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Paris-Dauphine, Place du Marechal de Lattre de Tassigny, 75775 Paris cedex 16, France
roberto.ardon@centraliens.net

LAURENT D. COHEN
CEREMADE, UMR 7534 Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny,

75775 Paris cedex 16, France
cohen@ceremade.dauphine.fr

Received April 7, 2004; Revised November 12, 2004; Accepted November 23, 2004

First online version published in April, 2006

Abstract. In this paper we consider a new approach for single object segmentation in 3D images. Our method
improves the classical geodesic active surface model. It greatly simplifies the model initialization and naturally
avoids local minima by incorporating user extra information into the segmentation process. The initialization
procedure is reduced to introducing 3D curves into the image. These curves are supposed to belong to the surface
to extract and thus, also constitute user given information. Hence, our model finds a surface that has these curves as
boundary conditions and that minimizes the integral of a potential function that corresponds to the image features.
Our goal is achieved by using globally minimal paths. We approximate the surface to extract by a discrete network
of paths. Furthermore, an interpolation method is used to build a mesh or an implicit representation based on the
information retrieved from the network of paths. Our paper describes a fast construction obtained by exploiting
the Fast Marching algorithm and a fast analytical interpolation method. Moreover, a Level set method can be used
to refine the segmentation when higher accuracy is required. The algorithm has been successfully applied to 3D
medical images and synthetic images.
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1. Introduction

Since their introduction by Kass et al. (1998) de-
formable models have been extensively used to find
single and multiple objects in 2D and 3D images. The
common use of these models consists in introducing
an initial object in the image and transforming it un-
til it reaches a wanted target. In most applications, the
evolution of the object is done in order to minimize an
energy attached to the image data, until a steady state is
reached. One of the main drawbacks of this approach is

that it suffers from local minima ‘traps’. This happens
when the steady state, reached by the active object, does
not correspond to the target but to another local mini-
mum of the energy. Thus, the active object initialization
is a fundamental step, if it is too far from the target, local
minima can block the active object evolution, and the
target is never reached. On the other hand, when image
quality is very low, the information contained in any en-
ergy derived from the image, may not lead to the desired
segmentation. The model should then be able to take
into account additional information given by the user.
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Since the publication of Kass et al. (1998), much
work has been done in order to free active models from
the problem of local minima. A balloon force was early
proposed in Cohen (1991) to make the model more ac-
tive and to cope with the shrinking problem, but this
force supposed a known direction in the evolution. The
introduction of region dependent energies (Paragios,
2000; Cohen, 1997) and the use of shape priors ap-
proaches (Yuille et al., 1992; Cremers and Schnörr
2003; Tsai et al., 2003), contributed to create a more
robust framework. Nonetheless, when looking for a
precise object (like the left ventricle in 3D ultrasound
images) if the initialization of the model is made by
simple geometric objects (spheres, cylinders), too far
from the targeted shape, most of the present models will
fail. Tedious hand drawing initializations are thus of-
ten needed. In this work, we focus on a novel approach
for 3D single object segmentation having a cylinder-
like topology. Our contribution consists in exploiting
two curves, introduced in the image by the user, in or-
der to segment the object by a first approximation of
a minimal energy surface that avoids unwanted local
minima. The given curves are supposed to be drawn
on the surface of the object to be segmented. They
constitute the initialization of the 3D model, and the
information they provide (for being drawn on the ob-
ject to extract) is highly exploited, since the surface
our algorithm generates is constrained to contain them.
In order to avoid local minima ‘traps’, our algorithm
builds a network of globally minimal paths, then a
surface is interpolated by a novel analytical interpo-

Figure 1. Three different slices of a 3D ultrasound volume of a left ventricle and the two user given curves C1 and C2. (a) and (b) show the

two parallel slices where the curves are drawn. (c) shows a perpendicular slice to the curves in order to show their position with respect to the

ventricle.

lation method we have developed. As an illustration
of the situation we are working on, we give, in Fig. 1,
an example of the user input to our algorithm for the
segmentation of a 3D ultrasound volume of the left
ventricle.

The outline of our paper is as follows: we begin in
Section 2 by recalling the principles of geodesic active
contours and surfaces as well as the global minimal
paths framework. In Section 3 we explain how mini-
mal paths can be used to build a network of paths that
discretely approximates the surface to be segmented
and that is not sensitive to the problem of local min-
ima traps. In Section 4 we give the final step of our
algorithm which is the generation of the surface from
the network of paths. At last, in Section 5 we show
some examples on synthetic data and real medical
images.

