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Abstract

This paper addresses the question: how does the visual cortex extract local perspective information

from texture variations? Starting from a model of complex cells in visual area V1, we propose a

biologically plausible algorithm for frequency analysis applied to the shape from texture problem.

First, specific log-normal filters are designed in replacement of the classical Gabor filters because of

their theoretical properties and of their biological plausibility. These filters are separable in frequency

and orientation and they better sample the image spectrum which makes them appropriate for any

pattern analysis technique. A method to estimate the local frequency in the image, which discards

the need to choose the best local scale, is designed. Based on this frequency analysis model, a local

decomposition of the image into patches leads to the estimation of the local frequency variation which

is used to solve the problem of recovering the shape from the texture. From the analytical relation

between the local frequency and the geometrical parameters, under perspective projection, it is possible

to recover the orientation and the shape of the original image. The accuracy of the method is evaluated

and discussed on different kind of textures, both regular and irregular, with planar and curved surfaces

and also on natural scenes and psychophysical stimuli. It compares favorably to the best existing

methods, with in addition, a low computational cost. The biological plausibility of the model is finally

discussed.

keyword: Model of V1, frequency estimation, log-normal filters, shape from texture, biological model
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1 Introduction

Nowadays, the biological mechanisms of the low-level vision are rather well identified [1] [2]. First the

retina realizes a set of preprocessings which leads to the separation between shading and texture informa-

tion by an adaptative local equalization and a spectral whitening [3] [2]. Then the output is projected to

the primary visual area V1 where it is filtered by simple (in-phase and in quadrature) and complex (energy

dependent) cells. Complex cells are the most numerous cells in the visual cortex and their responses have

widely been modelized by Gabor filters responses with specific central frequencies and orientations [4]

[5] [6]. In area V1, the complex cells are organized according to micro-columns of similar frequency and

orientation and, approximately, divided into 6-7 central frequencies (on a log-scale) and 15-16 orientations

(between 0o and 180o) [7]. Micro-columns are organized in a pin-wheel fashion within a macro-column.

The surface of V1 is divided into several filters banks, each one being devoted to a visual field subregion

called receptive field. Briefly, V1 processing by complex cells can be viewed as a log-polar sampling of

the energy spectra of local patches by bandpass oriented filters over the whole visual field, after retinal

preprocessing (namely the retinal input image).

The projection of a real image on the retinal surface induces affine deformations to the pattern structure

(the texture) covering the viewed 3D surface. We will show how the visual cortex recover a 3D information

from the analysis of the texture deformations from the model described before and using only the local

energy spectrum.

Since the seminal work of Gibson [8], a significant number of studies have considered the use of the

texture gradients as important monocular cues to estimate the orientation and the shape of the surface

underlying the texture. Since then neurophysiological [9] [10] as well as psychophysical [11] [12] evidences

have been found in support of the process of texture gradients in the visual system. This problem is usually

reduced to the estimation of two projection parameters: the slant (inclination of the surface in depth) and

the tilt (direction of slant). Since the early 90’s the use of spectral analysis has led to several efficient shape
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from texture algorithms. In [13], [14], [15], [16], [17], [18] the texture deformation is measured using the

affine distortion of the pattern of spectral components (e.g. energy peaks, local moments, inertia). These

methods are accurate but need the presence of at least two distinct energy components in the spectrum

and so usually perform best in presence of at least two orientations in regular or weakly irregular texture.

Alternative techniques do not make any assumption on the spectral components. In [19], [20],[21],

[22] the proposed methods are based on the local estimation of the spatial scale using different kind of

filters (e.g. gaussian derivatives, wavelets). They are based on the choice of the best local scale, explicitly

assuming that there is only one at the local spatial position considered, which is not always true in specific

cases of multiple, occluded or transparent textures [23]. In order to handle more or less the irregularities

of the texture, all these methods require heavy computation such as parabolic approximation or variance

minimization techniques to finally recover the geometrical parameters of surfaces (usually planar).

