
International Journal of Computer Vision 68(2), 145–162, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11263-006-6658-x

A Variational Model for Object Segmentation Using Boundary Information
and Shape Prior Driven by the Mumford-Shah Functional

XAVIER BRESSON, PIERRE VANDERGHEYNST AND JEAN-PHILIPPE THIRAN
Signal Processing Institute, Swiss Federal Institute of Technology, EPFL-STI-ITS-Station 11,

CH-1015 Lausanne, Switzerland
Xavier.Bresson@epfl.ch

Pierre.Vandergheynst@epfl.ch

JP.Thiran@epfl.ch

Received May 14, 2004; Revised October 25, 2005; Accepted November 16, 2005

First online version published in March, 2006

Abstract. In this paper, we propose a new variational model to segment an object belonging to a given shape
space using the active contour method, a geometric shape prior and the Mumford-Shah functional. The core of our
model is an energy functional composed by three complementary terms. The first one is based on a shape model
which constrains the active contour to get a shape of interest. The second term detects object boundaries from
image gradients. And the third term drives globally the shape prior and the active contour towards a homogeneous
intensity region. The segmentation of the object of interest is given by the minimum of our energy functional. This
minimum is computed with the calculus of variations and the gradient descent method that provide a system of
evolution equations solved with the well-known level set method. We also prove the existence of this minimum in
the space of functions with bounded variation. Applications of the proposed model are presented on synthetic and
medical images.
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1. Introduction and Motivations

This work aims at proposing a method to segment struc-
tures of interest whose global shape is given. The seg-
mentation problem remains fundamental in the com-
puter vision and image processing fields since it is a
core component towards e.g. automated vision systems
and medical applications.

Various methods have been proposed to extract
objects of interest in images such as (Kass et al.,
1987; Cootes and Taylor, 1999; Cremers et al., 2002).
However these methods utilize parametric shape rep-
resentations whose use is not as convenient as in-
trinsic representations such as the level set function

(Osher and Sethian, 1988). Other models such as
geodesic/geometric active contours (Caselles et al.,
1997; Kichenassamy et al., 1996) use this intrinsic
modeling of contours e.g. to detect fine real-world
shapes such as medical structures (Malladi et al., 1996;
Yezzi et al., 1997; Jonasson et al., 2005). Level set-
based methods are of growing interest since they are
independent of the contour parametrization, and thus
enable dealing with topological changes. They also
benefit from efficient numerical schemes and are natu-
rally extensible to higher dimensions. Despite of these
great advantages, the first-generation active contours,
based on image gradients, are highly sensitive to the
presence of noise and poor image contrast, which
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can lead to bad segmentation results. To overcome
this drawback, some authors have incorporated ro-
bust region-based evolution criteria into active con-
tour energy functionals built from intensity statistics
and homogeneity requirements (Paragios and Deriche,
2002; Chan and Vese, 2001; Jehan-Besson et al., 2003).
Yet the segmentation of structures of interest with these
second-generation active contours is not able to deal
with occlusion problems or presence of strongly clut-
tered background. Therefore the integration of prior
shape knowledge about the objects in the segmentation
task represents a natural way to solve occlusion prob-
lems (Leventon et al., 2000; Paragios et al., 2003; Chen
et al., 2002) and can be considered as a third generation
of active contours. As we will see, we propose a model
that exploits the advantages of the three generations of
active contours.

The shape prior can be defined by different models
such as Fourier descriptors, medial axis or atlas-based
parametric models. Recently, the level set representa-
tion of shapes has been employed as a shape model
(Leventon et al., 2000; Paragios et al., 2003; Charpiat
et al., 2003). This shape description presents strong
advantages since parametrization free, it can represent
shapes of any dimension such as curves, surfaces and
hyper-surfaces and basic geometric properties such as
the curvature and the normal to contours are easily de-
duced. Finally, this shape representation is also natu-
rally consistent with the level set framework of active
contours. In Leventon et al. (2000), authors have used a
level set representation to model the shape prior. They
have defined a shape model of the object of interest by
computing a principal components analysis (PCA) of
training shapes embedded in level set functions. They
have then integrated this shape model in an evolution
equation to globally drive the active contour towards
the prior shape. However, their evolution equation is
not expressed by a partial differential equation (PDE)
and there is no variational formulation associated with
his evolution equation. In a general way, a variational
formulation is useful both to understand and justify the
proposed method. Moreover, evolution equations nat-
urally appear from the variational model through the
minimization of the proposed energy functional thanks
to the calculus of variations. Finally a variational for-
mulation of a problem helps in proving mathemati-
cal existence of solutions. Thus we propose a varia-
tional approach following the energy functional model
of Chen et al. (2002) where we integrate the shape prior
of Leventon et al. We then add a region-based energy

term based on the Mumford-Shah functional (Mum-
ford and Shah, 1989) to improve the robustness of our
segmentation model with respect to (w.r.t.) noise, poor
image contrast and initial position of the contour as
shown in Paragios and Deriche (2002), Chan and Vese
(2001), and Jehan-Besson et al. (2003). We will also
prove the existence of a solution for our variational
segmentation problem.

The organization of the paper is as follows. In Sec-
tion 2, we briefly review some state-of-the-art methods
which are directly related to our work. In Section 3, we
define our variational model to address the object seg-
mentation problem with a prior shape knowledge and
we derive the system of evolution equations minimiz-
ing the proposed energy. We present in Section 4 results
of the proposed method on 2-D synthetic and medical
images. We discuss our segmentation model and com-
pare it with other ones in Section 5 and conclude in
Section 6. Finally, we prove in appendix the existence
of a minimizer for our variational segmentation model.

2. Shape-Based Active Contours and PCA Shape
Modeling

2.1. Shape-Based Active Contours

In this section, we review the main active contour mod-
els that use a shape prior.

In Leventon et al. (2000) and Leventon (2000),
authors have developed active contours that use a shape
model defined by a PCA. In their approach, the active
contour evolves locally based on image gradients and
curvature and globally towards the maximum a posteri-
ori (MAP) probability of position and shape of the prior
shape model. However, this a posteriori probability is
maximized at each iteration by an independent opti-
mization process, which means that the final evolution
equation is not a PDE since two independent stages are
necessary to evolve the surface. The evolution equation
is the following:

u(t + 1) = u(t) + λ1(g(c + κ)|∇u(t)|
+ 〈∇u(t), ∇g〉) + λ2(u�(t) − u(t)), (1)

where u� is the shape prior. The second term of the
right-hand side of (1) weighted by λ1 represents the
classical term of the geodesic active contour. And the
third term depending on λ2 drives the shape of the ac-
tive contour towards the shape prior given by the MAP
estimation.
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Tsai et al. (2001, 2003), have integrated the shape
model of Leventon et al. into the reduced version of
the Mumford-Shah functional proposed by Chan and
Vese (2001) and into two other segmentation models
proposed by Yezzi et al. (1999) to segment images con-
taining known object types. The implicit shape prior
�[w, p], which depends on a shape vector w and a
pose vector p, is introduced into three energy function-
als for the object segmentation such as the one based
on the Chan and Vese model (Chan and Vese, 2001):

E(w, p) = −
(

S2
u

Au
+ S2

v

Av

)
. (2)

where Au = ∫
�

H (−�[w, p]), Su = ∫
�

I H (−�

[w, p]) are the area and the sum intensity (I is the given
image) in the region Ru = {(x, y) ∈ R2 : �(x, y) < 0}
and Av = ∫

�
H (�[w, p]), Sv = ∫

�
I H (�[w, p])

are the area and the sum intensity in the region
Rv = {(x, y) ∈ R2 : �(x, y) > 0}. The parameters w
and p that optimize the segmentation energy functional
(2) are given by two gradient descents.