2. Active Surfaces and Minimal Paths

2.1. Evolution Equations

Active surfaces as well as minimal paths re-
sulted from deformable models introduced with the
snakes model (kass et al., 1988). This model con-
sisted in introducing a curve g into the image
and making it evolve in order to minimize the
energy,

E(g) =
∫

α.‖g′(s)‖2 + β.‖g′′(s)‖2 + P(g(s))ds.
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The two first terms maintained the regularity of the
curve and the last one was the data attachment term.
The potential function P , usually represented an edge
detector that had lower values on edges. For example
P = (1 + |∇ I |2)−1 if I is the image.

Caselles et al. improved the energy formulation in
Caselles et al. (1997a,b) by introducing the geodesic
active contour model and its surface extension. In their
approach the evolution of an initial curve g0 or sur-
face S0 was driven by the minimization of the geodesic
energies

E(g) =
∫

P(g(s))‖g′(s)‖ds and

E(S) =
∫ ∫

P(s(u, v))‖Su × Sv‖dudv (1)

Hence, their model is geometrical, since it is no
longer dependent on parameterization. Even though
these models are only edge-driven, most of current ap-
proaches that integrate other information (region, tex-
ture, shape knowledge) are actually extensions. The
most popular approach for solving the minimization
problems (1) is to consider Euler-Lagrange equations
(first variation of the energy) and derive from them the
corresponding descent schemes:{

∂g

∂t
= (Pκ − ∇P.�n)�n, g(·, 0) = g0

}
and{

∂S
∂t

= (PH − ∇P. �N ) �N , S(·, ·, 0) = S0

}
(2)

where H and κ are respectively the mean curvature of
the surface and the curvature of the curve. �N and �n
are their inward normals. This approach is limited by
the fact that it can lead to local minima of the energy.
This is of course true for their level set formulation as
well (see for example Caselles et al. (1997a) Osher and
Sethian (1988)). Therefore, in the next section we recall
a method introduced in Cohen and Kimmel (1997) that
allows to find the global minimum for the active contour
energy (1) when imposing the two end points. This
formulation does not use the curve evolution equation
in (2).

2.2. Global Minimal Paths Between Two Points

Cohen and Kimmel give in Cohen and Kimmel (1997) a
method to find the global minimal path, connecting two
points p1 and p2, with respect to a given cost function

P . In other words, they find the global minimum of the
geodesic active contour’s energy (1) when imposing
to the curve its two end points. They show that this
globally minimal curve is obtained by following the
opposite gradient direction on the minimal action map
Up1

,

Up1
(q) = inf

g(0)=p1,g(L)=q

{ ∫ L

0

P
(
g(s)

)
ds

}
,

where L is the length of g. (3)

The minimal path between p2 and p1 is thus obtained
by solving the problem:

dg

ds
(s) = −∇Up1

(g(s)) with g(0) = p2. (4)

In order to compute Up1
, Cohen and Kimmel (1997)

use the fact that this map is solution to the well known
eikonal equation (a proof of this fact can be found in
Bruckstein (1988)):

‖∇Up1
‖ = P and Up1

(p1) = 0. (5)

Equation (4) can be numerically solved by simple or-
dinary differential equations techniques like Newton’s
or Runge-Kutta’s. To numerically solve Eq. (5), clas-
sic finite differences schemes tend to be unstable. In
Tsitsiklis (1995) Tsitsiklis introduced a new method
that was independently reformulated by Sethian in
Sethian (1996). It relies on a one-sided derivative look-
ing in the direction of the information flow, and it gives
a consistent approximation of the weak solution to
Eq. (5). This algorithm is known as the Fast Marching
algorithm and is now widely used and understood. It
was used in Cohen and Kimmel (1997) to solve Eq. (5)
and find globally minimizing contours in images. More
details on its background and implementation can be
found in Sethian (1999) and Cohen (2001). It is impor-
tant to highlight a major advantage of this algorithm: it
has an O(N log(N )) complexity on a grid of N nodes,
and only one grid pass is needed to give a first order
approximation of the solution. An extension to 3D of
Fast Marching and minimal paths is straightforward.
The authors of Deschamps and Cohen (2001) used it to
find centerlines in 3D tubular structures. The minimal
path is obtained by gradient descent, solving Eq. (4),
like in the 2D case.

