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Abstract

We propose an algorithm to increase the resolution of multispectral satellite images knowing the panchro-
matic image at high resolution and the spectral channels at lower resolution. Our algorithm is based on the
assumption that, to a large extent, the geometry of the spectral channels is contained in the topographic map
of its panchromatic image. This assumption, together with the relation relating the panchromatic image to
the spectral channels, and the expression of the low resolution pixel in terms of the high resolution pixels
given by some convolution kernel followed by subsampling, constitute the elements to construct an energy
functional (with several variants) whose minima will give the reconstructed spectral images at higher reso-
lution. We shall discuss the well foundedness of the above approach and describe our numerical approach.
Finally, some experiments for a set of multispectral satellite images are displayed.
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1 Introduction

A grey level image can be realistically modeled as a real funatiar) wherex represents an arbitrary point
of a rectangle in IR? andu(z) denotes the grey level at Typically u(z) represents the photonic flux over
a wide band of wavelengths and we have a proper grey level image. Below, we shall refer to this image as
the panchromatic image. A multispectral image may be represented by a fufidtiom IR? to IR™ where
m represents the number of spectral channels. For colour images, typiaaty3 if we consider the usual
R, G, B channels. If we add the near infrared channel to the colour channels we have a multispectral image
with m = 4. In this case each coordinate®@(fx) represents the intensity corresponding to a spectral channel,
when the photonic flux is subjected to an spectral selective filter, be it in the visible range, the near infrared or
the ultraviolet one. We shall say that the panchromatic imeggresponds to the multispectral imagi «(z)
has been obtained by adding (with some mixing coefficients) the coordinaiestith represent the energies
of different spectral bands. In other wordsiiit= (ug, ..., u,,) @ndaaq, ..., a;, represent the mixing coefficients
to compute the total spectral energy from the above channels, the corresponding panchromatic image will be
given by

u(z) = cqur(z) + ... + amum(x). 1)

Let us mention that in digital images, the only accessible information is a sampled and quantized version of
u(i, ), where(i, j) is a set of discrete points (in general on a grid) a(d j) belongs in fact to a discrete set
of values,0, 1, ..., 255 in many cases. Since, by Shannon'’s theory, we can assume(thais recoverable at

any point from the samples(i, j), as a first approximation, we may assume that the imageis known in a
continuous domain, up to the quantization noise.



The purpose of this paper will be to describe a method to increase the resolution of satellite multispectral
images when we know the corresponding panchromatic image at a higher resolution. We shall assume that the
panchromatic image has been sampled at higher resolution, and we have an im@agg of size N x N
pixels. The spectral channels have been sampled at a lower resolution giving images%bﬁei%e(typically
s = 2, or4) which we shall denote by* = (uf, ..., u?,), the superscript being explicitly included to stress the
loss of resolution of the multispectral data. Our purpose will be to reconstruct the high resolution multispectral
imaget = (uq, ..., um ), Which will be an image of siz& x N, knowing the data and®. For that we shall
take into account several constraints imposed by the data generation model. In particular, for each channel, the
low resolution pixel is formed from the high resolution pixel by a low pass filtering followed by a subsampling.

If we denote byk, the impulse response of this filter corresponding to chanrel1, ..., m}, we may write
N
us(i,§) = ky xup(i,j) Vi, j € {0,...,; —1}. 2)

Obviously, we have to respect also the relation (1). Finally, we shall use the geometric information contained in
the panchromatic image. Indeed, we shall constraint the geometry of the spectral channels at higher resolution
to follow the geometry of the panchromatic image. This constitutes the main feature of our approach and needs
further explanation. First, we shall explain what do we understand by the geometric information contained
in the panchromatic image, and more generally, in any scalar image, including any spectral channel. Then we
shall explain the reasons which support the underlying assumptiomtages taken on different spectral bands
share common geometric informatidror that we shall review the main conclusions in [7],[12].

Before going into the details of our method, let us say that there exists a huge literature on the subject. The
most performing methods are based on the injection of high frequency components (corresponding to spatial
details present in the high resolution panchromatic image) in interpolated versions of the multispectral data
[16], or improvements based on multiresolution analysis of P+XS images [1]. For more information we refer
to [1],[16], and references therein.

1.1 Mathematical morphology of scalar images

In this subsection, we shall consider scalar images, that is, images with a single channel, be it colour (or any
other spectral channel) or grey level.