Chen et al. (2002) have designed a novel variational
model that incorporates prior shape knowledge into ge-
ometric/geodesic active contours. On the contrary to
Leventon’s approach, the shape model C� of Chen is
not a probabilistic one. It is computed as the average
of a training set of rigidly aligned curves. However,
this variational approach proves the existence of a so-
lution minimizing their energy functional, which is not
the case in the Leventon’s method. Chen’s functional
is defined as:

FC (C, μ, θ, T ) =
∫ 1

0

(
g(|∇ I (C(p))|)

+ λ

2
d2(μRC(p) + T )

)
|C ′(p)|dp,

(3)

where C is the active contour, (μ, θ , T ) are the pa-
rameters of a rigid transformation (scale, orientation
and translation) and d is the distance to C�, the tar-
get shape. This functional is thus minimized when the
active contour has captured both high image gradients
and the shape prior. They have showed the good ability
of the model to extract real-world structures in which
the complete boundary was either missing or had low
resolution and contrast (Chen et al., 2002).

Paragios et al. (2003) have built a new level set repre-
sentation of shape from a training set in order to capture
both global and local shape variations. They have used

it to non-rigidly register two shapes and to segment
objects with a modified version of the geodesic active
regions defined in Paragios and Deriche (2002).

Cremers et al. (2002) have modified the Mumford-
Shah functional to incorporate two statistical models
of parametric shape in order to efficiently segment
known objects in presence of misleading information
due to noise, occlusion and strongly cluttered back-
ground. Concerning the shape model, they have used
a multivariate Gaussian distribution in Cremers et al.
(2002) and a nonlinear shape statistic derived from an
extension of the kernel PCA in Cremers et al. (2002b).
Then, Cremers et al. proposed a statistical shape prior,
based on kernel density estimation, for level set based
Mumford-Shah segmentation.

Let us finally mention the paper of Riklin-Raviv et al.
(2004) which addresses the problem of general per-
spective transformations between a prior shape and an
image to be segmented in the level set framework.

2.2. The Shape Model of Leventon et al.

2.2.1. Definition. This shape model is based on the
PCA that aims at capturing the main variations of a
training set while removing redundant information.
Cootes and Taylor (1999) have used this technique
on parametric contours to segment different kind of
objects. The new idea introduced by Leventon et al.
(2000) is to apply the PCA not on the parametric ge-
ometric contours but on the signed distance functions
(SDFs) of these contours which are implicit and pa-
rameter free representations. They justified this choice
in two ways. Firstly, SDFs provide a stronger tolerance
than the parametric curves to slight misalignments dur-
ing the alignment process of the training data since the
values of neighboring pixels are highly correlated in
a SDF. Secondly, this intrinsic contour representation
also improves the shape registration process in terms
of robustness, accuracy and speed. Indeed, the problem
of the point-wise correspondence of contours (land-
marks correspondence) is replaced by a problem of in-
tensity correspondence on grid points which is easier to
solve.

From a geometric point of view, the PCA analysis de-
termines the best orthonormal basis {e1 . . . em} of Rm to
represent a set of n points {φ1 . . . φn} in the sense of the
least squares fitting. Vectors {ei } are given by the eigen-
vectors of the covariance matrix 	 = 1

n M M� where
M is a matrix whose column vectors are the n aligned
training SDFs {φ j }. Vectors {ei } correspond to the
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principal variation directions of the set of n points. They
are called the principal components. Moreover, the first
p principal axes define a reduced p-dimensional vec-
tor space in Rm equivalent to a hyper-plane minimizing
the sum of squared distances between this hyper-plane
and the set of n points. It is important to note that
the accuracy of the fitting of this p-D hyper-plane in
relation to the set of points can be measured in per-
centage by the formula β = ∑p

k=1 λk/
∑n

k=1 λk where
λk are the eigenvalues of 	. Thus, it is possible to ar-
bitrarily fix the fitting percentage β and represent the
data in a sub-vector space of dimension p. In prac-
tice, only the first principal modes are necessary to
model the biggest variations present in our training set.
These p principal components are sorted in a matrix
Wp.

Finally, the PCA can produce a new data based on
the training set {φ j }:

φ̂ = φ̄ + Wpxpca, (4)

where xpca is called the vector of eigencoefficients, the
shape vector or the eigenmodes of variation.

2.2.2. Examples. In this paper, we have considered
two sets of 2-D shapes of interest: one containing el-
lipses and the other one left brain ventricles. For the
ellipse, we have generated a training set of 30 el-
lipses by changing the size of a principal axis with
a Gaussian probability function and applied the PCA
on the SDFs of 30 training ellipses. We have ob-
tained one principal component that fits at 98% the
set of ellipses. Figure 1 shows the aligned training
ellipses and the shape function corresponding to the
mean and the eigenmode of variation of the training
set.

For the left brain ventricle, we have employed
2-D medical images. We have extracted 45 2-D im-
ages of left ventricles from several coronal slices of
T1-Weighted Magnetic Resonance images (MRI) of
healthy voluntaries (Fig. 2) to build our shape model.
We have applied the PCA and obtained three principal
components that fit at 88.2% the set of 45 SDFs of ven-
tricles. Figure 3 shows the aligned training ventricles
and the shape function corresponding to the mean and
the three main eigenmodes of variation of the training
set.

Figure 1. Figure (a) presents the 30 aligned training ellipses with
the mean ellipse in dotted line. Figure (c) shows the mean value
φ̄. Figures (b) and (d) present φ̄ ± 2λ1e1, the unique eigenmode of
variation of SDF ellipses whose λ1 is the eigenvalue. The zero level
sets of the shape function φ̂ is plotted in solid dark line.

Figure 2. Three T1-Weighted Magnetic Resonance images of
brain.

3. Our New Object Segmentation Model

3.1. The Proposed Energy Functional

We propose the following energy functional to address
the problem of object segmentation using a geometric
shape prior with local and global image information:

F = βs Fshape(C, xpca, xT ) + βb Fboundary(C)

+ βr Fregion(xpca, xT , uin, uout). (5)

with

Fshape =
∮ 1

0
φ̂

2(
xpca, hxT (C(q))

)|C ′(q)|dq, (6)

Fboundary =
∮ 1

0
g(|∇ I (C(q))|)|C ′(q)|dq, (7)

Fregion =
∫

�in(xpca,xT )
(|I − uin|2 + μ|∇uin|2)d�

+
∫

�out(xpca,xT )
(|I − uout|2 + μ|∇uout|2)d�,

(8)
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Figure 3. Figure (a) presents the 45 aligned training ventricles with
the mean left ventricle in dotted line. On Figure (i), the middle column
is the mean value and each row presents an eigenmode of variation
of ventricles. The zero level sets of the shape function φ̂ is plotted in
solid dark line.

where C is the active contour, φ̂ is the shape func-
tion of the object of interest given by the PCA (see
Eq. (4)), xpca is the vector of PCA eigencoefficients,
hxT is an element of a group of geometric transforma-
tions parametrized by xT (the vector of parameters),
g is an edge detecting function, �in and �out are the
inside and outside regions of the zero level set of φ̂,
uin and uout are smooth approximations of the original
image I in �in and �out and βb, βs , βr are arbitrary
positive constants that balance the contributions of the
boundary, shape and region terms.