To summarize, we are able, by imposing its two end
points, to build a 3D global minimum path for the
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energy, without using an evolution equation subject
to unwanted local minima traps. On the other hand,
the goal of active surfaces is to locate a certain local
minimum of energy (1) that agrees with the user’s cri-
teria. The problem is that during the evolution process
the surface can be trapped by other local minima, or,
additional information could be necessary in order to
complete image information and achieve a new wanted
minimum.

In what follows, we propose to use the global mini-
mum property of the paths to generate a segmentation
surface S0 from two curves drawn by the user. We re-
duce the 3D initialization to drawing these curves, in-
stead of complicated volumes in the case of difficult
images. We also use these curves as additional user
information for avoiding unwanted local minima.

3. From Global Minimal Paths to 3D Surface

We propose to use a set of minimal paths, built be-
tween two constraining curves C1 and C2, to define a
first approximation of an energy minimizing surface
S0. The intuition behind this approach is that this set
of global minimal paths is contained in a surface that
would qualify for a good segmentation approach if, in
the beginning, C1 and C2 are well located in the 3D
image.

3.1. Minimal Path Network

We wish to build a set of global minimal paths between
the two constraining curves using the method outlined
in the previous section. A naive numerical approach
for this construction is to build minimal paths between
all the points of the discretized versions of C1 and C2.
Hence, each point of C1 would be associated to all the
points of C2. Clearly this would be computationally
expensive (at least n actions maps to build and n ×n
gradient descents, if n is the number of points of the
discretized versions of C1 and C2), and many of this
numerous associations would not be relevant. Thus,
we consider the following approach: We shall say that
g is a path between a point p1 and a curve C1 if g(0) =
p1 and g(L) ∈ C1. We then define surface S0 as the
set of minimal energy paths {g p

C1
} between curve C1

and all points p of the curve C2. More precisely, S0 =⋃
p∈C2

{g p
C1

}.
As recalled in Ardon and Cohen (2003), the problem

of computing g p
C1

, minimal path between C1 and p, can

be addressed by performing a gradient descent on the
action map UC1

, defined by

UC1
(p) = inf

{g between p and C1}

{ ∫ L

0

P(g(s))ds

}
. (6)

Furthermore it is easy to see that UC1
(p) =

infq∈C1
{Uq (p)}, where Uq is the action map associated

to point q defined in Section 2.2 by Eq. (3). This implies
that the numerical estimation of UC1

can also be done
using the Fast marching algorithm, initializing UC1

by
UC1

(p) = 0 if p ∈ C1 (a discretized version of it) and
UC1

(p) = ∞ otherwise. Indeed, this can be understood
by recalling the fact that the value ofUi, j,k only depends
on points among its six nearest neighbors whose values
of U are inferior. Thus, when marching away from the
points of C1, Fast marching will automatically compute
infq∈C1

{Uq (p)}.
Using UC1

, we can now estimate S0. Consider a dis-
cretized version of C2 containing n2 points {pi }i=1...n2

.
For each and every point pi , by gradient descent on
UC1

, we build the minimal path between this point and
C1, thus generating a finite set of paths from C1 to C2:
{gi

C1
}i=1...n2

. The final numerical approximation of S0

will be the result of the interpolation of this network
and concerns Section 4 of this paper. An illustration of
S0 is given in Figs. 2(a) and (b) on a synthetic image.
A potential adapted to finding the surface of the vase
shown in Fig. 2(a) is used. The network, shown in Fig.
2(b), is built between two curves C1 and C2 drawn on
the surface of the vase.

An important remark is that the definition of surface
S0 is not symmetric. Indeed, in general

⋃
p∈C2

{g p
C1

} �=⋃
p∈C1

{g p
C2

}, and of course, the set of paths {gi
C1

}i=1...n2

is different from its homologue set {gi
C2

}i=1...n1
. One

could think of using this feature to generate a denser
set of paths by looking for a surface that would be
defined as the union of both networks. However, in
practice, this symmetrical construction does not give
satisfactory results.