What is the geometric information content of an image ? This is the question we want to discuss briefly
here. In this paragraph, we are simply summarizing some arguments contained explicitly or implicitly in the
Mathematical Morphology theory [15], which were further developed in [6].

The sensors of a camera or a CCD array transform the continuum of light energies to a finite interval
of values by means of a nonlinear contrast functjonThe contrast change depends on the properties of
the sensors, but also on the illumination conditions and the reflection properties of the objects, and those
conditions are generally unknown. Images are observed modulo an arbitrary and unknown contrast change.
These observations lead the physicist and psychologist M. Wertheimer [17] to state as a basic principle that the
gray level is not an observable.

Mathematical Morphology recognized contrast invariance as a basic invariance requirement and proposed
that image analysis operations take into account this invariance principle [15, 11]. With this principle, an image
u is a representative of an equivalence class of imagestained fromu via a contrast change, i.e.,= g(u)
whereg, for simplicity, will be a continuous strictly increasing function. Under this assumption, an image is
characterized by its upper (or lower) level satg = [u > A\ = {z : u(z) > A} (resp. X} = [u < \] = {z:

u(x) > A}). Moreover, the image can be recovered from its level sets by the reconstruction formula

u(z) =sup{A:z € X,}.



Thus, according to the Mathematical Morphology doctrine, the reliable information in the image is contained in
the level sets, independently of their actual levels. Thus, we are led to consider that the geometric information,
the shape information, is contained in those level sets.

We can further describe the level sets by their bounda#i&s,u, which are, under suitable very general
assumptions, Jordan curves. Jordan curves are continuous maps from the circle into tHRpleitieout
crossing points. Indeed, in [2] it is proved thatiifs a function whose upper level set5 .« are sets of finite
perimeter (in particular, ifi is a function of bounded variation [3, 10]), then the boundaries of level sets can be
described by a countable family of Jordan curves with finite length. The family of all level lines of an image was
called thetopographic mag6]. The topographic map is invariant under a wide class of local contrast changes
([6]), and, in particular, it is a useful tool for comparing images of the same object with different illuminations
[12, 13]. We can conceive the topographic map as a tool giving a complete description of the geometry for grey
level images.

For later purposes, we have to go a step further in the description of the geometry of the topographic map.
Assuming that our image : 2 — IR is of bounded variation, by the results in [2], we have that (almost all)
its level setdu > A are sets of finite perimeter whose boundaries are unions of rectifiable Jordan curves and
we may compute the unit normal vector at almost any point of it. This gives a unit vectof fidéined at
the points of2 which are traversed by a level line, and verifyihgVu = |Vu/|, identity which, in a rigorous
mathematical sense, can be understood as equality of two measures. This vector field has to be extended to all
of Q. For that we may define it to be zero at the flat regions of the graph sb that, essentially we have
O(x) = \Vu if Vu(z) # 0andf(x) = 0 whenVu(z) = 0. A more precise description éfwill be given
in Section é his vector field will be the right analytic tool which we require to impose the constraint that the
geometry of any functiom is specified by the geometry of indeed, byd [5].

1.2 Geometry and color in natural images

What is geometric content of a color image ? Obviously, the answer to this question is quite complex and,
strictly speaking, it cannot be reduced to the geometry of its associated intensity image. Indeed, counterex-
amples can be given were color objects exist with a constant intensity. But what happens in images of natural
scenes ? Will the light create color patterns with color edges with a constant intensity ? This problem was
addressed in [7] and it was experimentally checked that the essential geometric contents of a color image is
contained in the level lines of the corresponding intensity image.

Let us describe with some detail the experimental set up which permitted the authors of [7] to support the
above conclusion. For that, we adopt the hypothesis that the essential geometric contents of a color image is
contained in the level lines of its intensity. Then [7], an algorithm was designed to constrain the color channels
of a given image to have the same geometry (i.e. the same level lines) as the grey level. The algorithm can
be briefly describedreplace the colors in an image by their conditional expectation with respect to the grey
levels If the hypothesis above is sound, then this algorithm should not alter the colors of the image or its visual
aspect. The authors of [7] displayed several experiments confirming this hypothesis. A further confirmation of
it was suggested by the experiments of imposing the color of an image to the topographic map of another one :
it resulted, in a striking way, in the dominance of grey level and the fading of a color deprived of its geometry

[71.