The proposed functional F is an extension of the
work of Chen et al. (2002) where we have integrated
the shape model of Leventon et al. (2000) and the
Mumford-Shah functional (Mumford and Shah, 1989;
Vese and Chan, 2002). In the following sections, we
will analyze the shape and region terms.

3.2. The Shape Term Fshape

Fshape is a functional introduced by the authors in
Bresson et al. (2003) that depends on the active con-

Figure 4. Illustration of the function φ̂(xpca, C(q)): the square
shape function is approximatively equal to the square Euclidean dis-
tance between the point C(q) and the closest point Ĉxpca (pmin) on
the zero level set Ĉxpca of φ̂(xpca).

tour C , the vector xpca of PCA eigencoefficients and
the vector xT of geometric transformations. This func-
tional evaluates the shape difference between the con-
tour C and the zero level set Ĉ of the shape function φ̂

provided by the PCA. It is an extension of the shape-
based term of Chen et al. (2002) coupled with the shape
model of Leventon et al. (2000). To give an interpreta-
tion of Fshape, let us take a rigid transformation with the
scale parameter equal to one, the angle and the vector
of translations equal to zero, Thus, the function φ̂

2
at

the point C(q) is:

φ̂
2(

xpca, hxT (C(q))
) = φ̂

2
(xpca, C(q))

� |Ĉxpca (pmin) − C(q)|2, (9)

where | · | stands for the Euclidean norm.
The equality is not strict since the shape function φ̂

is not a SDF as Leventon noticed in Leventon et al.
(2000) and Leventon (2000). However, the PCA ap-
plied on aligned SDFs of a training set produces shape
functions very close to SDFs. The case of a strict equal-
ity in Eq. (9), i.e. the case of φ̂ is a true SDF, will be
discussed in Section 5. Figure 4 illustrates the function
φ̂ and Ĉxpca (pmin). In practice, the point Ĉxpca (pmin) is
not computed. It corresponds to the closest point of
C(q) on the zero level set of φ̂ and we used it to il-
lustrate the shape function at point C(q). Indeed, the
shape function φ̂

2
(xpca, hxT (C(q))) is equal to the dis-

tance |Ĉxpca (pmin) − C(q)|2, i.e. the value of the level
set-based function φ̂ at the point C(q).

Finally, Fshape is obtained by integrating φ̂
2

along
the active contour, which defines the shape similarity
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measure equivalent to the sum of square differ-
ences (SSD). The minimization of Fshape allows us
to increase the similarity between the active con-
tour and the shape model. The functional is mini-
mized using the calculus of variations and the gra-
dient descent method which provide three flows act-
ing on the curve C , the vector of eigencoefficients
xpca and the vector of geometric transformations
xT .

We analyze each of the three flows by fixing the two
others. The flow minimizing Fshape w.r.t. the curve C
is the classical geodesic flow (Caselles et al., 1997;
Kichenassamy et al., 1996):

⎧⎪⎪⎨⎪⎪⎩
∂t C(t, q) = (φ̂

2
κ − 〈∇φ̂

2
,N 〉)N

in ]0, ∞[×[0, 1],

C(0, q) = C0(q) in [0, 1].

(10)

The first term of the right-hand side of the flow (10) is
a mean curvature flow weighted by the square shape
function φ̂ and the second term is a flow which pushes
the contour C toward the zero level set of φ̂, i.e. the con-
tour Ĉ , thanks to the vector field ∇φ̂

2
which is close to a

(square) distance function. The PDE defined in Eq. (10)
changes the active contour shape into any shape pro-
vided by the PCA model. This shape morphing has
two main advantages. First, it is independent of the
contour parametrization because of the intrinsic level
set representation. This means that the landmarks cor-
respondence problem is replaced by a grid point-wise
intensity correspondence which is easier to solve. Then,
it is more accurate than parametrized shape morphing
since the degree of deformation of level set functions
is higher. Figure 5 presents the morphing between two
curves.

The flow minimizing Fshape w.r.t. the vector of eigen-
coefficients xpca is:

⎧⎪⎪⎨⎪⎪⎩
dt xpca(t) = −2

∫ 1

0
φ̂∇xpca φ̂ |C ′|dq

in ]0, ∞[×�pca,

xpca(t = 0) = xpca0
in �pca.

(11)

with ∇xpca φ̂ =

⎛⎜⎜⎝
e1

pca

...

ep
pca

⎞⎟⎟⎠ ,

Figure 5. Minimization of Fshape with the flow given in Eq. (19),
xT and xpca being fixed. Active contour is in solid line and the shape
prior in dotted line. Figures (a)–(c) show the matching of a cat (initial
active contour) into a cow (shape prior). Figures (d)–(f) present the
matching of a circle into a hand.

Figure 6. Minimization of Fshape with the flow given in Eq. (20),
φ and xT being fixed. The prior shape is in solid line and the active
contour in dotted line. The first row presents the shape evolution of
the PCA model of 30 ellipses (see Section 2.2.2). The zero level
set of the shape function φ̂ evolves to match with the active contour
representing an ellipse taken in the training set. The second row shows
the shape evolution of the PCA model of 45 left brain ventricles (see
also Section 2.2.2). The shape model changes to match with the active
contour representing a left brain ventricle taken in the training set.

where ei
pca is the i th principal component/eigenvector

of the PCA presented in Section 2.2 and �pca is
the space of PCA variables defined by �pca =
[−3λ1, 3λ1]×. . .×[−3λp, 3λp] whose λi is the eigen-
value of the i th principal component. The evolution
Eq. (11) changes the shape function φ̂ to match its zero
level set with the active contour. Figure 6 presents this
shape matching.

The flow minimizing Fshape w.r.t. the vector of geo-
metric transformations xT is:⎧⎪⎪⎨⎪⎪⎩

dt xT (t) = −2
∫ 1

0
φ̂〈∇φ̂, ∇xT hxT (C)〉|C ′|dp

in ]0, ∞[×�T ,

xT (t = 0) = xT0 in �T .

(12)
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In our work, we have considered the 2-D rigid (denoted
by hxr

T
) and affine (denoted by hxa

T
) transformations:

hxr
T

: x → h(s,θ,T )(x) = s Rθ x + T, (13)

hxa
T

: x → h(sx ,sy ,θ,sh ,T )(x) = Rsc Rθ Rsh x + T, (14)

where

Rsc =
(

sx 0
0 sy

)
, Rθ =

(
cos θ sin θ

− sin θ cos θ

)
,

Rsh =
(

1 sh

0 1

)
and T =

(
Tx

Ty

)
. (15)

The vector of rigid transformations xr
T is composed of

a scale parameter s, an angle of rotation θ and a vector
of translations T and the vector of affine transforma-
tions xa

T is composed of two scale parameters sx in
x-direction and sy in y-direction, an angle of rotation
θ , a shearing parameter sh and a vector of translations
T . We will analyze the choice of the affine transforma-
tions in Section 5. Finally, the domain of the rigid/affine
transformations is called �T .