An interesting particular case of the previous con-
struction is obtained when curve C1 is reduced to a
single point p0. However, in this degenerated case, in
order to obtain a coherent network S0, p0 has to be
situated in a specific location of the object to segment.
This position corresponds to the maximum of the ac-
tion map UC2

(solution to the eikonal equation taking
zero values at curve C2) on the surface of the object to
extract. This location is very difficult to find automat-
ically, since the object is unknown; for the user, this
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Figure 2. (a) is the original vase surface from which a 3D test image is generated. We also show the position of the constraining curves that

are given by the user. (b) is the set of minimal paths (S0) generated between the two constraining curves. The paths are minimal with respect to

a potential that takes small values on the vase’s boundaries. Note that the paths of S0 lay on the vase’s surface. (c) Set of Minimal Paths in the

degenerated case: between a point and a curve lying on a closed cylinder. Point p0 is located on the center of the upper face of the cylinder, it is

the farthest point on the surface of the cylinder from curve C2. In (d) we superimposed to the network of paths the cost function P used for its

construction.

point corresponds to the one being the farthest away
from C2 on the surface. On Fig. 2(c) and (d) we give an
illustration of this case on a synthetic image of a closed
cylinder. As shown in Fig. 2(d) (where two slices of the
3D cost function are shown), point p0 is the center of
the upper part of the cylinder and curve C2 is drawn on
the opposite side.

3.2. Projecting the Minimal Paths

Recall that functional E(g) = ∫ L
0
P(g(s))ds is built

by summing the cost function (P) along the curve g.
Hence, a minimal curve with respect to E establishes

Figure 3. (a) Minimal path between points p1 and p2 that avoids a concavity of the object to segment. hconcavi t y is the characteristic size of

the concavity. (b) represents a half-sphere blended on a plane (transparent visualization) and C1 and C2 (black segments). (c) Result without

constraints, set of paths {gi
C1

}i=1...n2 taking a short cut around the sphere. (d) Result with constraints, sphere recovered.

a balance between reducing its length, and following
weak values of P . In order to clarify the explanation
that follows, we first consider a 2D situation, which
corresponds to the illustration given on Fig. 3(a). The
cost function is derived from a 2D image that contains
an object we wish to extract. Suppose that this object
presents a strong curvature on the neighborhood of a
certain point p. Consider two other points, p1 and p2,
also positioned on this object, and relatively far from
p with respect to a characteristic size of the concav-
ity. Then, as illustrated in Fig. 3(a), a minimal path
between p1 and p2 will tend to avoid this concavity
by ‘cutting through’ stronger values of P , its length
being too penalizing otherwise. In the 3D case, minimal
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Figure 4. (a) Illustration of the construction of a projected path, it is done by projecting the vector field ∇UC1 on plane πp . (b) Shows the

minimal path network obtained on an ultrasound image of the left ventricle without projecting. In transparency we gave three slices of the 3D

volume. (c) is the projected network obtained in the same conditions.

paths of S0 have a similar behavior: if the surface of
the object we wish to extract presents a strong local-
ized mean curvature, the elements of S0 will tend to
circumvent it. This constitutes a drawback in the use
of S0 for a segmentation task: areas of the surface to
extract presenting strong curvature, can be omitted by
the minimal path network. Figure 3 illustrates a simple
situation where the network {gi

C1
} is unable to recover

the expected surface. The cost function is constant on
a surface which is the blending of a plane and half a
sphere and has higher values on the background. Min-
imal paths tend to take a short cut around the sphere
rather than ‘climbing’ on it, P has no influence (be-
ing constant on the surface) and the paths will mini-
mize their length. In order to cope with this problem,
we propose another approach for the construction of a
segmenting surface S0, in the particular case where the
user given curves, C1 and C2, do not intersect. Consider
a family of planes � = {πp}p∈C2

, such that, for every
p of C2, plane πp contains this point and has a none

empty intersection with C1. If
→
n p is the unit normal

vector of plane πp of �, we call the projected min-
imal path g̃ p

C1
, the solution of the following ordinary

differential equation:

dg

ds
(s) = −∇UC1

(g) + (∇UC1
(g).

→
n p).

→
n p,

with g(0) = p. As it is shown in Fig. 4(a), this equation
is obtained by replacing the vector field ∇UC1

in Eq. (4)

by its projection on plane πp (whose normal is
→
n p). S0

will be now defined as the union of the ‘projected min-
imal paths’: S0 = ⋃

p∈C2
{g̃ p

C1
}. Figure 3(c) illustrates

the network {g̃i
C1

} of projected paths obtained with our
half sphere. � is the family of parallel planes which

are orthogonal to C1 and C2 (n p does not depend on p
and πp contains point p of C2). In practice, if C1 and
C2 are two planar Jordan’s curves, for each point pi

of C2, good choices for planes πpi are the planes pass-
ing through the following three points: G1, belonging
to the interior of C1, G2 belonging to the interior of
C2 and pi . The normal vectors are then defined by,
→
n pi = (

→
G1G2 ∧

→
G1 pi )(||

→
G1G2 ∧

→
G1 pi ||)−1.

