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Abstract. In this paper, we propose an evolution equation for the ac-
tive contours in scale spaces. This evolution equation is based on the
Polyakov functional that has been first introduced in physics and has
been then used in image processing in [17] for image denoising. Our ac-
tive contours are hypersurfaces implicitly and intrinsically represented
by a level set function embedded in a scale space. The scale spaces used
in our approach are defined by a family of metric tensors given by the
general heat diffusion equation. The well-known scale spaces such as the
linear scale space, i.e. the Gaussian scale space, the Perona-Malik scale
space, the mean curvature scale space and the total variation scale space
can be used in this framework. A possible application of this technique
is in shape analysis. For example, our multiscale segmentation technique
can be coupled with the shape recognition and the shape registration
algorithms to improve their robustness and their performance.

1 Introduction and Motivation

This paper aims at introducing the scale parameter in the active contour formal-
ism [8, 3, 9] to define an object multiscale segmentation model. One of the main
motivations to develop such a technique is to deal with the shape of objects at
different scales of observation/resolution. Indeed, the works of Witkin [18] and
Koenderink [10] have shown that the shape of objects changes according to the
scale of observation used. At large scales, the global shape of the object can be
observed since smaller shape features are suppressed. And at lower scales, finer
characteristics appear in the shape of the object.
As a result, it appears natural to analyze a given image not only at one scale
but at several scales of observation simultaneously. This will improve the robust-
ness of classical image analysis techniques such as the shape recognition and the
shape registration methods. For instance, it could be interesting to merge our
multiscale segmentation algorithm with a multiscale shape model such as the
one developed by Pizer et al. in [14] to create a multiscale recognition method.
In [16], Schnabel and Arridge have proposed a method to extract the shape of
objects at different levels of scale. They have then used the extracted multiscale



shapes to localize and characterize shape changes at different levels of scale.
They have applied their model to segment 3-D brain magnetic resonance images
in order to quantify the structural deformations for patients having epilepsy.
However, they have not taken into account the interdependance between space
and scale in their segmentation model.
Any image can be observed at different scales thanks to a multi-resolution image
representation called scale space by Witkin in [18] (see also the pioneering work
of Iijima [7]). A scale space is a hierarchical decomposition of an image according
to the scale of observation. It can also be seen as a family of gradually smoother
versions of the original image.
The segmentation method we use in our work is the active contour model intro-
duced by Kass et al. in [8]. We want to use this segmentation model to extract
objects in scale spaces. For this purpose, we need to define an evolution equation
for active contours propagating in scale spaces. Two main questions arise when
we try to devise such an equation. How can the active contours be introduced
into scale spaces and which scale spaces can be used? An answer to the first
question is given by the Polyakov action that we will present in the next sec-
tion. For the second question, we will use the family of scale spaces proposed by
Eberly in [5] which includes the linear scale space, the Perona-Malik scale space,
the curvature scale spaces and the total variation scale space.

2 Polyakov Action

The Polyakov action has been introduced in image processing by Sochen et al.
in [17]. The Polyakov action is a functional that measures the weight of a map
X between the image manifold Σ and the embedding manifold M (see Figure
1). It is defined as follows:

Fig. 1. The manifold Σ embedded in M , reproduced from [17].

P (X,Σ,M) =

∫

dmσ g1/2gµν∂µXi∂νXjhij , (1)
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where m is the dimension of Σ, p the dimension of M , gµν and hij are the
metric tensors of manifolds Σ and M , gµν is the inverse metric of gµν , g is the
determinant of gµν , µ, ν = 1, ...,m, i, j = 1, ..., p, ∂µXi = ∂Xi/∂σµ. Moreover,
when identical indices appear one up and one down, they are summed over
according to the Einstein summation convention.
If the Polyakov functional is minimized w.r.t. an embedding coordinate X l, gµν

and hij being fixed, we get the following flow acting on X l:

∂tX
l = g−1/2∂µ(g1/2gµν∂νX l) + Γ l

jk∂µXj∂νXkgµν for 1 ≤ l ≤ p, (2)

where Γ l
jk is the Levi-Civita connection.

Sochen et al. have proved in [17] that different choices of the metric tensor gµν

in Equation (2) give the most well-known scale spaces: the linear scale space,
the scale space of Perona-Malik, the mean curvature scale space and the total
variation scale space. They have also proposed a new scale space to enhance
image quality. They have called it the Beltrami flow since they have used the
Beltrami operator which generalizes the Laplace operator in non-flat manifolds.