1.3 The case of satellite multispectral images

In the case of multispectral satellite images, the analogous assumption would be that images of the same scene
taken on different wavelength bands would share a common geometric information. Indeed, this assumption



was experimentally studied in [12]. The experiments were done on images of four spectral channels corre-
sponding to the blue, green, red and near infrarred regions. Two channels were compared by means of their
topographic maps. Two types of comparison were proposed: by means of the unit normal vector field of the
topographic map, and by means of pieces of its level lines [12]. With both comparison procedures the conclu-
sion was the same, the channels which are in the visible region share a large portion of its topographic map,
this amount decreases, but it is still large for the near infrared channel. For the red and near infrared images, it
was also showed that, after constrast inversion, there is still a portion of the topographic map which is common
to the topographic map of the blue channel [12]. This was explained in terms of the vegetation, which become
apparent in the red and near infrared channels by contrast inversion [12]. The methods used were robust under
illumination changes and geometric transformations, in particular, under changes of scale [12].

1.4 Conclusion

Thus, based on the above arguments, we shall adopt the hypothesis that for satellite multispectratdmages,
a large extent, the geometry of the spectral channels is contained in the topographic map of its panchromatic
image.

This assumption, together with (1) and (2), is the basis of our variational approach to the problem described
above: increase the resolution of satellite multispectral images when we know the corresponding panchromatic
image at higher resolution.

Let us explain the plan of the report. Section 2 is devoted to recall some basic facts about functions of
bounded variation. Section 3 is devoted to describe the energy functional of our variational model. Section 4 is
devoted to the description of the algorithm and the numerical experiments. We end up in Section 5 with some
conclusions. Finally, in Section 6 we briefly comment on the mathematical justification of the problem.

2 Function spaces

This section contains some mathematical definitions that are needed for a proper definition of the energy func-
tionals below. It may be skipped, since the main notations will be recalled in a simpler way in Section 3.

Let us first recall the definition aBV functions and total variation. L&} be an open set ilR2. A function
u € LY(Q) whose partial derivatives in the sense of distributions are measures with finite total variation in
Q is called a function of bounded variation. The class of such functions will be denotéi/§y)). Thus
u € BV(Q) if and only if there are Radon measuyes p» defined in@ with finite total mass ir) and

/ uDjpdr = — / edp 3)
Q Q

forall ¢ € C3°(Q), i = 1,2. Thus, the gradient af, denoted byVw, is a vector valued measure with finite
total variation

| Vull=sup{ [ wdivpds: o€ CFQUIR), [o(a)| < Lfora € Q) (4)
Q

If Vu is an integrable function, then

| Vu = /Q V. (5)



In any case, itz € BV (Q) we shall always write
| Vu ||= fQ |Vu|. The spaceBV (Q) is endowed with the norm

lullv=I vl g + I Vull. (6)

Let H' denote the one-dimensional Hausdorff measuiB(a measure of length). We say that a measurable
setE C @ hasfinite perimeteiin Q if its indicator functionyr € BV (Q). If u € BV (Q) almost all its level
setsfu > A\ = {z € Q : u(x) > A} are sets of finite perimeter. For sets of finite perimétesne can define
the essential boundady E, which is rectifable with finite/' measure, and compute the normal to the level
set atH'! almost all points ob*E. Thus at almost all points of almost all level setsuwof BV (Q) we may
define a normal vectdt(z). This vector field of normal8 can be also defined (hence extended t6alas the
Radon-Nikodym derivative of the measwe: with respect tdVu|, i.e., it formally satisfied - Vu = |Vu|
and, also|d| < 1 a.e.. We shall refer to the vector fieldas the vector field of unit normals to the topographic
map ofu. For further information concerning functions of bounded variation we refer to [3, 10, 18].

3 The energy functional: continuous an discrete description

We shall first describe the energy functional in a continuous framework and then describe it at the discrete level.