In spite of the simplicity of this approach, the class
of surfaces that can be segmented by evaluating their
intersection with a plane, is quite large. This class con-
tains at least those surfaces whose intersections with
planes {πpi } are connected.

In Fig. 4 we used this approach with a noisy ultra-
sound image of the left ventricle. Figure 4(b) shows the
minimal path network obtained without the projected
approach. Noise and the structure of the surface cre-
ate strong curvature and many areas of the surface to
extract are avoided by the network, the segmentation
generated from this network will be of less precision.
Here, the projection to planes is of great use due to the
particular geometry of the ventricle: Fig. 4(c) shows
how we manage to recover the areas that where missed
by the unprojected network.

4. From the Network to the Surface

The final step for the generation of S0 is its construc-
tion through the interpolation of the network of paths.
We consider two different approaches to generate S0.
The first one is a novel analytical interpolation that
uses the unprojected network of paths {gi

C1
}i=1...n1

; it
exploits its particular structure which derives from the
fact that minimal paths cannot cross without merging.
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This method is fast and guaranties that the interpolated
surface strictly contains all the paths of the network
and the curves given by the user. The second, uses the
variational approach proposed in Zhao et al. (2001). It
can be applied to both, the unprojected and the pro-
jected network ({g̃i

C1
}i=1...n1

), but only ensures that the
interpolated surface is close to the network but may not
strictly contain all its paths.

4.1. Analytical Path Interpolation

In this section we present the construction of the
interpolated surface from the unprojected network
{gi

C1
}i=1...n2

(henceforth noted {gi }i=1...n for simplicity).
When the goal is to rapidly generate an approximation
of the segmented surface (since we could miss areas of
high curvature), this approach will be a good compro-
mise between precision and efficiency. Being minimal
paths, two paths belonging to {gi } may either have an
empty intersection or merge (note that this is not the
case for the elements of {g̃i

C1
}i=1...n1

). This particular
configuration (see Fig. 5(a) for a schematic represen-
tation) of the network suggests to create sectors and
interpolate the surface sector by sector (see definition
below). Let s1 and s2 be parameterizations of C1 and C2

defined on the interval [0, 1]. Points {Pi
1} and {Pi

2} will
be the intersection points of C1 and C2 with the network
{gi } (see Fig. 5(a)). And {pi

1} and {pi
2} two families

belonging to [0, 1] satisfying C1(s1 = pi
1) = Pi

1 and
C2(s2 = pi

2) = Pi
2 . For every i ∈ {1 . . . n} we define a

sector as the following set of curves {gi , gi+1, Ci
1, Ci

2}
(as is shown on Fig. 5(b)). Ci

1 and Ci
2 are the restric-

tions of curves C1 and C2 to the intervals [pi
1, pi+1

1 ] and

[pi
2, pi+1

2 ] respectively.
Our aim is to generate a parameterized surface

S0 : [0, 1]2 → IR3; (u, v) → S0(u, v), such that

Figure 5. (a) Scheme illustrating a network that satisfies all the conditions for applying the analytical interpolation. (b) Illustrates our definition

of a sector and (c) shows the interpolated surface, generated with our analytical method.

∃{pi }1≤i≤n ∈ [0, 1]n , verifying

(Cond1) : ∀i ∈ {1....n}S0(., v = pi ) ≡ gi ,

S0(u = 0, .) ≡ C1 and S0(u = 1, .) ≡ C2

meaning that the essential constraint on S0 is to con-
tain curves C1, C2 and all paths {gi }. Moreover, consider
the restrictions S i

0 of S0 to the sets [0, 1] × [pi
1, pi+1

1 ].
By imposing to S0 the following condition, ∀u ∈
[0, 1] and ∀i = 1 . . . n − 1.

(Cond2) : ∂vS i
0(u, v = pi+1) = ∂vS i+1

0 (u, v = pi+1)

we can build it locally continuously differentiable. In
fact, it is easy to build S0 of class C1 in the interior
of each sector, difficulty arises only on the boundaries.
The analytical construction that follows will guaranty
that S0 will stay first order differentiable at the borders
of each sector if paths do not merge, and continuous if
they do.