As a consequence, the gradient term ∇xT hxT in
Eq. (12) depending on geometric transformations is:

∇xr
T
hxr

T
(x) =

⎛⎜⎜⎝
∂hxr

T
∂s (x) = Rθ x

∂hxr
T

∂θ
(x) = s∂θ Rθ x

∂hxr
T

∂T (x) = 1

⎞⎟⎟⎠ , (16)

for 2-D rigid transformations and

∇xa
T
hxa

T
(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂hxa
T

∂sx
(x) = (

∂sx Rsc
)
Rθ Rsh x

∂hxa
T

∂sy
(x) = (

∂sy Rsc
)
Rθ Rsh x

∂hxa
T

∂θ
(x) = Rsc(∂θ Rθ )Rsh x

∂hxa
T

∂sh
(x) = Rsc Rθ (∂sh Rsh)x

∂hxa
T

∂T (x) = 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

for 2-D affine transformations. The evolution Eq. (12)
realizes the rigid and affine registration between the
zero level set of the shape model φ̂ and the active con-
tour. Figures 7 and 8 present affine registrations.

Note that the function φ̂ is evaluated at (xpca,

hxT (C(q)) in Eqs. (10)–(12).
Let us now express the previous equations in a vari-

ational level set formulation as presented in Zhao et
al. (1996) and Chen et al. (2002). The level set ap-
proach of Zhao et al. (1996), rather than (Caselles et

Figure 7. Minimization of Fshape with the flow given in Eq. (12), φ
and xpca being fixed. The row of images represents the affine registra-
tion of a prior shape in solid line into an active contour in dotted line.

Figure 8. Minimization of Fshape with the flow given in Eq. (12), φ
and xpca being fixed. Each column presents the affine registration of
a prior shape in solid line into an active contour in dotted line. The
first row shows the initial position of the shapes and the second row
the registered shapes. This registration process works with shapes
having different local structures and missing information.

al., 1997; Kichenassamy et al., 1996), will be used to
prove the existence of solution minimizing our energy
functional in the space of functions with bounded vari-
ation. The level set formulation of the shape functional
from Eq. (6) is:

Fshape =
∫

�

φ̂
2(

xpca, hxT (x)
)|∇ϕ|δ(ϕ)d�, (18)

where ϕ is a level set function embedding the active
contour C , δ(·) is the Dirac function and δ(ϕ) is the
contour measure on {ϕ = 0}. The level set formulation
of Fshape (18) is equivalent to the geometric formulation
(6) because of the Coarea formula (Evans and Gariepy,
1992) which proves that L f (ϕ) = ∫

�
f (x)δ(ϕ)|∇ϕ|dx

= ∮ L
0 f (C(s))ds = ∮ 1

0 f (C(q))|C ′(q)|dq where L is
the length of C = {ϕ = 0}. The proof is presented in
Samson et al. (2000).



152 Bresson et al.

The level set formulation of Eqs. (10)–(12) are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tϕ(t, x) =
(

φ̂
2
κ −

〈
∇φ̂

2
,

∇ϕ

|∇ϕ|
〉)

δ(ϕ)

in ]0, ∞[×�,

ϕ(0, x) = ϕ0(x) in �,

δ(ϕ)

|∇ϕ|∂Nϕ = 0 on ∂�,

(19)

⎧⎪⎪⎨⎪⎪⎩
dt xpca(t) = −2

∫
�

φ̂∇xpca φ̂|∇ϕ|δ(ϕ) d�

in ]0, ∞[×�pca,

xpca(t = 0) = xpca0
in �pca,

(20)

⎧⎪⎨⎪⎩
dt xT (t) = −2

∫
�

φ̂〈∇φ̂, ∇xT hxT 〉|∇ϕ|δ(ϕ) d�

in ]0, ∞[×�T ,

xT (t = 0) = xT0 in �T .

(21)

In our segmentation model, the flows given by the Eqs.
(19)–(21) are simultaneously used to constraint the ac-
tive contour to get a shape of interest whatever the
position of the active contour in the image.

In a nutshell, we have defined in this section a process
to force the active contour to get a particular shape. In
the next section, we will introduce image information
in our segmentation method to capture the object of
interest in the image.

3.3. The Region Term Fregion

In this section, we define a functional to drive the shape
model towards a homogeneous intensity region with the
shape of interest. If our objects of interest are supposed
to have a smooth intensity surface then the Mumford-
Shah (MS) model is the most adapted model to segment
these objects.

At this stage, we had the choice to apply the MS
model either on the active contour or the shape prior.
Since the MS method applied on the active contour will
extract globally homogeneous regions (Vese and Chan,
2002) and our objective is to capture an object belong-
ing to a given shape space then the best solution is to
apply the MS-based force on the shape prior. Indeed,
this new force will globally drive the shape prior to-
wards a homogeneous intensity region with the shape
of interest. An illustration of this choice will appear in
Section 4.2.2.

We have modified the Mumford-Shah functional
(Mumford and Shah, 1989) presented by Vese and Chan
(2002) to segment a smooth region whose shape is de-
scribed by the PCA model:

Fregion(xpca, xT , uin, uout) =∮
Ĉ(xpca,xT )

ds+
∫

�in(xpca,xT )
(|I − uin|2 + μ|∇uin|2) d�

+
∫

�out(xpca,xT )
(|I − uout|2 + μ|∇uout|2) d�, (22)

where the curve Ĉ is the zero level set of the shape
function φ̂ extracted from the PCA process. The func-
tion φ̂ defines an image partitioned into two regions
�in and �out, representing respectively the object and
the background, whose common boundary is Ĉ :⎧⎪⎨⎪⎩

�in(xpca, xT ) = {x ∈ � | φ̂(x, xpca, xT ) > 0},
�out(xpca, xT ) = {x ∈ � | φ̂(x, xpca, xT ) < 0},
Ĉ(xpca, xT ) = {x ∈ � | φ̂(x, xpca, xT ) = 0}.

(23)

The minimization of Fregion determines the shape pa-
rameters xpca and the parameters xT of the rigid or
affine transformation of the contour Ĉ which captures
a region having the shape of interest. In our work, we
have not considered the smoothing term,

∮
Ĉ ds, since

shapes generated by the PCA are smooth enough. The
functional Fregion can be written with the shape function
φ̂:

Fregion(xpca, xT , uin, uout)

=
∫

�

�in H (φ̂(xpca, xT ) d�

+
∫

�

�out H (−φ̂(xpca, xT ) d�, (24)

where H (·) is the Heaviside function, �r = |I −ur |2 +
μ|∇ur |2 and r = in or out .

The modified MS functional (24) is minimized using
the gradient descent method for xpca and xT and solving
the Euler-Lagrange equations for uin and uout:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dt xpca(t) =
∫

�

(�in − �out)
∂φ̂

∂xpca
δ(φ̂)d�,

=
∫

�

(�in − �out) ∇xpca φ̂ δ(φ̂)d�,

in ]0, ∞[×�pca,

xpca(t = 0) = xpca0
in �pca,

(25)
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Figure 9. Minimization of Fregion with the flows given by Eqs. (25)–
(27). The first row presents the evolution of the segmentation process
of an ellipse partially cut. The second row shows the segmentation of
a noisy ellipse. And the third row is the segmentation of an occluded
ellipse.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dt xT (t) =
∫

�

(�in − �out)
∂φ̂

∂xT
δ(φ̂) d�,

=
∫

�

(�in − �out)

〈∇φ̂, ∇xT hxT 〉 δ(φ̂)d�, in ]0, ∞[×�T ,

xT (t = 0) = xT0 in �T ,

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t uin(t, x) = uin − I − μ�uin

in ]0, ∞[×{φ̂ > 0},
uin(0, x) = I in {φ̂ > 0},
∂t uout(t, x) = uout − I − μ�uout

in ]0, ∞[×{φ̂ < 0},
uout(0, x) = I in {φ̂ < 0}.