3.1 The continuous formulation

To fix ideas, we assume that the multispectral image is given by a fun¢tioh— IR* where(Q is a rectangle
of IR?, say|0, 1]2. We shall denote the coordinatesibby (X1, X2, X3, X4) and call them the red, green, blue
and near infrared channels, even if they could be different spectral chaimtigled in our experiments below
they will represent the red, green, blue, and near infrared channels The extension to any set of spectral
channels will be immediate. As above, we denote:lilge intensity image corresponding@o

Assume that we are given the imagen €2 and that we know the values afon a sampling gridd C 2
whose points will be called the low resolution pixels. Let us denoteébyhe known values ofi on S, in
coordinatesyi® = (X7, X5, X5, X7). Recall that the low resolution pixel is formed from the high resolution
pixel by a low pass filtering followed by subsampling. For each spectral chafneh € {1,2,3,4}, letk,
be the impulse response of this filter. Our purpose will be to reconsirfiom the data: and@®. According
to the discussion of Section 1, we should impose the following two relations

u(z) = a1 X () + aeXo(x) + asXs(z) + ay Xy (x) @)

wherea, as, as, aq > 0, a1 + as + az + a4 = 1, are the coefficients which give the intensity image in terms
of the spectral channels, and

X2(i,7) = kn % Xn(i,§), ¥(i,j) €8, n=1,2,3,4 )

which correspond to (1), and (2), respectively. To give a sense to the relations in (8), we need to assume that
it is possible to evaluatk, * X,, at any point ofS. For that, beingd: any of the kernel&, k-, k3, k4, we shall
assume that

(H) k is the kernel of a convolution operator mappib§(Q2) into C(Q).



Under assumptiofH ), for any point(i, j) € €, the map which to any € L?(Q2) associates the value
ke 106.9) = | K(.d) = (w0 e.0) dody

is a linear functional in.?(2) and relations (8) have a sense.

The problem of recoveringX;, Xo, X3, X4) from v and (X7, X5, X5, X7) is ill-posed. Indeed, condi-
tions (7) and (8) do not determine uniquely the ve¢tdy, X2, X3, X4), and the problem involves the inversion
of a convolution equation. Typically one is led to a regularization method. The geometric requirement that the
geometry of the imageX, X5, X3, X4 is given by the geometry of the intensitywill give the required
regularization.

Constraining the geometry of the spectral channelsWe shall assume that the intensity imagis a function
of bounded variation, i.ey € BV (2). SinceQ2 C IR2, we have in particular that € L?(€2). As we recalled
in Section 2, there is a vector fief: 2 — IR? with |#| < 1 such that

0-Vu=|Vu|
as measures ifl. Moreover
0] =1 |Vu| a.e..

The vector fieldd represents the vector field of unit normals to the level sets.ofn practice, at the dis-
crete level,# can be defined by the relatidz, y) = é:ﬁg:z;' whenVu(z,y) # 0, andf(z,y) = 0 when
Vu(z,y) = 0.

Given the vector field of unit normals to the level sets of and assuming that, X, X3, X4 € BV ()
we shall require that

|VXTL| =0-VX,, n=123/4. 9)

The same relationship can be imposed in a slightly different way that will have important consequences mainly
computational (since it will make the algorithm much faster) but also will permit to construct a functional which

is invariant under contrast inversion, a suitable property when considering the case of false color images (see
[12]). Sinced has the direction of the normal to the level linesipthe counterclockwise rotation of angt¢2,

denoted byd, represents the tangent vector to the level lines.dh this case, if the spectral channels share

the geometry of the panchromatic image, we have

0+ - VX,=0 n=1234 (10)

Obviously, the relations (9) (also relations (10)) cannot be exactly satisfied and we have to impose them in a
variational framework (together with the other constraints discussed at the introduction) by minimizing the sum
of integrals

4
n=1

In a similar way, the relations (10) can be imposed in a variational framework by minimizing the sum of
integrals

4
> m / 05 VXP (p=1,2), (12)
n=1 Q



In both cases, the constants 2, v3,v4 > 0 permit to control the relative weight assigned to each channel. In
practice, we do not privilege any channel to the other ones and we assign, = v3 = v4 = 1.

Let us write functional (11) in a convenient form for computational purposes. For that, we integrate by
parts the second term of each integral, and ug8ing = 0 on 9¢) (wherev is the outer unit normal t652), we
may write (11) in the form

4
Z%/(IVXanwe-Xn). (13)
n=1 Q

Imposing (7) and (8) in a variational framework. We impose the constraint (7) by minimizing the integral
term

/ (a1 X1 + aoXo + ag X3 + au Xy — u)? (14)
Q
We may impose (8) by minimizing the sums
> (ko Xn(iy§) = X5 (6, ) (15)
(i,5)es

for eachn = 1, 2, 3, 4. We may write the above relations in an integral form, and this will be useful in order to
write the Euler-Lagrange equations in a more compact form. We need some notation for thiat,Lie¢ the
Dirac’s delta at the pointi, j). Letlls =}, ;yc5 d(; ;) be the Dirac’s comb defined by the gisd Then, we
may write (15) in integral terms

/ s (k % Xa(w,y) — X5 (2, y))? dz dy (16)
Q

for eachn = 1,2, 3,4, whereX (x,y) denotes an arbitrary extension &f’ (i, j) as a continuous function
from S to 2. Since the integrand term above is multipliedIiby, the integral term (16) does not depend on the
particular extension ok>, n = 1,2, 3, 4.