The first step of the analytical interpolation is the
introduction of a common parameterization on C1 and
C2 (that will be noted v), and another (noted u) on all
paths {gi }. Parameter u is easy to find, it will be cho-
sen as the normalized arc-length on each path {gi }. In
order to find v, let σ be an increasing one-to-one func-
tion on [0, 1], such that for every i , σ (pi

1) = pi
2. We

perform a remapping of C2 by σ and the new curve
C̃2 = C2 ◦ σ , satisfies for every i ∈ {1...n} C̃2(pi

1) =
C2 ◦ σ (pi

1) = C2(pi
2) = Pi

2 . Which means that the
same parameter values on [0, 1]n ({pi

1}) correspond in
each curve C1 and C̃2 to the intersection points with
the set {gi }. This leads us to choosing parameterization
v = s1 and henceforth working with C1 and C̃2. Find-
ing an adequate σ function is a problem of a 1D con-
straint interpolation (since σ ought to be increasing).
We use a piecewise cubic hermite interpolation (Fritsch
and Carlson, 1980) to solve the problem.This function
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reflects the correspondence generated by the minimal
paths between the two curves. We are now able to give
an analytical expression of function S0 that satisfies
conditions (Cond1) and (Cond2). For each sector i , we
define the x-coordinate of the restriction of S0 by

S i
0x (u, v) = Ci

x (u, v) + (
1 − αi

x (u, v))
(
gi

x (u) − Ci
x (u, pi )

)
+ αi

x (u, v)
(
gi+1

x (u) − Ci
x (u, pi+1)

)
where Ci

x (u, v) = (1− f (u))Ci
1x (v)+ f (u)C̃i

2x (v) (con-
vex combination of the given curves). Function f can
be chosen among all the differentiable functions on
[0, 1] and must satisfy f (0) = 0 and f (1) = 1 (take for
example f (u) = u). Each scalar αi

x is the x-coordinate
of a function αi , which is tailored for satisfying (P1)
and (P2); it is defined on the interval [pi

1, pi+1
1 ] by

αi
x (u, v)= v − pi

pi+1 − pi

(
1 + pi+1 − v

pi+1 − pi

(
v − pi

pi+1 − pi
.[

2 − (
Gi+1

x (u) + Gi−1
x (u)

)] + (
Gi−1

x (u) − 1
)))

.

with

Gi
x (u) =gi+1

x (u) − gi
x (u) − (

Ci
x (u, pi+1) − Ci

x (u, pi )
)
,

∀i ∈ {1 . . . n − 1}
Gn

x (u) =G0
x (u) = g1

x (u) − gn
x (u) − (

Cn
x (u, p1) − Cn

x (u, pn)
)

Gn+1
x (u)=G1

x (u)

The other two coordinates are obtained using the same
formulas replacing x by y and then by z. Figure 5(c)
shows the interpolated mesh generated from the set of
curves in Fig. 5(a). A major advantage of this interpo-
lation method is its calculation speed. Only elementary
calculations are needed to generate the surface (there
is no matrix inversion) and both information from the
paths and from the initial curves are integrated in the
process.

In Fig. 6 we show two interpolated surfaces gener-
ated by this method. Fig. 6(a) and (b) illustrate the fact
that the interpolation combines both information com-
ing from the network and from curves C1 and C2. Even

Figure 6. (a) Test network of four paths synthetically produced, C1 and C2 are the lower and upper curves. (b) Interpolated surface. (c) is the

network of minimal paths obtained from an ultrasound image of the left ventricle. The user initialized the model by drawing the upper and lower

closed curves. (d) is the analytically interpolated surface.

when taking only four paths, the obtained surface is
coherent with the shape of the user given curves. Fig-
ure 6(c) shows set {gi } obtained from a left ventricle
image, Fig. 6(d) illustrates the interpolated surface.