3 Active Contours in Scale Spaces

3.1 Active Contours in Euclidean Spaces

Following the first model of active contours proposed by Kass et al. in [8], Caselles
et al. in [3] and Kichenassamy et al. in [9] have proposed an energy functional
invariant w.r.t. the curve parametrization:

F gac(C) =

∮ L(C)

0

fds, (3)

where ds is the Euclidean element of length, L(C) is the length of the curve
C and f is an edge detecting function that vanishes at object boundaries. The
calculus of variations provides the Euler-Lagrange equation of the functional
F gac and the gradient descent method gives the flow that minimizes F gac:

∂tC = (κf − 〈∇f,N〉)N , (4)

where κ is the curvature and N the normal to the curve. Osher and Sethian have
introduced in [12] the implicit and intrinsic level set representation of contours
to efficiently solve the contour propogation problem and to deal with topological
changes. The equation (4) can be written in the level set form:

∂tφ =

(

κf + 〈∇f,
∇φ

|∇φ| 〉
)

|∇φ|, (5)

where φ is the level set function embedding the active contour C.
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3.2 Scale Spaces

In the previous section, the active contours have been defined in the Euclidean
space. We want to put them in scale spaces by changing the embedding Euclidean
manifold into the scale spaces. The question is which scale spaces will we use. In
paper [5], Eberly has studied the geometry of a large class of scale spaces and
he has defined for them the general metric tensor:

[hij ] = diag

(
1

c2
In,

1

c2ρ2

)

, (6)

where n is the spatial dimension, c and ρ are two functions that physically
correspond to the conductance and the density functions in the general model
of heat diffusion transfert.
Eberly has also defined in [5] the natural diffusion equation in any scale space as
follows: the left-hand side of the diffusion equation is given by one application
of the scale derivative and the right-hand side by two applications of the spatial
derivative. The natural diffusion equation in a scale space is therefore

∇ss
σ u =

(
∇ss

x1,...,xn

)2
u, (7)

where ∇ss
σ is the scale derivative operator and ∇ss

x1,...,xn
the spatial derivative

operator. These operators are determined using the tensor metric (6) and the
following differential geometry formulae:

∇ss
x1,...,xn

=






√
hx1x1∂x1

...√
hxnxn∂xn




 = c∇, (8)

∇ss
σ =

√
hσσ∂σ = cρ∂σ. (9)

Hence, the diffusion equation (7) is equal to

∂σu =
1

ρ
∇. (c∇u) , (10)

which corresponds to the general heat diffusion equation with the conductance
function c and the density function ρ. The choice of the functions c and ρ deter-
mines the scale space and the diffusion equation we use. For examples,






for c = σ, ρ = 1 uσ = σ∆u Linear Scale Space,
for c = exp(−α|∇u|2), ρ = 1 uσ = ∇.(c∇u) Perona-Malik Flow,

for c = ρ = 1
|∇u| uσ = ∇.

(
∇u
|∇u|

)

|∇u| Mean Curvature Flow,

for c = 1
|∇u| , ρ = 1 uσ = ∇.

(
∇u
|∇u|

)

Total Variation Flow,

Eberly has proved in [5] that the linear scale space is hyperbolic and translation,
rotation and scale invariant. The second scale space is given by the non-linear
anisotropic diffusion equation of Perona and Malik proposed in [13]. The third
one is the mean curvature flow introduced in the level set framework by Osher
and Sethian in [12] and the fourth scale space is produced by the total variation
flow defined by Rudin, Osher and Fatemi in [15].
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3.3 General Evolution Equation for Active Contours in Scale Spaces

In the context of the Polyakov action, we look for the map X, the tensor gµν of
the active contour manifold and the tensor hij of the embedding space that lead
to an evolution equation for active contours in the scale spaces. We choose the
map X as X : (x1, ..., xn, σ) → (x1, ..., xn, σ, φ), where φ is the level set function
representing the active contour. The metric tensor hij of the embedding space is
given by the Equation (6). The last choice concerns the tensor gµν of the active
contour manifold. We choose the induced metric tensor on Σ [17]:

gµν = ∂µXi∂νXjhij . (11)

