..
2.2 Twists as generators of rigid body motion in CGA . . . . . .
2.3 Operational definition of cycloidal curves . . . . . . .. ...
2.4 Estimating twists from a given closed curve . . .. ... ..

3. Pose estimation in CGA . . . . . . ..
3.1 Pose estimation in stratified spaces
3.2 Pose estimation of cycloidal curves

3.3 Pose estimation of free-form contours . . . . . . . . . .. ..

3.4 Estimation of pose parameters . . .

4. Experiments . . . . ... ........

4.1 The algorithm of pose estimation for free-form contours . . .
4.2 'The performance of the pose estimation algorithm . . . . . .
4.3 Simultaneous pose estimation of multiple contours . . . . . .

5. Discussion . . . . . ... ... ... ..

Appendix

A. Pose Estimation of projected contours

11
11
16
18
22

25
25
26
27
28

31
31
34
39

45

47

49



Contents




1. INTRODUCTION

This contribution concerns the 2D-3D pose estimation problem of 3D free-
form contours. Pose estimation itself is one of the oldest computer vision
problems and algebraic solutions with different camera models have been
proposed for several variations of this problem. Pioneering work was done
in the 80’s and 90’s by Lowe [30, 31|, Grimson [18] and others. In their
work point correspondences are used. More abstract entities can be found
in [25, 50, 26, 7]. Discussed entities are circles, cylinders, kinematic chains
or other multi-part curved objects. Works concerning free-form curves can
be found in [13, 46]. In their work contour point sets, affine snakes, or
active contours are used for visual servoing. An overview of free-form object
representations is given in [10]. In this work several mathematical forms are
discussed, e.g. parametric forms, algebraic implicit surfaces, superquadrics,
generalized cylinders or polygonal meshes.

There exist two main strategies to deal with object models: Firstly, the
object can be represented by characteristic object features (like edges or cor-
ners, etc.) and then applied to different problems (e.g. pose estimation,
object recognition). Secondly, the object can be modeled as itself, e.g. in
form of an implicit or parametric surface. The main properties of these
strategies are clear: If we assume scenarios containing easy objects with easy
extractable corner or edge features (e.g. buildings or artificial objects), there
is no need to complicate the situation by using full parameterized models.
But especially in natural environments with curved shapes and surfaces, fea-
ture extraction and matching is a problem. Then there is need to deal with
an object as a whole, or as one single entity, respectively. We want to deal
with objects of general shape and call them free-form objects as a general
class of entities. For a definition of free-form objects, we want to quote Besl

[6]:

Definition 1.1 A free-form surface has a well defined surface that is con-
tinuous almost everywhere except at vertices, edges and cusps.

Sculptures, car bodies, ship hulls, air planes, human faces or organs are
typical examples for free-form objects.
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The main problem we concern is the algebraic coupling of free-form con-
tours with the pose estimation problem. Therefore we use as link between
these different topics the twist representation. Twists are representing rigid
body motions in the framework of Lie algebras [16]. In this work we will
use twists twofold, on the one hand within our pose estimation problem as
representations of rigid body motions and on the other hand to model the
object contours as orbits generated from a set of parameterized operators for
general rotations. This unification of representations enables a compact de-
scription of the pose estimation problem for free-form contours in an implicit
manner by using constraint equations, which have to be fulfilled.

The ICP (Iterative Closest Point) algorithms are well known for aligning
3D object models. Originally ICP starts with two data sets (of points) and
an initial guess for their rigid body motion. Then the transformation is
refined by repeatedly generating pairs of corresponding points of the sets and
minimizing an error metric. The ICP algorithms are mostly applied on 2D or
3D point sets. Instead, we will later use it for comparison of a trigonometric
interpolated function with reconstructed projection rays. Different works
concerning ICP algorithms can be found in [43, 12, 24, 51].

To solve the pose estimation problem of free-form contours we will start
with the pose estimation problem for entities like points, lines and planes.
Then we will continue with cycloidal curves as a special case of algebraic
curves. In general a cycloidal curve is generated by a circle rolling on a circle
or a line without slipping [28]. We will use a twist representation to model
these curves (they are later called 3D 2twist cycloidal curves) and generalize
them to 3D ntwist cycloidal curves. This representation can be used to model
a 3D trigonometric interpolated curve of a 3D contour. The representation
of an object shape by using twists is compact and transformations of the
object can be estimated just by transforming the generators of the entity.
Furthermore, instead of estimating the pose for a whole 3D contour, we are
able to use a low-pass version of the contour as an approximation, leading
to a speed up of the algorithm. As later shown, 3D cycloidal curves are
strongly connected to Fourier descriptors [2, 1, 17| as spectral representation
of a contour. Fourier descriptors are often used for object recognition but are
hard to connect with the 2D-3D pose estimation problem for a full perspective
camera model. In this work we overcome this problem by applying Fourier
descriptors in a kinematic formalization of the pose problem.

The paper is organized as follows: We will start with our preliminary
works in which we generated a set of basis entities which can be used to model
objects for pose estimation. Then we continue with cycloidal curves and end
up in free-form contours as trigonometric interpolated functions. Aiming a
trigonometric interpolation can be interpreted as constraint superposition of
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orbits generated by a set of coupled twists we use for our pose estimation
scenario. The contribution ends with experiments on pose estimation of free-
form contours.

1.1 Preliminary work

Our recent work [39, 40, 41] can be summarized in the scenario of figure 1.1:

Fig. 1.1: The scenario. The assumptions are the projective camera model, the
model of the object (consisting of points, lines, circles and kinematic
chains) and corresponding extracted entities on the image plane.
The aim is to find the pose (R, t) of the model, which leads to the
best fit of the object with the actually extracted entities.

In these preliminary works, we assume as object features 3D points, 3D
lines, 3D spheres, 3D circles or kinematic chain segments of a reference model
(see figure 1.2 for an example). Further, we assume extracted corresponding
features in an image of a calibrated camera. The aim is to find the rotation
R and translation ¢ of the object, which leads to the best fit of the reference
model with the actually extracted entities. To relate 2D image information
to 3D entities we interpret an extracted image entity, resulting from the
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perspective projection, as a one dimension higher entity, gained by projective
reconstruction from the image entity. This idea will be used to formulate the

Fig. 1.2: Pose estimation by using different types of correspondences

scenario as a pure kinematic problem. As mentioned before, there exist many
scenarios (e.g. in natural environments) in which it is not possible to extract
point-like features as corners or wedges. Then there is need to deal e.g. with
the silhouette of the object as a whole entity instead of sparse local features
on the silhouette. Besides, there exist 3D objects which cannot adequately
be represented by primitive object features as points, lines or circles. These
are the scenarios we address in this contribution. Additionally we argue that
from a statistical point of view, pose estimations of global object descriptions
are more accurate and robust than those from a sparse set of local features.

1.2 Algebraic curves

This section gives a brief summary of algebraic curves [28]. There exist
many ways to define algebraic curves. They can be defined as parametric or
algebraic implicit forms or polynomial equations [10]. For example a conic
can be defined as the set of intersection points of two projectively related
pencils of lines [21]. It is also possible to define a conic as intersection of a
cone with a plane. Parametric, cartesian or polar equations of a curve lead
to quite different representations. E.g. the parametric equations of a plane
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cardioid is
(z,y) = (a(2cos(t) — cos(2t)),a(sin(t) — sin(2t)), (1.1)
a cartesian equation is
<:U2 + 9% - 2ax)2 = 4a*(z* +y?) (1.2)
and the polar equation is
r = 2a(1+ cos(d)). (1.3)

The resulting question is: Which representation of an algebraic curve is well
suited within the pose estimation problem? As mentioned before, we want
to use concepts, which are already element of the kinematic framework we
use for the pose problem. Therefore we prefer to describe algebraic curves as
orbits of a twist generated function. The second argument for using twists
consists in their compact representation within the pose problem to gain
small and easily interpretable equations. More detailed information about
algebraic curves can also be found in [11].

roulettes
(Curverolling on curve)

cycloidal curves

/ (Cirdle rolling on circlefline) \

hypotrochoids

itrochoids ingins i
(irderaling atade acircie) (circle rolling inside acircle) (dr;;?;lﬂgé(iialine)
/circle\
epicycloid roses hypocycloid
(tracing point on circle) /
PN ‘ AN /NS
cardioid nephroid  circle trifolium quadrifolium ellipse deltoid astroid cardioid nephroid line ngggilg‘ale
N aa N Q_ (O - A N ()
U 5 / \_/ /)

Fig. 1.3: Tree of algebraic curves

Here we will concentrate on a subclass of the roulettes, the cycloidal
curves, which are circles rolling on circles or lines. Figure 1.3 shows a sub-
tree of the family of algebraic curves. Cycloidal curves can be distinguished
between epitrochoids, hypotrochoids and trochoids, which split to other sub-
classes. Figure 1.3 shows examples of these curves.