We shall impose a further constraint ai, X», X3, X4. Indeed, foreach = 1,2, 3,4 let

Mn = 7Xn y . 17
fnax max < o (i,5) 17

Then, we shall impose that
0<X, <M, n=1,234. (18)

These constraints are useful for a mathematical justification of the algorithm.

The energy functional. Thus, we propose to compute the high resolution multispectral imsgeX,, X3, X4
by minimizing the energy functional:

4 4
€L p —u)?
;%/Q\a VX, +A/Q(;anxn )2+
4 (19)
n=1 Q

subjecttad < X,, < M,,,n=1,2,3,4,



whereX,, € BV (Q), v, \,u > 0, n = 1,2, 3,4 (in practice, all these parameters are taken equ#),tand
p = 1, or 2. For the purposes of comparison, let us also write a variant of (19) which is based on (13)

Z%/ IVX,|+divh-VX,) /Zan n—u)?

4 20)
D3 [ s (0 X 9) = X ?

subject to the same constraints as (19). Observe that the first integral of (20) could also be written in the form
(11). Experiments based on this functional have been reported in [4]. Finally, let us note that the first integral
in (20) was also used in [5] in the context of filling-in by joint interpolation of vector fields and gray levels, in
order to constrain the vector fiefland the image: to be related by - Vu = |Vu/, but, in this case, both

andwu where unknown.

In both functionals we take:, v», s, 74, A, ¢ > 0 (in practice, all these parameters are taken equd),to
andp = 1, or 2. In case we consider only the channéls = red, Xo = green, X3 = blue, both functionals
can be effectively used as we have shown [4]. In case that we also add the cRanaehear infrared, it
seems slightly better to use functional (19), or a variant of it which uses (10) for the near infrared channel and
(9) for the red, green, and blue channels. Notice that functional (19) is invariant under the éhangé, or,
in other words, it is invariant under contrast inversion. The main advantage of functional (19) is that the case
p = 2 gives Euler-Lagrange equations which are linear inthevariables and a steepest descent converges to
the minimum in a much faster way than (20). Indeed, for an image oRsizex 800 the execution time is of
63 seconds in a on a Pentium 1.8 GHz.

3.2 The discrete formulation
To proceed with the discrete numerical algorithm, we assume that the panchromaticunegg/en on
{0,1,...,N — 1} x {0,..., N — 1}. We replace the gradients in (20) by its discrete approximation: for any
scalar functionf we shall use the notation

VP =(Vaf,Vy ), VY f=(Vif, V), VT f=(V. V), VT f=(V.fV,])
where
Note that the dual operators ¥+, V©—, V—F, V=~ are, respectively, the operatats——, div—T,

divt~, div™*. We use the notatiof), 5 = |§a Z“| if VOu £ 0andf, s = 0if V4Pu =0, fora, g = +, —



For simplicity, we shall only describe the discrete formulation of (19) which can be written as

4 N-1
S D sl VXl )P+

n=1 Oé,ﬁ:-‘r,— 7'7]:0

N—-1 4
A" anXali ) — uli, )*+
i,j=0 n=1 (21)

subjecttad < X, < M,,n=1,2,3,4.

Observe that we have used simultaneously the four discretizations for the gradient, since using only one of
the approximations may produce some artifacts or asymmetries in the results.