This choice is motivated by the classical works concerning the active contours [3,
9, 4]. The Polyakov functional corresponding to the induced metric is the Euler
functional:

S(X) =

∫

dmσg1/2, (12)

which defines the (hyper-)aera of the (hyper-)surface Σ. The maps X that min-
imize S for any manifold Σ embedded in any manifold M are called harmonic
maps. Harmonic maps are the generalization of geodesics and minimal surfaces
(see [3, 9, 4]) to higher dimensional manifolds and for higher embedding mani-
folds.
The minimization of S w.r.t. the component X l gives the generalized mean cur-
vature flow, see [17], in any embedding manifold M defined by the metric hij :

∂tX
l = g−1/2∂µ(g1/2gµν∂νX l)

︸ ︷︷ ︸

(13.1)

+Γ l
jk∂µXj∂νXkgµν ≡ Hl = g−1/2Kl (13)

whose term (13.1) is the Laplace-Beltrami operator and H is the mean curvature
vector generalized to any manifold (M ,hij).

Proposition 1: As in [3, 9, 4], we introduce a weighting function f in the Euler
fonctional:

Sf (X) =

∫

dmσf(X)g1/2. (14)

The evolution equation minimizing this functional w.r.t. the l-th component of
X is [2]:

∂tX
l = fHl + ∂kfgµν∂µXk∂νX l − m

2
∂kfhkl. (15)

Application 1: The geodesic/geometric active contour evolving in the 2-D Eu-
clidean space proposed in [3, 9] can be recovered. Indeed, if we take X ≡ C and
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hij = δij , the evolution equation defined in Equation (15) becomes (up to a
constant) the well-known flow

∂tC = fκN − 1

2
〈∇f,N〉N . (16)

Application 2: The evolution equation of the level set function embedding the
active contour can also be revisited. If we choose X ≡ S : (x, y) → (x, y, φ(x, y)),
hij = δij , the energy is Ees =

∫
f
√

1 + |∇φ|2dxdy and the flow acting on the
level set component φ is:

∂tφ = fHes + g−1/2
es 〈∇f,∇φ〉 = g−1/2

es (fKes + 〈∇f,∇φ〉) = g−1/2
es Fes (17)

where ges = 1 + |∇φ|2 and Kes is the Euclidean mean curvature of the surface

X such that Kes =
(1+φ2

x)φyy−2φxφyφxy+(1+φ2

y)φxx

g
3/2

es

(see [17]). The equation of the

level set function φt = g
−1/2
es Fes implies that the surface S evolves according to

St = FesNS where NS = g
−1/2
es (−φx,−φy, 1). This means that the level sets of

φ move according to the equation:

Ct = PzSt = g−1/2
es |∇φ| Fes NC = r(φ) Fes NC (18)

=
(
fKesr(φ) − 〈∇f,NC〉r2(φ)

)
NC (19)

where Pz is a projector onto the plane normal to the φ-axis, NC = −∇φ/|∇φ|
is the unit normal to the level sets and r(φ) = g

−1/2
es |∇φ|. The equation (19) is

close to the evolution equation (4) up to the surface mean curvature Kes and
the function r. Function r can be interpretated as an indicator of the height

variation on the surface S (see [1]). Indeed, g
−1/2
es is the ratio between the area

of an infinitesimal surface in the domain (x, y) and the corresponding area on
the surface S. For flat surfaces, r is equal to 0 and it is close 1 near edges. Finally
the function r is constant a.e. when φ is a signed distance function.

We propose the following evolution equation for active contours in the scale
spaces.
Proposition 2: Given the induced metric tensor, Equation (11), the harmonic
map X defined by (x1, ..., xn, σ) → (x1, ..., xn, σ, φ) and the weighting function
f = f(x1, ..., xn, σ), the evolution equation of the (n+2)-th component of X, i.e.
the level set component φ, is equal, according to (15), to:

∂tφ = fHss + 〈∇?f,∇?φ〉(gµν), (20)

whose Hss = g−1/2Kss = Hn+2 is the (n+2)-th component of the mean curvature
vector (13) generalized to scale spaces, ∇? = (∇, ∂σ) and 〈., .〉(gµν) is the inner
product w.r.t. the metric gµν such that

〈V1, V2〉(gµν) = V t
1 (gµν)V2 = V1µgµνV2ν , (21)
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where g = 1 + |∇φ|2 + ρ2φ2
σ. The energy of the multiscale active contour is

computed according to Equation (14):

Ess =

∫

f
√

1 + |∇φ|2 + ρ2φ2
σ

∏

1≤i≤n

dxi

c

dσ

cρ
︸ ︷︷ ︸

(22.1)

, (22)

whose term (22.1) is the infinitesimal volume in the scale spaces defined by the
metric tensor (6).