(27)

Figure 9 shows that the minimization of Fregion seg-
ments objects of interest when a part of information is
missing and in presence of noise and occlusion. This
model can also be used to segment the left brain ven-
tricle on Fig. 10.

However, this segmentation method can not handle
local structure variations (see Fig. 9(i)) when e.g. an
ellipse presents irregular boundaries. The model has
not captured the local edge variations since it only

Figure 10. Segmentation of the left ventricle with the flows given
by Eqs. (25)–(27).

deals with global shape variations provided by the PCA
model. If we want to be able to capture the local vari-
ations around the global shape we found, we need to
add a local criteria to our energy functional. We will
consider for this purpose the classic geodesic active
contour given by Fboundary.

We noticed that another segmentation method based
on the Mumford-Shah functional and the PCA model
of Leventon et al. has been proposed by Tsai et al.
(2001) but for a reduced model of the MS model. In-
deed, they have employed the piecewise constant ap-
proximation of the MS functional proposed by Chan
and Vese (2001) to define a functional equal to Eq.
(22) when μ = 0. Our model consider the general
model of the MS model, i.e. the piecewise smooth ap-
proximation, as introduced by Vese and Chan (2002)
in the context of active contours. We think that the
piecewise smooth case of the MS model allows us to
decrease the intensity bias present in the piecewise con-
stant case. This bias, which can significantly affect the
computation of the parameters xpca and xT , is due to the
the inhomogeneity of the outside region, i.e. the back-
ground, with respect to the inside region, the object of
interest. The reason is that the general MS model con-
siders the grey value information by averaging locally
the intensities in a neighborhood (whose size depends
on μ, Eq. (33)) surrounding the contour by means of
diffusion whereas the reduced MS model considers the
grey value information by averaging globally the inten-
sities over the background region and the object region.
Cremers et al. (2002) also compared the two cases of
the MS functional and they noticed that the segmenta-
tion results are less accurate with the reduced model of
MS because of the same reasons.

3.4. Combining Shape-Based, Boundary-Based
and Region-Based Functionals

In Section 3.2, we have studied a shape-based func-
tional Fshape that evaluates the similarity between the
active contour shape and the object shape prior to be
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segmented. In Section 3.3, we have analyzed a region-
based functional Fregion which allows us to drive glob-
ally the shape prior towards a homogeneous intensity
region. We now combine these two functionals with the
boundary-based functional Fboundary which captures the
object edges to obtain a functional F (see Eq. (5)) to
segment objects with a shape model and with global
and local image information.

The energy minimization of F is performed using the
calculus of variations and the gradient descent method.
We obtain a system of coupled evolution equations
whose steady-state solution gives the minimum of F ,
which means the solution of the segmentation problem.
The existence of a minimum of F is proved in annex.
The functional F is expressed in the Eulerian/level set
framework as follows:

F =
∫

�

f (x, xpca, xT )|∇ϕ|δ(ϕ) d�

+ βr

∫
�

(�in H (φ̂(xpca, xT )) + �out H (−φ̂)) d�

(28)

whose

f (x, xpca, xT ) = βs φ̂
2
(xpca, hxT (x)) + βbg(|∇ I (x)|).

(29)

And the evolution equations minimizing F are:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tϕ(t, x) =
(

f κ −
〈
∇ f,

∇ϕ

|∇ϕ|
〉)

δ(ϕ)

in ]0, ∞[×�,

ϕ(0, x) = ϕ0(x) in �,

δ(ϕ)

|∇ϕ|∂Nϕ = 0 on ∂�,

(30)

⎧⎪⎪⎨⎪⎪⎩
dt xpca(t) = −

∫
�

∇xpca φ̂(2βs φ̂|∇ϕ|δ(ϕ)+
βr (�in − �out)δ(φ̂))d� in ]0, ∞[×�pca,

xpca(t = 0) = xpca0
in �pca,

(31)

⎧⎪⎪⎨⎪⎪⎩
dt xT (t) = −

∫
�

〈∇φ̂, ∇xT hxT 〉 (2βs φ̂|∇ϕ|δ(ϕ)

+ βr (�in − �out)δ(φ̂))d� in ]0, ∞[×�T ,

xT (t = 0) = xT0 in �T ,

(32)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t uin(t, x) = uin − I − μ�uin

in ]0, ∞[×{φ̂ > 0},
uin(0, x) = I in {φ̂ > 0},
∂t uout(t, x) = uout − I − μ�uout

in ]0, ∞[×{φ̂ < 0},
uout(0, x) = I in {φ̂ < 0}.

(33)

4. Experimental Results

4.1. Implementation Issues

Concerning the PCA, the first stage consists in align-
ing rigidly the training curves representing the object
of interest. This is realized using the shape similarity
measure introduced by Chen et al. (2002):

a
(
C1, Cnew

j

) = area of
(

A1 ∪ Anew
j

− A1 ∩ Anew
j

)
for 2 ≤ j ≤ n,

(34)

where A1 and Anew
j denote respectively the interior re-

gions of the curves C1 and Cnew
j where Cnew

j is the
resulting curve from the rigid registration such that
Cnew

j = s j Rθ j C j + Tj and n is the number of train-
ing curves. C1 and C j are aligned when the measure
a is minimized for the appropriate values s�

j , θ�
j and

T �
j . These values are obtained by a global optimization

algorithm called the genetic algorithm (Davis, 1991).
The second stage of the PCA consists in doing the

singular values decomposition on the SDFs of the
aligned training curves using the code provided by Nu-
merical Recipes (Numerical Recipies in C++ and C)
on the matrix 	dual = 1

n M�M (see Section 2.2 for
notations) to extract the n eigenvalues ei,dual

pca and the
eigenvectors λi,dual

pca . Note that the PCA is performed
on 	dual rather than 	 to give faster and more ac-
curate results. The eigenvectors ei

pca and the eigen-
values λi

pca are then given by ei
pca = Mei,dual

pca and
λi

pca = λi,dual
pca .

The evolution Eqs. (30) to (33) are numerically
solved by iterating the following stages until conver-
gence is reached:

1. Computation of the shape function φ̂(xpca, xT ) us-
ing Eq. (4) and performing the rigid and affine
transformations (scaling, rotation, translations and
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shearing) with the B-splines interpolation method
(Unser, 1999).

2. Calculation of the gradient ∇φ̂ using a central dif-
ference scheme. The term ∇xpca φ̂ is given by the
eigenvectors of the PCA model and ∇xT hxT is com-
puted according to Eqs. (16) and (17).

3. Discretization of terms |∇ϕ| and 〈∇ f, ∇ϕ

|∇ϕ| 〉 with
the Osher-Sethian numerical scheme (Osher and
Sethian, 1988). Computation of the curvature with
central difference schemes. The Dirac function δ

and the Heaviside function H are computed by
slightly regularized versions following (Zhao et al.,
1996; Chen et al., 2002).

4. Functions uin and uout are computed in {φ̂ > 0}
and {φ̂ < 0} with the method proposed in Vese and
Chan (2002).

5. Eqs. (30)–(33) are computed each iteration in the
following order: (33), (32), (31) and (30). However,
we noticed that the order of the gradient descents
has no effect on the solution.