Since a circle can be interpreted as a point rotating around a line in the
space, a circle rolling on a circle is nothing more than a point rotating around
two twists in a fixed and dependent manner.

The curves are distinguished by the relative position of the twists with
respect to the starting point on the curve and the frequency of the twists.
We will now continue to explain some curves more detailed:
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. A cardioid can be defined as the trace of a point on a circle that rolls

around a fixed circle of the same size without slipping. Cardioids are
double generated, which means, that a cardioid is both, an epicycloid
and a hypocycloid, since it can be generated by two different ways.
Cardioids were e.g. studied by Roemer (1674).

. A nephroid can be defined as the trace of a point fixed on a circle of ra-

dius %r that rolls around a fixed circle with radius r. Nephroids are also
double generated. They were studied by Huygens and Tschirnhausen
about 1679.

. A rose is defined as a curve of epi/hypocycloids with respect to its

center. The curve has loops that are symmetrically distributed around
the pole. The loops are called petals or leafs. They were studied by
Guido Grandi around 1723.

. An ellipse is commonly defined as the locus of points P such that the

sum of the distances from P to two fixed points Fy, F; (called foci) are
constant. The ellipses seem to have been discovered by Menaechmus
(a Greek, ¢.375-325 BC), tutor to Alexander the Great.

. A deltoid can be defined as the trace of a point on a circle, rolling inside

another circle 3 or % times as large in radius. Deltoids were conceived
by Euler in 1745 in connection with a study of caustics curves.

. An astroid is defined as the trace of a point on a circle of radius r

rolling inside a fixed circle of radius 4r or %r. The cycloidal curves,

including the astroid, were also discovered by Roemer (1674).

. A trochoid is defined as the trace of a point fixed on a circle that rolls

along a line. This curve is sometimes called, the trace of a bike valve.

Indeed it is possible to generalize cycloidal curves to e.g. circles rolling on
circles/line, which are again rolling on circles/lines. This generalization of n
nested rolling circles is later called ntwist cycloidal curve. Since these circles
can be interpreted as the sum of n phase vectors, we will later show the
connection of ntwist cycloidal curves to Fourier descriptors of closed curves,
well known from signal theory. Since Fourier descriptors can be used to
trigonometrically interpolate functions, we have then the direct link to use
cycloidal curves for any free-form contour.

These curves are mostly defined in the 2D plane. For our scenario of pose

estimation we will extend these curves to 2D or 3D curves in the 3D space.



2. CURVES IN CONFORMAL
GEOMETRIC ALGEBRA

This section concerns the formalization of cycloidal curves in conformal ge-
ometric algebra. Geometric algebras are the language we use for our pose
problem and the main arguments for using this language in that context are
its dense symbolic representation and its coupling of projective and kinematic
geometry. One main problem for 2D-3D pose estimation are the involved
mathematical spaces which are elements of the stratification hierarchy pro-
posed by Faugeras [14]. On the one hand we are interested to estimate an
affine transformation (a rigid body motion) and on the other hand we observe
objects in an image and therefore have to deal with projective geometry. To
overcome this problem we use a conformal embedding and so we are able
to deal with Euclidean, projective and kinematic geometry in one language.
We will first introduce the basic notation of conformal geometric algebra and
the modeling of entities and their kinematic transformations. We make use
of it to model cycloidal curves in the 3D space. Modeling cycloidal curves is
also possible in affine geometry, but in the next section we then combine this
formalization within our pose estimation problem and then there is need for
using conformal geometry: The image entities are projectively reconstructed
to, e.g., projection rays and then transformed to conformal lines (Pliicker
lines [38]). So the projective aspect of the pose problem is transformed to
a kinematic one and then combined with the kinematic description of the
cycloidal curves.

This section gives only a brief introduction to geometric algebras. The
reader should consult [42] for a more detailed introduction.

2.1 Introduction to conformal geometric algebra

In this section we introduce the main properties of the conformal geometric
algebra (CGA) [27]. The aim is to clarify the notations. A more detailed
introduction concerning geometric algebras can be found in [45].

In general, a geometric algebra G, , is a linear space of dimension 2",
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n = p + ¢q, with a subspace structure, called blades, to represent so-called
multivectors as higher order algebraic entities in comparison to vectors of
a vector space as first order entities. A geometric algebra G, , results in
a constructive way from a vector space R”? endowed with the signature
(p,q), n = p + ¢, by application of a geometric product. The geometric
product of two multivectors A and B is denoted as AB. The geometric
product AB contains an outer (A) and an inner (-) product, whose roles are
to increase or to decrease the order of the algebraic entities, respectively. We
will demonstrate this affect in case of two vectors a, b € G, ;:

ab = a-b+aAnbd

1
= —(ab+ba)+

5 (ab — ba), (2.1)

1
2
where o = @ - b is a scalar and A = a A b is a bivector, thus,

ab = a+ A (2.2)

is an inhomogeneous multivector. Geometric algebras are graded algebras.
Scalars are of grade zero, vectors of grade one, bivectors of grade two, etc.
A linear combination of elements containing different grades is called a mul-
tivector M and can be expressed as

n

M = } (M) (2.3)

i=0
The operator (.); denotes the projection of a general multivector to the en-

tities of grade s. The dimension of the subspace of grade i is ( TZL A

multivector of grade ¢ is called an i-blade if it is generated by the outer prod-
uct of ¢ vectors. This means in general that every ¢-blade is a multivector of
grade ¢ but not vice versa.
For later use we introduce the commutator X and anti-commutator x
products, respectively, for any two multivectors,
AB =

(AB+BA)+-(AB— BA) = AXB + AxB. (2.4)

1 1
2 2

We use the conformal geometric algebra [27] to model the geometry of our
scenario for free-form pose estimation. The idea behind conformal geometry
is to interpret points as stereographic projected points. Simply speaking a
stereographic projection is one way to make a flat map of the earth. Taking
the earth as a 3D sphere, any map must distort shapes or sizes to some degree.
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Fig. 2.1: Visualization of a stereographic projection for the 1D case: Points
on the lines are projected on the circle. Note that the point at
infinity projects to the north pole n, and the origin projects to the
south pole s.

The rule for a stereographic projection has a nice geometric description and is
visualized for the 1D case in figure 2.1: Think of the earth as a transparent
sphere, intersected on the equator by an equatorial plane. Now imagine a
light bulb at the north pole n, which shines through the sphere. Each point
on the sphere casts a shadow on the paper, and that is where it is drawn on
the map. Before introducing a formalization in terms of geometric algebra,
we want to repeat the basic formulas for projecting points in space on the
sphere and vice versa, e.g. given in [34]. To simplify the calculations, we
will restrict ourselves to the 1-D case, as shown in figure 2.1. We assume
two orthonormal basis vectors {e;, e, } and assume the radius of the circle
as p = 1. Note that e, is an additional vector to the one-dimensional vector
space e; with e2 = e} = 1.