4  Algorithm and numerical experiments

For simplicity, we shall only describe the algorithm used to minimize (21). Applying the gradient descent
method, to minimize (21) we iteratively actualize the solution using the equations

XET = XR o AU S div O (< 055, VROXE > 0L )

CM,,B:+,
(22)

—pAtkl « (g (kn x XE — X3)) — A AL, XE — ).

n=1

wheren = 1,2, 3,4, p > 0. The constraint thak,,, n = 1, 2, 3, 4, should remain in the range betwdeand an

upper value\f,, can be imposed after each iteration by truncation. To avoid a cumbersome expression we have
avoided to write in detail the terms involvirg,. In practice, it is very important to guarantee that the energy,
callit E.(XV, X7, XY, X7), decreases along the evolution, i.e., that

E(XTT X5 X5 XY < Bd(XT, X5, X5, XY). (23)

For that we have to control the time incremexit. Indeed, at each iteration, we only accéytif (23) holds.
We have the possibility to choog¥t so that the energy has the largest decreasing in the direction of the energy
gradient. IfVE.(X?, XF X%, X7) denotes the energy gradient which is given in the right-hand side of (22),
thenAt can be chosen as a solution of

min Be((X], X5, X, X7) — sVE(X}, X}, XJ, X7)). (24)

s>
In practice one observes that long term decreasing of the energy is favored not with the optimal chxice of
but with a constant choice of it, adapted so that at each iteration (23) holds.

4.1 Description of the data

To test our method we shall dispose of some reference multispectral satellite images, which have been furnished
to us by the CNES for this purpose. The data consists of a panchromaticirtiagg i, j € {0,..., N — 1}, at



resolution0.7 m/pixzel, and a set of multispectral images
@*® = (Ro8,Ga2g, Bag, IRag)

at resolutior2.8 m/pizxel, which represent the red, green, blue, and near infrared spectral channels. To test our
experiments, we also dispose of a reference image

@ = (Ryes(iy5), Gres(i,§), Brep(is3), IRves (i, 5)),  i,7 € {0,...; N — 1},

at resolutiorD.7 m/pizel.

Following the notation used above, we identify the multispectral channels as
X7 = Rog, X5 = Gag, X§ = Bag, Xi = IRy,

and, similarly, our unknown&X1, Xo, X3, X4) will represent the red, green, blue, and near infrared channels,
respectively.

In the experiments displayed in this paper, the panchromatic constraint (7) is
u=0.5X; + 0.5X>, (25)
in other words, the constants, are
a; =05, a =05, a3=0, ag4=0.

The impulse responség have also been provided to us by the CNES, and have a sitde>ofi1.
The range of values of the red, green, blue, and near infrared channels data is the ihtgreal

4.2 Numerical experiments

We display some experiments on a set of multispectral satellite images made of four channels. In the experi-
ments below we have tested an increase of resolution by a factoarmd we displayed our results in the case

of true color (where we display the red, green, and blue channels) and in case of false color (where we display
the red, green, and near infrared channels).

We iteratively minimize (21) using the gradient descent equations given in (22). We take as initialization
of (22) an image obtained by simple replicationidf by a factor4. Other initializations like a DCT zoom (of
factor 4), or a more sophisticated initialization obtained using the approach in [8] can also be taken, and could
be useful to speed up the algorithm. In our experiments we have checked that the results obtained are similar.

v and%??® constitute the basic data of the problem. We stress the fact that the unknowns are the four spectral
channelsX,,, n = 1,2, 3, 4, representing the red, green, blue, and near infrared channels. But, for purposes of
visualization, we shall first display the true color images (involving the RGB channels) and then the false color
images (involving the R,G,IR channels).

The reference image permits us to assess the quality of the reconstructed image. We shall compare the recon-
structed imagesX, Xo, X3, X4) = (R, G, B, IR) with the reference images,.r, G,cf, Bref, I Rrey) both

visually and by displaying some error measures. We shall compute the errors on the whole image and on certain
representative regions (see Figure 10) . Kedenote the region where the error is computed (the whole image

or a region of it). We shall use the maximum, tHeand¢? error measures, i.e.,



Figure 1: the true color reference ima@e,.s, Grcf, Bref)-

(i) The maximum error:

R(i ) — Rour(6.9)|.
(ﬁfae’%' (4,7) ef (3, 7)]

(i) The ¢! norm

1 . .
m Z ‘R(Zvj) - Rref(z’]”
(i,7)eX
where| X | denotes the number of pixels &f.
(iiiy The ¢2 norm
1 . Coa2) /2
(_ Z ‘R(Zu?) - Rref(zvj)P)
| X] <
(i,5)eX
with similar expressions for the other channels. We also display the histogram of errors, and we make explicit
some percentiles.