6. Re-distancing the level set function at every iteration
with the Fast Marching Method of Adalsteinsson
and Sethian (1995).

4.2. Results

4.2.1. Synthetic Images. In this first experiment, we
considered an ellipse partially occluded with a noisy
boundary and an ellipse whose part of the shape is
missing. We applied the PCA on the training set of
30 ellipses as proposed in Section 2.2.2. The align-
ment process, which performs the registration of shapes
by genetic programming, needed around 1 minute per
128×128 ellipse. Even if the alignment step is not fast
because the genetic optimization is a global optimiza-
tion procedure, it is done once for all experiments. The
rest of the PCA is fast. The decomposition into princi-
pal components, which is also done only once for all
experiments, took a few seconds. And the most impor-
tant procedures (since they are used at each iteration)
are very fast: the computation of a new shape according
to Eq. (4) (with an arbitrary vector xpca) took around
10−3 second and the spatial transformations done with
the B-splines programming also needed around 10−3

second. In all the following experiments, from Fig. 11
to Fig. 16, the segmentation including shape and pose
parameters took around 5 minutes.

We firstly used our segmentation model to segment
an ellipse with irregular boundaries which is partially
occluded by a vertical bar. Figure 11 presents a geodesic

Figure 11. Evolution of the geodesic active contour without shape
prior information.

Figure 12. The first row presents the evolution of the active contour
(in solid line) with a shape prior (in dotted line). In the second row,
we zoom on the left point of the ellipse to show that our model is
able to capture local deformations around the shape prior.

active contour without a shape prior and Figs. 12 and
13 with a shape prior by taking βs = 1/3, βb = 1,
βr = 10, μ = 50 and �t = 0.1.

The way of choosing the weighting parameters is as
follows. βb is always equal to 1. μ determines the size
of the neighborhood where the grey value information
is averaged by means of diffusion (33). Then, βr is
chosen such that the shape prior is attracted toward the
region to be segmented. Finally, βs is elected in order
to allow the active contour to move around the shape
prior in order to capture local boundaries. The active
contours on Figs. 12 and 13 have captured high image
gradients, i.e. the boundary variations (see Fig. 12(d)),
and also handled the problem of occlusion thanks to
the information contained in the prior shape model.

In the second example, our extraction model is ap-
plied to extract an ellipse which is partially cut. Figure
14 presents a geodesic active contour without a shape
prior and Figs. 15 and with a shape prior by taking
βs = 1/3, βb = 1, βr = 10, μ = 50 and �t = 0.1.
The active contour on Fig. 15 has captured high image
gradients and also the missing part thanks to the infor-
mation contained in the prior shape model. Figure 16



156 Bresson et al.

Figure 13. Our active contour model (in solid line) with a shape
prior (in dotted line) is robust w.r.t. an initial active contour and an
initial shape prior outside or inside the ellipse.

Figure 14. Evolution of the geodesic active contour without shape
prior information.

Figure 15. Evolution of the active contour (in solid line) with the
shape prior (in dotted line).

illustrates what happens when only the mean shape φ

in the PCA model (Eq. (4)) is used. In this experiment,
the eigenmodes of variation are essential to get a satis-
factory result.

Thus, our shape-based active contour model can seg-
ment objects with missing information, occlusion and
local shape variations.

4.2.2. Medical Image. In this second experiment, we
considered the left brain ventricle and its training set
of 45 shapes. The alignment process, done by genetic

Figure 16. Result obtained using only the mean shape φ in the PCA
model (Eq. (4)) without the eigenmodes of variation.

Figure 17. Evolution of the geodesic active contour without shape
prior information.

Figure 18. Evolution of the active contour (in solid line) with a
shape prior (in dotted line).

programming, took around 1 minute per 128×128 ven-
tricle. The decomposition into principal components
needed a few seconds and, as in the case of ellipses
described in the previous section, the computation of a
new shape according to Eq. (4) took around 10−3 sec-
ond and the spatial transformations done with the B-
splines programming around 10−3 second. In the exper-
iments, from Figs. 19 to 23, the segmentation including
shape and pose parameters took around 5 minutes.

We have used our segmentation model to capture
the left brain ventricle. Fig. 17 presents the evolving
geodesic active contour without a shape prior and Fig.
18 with a shape prior by choosing βs = 2, βb = 1,
βr = 100, μ = 50 and �t = 0.1.

We observe on Fig. 18 that the active contour has
well captured the left ventricle whereas the initial con-
tour was around the two ventricles (see Fig. 18). This
segmentation result could not be obtained without a
shape prior with the same initial contour as shown on
Fig. 17. The segmentation model has also provided the
shape of the model which best fits the ventricle lying
in the image.
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Figure 19. Evolution of the region-based active contour of Vese
and Chan (2002) in the presence of an occlusion.

Figure 20. Evolution of the active contour (in solid line) with a
shape prior (in dotted line) in the presence of an occlusion.

Figure 21. Evolution of the active contour (in solid line) with a
shape prior (in dotted line) in the presence of an important quantity
of noise.

Figure 18 illustrates the Section 3.3 remark: in this
case, the Mumford-Shah model applied on the ac-
tive contour will separate both ventricles (that form
a homogeneous intensity region) from the rest of
the white matter. The shape force will be then op-
posed to the region force since the shape force will
pull the active contour inside the right ventricle to-
wards the left ventricle whereas the Mumford-Shah
force will constrain the active contour to stay on the
border of ventricles. Our model avoids this situation
since region-based forces are only applied on the con-
tour of the shape prior and not on the active contour
itself.

For Figs. 19, 20 and 21, we followed the experi-
ments done by Cremers et al. (2002). Indeed, we added
an occlusion bar on Figs. 19 and 20 and an important
amount of noise on Fig. 21. Figure 19 shows the evo-
lution of the region-based active contour of Chan and
Vese (2002) which fails to segment the left ventricle.

Hence, a shape-based term is essential to successfully
segment the ventricle as shown on Figs. 20 and 21.

5. Discussion

The active contour obtained from the minimization of
the energy functional defined in Eq. (5) is able to cap-
ture high image gradients and a homogeneous intensity
region whose shape matches the object of interest. We
have seen on Figs. 15 and 12 that the shape informa-
tion allows us to solve the problems of missing informa-
tion/occlusion while being sensitive to local shape vari-
ations. Indeed, small deformations are allowed around
the zero level set of the shape function on a distance
that depends on the relative weight βs/βb. These com-
plex deformations are easier to handle in the level set
framework, thanks to its intrinsic representation, than
parametric ones (Cremers et al., 2002; Cremers et al.,
2002b).

As we mentioned previously, the proposed segmen-
tation model can be seen either as an extension of the
model of Chen et al. (2002) where we have introduced
the shape model of Leventon et al. (2000) and the
Mumford-Shah model (Vese and Chan, 2002) or as
an energy formulation of the model of Leventon et al.
with the MS energy functional. Using the variational
formulation of Chen et al. enables us to prove the ex-
istence of a solution minimizing our energy functional
in the space of functions with bounded variation (see
Appendix).

Note that the region term based on the Mumford-
Shah functional increases the speed of convergence to-
wards the solution and it also improves the robustness
of the model w.r.t. the initial condition, noise and com-
plex background.