To project a point ' = ae; + be, on the sphere onto the e;-axis, the
interception theorems can be applied to obtain

( ¢ ) +0 (2.5)
r = |—— e e,. .
1—-0) 77
To project a point ze; (x € R) onto the circle we have to estimate the
appropriate factors a,b € [0,...,1]. The vector &' can be expressed as
' = ae; +be,
2z 2?2 —1
= e ey, 2.6
Zrio T Er (2:6)

and using homogeneous coordinates this leads to a homogeneous representa-
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Fig. 2.2: Visualization of the homogeneous model for stereographic projec-
tions for the 1D case. All stereographic projected points are on a
cone, which is a null-cone in the Minkowski space. Note that in
comparison to figure 2.1, the coordinate axes are rotated and per-
spective drawn.

tion of the point on the circle as
' = ze + ! (:132 — 1) e; + ! <x2 + 1) e3. (2.7)
2 2
The vector x is mapped to
z = z' =ae +be, +es. (2.8)

We define e; to have a negative signature, and therefore replace e; with
e_, whereby e> = —1. This has the advantage that in addition to using a
homogeneous representation of points, we are also working in a Minkowski
space. Euclidean points, stereographically projected onto the circle in figure
2.1, are then represented by the set of null vectors in our new space. That
is, we have the mapping

r = z' =ae; +be;te_, (2.9)
with
() =ad*+b"-1=0 (2.10)

since (@, b) are the coordinates of a point on the unit circle. Note that each
point in Euclidean space is in fact represented by a line of null vectors in the



2.1. Introduction to conformal geometric algebra 15

new space: the scaled versions of the null vector on the unit sphere. In [27]
it is shown that the conformal group of n-dimensional Euclidean space IR"
is isomorphic to the Lorentz group of R™*%'. Furthermore, the geometric
algebra G, 11 of R"™™! has a spinor representation of the Lorentz group.
Therefore, any conformal transformation of n-dimensional Euclidean space
is represented by a spinor in G, 1, the conformal geometric algebra. Figure
2.2 visualizes the homogeneous model for stereographic projections for the
1D case.

Substituting the expressions for a and b from equation (2.6) into equation
(2.9), we get

= xe1+%(x2—1) e++% (:1:2+1) e_. (2.11)

This homogeneous representation of a point is used as point representation in
the conformal geometric algebra. We will show this in the next section. Note
that the stereographic projection leads to points on a sphere. Therefore, we
can use (special) rotations on this sphere to model e.g. translations in the
world or rigid body motion as coupled rotation/translation. Since we also
use a homogeneous embedding, we have furthermore the possibility to model
projective geometry.

To introduce the conformal geometric algebra (CGA) we follow [27] and
start with the Minkowski plane R"", which has an orthonormal basis {e,, e},
defined by the properties

e2=1 e =-1 and e;-e_=0. (2.12)

A null basis can now be introduced by the vectors

1
e 1= i(e_ —e;) and e:=e_+e,, (2.13)

with €2 = e = 0. The vector ey can be interpreted as the origin, and the
vector e as a point at infinity. Note that this is in consistency with figure 2.2:
ey corresponds to the south pole, s, and e corresponds to the north pole, n,
in homogeneous coordinates. Furthermore we define E := e A e.

In the case of working in an n-dimensional vector space R™ we couple an
additional vector space R"", which defines a null space to gain R" @ R"' =
R"™!. From that vector space we can derive the conformal geometric alge-
bra (CGA) G, 111 as linear space of dimension 2""2. For the 3-dimensional
vector space R?® we gain G.1, which contains 2° = 32 elements of different
structure.
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The algebras G3; and Gs( are suited to represent the projective and
Euclidean space, respectively [19, 21]. Since

Gi1 2 G312 Gsp, (2.14)

both algebras for the projective and Euclidean space constitute subspaces of
the linear space of the CGA. It is possible to use operators to relate the differ-
ent algebras and to guarantee the mapping between the algebraic properties.
This relation is also interesting since it builds another stratification hierar-
chy, containing the Euclidean, projective and conformal space, in contrast to
Faugeras’ stratification hierarchy [14], containing the Euclidean, affine and
projective space.

The basis entities of the 3D conformal space are spheres s, defined by the
center p and the radius p, s = p+ %(pZ—pZ)e-i-eo. A point & = :v—i—%:ch—i-eo
is nothing else but a degenerate sphere with radius p = 0, which can easily
be seen from the representation of a sphere. Evaluating  leads to

1,
r = m+§we+e0

1 1
= x+ §m2(e+ +e_)+ 5(6_ —e)

= w+<1w2—1)e —i—(lar:?—l—l)e (2.15)

B 2 2) "1 \2 2) '
This is exactly the homogeneous representation of a stereographic projected
point, given in (2.11). The basis vectors {e, e} only allow for a more compact
representation of vectors than when using {e,,e_}.

A point z is on a sphere s iff £ - s = 0. As shown in [42], dual points,
lines and planes can be expressed as X* = eAz, L* = e Aa A b and
P*=e ANaAbAc. Butsince we only work with the entities in their dual
representation, we neglect the x-sign in the further formulas.

In this work we do not use all properties which are offered by the confor-
mal geometric algebra. There is no need for us to estimate e.g. inversions or
other conformal mappings, which can be estimated in conformal geometric
algebra. The properties we need are the intrinsic relation of projective and
conformal geometry and the possibility to express rigid motions in a linear
manner.

2.2 Twists as generators of rigid body motion in CGA

This section concerns the estimation of rigid body motion in conformal ge-
ometric algebra. It is well known, that a rigid motion of an object is a
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continuous movement of the particles in the object such that the distance
between any two particles remains fixed at all times [33]. A rigid motion is
constituted by a rotation R and a translation 7. In CGA both operations
can be expressed in a linear manner and they also can be applied to different
entities (e.g. points, lines, circles, spheres) in the same manner. Rotations
in G4 are represented by rotors,

R = o) -5

k=0

= cos (g) — Isin <g> . (2.16)

The components of the rotor R are the unit bivector I, which represents
the dual of the rotation axis, and the angle 6, which represents the amount
of rotation. If we want to translate an entity with respect to a translation
vector t € G3, we can use a so-called translator,

T — exp (e_t) 1+ (2.17)

2 2
This translator is a special rotor, similar to a translator in the dual quater-
nion algebra. The main difference of CGA to the dual quaternion algebra [38]
or motor algebra [5] is with respect to encode geometric entities. This leads
to remarkable differences in estimating rigid motions for different entities.
Let be X a point in CGA. Then rotations and translations can be expressed
by applying rotors and translators as versor products [20], e.g. X' = RXR,
or X" =TXT"*. To express a rigid body motion we concatenate multiplica-
tively a rotor and a translator. Such an operator (it is a special even-grade
multivector) will be denoted as a motor M, which is an abbreviation of “mo-
ment, and vector”. The rigid body motion of e.g. a point X can be written
as

X' = MXM
= TRXRT, (2.18)

see also [5]. But as mentioned before, this does not only hold for point con-
cepts. Other entities like lines, plane, circles and spheres can be transformed
in exactly the same manner. Note that this is in contrast to the motor alge-
bra: The CGA is a universal algebra since it is build from 1-vectors whereas
the motor algebra is build from 2-vectors. That is the reason why estimating

1 A denotes the algebra conjugate of A and A* denotes the dual representation of A.
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transformations in the motor algebra can only be done with taking care of
different signs within the motors acting on the different entities, see [5] for
more details.