4.2.1 Display of true color results

Figure 1 displays the red, green, and blue channels of reference ifffdgee., (Ryef, Grefs Bref)-

Figure 2 displays the panchromatic imageand Figure 3 the RGB spectral chann@ g, G2 s, B2 g) of the
data at lower resolution?®. Both images have been furnished to us by the CNES.

Figure 5 displays théR, G, B) channels of the reconstructed image at the resolution of the panchromatic image
obtained using functional (21). Thg * X,, convolution has been computed in the Fourier domain. The result
has to be compared with the reference image, Figure 1. The RGB channels of the initialization of (22) has been
displayed in Figure 4.

Table 11 displays the errors between the reference image and the result, in particular the errors in the RGB
channels. Below the table, we display the corresponding histogram of errors.



Figure 2: The panchromatic image at resolutichm/pixel, denoted in the text by.

Figure 3:(Ras, Ga2.s, B2.g) spectral channels at resolutiors m/pixel, i.e., the RGB coordinates af 5.

4.2.2 Display of false color results

False color images are composed by red, green, and near infrared channels. Figure 6 dispiays,iig. s, IR, r)
channels of the reference image’. Figure 7 displays the spectral chann@s s, Go.5, I R2.g) at resolution
2.8 m/pizel.

Figure 9 displays théR, G, I R) channels of the reconstructed image at the resolution of the panchromatic
image obtained using functional (21). Th, G, I R) channels of the initialization are displayed in Figure 8.

Table 11 displays the errors between the reference image and the result, in particular the errors in the IR channel.
Below the table, we display the corresponding histogram of errors.

5 Conclusions

We have reported a variational model for increasing the resolution of satellite multispectral data knowing the
panchromatic image at higher resolution and the multispectral data at a lower resolution. The model incorpo-
rates the relations between the spectral channels and the panchromatic image (1) and the relation describing how
the low resolution pixel is formed from the high resolution pixel by a low pass filter followed by subsampling

(2). But the main feature of our model is the incorporation of the hypothesis that for satellite multispectral
images,to a large extent, the geometry of the spectral channels is contained in the topographic map of its



Figure 4. RGB channels of the initialization (obtained by replication by a fattaf the algorithm using
functional (19) withp = 2.

Figure 5: the RGB channels of the reconstructed image (at the resolution of the panchromatic image) obtained
using functional (19) withp = 2.

panchromatic image We have constructed two slightly different energy functionals (20) and (19) which in-
corporate the above three basic postulates. We have to note that functional (19) is invariant under contrast
inversion, i.e, under the changeinto —6¢. Contrast inversion seems to be important because of the presence
of the near infrared channel. Finally, we described our algorithm to minimize them and, for simplicity, we
displayed some experiments relative to functional (19) showing its capabilities in true color and false color.



Figure 6: the(R,c, Gref, I R,cs) channels of the reference imag@&/, which display the false color reference
image.

Figure 7:(R25, G2.s, I R g) spectral channels at resolutior8 m/pixel, i.e., theR, G, I R channels ofi%8.

The results with both functionals are comparable.

Finally, let us mention that the Euler-Lagrange equations of functional (19)pwvith2 are linear in the
variables and the gradient descent exhibits a fast convergence. The number of operations per pixel is 2700. The
time spent reconstructing an image of size 800x800 pixels on a Pentium 1.8 GHz is 63 seconds. In the cases
where functional (20) produces better results we could compute first the result with functional (18)with
and then do some iterations with functional (20) to improve the result.
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6 Appendix

Existence of solutions of the variational problems (19) and (20)L.et W!2(Q2) denote the space of functions
u € L*(Q) such thatVu € L%*(Q). Assume that : Q — TR? is such thatd(z)| < 1 a.e., and satisfies
div 6+ € L2(2). LetW (€2, 0) be the completion of’1-2(Q2) with respect to the norm

() = (/Q 0+ Vu|2>1/2 + (/Q |u|2)1/2.

We have the following result.



Figure 8: R, G, I R channels of the initialization (obtained by replication by a fadjoof the algorithm using
functional (19) withp = 2.

Figure 9: theR, G, IR channels of the reconstructed image (at the resolution of the panchromatic image)
obtained using functional (19) wiih= 2.

Theorem 1 If div 6+ € L?(Q2), then the functional (19) admits a minimumin(, #)2. Similarly, if div 6
L%(9), functional (20) admits a minimum BV (2)3.
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Figure 10: the regions where the statistics of Table 11 are computed.
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Figure 11: Errors corresponding to the experiment above.
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