4.2. Variational Interpolation

As was pointed out earlier, the analytical interpolation
method can only be applied with the unprojected net-
work {gi

C1
}i=1...n1

, since its particular structure (paths
cannot cross without merging) is necessary. Neverthe-
less, considering the projected networks can improve
results (see Fig. 4(b)). Unfortunately, a sector by sec-
tor approach can no longer be considered, for paths
can cross without merging. In these situations one can
hardly exploit the structure of the network, hence, a
scattered data points interpolation has to be considered.
We use the method proposed by Zhao et al. in Zhao,
et al. (2001). We compute from the network {g̃i

C1
}i=1...n1

a distance function d and we look for the surfaceS0 that
minimizes energy E(S) = ∫∫

S(d(x, y))2dxdy. This is
done by a gradient descent method similar to Eq. (2)
and we have used a level set implementation. When us-
ing projected networks, this method gives satisfactory
results since one can control the density of the paths by
varying the number of points on C1 and C2.

5. Initializing Active Surface with S0,
Applications

Having generated S0 by any of the previous methods,
we may use it as the initial condition of the evolution
Eq. (2). We have chosen a level set method for our im-
plementations. If the analytical interpolation method is
used, the construction of a higher dimensional func-
tion, φ0 : IR3 → IR such that φ−1

0 (0) = S0, is needed.
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Figure 7. (a) View of different intersecting planes of a 3D volume with the two constraining curves drawn on it. (b) Network of paths obtained

with our method. (c) Interpolated surface. (d) Surface after a few iterations of a level set. (e) and (f) Simple initialization of an active object. (g)

surface after 150 iterations and (h) after 500 iterations. (i) A slice of the 3D ultrasound image, we also have drawn the projection of the user

given curves and the intersection of our interpolated surface with this plane. (j) Set of paths. (k) Interpolated surface. (l) final segmentation after

a few iterations of the level set, (m) Planar view of the same slice, intersection with the model evolved as a level set.

Figure 8. (a) Slice of a 3D MR image of an aneurysm. (b) Set of paths. (c) Interpolated surface. (d) final segmentation after a few iterations of

a level set.

φ0 can be computed as a signed distance map using Fast
marching initialized with S0. The evolution of the level
set will be done following ∂φ

∂t = div(P.
∇φ

‖∇φ‖ )|∇φ‖,
which is exactly the gradient descent of the geodesic
active surface (1) in its level set formulation. For con-
vergence, few iterations of φ will be needed, since S0

is already close to image features. Compared to using
a level set approach from the beginning, our approach
is much faster, needs no tedious 3D initializations, and
avoids local minima by exploiting curves C1 and C2.
Figure 7(a) presents a good example of a difficult to

segment image because of the presence of many lo-
cal minima. It is generated by three ‘S’ shaped tubes
one inside the other. If one wishes to obtain the middle
‘S’ shaped tube, classical variational methods will fail
(unless a very close initialization is given). Our method
manages to extract the object when initialized by two
curves given on the surface to extract. We compare it
with the result of a geodesic active surface initialized
with a cylinder (Fig. 7(e) and (f), and we observe in
Fig. 7(g) and (h) that the model gets trapped by other
local minima. Concerning ultrasound heart imaging,
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our method only needs two slices in order to build the
entire volume of the left ventricle; this two curves can
be, for example, two short axis segmentations as in Fig.
1(a) and (b). Figures 7(i) to (j) show the segmentation
obtained. For this image of size 1283, the generation of
S0 took 25 seconds, the final segmentation 20 seconds
more, on a 1.4 Ghz machine (512 MBy of RAM). In
Fig. 8(a) to (d) , we show results on a MR image of
an aneurysm. As for other previous examples, the user
simply initialized the model by drawing two curves on
two (non parallel) slices of the 3D image. On this im-
age (192×168×152)), the total segmentation took 70
seconds on the same machine.

6. Conclusion

In this paper we have presented a method that gener-
alizes globally minimal paths to surfaces. Our method
allows to greatly simplify the initialization process of
active surfaces. The model is initialized by two curves
(eventually a curve and a well positioned point) instead
of a volume. Our approach takes a maximum advan-
tage of the information given by the user through the
initialization curves, since the surface it generates is
constrained to include those curves. Our method uses
globally minimal paths to define and generate a surface
which is a final segmentation or an initialization of an
active surface model. Hence, in both cases, the final
surface is not concerned by the problem of the local
minima traps as all other active objects approach do. It
is particularly well suited for medical image segmenta-
tion, in particular for ultrasound images segmentation.
In cases where the image quality is very poor, our ap-
proach handles the introduction of additional informa-
tion coming from the practitioner in a very natural man-
ner. A few 2D segmentations can be enough to generate
a coherent complete surface. We have also presented a
novel interpolation method which is characterized by
its simplicity and its efficiency.
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