Following e.g. [33], a rigid body motion of points can be expressed by a
rotation around a line in space, which is also called a general rotation. This
means, that the group of general rotations is isomorphic to the group of rigid
body motion and therefore, they have the same generating Lie algebra. To
gain the Lie algebra of a 1-parameter group action, the group action must
be derivated and evaluated at zero. This leads to the generating Lie algebra,
whose (scaled) exponential corresponds to a group action. General rotations
are also called twist transformations. The Lie algebra element £ € se(3) is
a twist, and its Lie group element, the exponential g = exp(£0) € SE(3)
describes a rigid body motion [16]. This representation can also be applied
to the motors and, thus, expresses a rotation of any of the above mentioned
entities around a line in the space. This is in contrast to Euclidean geometry,
where Lie algebras and Lie groups are only applied on point concepts.

The general idea of the twist representation of a motor is to translate
both, the entity and the line to the origin, to perform a rotation and to
translate back the transformed entity. The motor M, interpreted as the
exponential of a twist, may be written as

M = TRT
e (—g(we(t-m)

= exp <—§\1/> . (2.19)

The rigid body motion of a point can then be written as

X' = MXM
(TRT)X (TRT). (2.20)
Note that we use £ for a twist in the affine space and ¥ for a twist in the

conformal space. For points these two structures are equivalent. But ¥ is
more general since it can also be applied on other entities.

2.3 Operational definition of cycloidal curves

While in the last section we stated that twists can be considered as generators
of the Lie group of rigid body motion for a certain set of entities, we will
consider here curves as generalized geometric entities which result from twists
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as orbits of a certain Lie group. That is, here we restrict ourselves to model
curves by the algebraic constrained motion of points in space. As previously
explained, cycloidal curves are circles rolling on circles or lines. In this section
we will explain how to generate such curves as twist depending functions in
conformal geometric algebra. For example conics are no entities which can

e point
O twist

Fig. 2.3: A conic generated by two coupled twists

be directly described in conformal geometric algebra. The idea for modeling
conics is visualized in figure 2.3: We assume two parallel twists in 3D space
and a 3D point on the conic, and we transform the point around the two
twists in a fixed and dependent manner. In this case we use two coupled
parallel (not collinear) twists, rotate the point by —2¢ around the first twist
and by ¢ around the second one. The set of all points for ¢ € [0,..., 27|
generates a conic as the orbit of the corresponding Lie group.

In general, every cycloidal curve is generated by a set of twists & with
frequencies \; acting on one point X on the curve. Since m twists can be
used to describe general rotations in the 2D plane or 3D space, we call the
generated curves nD-mtwist curves. With nD-mtwist curves we mean n
dimensional curves, generated by m twists with n,m € IN. In the context of
the 2D-3D pose estimation problem we use the cycloidal curves as 3D object
entities. So we mean 3D-mtwist curves, if we speak of just mtwist curves.

We will start with very simple curves. The simplest one consists of one
point (a point on the curve) and one twist. Rotating the point around the
twist leads to the parameterized generation of a circle: The transformation
can be expressed with a suitable motor M, and an arbitrary 3D point, X ,,
on the circle. The 3D orbit of all locations on the circle the point can take
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Fig. 2.4: Curves generated from 3D-2twists with parallel axes.
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Fig. 2.5: Perspective views of a 3D-2twist generated curve. The 2twist curve,
and the twists axes are visualized.

on is simply given by
XY = MyX,M, : ¢€l0,..., 2] (2.21)

We call a circle also a Itwist generated curve. The points on the orbit are
constraint by the motor M4 as element of a Lie group. This is in contrast
to classical subspace concepts in vector spaces.
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Entity Class Entity | Class

point Otwist curve | rose 2twist curve
circle 1twist curve || spiral 2twist curve
line 1twist curve || sphere | 2twist surface
conic 2twist curve || plane 2twist surface
line segment | 2twist curve || cone 2twist surface
cardioid 2twist curve || cylinder | 2twist surface
nephroid 2twist curve || quadric | 3twist surface

Tab. 2.1: Well known 3D entities as mtwist curves or surfaces

Now we can continue, and wrap a second twist around the first one. If we
make the amount of rotation of each twist dependent on each other, we gain a
3D curve in general. This curve is firstly dependent on the relative positions
and orientation of the twists with respect to each other, the (starting) point
on the curve, and the ratio of angular frequencies. For parallel twist axes
we gain a 2D curve in 3D space, whereas we get a 3D curve in 3D space for
non-parallel twist axes.

The general form of a 2twist generated curve is

¢ . 9 1 —1 —2
XC’ - M)\2¢M)\1¢XCM)\1¢M>\2¢

= exp (—/\L;bllf2> exp (—%WO X exp <¥\Ill> exp (%Q@)

A, €ER, ¢€ [011, .. .,O[z]. (222)

The motors M' are the exponentials of the twists ¥;, the scalars \; € R
determine the ratio of angular frequencies between the twists and X is a
point on the curve. The values «; define the boundaries of the curve and
indeed it is also possible to define curve segments.

Figure 2.4 shows further examples of curves, which can be very easily
generated by two coupled twists. Note that also the archimedic spiral is a
2twist generated curve. To gain an archimedic spiral, one twist has to be a
translator. All these curves are given in the 3D space. In figure 2.4 only pro-
jections are shown. Figure 2.5 shows different projective views of a 3D twist
generated curve. Table 2.1 gives an overview of some well known entities,
interpreted as twist generated curves as well as twist generated surfaces.

The rigid body motion of these entities can easily be estimated, just
by transforming the generating twists. The transformation of an mtwist
generated curve can be performed by transforming the m twists (which are
just lines in the space) and the point on the curve. The description of these
curves is compact, and rigid transformations can be estimated very fast. We
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will focus on curves only in this paper.

2.4 Estimating twists from a given closed curve

So far we have discussed how a set of multiplicatively coupled twists can be
used to generate a curve. Similarly, we can ask how a given closed curve may
be parameterized with respect to a set of additively coupled twists. This
problem is in fact closely related to Fourier descriptors, which are used for
object recognition [17, 52, 3, 22| and affine pose estimation [4, 37] of closed
contours. We will show here that a set of coupled twists acting on a vector is
equivalent to a sum over a set of rotors, which each act on a different phase
vector. The latter can be regarded as a Fourier series expansion, whose
coefficients are also called Fourier descriptors.

The equivalence of coupled twists and a Fourier expansion is most easily
shown in Euclidean space. Let

TU; P
T

where T € R is the length of the closed curve, u; € Z is a frequency number

R? = exp(—

1

1), (2.23)

and [ is a unit bivector which defines the rotation plane. Furthermore, IN%T =
exp(mu;¢/T1). Recall that I> = —1 and, as noted in equation (2.16), we can
therefore write the exponential function as

exp(¢l) = cos(¢) + sin(¢) L. (2.24)

A 2twist generated curve may then be written in Euclidean space as follows,

—2

¢ _ 2 1 7l
XC’ = M)\2¢M)\1¢XCM)\1¢M)\2¢
C

=< =
=T = .1%(1Za ((R(f (IBC — tl) Rl + tl) — tg) R1 + 1,

534 >54 =9
= RIR{(zc —t)R/R, + RS(ti — )R, + t
=59 =59

= P+ V(fp1 Vi+ Vgp2 V, (2.25)
where py = ty, py =t — 2, Py = Tc — 14, Ve = Rg’, Vf = R?Rf and
i = 2wu;/T. Note that for planar curves the rotors R‘f and Rg’ act in the
same plane and the vectors ¢, t; and %, lie in the rotation plane. Hence,
the {p,;} lie in the rotation plane.