The PCA shape model we use in our segmentation
method presents a good compromise when compared to
other models. First, the computation of the p principal
components which are orthonormal basis functions is
straightforward and fast, using the singular values de-
composition method. These functions are then used to
produce new shapes of the object of interest according
to a simple linear equation. The number p of princi-
pal components, i.e. the number of the shape model
parameters, is often small as we have noticed for the
ellipse (see Fig. 1) that needs only one principal com-
ponent or for the left brain ventricle (see Fig. 3) with
three principal components. Thus, global shape varia-
tions are modeled by a small number of variables which
greatly reduces the complexity of the problem, when
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compared e.g. to Paragios et al. model (Paragios et al.,
2003). Indeed, their shape model generates more com-
plex shapes than the PCA but the p shape parameters
of the PCA model is replaced in their work by a local
deformation field to be evaluated on a δ-band around
the zero level set of the shape function. Note that the
shapes produced by the PCA are obviously implicit and
intrinsic, i.e. independent of the parametrization, which
facilitates the morphing and the registration processes.
However, shape functions provided by the PCA are
not exactly SDFs as proved by Leventon (2000). Nev-
ertheless, shape functions of the PCA are very close
to SDFs, which allow us to use them in practice. The
same remark holds for a spatial transformation applied
on the shape function. Indeed, the shape function after
an affine transformation is (in general) not a distance
function. Thus, the family of shapes obtained by affine
transformations is no longer an equivalent class w.r.t.
Eq. (9) and the shape term (6). The previous observa-
tions lead to the following condition to successfully use
the morphing and the registration processes: a point be-
longing to the shape function constructed by the PCA
or computed by a spatial transformation must see its
height continuously decreasing when moving towards
the zero level set even if its gradient is not exactly in the
normal direction of the zero level set. Fortunately, we
experimentally noticed that all shape functions gener-
ated by the PCA and changed by an affine transforma-
tion satisfy this condition.

The shape functions given by the PCA are thus
not accurate SDFs but there are two ways to obtain
exact SDFs (and have a strict equality in Eq. (9)).
Either the shape function is projected in the SDFs
space by re-distancing φ̂ as a SDF or the framework
of Charpiat et al. (2003) can be used to define a
mean and principal modes of variation for distance
functions. In our segmentation model, we have to com-
pute the transformation and shape parameters. How-
ever, Cremers et al. (2002,b) have defined two shape
energies independent of the rigid transformations and
the shape parameters. This means that their segmenta-
tion model had not to compute the vector of the rigid
transformations xT and the vector of shape parame-
ters xpca with Eqs. (31) and (32) since the correct pose
parameters are automatically estimated and the shape
parameters can be extracted by projection on the re-
spective eigenmodes. Thus, is it really useful to es-
timate the registration parameters xT and the shape
parameters xpca? It depends on two questions: does
the current application need to compute transforma-

tion and shape parameters and are affine or non-rigid
transformations necessary? If the answer is positive
for one of these questions, the estimation of these pa-
rameters will be imperative. In Chen et al. (2002) and
Biswal and Hyde (1997) for example, the transforma-
tion parameters are used to align time series images
in order to minimize the effect of motion on the fMRI
signal.

Using a variational framework and the PDEs at-
tached to it, we can consider other models such as
Jehan-Besson et al. (2003) to segment objects by
linearly combining energy functionals or the PDEs
directly.

Recently and posterior to our publications (Bres-
son et al., 2003) and (Bresson et al., 2004), Rousson,
Paragios and Deriche (2004) presented a model to ex-
tract structures of interest similar to ours. Indeed, they
also proposed to integrate the implicit shape prior of
Leventon et al. (2000) in a variational level set frame-
work to derive two minimizing flows on the level set
function representing the active contour and on the spa-
tial transformations. Finally, the shape vector is com-
puted by solving a linear system. We notice that the
shape-based functional of Rousson et al. is similar to
ours because it corresponds to the sum of square differ-
ences (SSD) between the active contour and the zero
level set of the implicit shape prior. Indeed, their shape-
based functional minimizes the difference between the
level set function embedding the active contour and
the level set-based shape prior weighted by the Dirac
function applied to the level set function of the ac-
tive contour. The difference between both works is the
region-based functional. Rousson et al. proposed to add
the model of geodesic active regions to the shape-based
functional. However, as explained in Section 3.3, since
our objective is to capture an object belonging to a given
shape space then we think that the best solution is to
apply directly the region-based force on the contour of
the shape prior as we did.

Concerning the computation of the shape vector xpca,
i.e. the mode weights of the PCA. The computation
of the mode weights is probably more efficient with
Rousson et al. than ours since their technique provides
the optimal mode weights at each iteration which min-
imizes the shape difference between the active contour
and the shape prior. Our model does not directly pro-
vide the optimal mode weights at each iteration since
it is a gradient descent flow, i.e. a local minimiza-
tion technique. However, at the end of the segmen-
tation/registration process, our technique will provide
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the optimal mode weights which minimizes the differ-
ence between the active contour shape and the prior
shape. Moreover, the way of computing the xpca in the
approach of Rousson et al. (2004) is given by an in-
dependent stage (solving a linear system) of the mini-
mization energy functional w.r.t. xpca which means that
no mathematical theories can be applied to prove the
existence of a solution by opposition to our approach
(see Appendix).

6. Conclusion

In this paper, we have proposed a new variational
method to solve the fundamental problem of object
segmentation using local and global image informa-
tion with a geometric shape prior given by the model
of PCA. To reach this objective, we have defined in
Section 3.2 a shape-based functional to force the active
contour to get a shape of interest whatever the posi-
tion of the active contour in the image. Then in Sec-
tion 3.3, we have proposed a Mumford and Shah-based
functional to drive globally the shape model towards a
homogeneous intensity region with the shape of inter-
est. Experimental results have shown that our active
contour is able to solve the problems of missing in-
formation and occlusion while being sensitive to local
shape variations.

The shape model we used is the PCA model. As ex-
plained in Section 5, this model presents a good com-
promise between low complexity and acceptable shape
priors. However, this model works well only if the prob-
ability density function (PDF) of the training set of the
object of interest is Gaussian. If the true underlying
PDF of the training set is not Gaussian (in presence
of tumors in T1-WMR images for example) then more
elaborated techniques such as non-parametric models
are necessary.

Finally, note that the proposed model can capture
only one object, which is a limitation since we loose
the powerful property of the level set approach that can
segment several objects simultaneously. A first solution
to handle multiple objects would consist in associating
structures by coupling the evolution equations. Other
solutions would be to use the recent works of (Cremers
et al. (2003, 2004)) and Tsai et al. (2004). Cremers et al.
proposed in the context of variational level set methods
a labeling function to indicate where to apply the shape
prior in a given image. At last, Tsai et al. presented a
parametric model to handle multiple shapes in a single
mutual information-based cost criterion.

Appendix: Existence of a Solution For our
Minimization Problem

This section deals with the mathematical study of

min
ϕ,xpca,xT,uin,uout

{
F =

∫
�

(βs φ̂
2
(x, xpca, xT )

+ βbg(x))|∇ H (ϕ)| + βr Fregion(xpca, xT , uin, uout)

}
.

(35)

We follow the proofs of Chen et al. in Chen et al. (2002)
and Vese and Chan (2001) to prove the existence of
a minimizer for our proposed minimization problem
using the direct method of the calculus of variations
and compactness theorems on the space of functions
with bounded variation.