The evolution equation of the level set function φ is:

∂tφ = g−1/2fKss + 〈∇?f,∇?φ〉(gµν) = g−1/2
es Fss, (23)

where ges = 1 + |∇?φ|2. Hence the surface S evolves according to St = FssNS

and the level sets of φ move according to:

Ct = PzSt =
(
fKssr2(φ, c, ρ) − 〈∇�f,NC〉r2

2(φ, c, ρ)
)
NC , (24)

with the operator ∇� = 1
c2ρ2 (∇f, ρ2∂σ), NC = −∇?φ/|∇?φ| and r2(φ, c, ρ) =

|∇?φ|/g1/2.

3.4 Application to the Linear Scale Space

The linear scale space is obtained when c = σ and ρ = 1. In this case, the energy
of the multiscale active contour is for n = 2:

Elss =

∫

f
√

1 + |∇φ|2 + ρ2φ2
σ

dxdydσ

σ3
, (25)

and the flow of φ (embedding the active contour) is:

∂tφ = fHlss +
1

g
〈∇?f,∇?φ〉lss, (26)

where g = 1
σ6 (1 + φ2

x + φ2
y + φ2

σ), 〈., .〉lss is the inner product in the linear scale

space defined by 〈V1, V2〉lss = 1
σ2 〈V1, V2〉 and Hlss is the mean curvature in the

linear scale space computed using Equation (13):

Hlss =
1

ges
φµνgµν

︸ ︷︷ ︸

(27.1)

− 2
φµ

σ
gµσ

︸ ︷︷ ︸

(27.2)

, (27)

where ges = 1 + φ2
x + φ2

y + φ2
σ and the components of gµν are:

gxx = 1
σ4 (1 + φ2

y + φ2
σ), gxy = − 1

σ4 φxφy,
gyy = 1

σ4 (1 + φ2
x + φ2

σ), gxσ = − 1
σ4 φxφσ,

gσσ = 1
σ4 (1 + φ2

x + φ2
y), gyσ = − 1

σ4 φyφσ.
(28)

Roughly speaking, the term (27.1) corresponds to the Euclidean part of the mean
curvature and the second term (27.2) to the Riemannian part.
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4 Multiscale Image Features

4.1 Multiscale Edges

In the previous section, we have defined a multiscale segmentation model which
can capture image features representing by the function f . There exists different
local multiscale image features but we will use the most common one, the norm
of the image gradient, which is equal to |∇ssf | = (c2f2

x1
+. . .+c2f2

xn
+c2ρ2f2

σ)1/2

in the scale spaces. After that, we will extract the ridges of |∇ssf |, the multiscale
gradient norm.
Ridges can be defined by different ways (see [6]). In our approach, we have used
the definition developed in Section 2.3 of [6]. In this case, Morse describes in [11]
ridges of a 2-D feature image f as points which have local maximum in f along
the direction of the greatest concavity of f . Thus, at a ridge point the direction
of greatest curvature of f is the cross-ridge direction and the value of f is greater
than the neighboring points on either side of it. This definition can be extended
to higher dimensions. Indeed, let us consider a function f in an n-D space and
let us denote λ1, . . . , λn with |λ1| ≤ . . . ≤ |λn| and e1, . . . , en the eigenvalues and
the corresponding eigenvectors of the n × n matrix of the second derivatives. A
point in an n-D space is an m-D ridge (m < n) in f if for all i < n − m,

{
λi < 0

ei · ∇f = 0
. (29)

In the case of the linear scale space with n = 2 spatial dimensions, the Hessian
matrix is different to the Euclidean one. Using the tensor metric hij defined
in Equation (6), with c = σ and ρ = 1, the Hessian matrix that includes the
interdependence of space and scale is given in [11] by:

∇2
lss =






σ2 ∂2f
∂x2 − σ ∂f

∂σ σ2 ∂2f
∂x∂y σ ∂2f

∂x∂σ + σ ∂f
∂x

σ2 ∂2f
∂x∂y σ2 ∂2f

∂y2 − σ ∂f
∂σ σ ∂2f

∂y∂σ + σ ∂f
∂y

σ ∂2f
∂x∂σ + σ ∂f

∂x σ ∂2f
∂y∂σ + σ ∂f

∂y σ2 ∂2f
∂σ2 + σ ∂f

∂σ




 . (30)

As an example, let us consider the fractal image proposed by Von Koch (see the
first row on Figure 2). The magnitude of the scale space gradient is |∇lssI(x, y, σ)| =
σ · (I2

x + I2
y + I2

σ)1/2 (see the second row on Figure 2). And the ridges of the mul-
tiscale gradient norm are given in the third row on Figure 2.

4.2 Gradient Vector Flow in Scale Spaces

The gradient vector flow (GVF) has been introduced by Xu and Prince in [19].
The GVF field is a non-irrotational force field, namely V, which can capture the
object boundaries far from them and can deal with concave boundary regions.
It is defined in a variational approach since the GVF field must minimize the
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Fig. 2. First row: the Von Koch picture at four different scales of observation. The
first image is the original image. Second row: the multiscale gradient of the Von Koch
picture. Third row: the ridges of the multiscale gradient. Fourth row: GVFs of the ridge
images.

following energy functional in the n-D Euclidean space:

F gvf (V) =

∫

µ

n∑

i=1

(|∇Vi|2)
︸ ︷︷ ︸

(31.1)

+ |∇f |2|V −∇f |2
︸ ︷︷ ︸

(31.2)

dΩ, (31)

where Vi is the i-th component of the GVF field and µ is a constant which
balances the contributions between the regularization term (31.1) and the data
fidelity term (31.2). The minimization of the energy functional (31) is done using
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the calculus of variations and the gradient descent method which provide n flows,
one per component of the GVF field.
In this section we propose to extend the GVF to the scale spaces defined by the
metric tensor (6). We realize this extension by simply changing the Euclidean
terms by their Riemann equivalents. Thus, we replace the Euclidean gradient ∇
by the scale space gradient ∇ss and the Euclidean infinitesimal volume element
dΩ by the scale space one dΩss, the energy (31) then becomes:

F gvf
ss (V) =

∫

µ

n∑

i=1

(|∇ssVi|2) + |∇ssf |2|V −∇ssf |2dΩss, (32)

The Frechet derivative of F gvf
ss w.r.t. Vi in the ξ direction is

〈∂F gvf
ss

∂Vi
, ξ〉 =

∫

ξ · [ −µ

(
n∑

i=1

∂xi
(c2∂xi

Vi) + ∂σ(c2ρ2∂σVi)

)

+ (33)

|∇ssf |2|Vi − (∇ssf)i|2 ]dΩss. (34)

Then, the flow minimizing F gvf
ss w.r.t. Vi is

∂tVi = µ

(
n∑

i=1

∂xi
(c2∂xi

Vi) + ∂σ(c2ρ2∂σVi)

)

− |∇ssf |2|Vi − (∇ssf)i|2. (35)

For the linear scale space and n = 2, the GVFs for i = x, y, σ are:

∂tVi(x, y, σ) = µ(σ2∆Vi + 2σ∂σVi) − σ2|∇f |2(Vi − σ∂if) (36)

Figure 2 (fourth row) presents the GVFs of the ridges images (third row).

5 Result

We have applied the evolution equation (26) in the linear scale space to segment
the Von Koch picture at different scales of observation. The Figure 3 presents
our multiscale snake evolving in the linear scale space at different times and the
Figure 4 shows the segmentation process at four different scales.

6 Conclusion

In this paper, we have introduced the scale parameter in the active contour
formalism by defining an evolution equation for the active contours in the scale
spaces based on the general heat diffusion equation. We have supposed that the
metric tensor gµν of the level set manifold is the induced metric tensor, i.e. the
case where the active contours are harmonic maps. We could consider another
choice for gµν such as a diagonal tensor (see [2]). Future works will be focused on
integrating this multiscale segmentation technique into shape analysis methods
such as the shape recognition and the shape registration methods to improve
their performance.
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Fig. 3. Active contour evolving in the linear scale space.
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