It can be shown that if a vector z lies in the rotation plane of some rotor

R, then Rx = xR. The previous equation can therefore be written as

26 ~2¢
gy = p+p V) +mV, (2.26)
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Note that the square of a rotor is equal to a rotor of twice the angle in the

~b=~¢ =2
same rotation plane. Therefore, Vf Vf = Vi¢. Using the exponential form
of rotors, we get

xl = p,+p, exp (QWUIQS l) + p, exp (27ru2¢ l>. (2.27)
T T
This is equivalent to a Fourier series expansion where we have replaced the
imaginary unit 4 = v/—1 with I and the complex Fourier series coefficients
with vectors that lie in the plane spanned by I. The latter vectors are the
phase vectors. In general it may be shown that any closed, planar curve C'(¢)
can be expressed as a series expansion

C(¢) = lim Z Dy €Xp (27;Ij¢ l) = lim Z R'p. R Rk (2.28)

N—)oo N—)oo

For every closed curve there is a unique set of phase vectors {p,} that param-
eterizes the curve. However, such a set corresponds to infinitely many dif-
ferent combinations of coupled twists. That is, given a set of coupled twists,
we can obtain the corresponding phase vectors {p,} but not vice versa. The
spectral representation of a curve transforms the translational parts of its
generating twists into a set of different phase vectors and therefore results
in a pure rotor description. This additive representation is unique, whereas
the multiplicative coupled twist representation is not. Therefore, we use the
additive description for our pose estimation scenario later on.

The expansion in equation (2.28) is again closely related to the standard
Fourier series expansion of a real, scalar valued function. In figure 2.6 a closed
curve created by two coupled twists is shown in the yz-plane. Suppose that
instead of C(¢) we consider Cs(¢) := C(¢) + 27¢/T e;, where e; is the unit
vector along the z-axis. If we project Cs(¢) onto the zy-plane and zz-plane,
we obtain the two other curves shown. This visualizes the well known fact
that we can regard any periodic function in a space of dimension n as the
projection of a closed curve in a space of dimension n + 1.

The phase vectors {p,} are also called Fourier descriptors. It has long
been known that one can also construct affine invariant Fourier descriptors
[17, 1], that is, entities that describe a closed curve and stay invariant under
affine transformations of the curve. This is particularly useful for object
recognition and has been used in many applications [3, 15, 47]. The same
relations that allow one to construct affine invariant Fourier descriptors also
allow for affine pose estimation. This works in the following way. Consider a
closed curve that lies on a plane which is tilted with respect to an observer.
This curve is projected with an affine camera onto an image plane. The pose
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Fig. 2.6: Projections of a curve created by coupled
twists.

of the plane in space can then be estimated given the Fourier descriptors of
the projected curve as well as the Fourier descriptors of the original curve.
See [2] for more details.

We attempted to perform a projective pose estimation via Fourier de-
scriptors. Unfortunately, there are two major problems. First of all, if a
closed curve is projected projectively, then the projected curve will not be
sampled in the same way as the original curve. This already distorts the
Fourier descriptors. Secondly, going through the equations we found that
in order to solve the projective pose estimation problem via Fourier descrip-
tors, one has to find analytic solutions to n** degree polynomials. Since this
is not possible in general, we cannot follow this approach. See appendix
A for more details. We therefore investigated a different approach for the
pose estimation of projected closed curves, which will be discussed in the
following.



3. POSE ESTIMATION IN CGA

This section concerns the pose estimation problem. So far we have just
formalized free-form entities and their twist representation. Now we will
continue to formalize the 2D-3D pose estimation problem.

3.1 Pose estimation in stratified spaces

To define the pose problem we want to quote Grimson [18]:

Definition 3.1 By pose, we mean the transformation needed to map an ob-
ject model from its own inherent coordinate system into agreement with the
sensory data.

Thus, pose estimation is to relate several coordinate frames of measurement
data and model data by finding out the transformation between. 2D-3D pose
estimation means to estimate the relative position and orientation of a 3D
object to a reference camera system. We already formalized our entities in the
conformal algebra because we want to formalize the pose estimation problem
in the conformal space. That is, a kinematic transformed object entity has
to lie on a projective reconstructed image entity. Let X be an object point
given in CGA. The (unknown) transformation of the point can be written
as M X M. Let x be an image point on a projective plane. The projective
reconstruction from an image point in CGA can be written as L, = e AoA.
This leads to a reconstructed projection ray, containing the optical center o
of the camera, see e.g. figure 1.1, the image point & and the vector e as
the point at infinity. Note that o A & formalizes the reconstructed ray in
projective geometry. The expression € A 0 A  represents the reconstructed
ray in conformal geometry and is therefore given in the same language as we
use for our mtwist generated curves.

To express the incidence of a transformed point with a reconstructed
ray we can apply the commutator product, which expresses collinearity and
directly transforms the constraint equation in an equation given in the Eu-
clidean space (see e.g. [40] for the proofs). Thus, the constraint equation of
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pose estimation from image points reads

(M X M) x eA(oA x ) = 0, (3.1)
~~ =N~
object point . 1mage pomtl

\ s v
~~

rigid motion of projection ray,
the object point reconstructed from the

image point

v

collinearity of the transformed object
point with the reconstructed line

Constraint equations to relate 2D image lines to 3D object points, or
2D image lines to 3D object lines, can also be expressed in a similar man-
ner. Note that the constraint equations implicitly represent an Euclidean
distance measure which has to be zero. Such compact equations subsume
the pose estimation problem at hand: find the best motor M which satisfies
the constraint. But in contrast to other approaches, where the minimiza-
tion of errors has to be computed directly on the manifold of the geometric
transformations [8, 48], in our approach a distance in the Euclidean space
constitutes the error measure. To change our constraint equation from the
conformal to the Euclidean space, the equations are rescaled without loosing
linearity within our unknowns.

The theoretical foundations concerning the mathematical spaces involved
in the pose estimation problem and their algebraic coupling within geometric
algebras is more detailed explained in [42].

3.2 Pose estimation of cycloidal curves

Now we can continue to combine the cycloidal curves with the pose estimation
problem: We consider a 3D cycloidal curve, like

b _ 2 1 Vi Y )
XZ — MA1¢MA2¢XM)\2¢MA1¢ . )\1,)\2 ER, ¢€ [0,...,27]—].(3.2)
By substituting this expression within our constraint equation for pose esti-
mation, we gain

(M(MimM;wXAM“iniM)M) x(eAloAz)) = 0. (3.3)

Since every aspect of the 2D-3D pose estimation problem of cycloidal curves
is formalized in CGA, the constraint equation describing the pose problem is
compact and easy to interpret: The inner parenthesis on the left contains the
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Fig. 3.1: Pose estimation of an object containing a cardioid and two cycloids.

operational definition of the cycloidal curve. The outer parenthesis contains
the unknown motor M, describing the rigid body motion of the 3D cycloidal
curve. This is the pose we are interested in. The expression is then combined
via the commutator product with the reconstructed projection ray and has
to be zero. This describes the co-tangentiality of the transformed curve to a
projection ray. The point « is a member of a 2D contour in the image plane.

The unknowns are the six parameters of the rigid motion M (three for
the location of the line, two for its orientation and one rotation angle) and
the angle ¢ for each point correspondence. An example for pose estimation
of cycloidal curves is shown in figure 3.1. The upper left image shows the 3D
object model. The other images show pose results of the model. To visualize
the quality, the transformed and projected object model is overlaid in the
images.

3.3 Pose estimation of free-form contours

So far we considered continuous 3D curves as representing objects. Now we
assume a given closed, discretizied 3D curve, that is a 3D contour C with 2N
sampled points in both the spatial and spectral domain with phase vectors p,
of the contour. We now replace a Fourier series development by the discrete
Fourier transform. Then the interpolated contour can be expressed in the
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Euclidean space as

N

Cl¢) = Y RipE;. (3.4)
k=—N

For each ¢ does C(¢) lead to a point in the Euclidean space. We first have

to transform this expression in the conformal space. Then we can, similar to

the previous section, substitute this expression in the constraint equations

for pose estimation. The transformation of the Fourier descriptors in the

conformal space can be expressed as

eN(C(p)+e.) = eA (( iv: prkﬁﬁ> +e) : (3.5)

k=—N

The innermost parenthesis contains the Fourier descriptors in the Euclidean
space. The next parentheses transform this expression in the homogeneous
space and then it is transformed to the conformal space. Substituting this
expression in the pose constraint equation leads to

(M(eA(C(¢)+e)M) x (eA(oAm) = 0

(M (m((fj prkﬁf>+e_)>ﬁ> x(eA(oAz)) = 0.(3.6)

k=—N

The interpretation of this equation is also simple: The innermost part con-
tains the substituted Fourier descriptors in the conformal space of equation
(3.5). This is then coupled with the unknown rigid body motion (the mo-
tor M) and compared with a reconstructed projection ray, also given in the
conformal space.