The minimization problem is considered among
characteristic functions χE of sets E = {x ∈ �|ϕ(x) ≥
0} with bounded variation. The vector of PCA eigenco-
efficients xpca = (xpca1

, . . . , xpcap
) is defined on �pca =

[−3λ1, 3λ1] × · · · × [−3λp, 3λp] and the vector of
geometric transformations xT = (sx , sy, θ, sh, Tx , Ty)
is defined on �T . If � ⊂ R2 is the domain of the
original image I , say � = (0, 255)2, then �T =
(0, 255]2 × [−π, π ) × [−127, 127] × [−255, 255]2.
Functions uin and uout from Section 3.3 are supposed in
C1(�) since they are smoothed versions of the original
image u0 (u = u0 + μ�u is the first order discretiza-
tion of the linear heat diffusion equation ∂t u = �u
with u(0) = u0).

We remind some definitions and theorems intro-
duced in Evans and Gariepy (1992), Giusti (1985),
Chen et al. (2002), Vese and Chan (2001) and Am-
brosio (1989).
Definition 1. Let � ⊂ RN be an open set and let f ∈
L1(�). The total variation norm of f is defined by

T V ( f ) =
∫

�

|∇ f | = sup
φ∈�

{ ∫
�

f (x)div φ(x)

}
,

(36)

where � = {
φ ∈ C1

0 (�, RN )| |φ(x)| ≤ 1, on �
}
.

(37)

Definition 2. A function f ∈ L1(�) is said to have
bounded variation in � if its distributional derivate sat-
isfies T V ( f ) < ∞. We define BV (�) as the space
of all functions in L1(�) with bounded variation.
The space BV (�) is a Banach space, endowed with
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the norm:

‖ f ‖BV (�) = ‖ f ‖L1(�) + T V ( f ). (38)

Theorem 1. A measurable subset E of RN has finite
perimeter in � if and only if the characteristic func-
tion χE ∈ BV (�). We have per�(E) = T V (χE ) =∫
�

|∇χE | < ∞.

Definition 3. Let � ⊂ RN be an open set and let
f ∈ L1(�) and α(x) be positive valued continuous and
bounded functions on �. The weighted total variation
norm of f is defined by

T Vα( f ) =
∫

�

α(x)|∇ f | = sup
φ∈�α

{ ∫
�

f (x)div φ(x)

}
,

(39)

where

�α = {
φ ∈ C1

0 (�, RN )| |φ(x)| ≤ α(x), on �
}
. (40)

If a function f has a finite weighted total variation norm
in � then it also belongs to BV (�).

Definition 4. A function f ∈ BV (�) is a special func-
tion of bounded variation if its distributional derivative
is given by

|D f | = T V ( f ) +
∫

�∩S f

J f dHN−1, (41)

where J f is the jump part defined on the set of points
S f and HN−1 is the (N − 1)-dimensional Hausdorff
measure. The space of special functions of bounded
variation SBV (�) is a Banach space, endowed with
the norm:

‖ f ‖SBV (�) = ‖ f ‖L1(�) + |D f |. (42)

Theorem 2. Let � ⊂ RN be an open set with a Lip-
schity boundary. If { fn}n≥1 is a bounded sequence in
BV (�), then there exist a subsequence { fn j } of { fn}
and a function f ∈ BV (�), such that fn j → f
strongly in L p(�) for any 1 ≤ p < N/(N − 1)
and

T V ( f ) ≤ lim infn j →∞ T V ( fn j ). (43)

The following theorem is a generalization of the main
theorem of Chen (2002).

Theorem 3. Let � ⊂ RN be an open set with a Lip-
schity boundary. If { fn}n≥1 is a bounded sequence in
BV (�) and if {αn}n≥1 is a sequence of positive valued
continuous functions that uniformly converges to α on
�, then there exist subsequences { fn j } of { fn} and a
function f ∈ BV (�) such that fn j → f strongly in
L p(�) for any 1 ≤ p < N/(N − 1) and

T Vα( f ) ≤ lim inf n j →∞ T Vαn j
( fn j ). (44)

Theorem 4. Let � be a bounded and open subset
of R2 and I be a given image with I ∈ L∞(�). The
minimization problem (35) re-written in the following
form

min
χE ,xpca,xT ,uin,uout

{
F =

∫
�

(βs φ̂
2
(x, xpca, xT )

+βbg(x))|∇χE |
+βr Fregion(xpca, xT , uin, uout)

}
(45)

has a solution χE ∈ BV (�), xpca ∈ �pca, xT ∈ �T

and uin, uout ∈ C1(�).

Proof: We use the direct method of the calculus of
variations:

(A) Let {χE n, xpcan
, xTn , uinn , uoutn }n≥1 be a minimiz-

ing sequence of (45), i.e.

lim n→∞ F(χE n, xpcan
, xTn , uinn , uoutn )

= inf
χE ,xpca,xT ,uin,uout

F(χE , xpca, xT , uin, uout).

(46)

(B) Since χE n is a sequence of characteristic functions
of En , then χE n(x) ∈ {0, 1}—a.e. in �. A constant
M > 0 exists such that ‖∇χE n‖L1(�) ≤ M , ∀n ≥
1. Therefore,χE n is a uniformly bounded sequence
on BV (�).
Since {xpcan

} and {xTn } are bounded sequences on
compact spaces �pca and �T , subsequences that
converge to limits xpca and xT exist.

The integrand f (x, xpca, xT ) = βs φ̂
2 +βbg is pos-

itive and bounded because both functions φ̂
2

and
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g are bounded on �. Since the PCA is applied
on continuous functions (SDFs) then the func-
tions φ̂ and f are also continuous and fn(x) =
f (x, xpcan

, xTn ) converges uniformly to f on �.
Following Theorem 3, a subsequence of χE n that
converges to a function χE strongly in L1(�) ex-
ists.
Moreover , Theorem 3 also states that∫

�

f |∇χE | ≤ lim inf n j →∞
∫

�

fn j |∇χEn j
|, (47)

(C) In the region-based functional defined in Eq. (24):

Fregion(xpca, xT , uin, uout)

=
∫

�

(�in H (φ̂(xpca, xT )) + �out H (−φ̂))d�, (48)

the function H (φ̂(xpca, xT )) is a characteristic
function χG of sets G = {x ∈ �|φ̂(x) ≥ 0}. So
we have

Fregion(xpca, xT , uin, uout)

=
∫

�

(�inχG(xpca, xT )) + �out(1 − χG)) d� (49)

and we can define the function u = uinχG +
uout(1−χG). The minimizing sequence of Eq. (45)
implies

lim
n→∞ Fregion(xpcan

, xTn , uinn , uoutn )

= inf
xpca,xT ,uin,uout

Fregion(xpca, xT , uin, uout). (50)

Since the function χG depends continuously on vari-
ables xpca and xT , we have χG(xpcan

, xTn ) = χG n and
un = uinn χG n + uoutn (1 − χG n). According to Am-
brosio’s lemma (Ambrosio, 1989), we can deduce that
there is a u ∈ SBV (�), such that a subsequence un j

converges to u a.e. in BV − w∗ and

Fregion(xpca, xT , uin, uout)

= Fregion(u) ≤ lim inf n j →∞ Fregion(un j ), (51)

which means that u is a minimizer of Fregion. Then, by
combining Eqs. (47) and (51), χE , xpca, xT , uin and uout

are minimizers of (45).
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