Note that cycloidal curves are in that respect more general than contours
as we assume contours as closed curves, whereas cycloidal curves (see e.g. a
spiral) are in general not closed. This means, for closed curves can Fourier
descriptors be interpreted as generator parameters of special cycloidal curves,
but not vice versa. The main point is the coupling of a spectral representation
of contours within the pose estimation problem. This is achieved in the
previous equation by using a conformal embedding.

3.4 Estimation of pose parameters

The main question is now, how to solve a set of constraint equations for
multiple (different) features with respect to the unknown motor M. Since a
motor may be represented as a polynomial of infinite degree (see, e.g., (2.16)
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for the series expression of the exponential function), this is a non-trivial
task, especially in the case of real-time estimations. The idea is to gain
linear equations with respect to the generators of the motor. We use the
exponential representation of motors and apply the Taylor series expression
of first order for approximation. This corresponds to a mapping of the above
mentioned global motion transformation to a twist representation, which
enables incremental changes of pose. That means, we do not search for the
parameters of the Lie group SE(3) to describe the rigid body motion [16],
but for the parameters which generate their Lie algebra se(3) [33]. From
this result linear equations in the generators of the unknown 3D rigid body
motion. For the sake of simplicity we will show the linearization for the case
of point transformations. We approximate the Euclidean transformation of
a point X caused by the motor M in the following way:

MXM = exp (—g(l+e(t-l))>iexp (g(l+e(t'l))>

~ (1 S e(t-D)X(1+ o (+elt-1))
~ E+e(w+0-z)—0t-1) (3.7)

Setting v := 0(l - ) and m := 6(t - 1), we get
MXM =~ E+e(z+v—m). (3.8)

The combination of this approximation of the motion with the previously
derived constraints for pose estimation results in

MXM x (eA(oAx)) = 0

<= (E+e(x+v—m))x (e A (oA x))

SANE+e(x+v—m))x(eN(onx)) = 0 (3.9)
Because of the approximation (<~=-) the unknown motion parameters v
and m are linear. This equation contains six unknown parameters for the
rigid body motion. The unknowns are the twist parameters for the general
rotation (five unknowns for the location of the twist and one unknown angle,
represented by the unknowns v and m). Accumulating a set of such linear
equations (for different features of the object model), leads to a linear system
of equations. The system of linear equations can be solved for a set of
correspondences by applying e.g. the well known Householder method. From
the solution of the system of equations, the motion parameters R, t can easily

be recovered by evaluating 6 := ||v||, 1 := ¥ and (¢-1) := =T,
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Solving these equations, we get a first approximation of the rigid body
motion. Iterating this process leads to a monotonous convergence to the ac-
tual pose and only a few iterations (mostly 5 — 8) are sufficient to get a good
approximated pose result. The algorithm itself corresponds to a gradient
descend method applied in the 3D space. Note that the monotonous conver-
gence does sometime leads to local minima. The aim is to avoid such local
minima. Therefore we use low-pass information for contour approximation.



4. EXPERIMENTS

In this section we present experimental results of free-form contour pose esti-
mation. Therefore we will start with an introduction to the main algorithm
for pose estimation of free-form contours. Though the numerical estimation
of the pose parameters is already clarified in the last section, the main prob-
lem is to determine suited correspondences between 2D image features and
points on the 3D model curve. Therefore a version of an ICP-algorithm is
presented and called the increasing degree method. Then we will continue
with experiments on the convergence behavior of our algorithm and time per-
formance versus accuracy. There also stability examples for distorted image
data are shown. The algorithm proofs as stable and fast (real-time capable)
for our scenarios. To deal with 3D objects and partial occluded aspects of
objects during tracking, we then present a modified version of our increasing
degree method. There we are able to deal with occlusion problems by using
sets of Fourier descriptors to model aspects of the object within our scenario.

4.1 The algorithm of pose estimation for free-form
contours

The aim is to formulate a 2D-3D pose estimation algorithm for any kind of
free-form contour. The assumptions we make are the following:

1. The object model is given as a set of 2N 3D points f]:-”, spanning the
3D contour. Further we assume to know their phase coefficients p,.

2. In an image of a calibrated camera we observe the object in the image
plane and extract a set of n 2D points x?, spanning the 2D contour.

Since the number of contour points in the image is often too high (e.g. 800
points in our experimental scenario), we use just every 10th point and get
an equal sampled set of contour image points.

Note that we have no knowledge which 2D image point corresponds to
which 3D point of the interpolated model contour. Furthermore, a direct
correspondence does not generally exist.
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Using our approach for pose estimation of point-line correspondences, the
algorithm for free-form contours consists of iterating the following steps:

(a) Reconstruct projection rays from the image points.

(b) Estimate the nearest point of each projection ray to a
point on the 3D contour.

(c) Estimate the pose of the contour with the use of this
correspondence set.

(d) goto (b).

The idea is, that all image contour points simultaneously pull on the 3D
contour. The algorithm itself corresponds to the well-known ICP algorithm,
e.g. discussed in [43, 51]. But whereas it is mostly applied on sets of 2D
or 3D points we apply it on a trigonometric interpolated function and from
image points reconstructed projection rays.

Fig. 4.1: The different approximation levels of the 3D object contour.

Note that this algorithm only works if we assume a scenario where the
observations in the image plane are not too different. Thus, it is useful for
tracking tasks. For our experiments we use up to 25 pixel deviation between
two images of a sequence. A projection of the used object model for our
first experiments is shown in figure 4.1. The discrete points and the different
approximation levels are shown. The model itself consists of 90 contour
points, is planar and has the width and height of 24 x 8 cm. Pose estimation
results at different iterations are shown in figure 4.2. The white 2D contour
is the transformed and projected 3D object model overlaid with the image.

Using the Fourier coefficients for contour interpolation works fine but the
algorithm can be made faster by using a low-pass approximation for pose
estimation and by adding successively higher frequencies during the itera-
tion. This is basically a multi-resolution method. We call this technique
the increasing degree method. Therefore we start the pose estimation pro-
cedure with just a few Fourier coefficients of the 3D contour and estimate
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Fig. 4.3: Pose results of the low-pass filtered contour during the iteration.

the pose to a certain degree of accuracy. Then we increase the order of used
Fourier coefficients and proceed to estimate the pose with the refined object
description. This is shown in figure 4.3. In this experiment, the indicated
iteration number corresponds directly to the number of used Fourier coef-
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Fig. 4.4: Different pose results of the free-form contour.

ficients minus one. This means that we use two Fourier coefficients in the
first iteration, four Fourier coefficients in the third iteration, etc. Iteration
21 uses 22 Fourier coefficients and figure 4.3 shows that the result is nearly
perfect. Figure 4.4 shows pose results during an image sequence containing
530 images. As can be seen also perspective views of the free-form contour
can be estimated.

4.2 The performance of the pose estimation algorithm

307 Degree 40
20000
5] Degree 30
Degree 3
20} 15000 Degree 20
Error Degree4 time Increasing Degree
(mm) 15} Degree 10
(M) 5000 Degree 5
Degree 4
107 Degree 3
Degree 5
5l 5000
Increasing Degree
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Fig. 4.5: Accuracy and computing time of the algorithm for constant num-
ber of image points (80) and different approximation levels of the
contour.

The accuracy and time performance of the algorithm is dependent on the
number of object and image points spanning the contours in 2D and 3D,
respectively. Furthermore, we can use the low-pass approximation of the 3D
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Fig. 4.6: Accuracy and computing time of the algorithm for changing number
of used image points and the increasing degree algorithm.
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Fig. 4.7: Computing times for an image sequence containing 500 images.

contour. We made several experiments with changing approximation levels
and changing number of image points.

In the first experiment we compare the results of our algorithm for dif-
ferent degrees of contour approximation. We use constant degrees
(3,4,5,10,20,30,40) of contour approximation over the iteration and com-
pare the results with the method of increasing degrees, similar to figure 4.3.
To test the accuracy of our algorithm we simply compare the translational
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Fig. 4.8: Different pose results for distorted image data.

Computer pose min. search total (25 It.)
Pentium IV 2 Ght 5ms up to 20 ms 405 ms
Pentium ITI 850 Mht 15 ms up to 25 ms 783 ms

Sparc Ultra 10 325 ms | up to 80 ms 10295 ms (~ 10 sec)
Sparc Ultra 1 8921 ms | up to 667 ms | 232265 ms (~ 3.5 min)
Sparc 4 13322 ms | up to 1505 ms | 356811 ms (~ 6min)
Sparc 10 23509 ms | up to 1743 ms | 622975 ms (~ 10min)

Tab. 4.1: Computing time of the increasing degree method for the same sce-
nario on different machines for 90 model points, 80 image points
and 25 iterations.

error vector with the ground truth. The result is shown in figure 4.5. It
can be seen that the algorithm converges after less than 10 iterations. Then
the error vectors do not change any more. It is clear, that the use of less
number of Fourier coefficients leads to fast but more inaccurate results. Our
increasing degree method finds a good optimum between computing time and
accuracy of the result. The algorithm converges after 7 iterations.

In a second experiment we use the increasing degree algorithm and change
the number of extracted contour points. In this experiment we use
10,12, 14,20, 27,32,40, 54 and 80 regularly sampled image points and com-
pare the accuracy and computing time. The result is presented in figure
4.6. It can be seen, that the number of image points used affects both the
computing time and the accuracy. But in comparison with the previous ex-
periment there exists a critical break point with regard to the accuracy of the
algorithm. While the use of 14 — 80 image points does not affect the quality
of the pose too much, the use of 10 points or less leads to wrong poses.

These results hold for just this scenario and will change for other scenar-
ios. The main result is that it is indeed possible to use the whole image and
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object information available to estimate the pose of the free-form contour.
But we have to pay with computing time. Instead, the use of low-pass filtered
or of sub-sampled contours fastens computing and leads to good results. In
this scenario the computing time can be reduced from 35 seconds to less than
1 second without introducing non-tolerable errors.

Indeed, the computing time is very dependent on the machine itself.
Therefore, we also tested the same algorithm on different machines in our
group. The result is shown in table 4.1. As can be seen, e.g. the comput-
ing time for the increasing degree method, with 80 image points is 783 ms
on a standard Linux 850 Mht machine. The column pose shows the com-
puting time for each pose. The column min. search shows the computing
time for estimating the minimum distance between projection rays and the
model curve. Since we use the increasing degree method, the computing time
for estimating the distances varies and increases with increasing number of
Fourier coefficients. Therefore we just show the maximum computing time.
The column total shows the total computing time for 25 Iterations. But since
we are working with image sequences, 25 iterations are seldom needed.

Figure 4.7 shows the computing times for an image sequence containing
500 images. The computing time for each image varies between 20ms and
55ms. The average computing time is 34ms, which is equivalent to 29 fps.
These results were achieved with a 2Ght Pentium IV computer.

Many ideas to fasten the algorithm can also be found in [43]. We did not
improve the algorithm yet. This is part of future work. The main result is
that the algorithm can also be used for real-time applications on standard
Linux machines.

Contour approximations Start configuration Iterations

Fig. 4.9: Contour approximations of another planar object model and its con-
vergence behavior.

The robustness of our algorithm with respect to distorted image data is
shown in figure 4.8. In this image sequence (containing 450 images) we dis-
tort the image contour by covering parts of the contour with a white paper.
This leads to slight or more extreme errors during the contour extraction
in the image. Nevertheless, the behavior of the matching and the pose re-
sults are acceptable. These examples give just a guess about the stability of
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Fig. 4.10: Example images and 3D poses taken from an image sequence con-
taining 700 images.

the proposed method. Total wrong extracted contours or too much missing
informations are not possible to be compensated.

Fig. 4.11: Three perspective views of a non-planar object model and its ap-
proximations.

Figures 4.9-4.12 present results of other object models: We call the first
object model the cloud and the second object model the edge. Figure 4.9
shows the 3D contour approximations in the left image and a convergence
example in the other images. Figure 4.10 presents results of a sequence
containing 700 images. As can be seen also strong perspective views, as in
the lower right image, can be estimated. To compare the visual observable



4.3. Simultaneous pose estimation of multiple contours 39

Fig. 4.12: Example images from an image sequence containing 500 images.

error (as a drawn contour in the image) with its real 3D pose we visualize
in figure 4.10 the relative pose in a virtual environment. The real 3D pose
matches with the observations in the image.

Figure 4.11 shows approximation levels of a non-planar object model in
three different perspective views. This is an extreme example since the ob-
ject model contains edges. Interpolation of a contour with Fourier descrip-
tors leads to a trigonometric interpolated function. So the edges are always
smoothed and several descriptors (we use 40) are required to achieve an ac-
ceptable result. Figure 4.12 presents different results from an image sequence
containing 500 images.

Object contours which contain concavities are in danger to get trapped
in local minima during using the ICP-algorithm with the gradient descend
method for pose estimation. Though it is not always possible to find the
global minimum (and therefore the best pose), using contour approximations
helps to avoid local minima. This effect is achieved by using firstly a low-
pass contour for pose estimation and then over the iterations a more refined
contour.

The last two object models (the cloud and the edge) contain more local
minima than our first one. Therefore we need more Fourier descriptors to gain
acceptable results. This indeed decreases the computing time. While for the
first object model the average computing time is 34ms, the average computing
time of the cloud and edge model are 100ms and 200ms, respectively.

4.3 Simultaneous pose estimation of multiple contours

In the last experiments our object model is assumed as one (closed) contour.
But many 3D objects can more easily be represented by a set of 3D contours
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expressing the different aspects of the object. In this section we will extend
our object model to a set of 3D contours. The main problem here is, how
to deal with occluded or partially occluded contour parts of the object. For
our first experiment we will use the object model which we already used in
figures 4.11 and 4.12. We will interpret the model as an object containing
two sides and one ground plate. This means we get a set of three planar con-
tours to model the object. The three contours are merged to one object and
perspective views are shown in figure 4.13. The three contours are assumed
as rigidly coupled to each other. This means that the pose of one contour
automatically defines the pose of the other contours.

Fig. 4.13: Three perspective views of an object which is interpreted by a set
of contours. The different approximations of the contours are also
drawn.

Our algorithm to deal with partially occluded object parts is simple and
effective:

Assumptions: n 3D contours and one boundary contour in the image
dist(P,R) a distance function between a 3D point P and a
3D ray R.

Aim: Estimate correspondences and pose.

(a) Reconstruct projection rays from the image points.
(b) For each projection ray R:
(c) For each 3D contour:
(cl) Estimate the nearest point P1 of ray R to a point on
the contour.
(c2) if (n==1) choose P1 as actual P for the
point-line correspondence
(c3) else compare P1 with P:
if dist(P1,R) is smaller than dist(P,R) then
choose P1 as new P
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Fig. 4.14: Pose results of an object with partially occluded contours. The left
image shows the original image. The middle image shows the ex-
tracted silhouette (from which the boundary contour is extracted)
and the right image visualizes the pose result. Note that also the
occluded parts of the model are drawn and uniquely determined
by the visible parts.

(d) Use (P,R) as correspondence set.
(e) Estimate pose with this correspondence set
(f) Transform contours, goto (b)

The idea is to apply our ICP-algorithm not to one image contour and one
3D contour, but now to one image contour and a set of 3D contours.

This implies: For each extracted image point must exist one model con-
tour and one point on this contour, which corresponds to this image point.
Note, that the reverse is in general not possible.

Figure 4.14 visualizes the problem of partially occluded contour points.
The only image information we use is the observed boundary contour of the
object. By using a priori knowledge (e.g. assuming a tracking assumption),
the pose can be recovered uniquely. This means, our algorithm can infer the
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Fig. 4.15: Pose results of an image sequence containing different aspect
changes and degenerate situations.

position of hidden components from the visible components.

The computing time is proportional to the number of used contours.
While we need 200ms for each image in the experiments of figure 4.12, we
now need 600ms for each image. But we gain a more general concept, since
we are not restricted to one special view to the object. Instead we can deal
with aspect changes of the contour in an efficient manner. This is demon-
strated in figure 4.15 in case of quiet different aspects of a 3D object. The
images are taken from an image sequence containing 325 images. In this im-
age sequence we put the object on a turn table and make a 360° degree turn
of the whole object. The aspects of the objects are changing and half-side
models can not be used any more, but just the whole object. Our tracking
algorithm does not fail and is even able to cope with degenerate situations.

In our last experiment, we use as object model the shape of a 3D tree.
The contour approximations are shown in figure 4.16. As can be seen in
the close-up, here also much descriptors (around 50) are needed to get a
sufficient approximation of the model. Pose results of an image sequence,
containing 735 images are shown in figure 4.17. The interesting part of this
model, in contrast to the previous ones, is not only its complexity: This
model contains two nested contours and is therefore much more complicated
than the previous ones. Because of its complexity (the number of Fourier
coefficients and the nested contours) we need a computing time of three
seconds for each image on a 2 Ght Linux machine.

From the two last experiments result the possibility to model objects with
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Fig. 4.16: One perspective, frontal and top view with approximations of the
tree model. The close up visualizes the complexity of the object
model.
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Fig. 4.17: Pose results of the tree model during an image sequence.

contours representing different aspects of the object and to fuse these within
our scenario.
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5. DISCUSSION

This work concerns the problem of 2D-3D pose estimation of 3D free-form
contours as one single geometric entity. We assume the knowledge of a 3D
object, which contains one or more contours modeling the aspects of the ob-
ject. Furthermore we assume a calibrated camera and observe the silhouette
of the object in the camera. The aim is to estimate the pose (rotor R and
translator T'), which leads to a best fit between image and model data. The
first topic we concern is the modeling of 3D free-form contours. Therefore,
we start with algebraic curves (the cycloidal curves) and model them by cou-
pled twists. We then derive the connection of twist-generated curves with
Fourier descriptors and explain how to estimate 3D closed contours by using
3D Fourier descriptors. In contrast to an explicit or implicit definition defi-
nition of algebraic curves, we propose an operational definition which keeps
geometric transparency and fits within the scenario of pose estimation in
a conformal manner. The second topic we concern is the coupling of this
curve representation within the 2D-3D pose estimation problem. Therefore
we use the conformal geometric algebra, which contains also Euclidean and
projective geometry as sub-algebras. This representation is used to compare
the 3D contour with (from image points) reconstructed projection rays. This
leads to constraint equations, which are solved by using a gradient descend
method, combined with an ICP-algorithm. The formulas are compact and
easy to interpret.

The last section concerns experiments which show the efficiency of our
algorithm on different image sequences with different object models (planar,
non-planar, curved, angular etc.). We discuss the behavior of our algorithm
with respect to boundary distortions and the complexity of object models.
Besides, we investigate the time performance on different machines. Further-
more, we deal with partially occluded object features and nested contours.
Using Fourier descriptors allows us to deal with low-pass information of con-
tours and therefore to reduce the computing time significantly. Our algorithm
proofs as real-time capable, efficient and robust.
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APPENDIX






A. POSE ESTIMATION OF
PROJECTED CONTOURS

Here we give some mathematical detail on how the Fourier descriptors of a
closed curve are related to the Fourier descriptors of a projection (not affine)
of the same closed curve.

As was shown before we can write an arbitrary closed planar curve as

90 =Y R,p,R.,

where R, = exp(—30ul), § = 2r¢/T and u € Z. The set {p,} are the phase
vectors. We assume that this contour lies in the e;e,-plane of a 3D-Euclidean
vector space with basis {ey, ey, e3}. Typically, we also make the assumption
that g(f) can be represented by a finite number of phase vectors.

Now we rotate and translate the whole curve ¢g(f) and denote the new
curve as ¢'(f). Our goal is to recover the rotation and translation of the
original curve g(f) from the original curve itself and the projection of ¢'(f)
onto an image plane. Without loss of generality we can set the image plane
to be perpendicular to ez and passing through es. In order to see what the
projection of ¢'(#) onto this image plane looks like, we need to write g'(#) in
terms of the vector basis and translation and rotation coefficients. It turns
out that ¢'(f) can be written as

9(0) = @(0) + ) + (X 60)) +¢" (1.1

u#0

where g/ (#) is a constant vector in the e; e;-plane, t! is the translation vector
of the curve in the e;e;-plane and ¢ is the translation vector of the curve
along the es-axis. The components g/, (f) can be written as

g..(0) = cos(ub) c., + sin(ub) 2 + (Ozu cos(ufl) + By sin(uﬁ)) es,

where c. and ¢2 are vectors in the ejes-plane and «,, 3, € R are scalar
factors. These vectors and the scalars depend on the phase vectors for fre-
quency u of the original curve ¢g(f) and on the rotation angles we want to
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recover. In order to project ¢'(f) onto the image plane we simply write

(g'(0) -er1)er + (¢'(0) - es)es
9'(9) - €3

The curve g/(#) is what we observe in the image plane. The question now
is, how the Fourier coefficients we obtain from the observed curve g} (6) are
related to the Fourier coefficients of the original curve g(f) in terms of the
rotation and translation parameters we are looking for. As we mentioned
before, here we have the additional problem that in general we cannot know
how to sample the observed curve g%(f), so that this sampling is equivalent
to the sampling of ¢g(#). However, suppose for the moment that we could
somehow overcome this problem. Then we are faced with evaluating the
Fourier coefficient of ¢/-(#). Let us first of all consider evaluating the Fourier
coefficients for a particular frequency u. This leads to integrals of the form

gp(0) = + es. (1.2)

cos(uzx) e~™®

21
L= :
o acos(uzx)+ bsin(vz) + ¢

dx,

where I, is proportional to the Fourier coefficient for frequency v. By making
the substitutions cos(uz) = exp(iuz) + exp(—iuz) and sin(ux) = exp(iux) —
exp(—iuz) and reordering the terms we find

o <1 + efi2uw) efivw
I, :/ . . dx,
0 we—zQuw + 2c e—tux + w*

where w = a + b and w* = a — ib. We can solve this integral by using the
method of residues. To do that we make the substitution z = exp(iuz) and
then integrate over the unit circle C' in the complex plane. The integral then
becomes

1/ (1+22) /W1 dg
c

Iv:_ 2 * %  gay
zZ¢4+n*z+m*

= (1.3)

where n* = 2¢/w and m* = w*/w. The solution to this integral is given by
the residue formula. The residues can be found by finding the roots of the
denominator of equation (1.3). For the present case this is straight forward
since we only have a quadratic equation in the denominator. However, re-
call that equation (1.2) has a sum of terms for different frequencies in the
denominator. Therefore, in order to find the Fourier coefficients of g} (6)
in general, we would need to solve for the roots of polynomials of arbitrary
degree analytically. Since this is not possible, we cannot use this approach
to recover the translation and rotation components we were looking for.
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