In [24], the local migration of wavelets coefficients is related to the local shape parameters. In order to

obtain results on irregular textures, the problem is treated as the recovery of a stationary process which

imposes a strong constraint on the coefficients variations. However due to ergodicity hypothesis, each

wavelet is taken at a central frequency in a relatively high spatial frequency and so does not take explicitly

advantage of the whole set of available frequencies.

Finally none of these techniques make a systematic comparison with the biological visual processing,

excepted for Sakai and Finkel work [16] which developed a model able to handle both frequency peak

variations as well as mean frequency variations, misleading moment based methods.

In the present work, we present a model of frequency analysis by the visual cortex and applied to the

shape from texture problem. It is based on the local decomposition of an homogeneous texture using

local patches (similarly to the macro columns organization). The spectral analysis of the patches in a

local neighborhood ensures the independence of the spatial frequency with small translations all over the

surface as well as some smoothing of the local texture characteristics. Section 3 presents a new model

of cortical filters used to realize the sampling of the spectrum. They are based on log-normal filters and

appear theoretically to be more suitable than the classical Gabor filters, and biologically more plausible.
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These filters are separable in frequency and orientation. This property makes them very appropriate

to independently handle changes in frequency or in orientation, corresponding to a zoom or a rotation

transformation, and so to local affine transformations within the different patches. Their expression on

a log-scale frequency also induces a better coverage of the spectrum than with the use of Gabor filters.

Based on the use of these new filters a method, derived from Knutsson et al technique [25], is introduced

to estimate the local frequency in the considered patch (section 4). It prevents from the need to choose the

best local scale and takes advantage of the whole set of available local frequencies. An accurate estimation

is obtained by the modification of the relative frequency bandwidth, giving an empirical explanation of the

cortical cells organization. Section 5 presents the projective model and the analytical relations between

the local frequency and the geometrical parameters of the viewed surface. It discusses the approach by

local decomposition into patches and proposes an algorithm to recover the orientation and the shape of the

original image. Section 6 presents estimation results obtained on different kinds of textures, both regular

and irregular, with planar and curved surfaces and also on natural scenes. They are compared to other

existing techniques. Last section finally discusses the biological plausibility of the algorithm.

2 Retinal preprocessing

The analysis of textures corresponding to subregions of natural scenes leads to two problems: spatially

variable illumination conditions and characteristic 1/f2 amplitude spectrum slope of images corresponding

to an over-presence of energy in low frequencies [26].

To avoid these problems we introduce a special preprocessing stage based on the model of the human

retina [3][27][28]. The retina represents the first set of filtering processes which transforms and prepares

the visual input information to be analyzed by higher cortical areas such as V1. The overall effect of this

filtering is the removal of shading variations and the enhancement of texture information.

The retina processes the spatial variation of illumination by a non-linear adaptation (see figure 1). In

this adaptation, the gain of each photoreceptors is modulated according to the mean illumination of its

neighborhood. It is realized by a compression process y =
x

x + x0
, x0 being proportional to the smoothed
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neighborhood (Michaelis-Menten compression law). This compressed input is then low-pass filtered. The

compressed input and its low-passed filtered version are then combined into a positive and a negative

difference which leads to two components (the ON and OFF cells). These two components are then

subtracted leading to the final filtered output. The main filter transfer function corresponds to a global

high-pass filter applied to the local luminance equalization, realizing a spectral whitening of the 1/f2

amplitude spectrum.

As explained in [3] this filter can be considered as a good approximation of the spatial and static filtering

realized by the retina and of the X parvo cellular pathway.

Input Output

Contrast 
enhancementLow-pass

filteringLuminance
compression +

+

-

-
+

-

ON

OFF

LP

Figure 1: Retinal filter steps: luminance compression of the input image; low-pass filtering and combination
with the compressed input; second compression leading to contrast enhancement; final output where the
shading information has been removed and the texture information, enhanced.

Figure 2: Left: Image of a sunflower field; right: same image after retinal preprocessing
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3 Spectral sampling using Log-Normal filters

Different kind of filters are commonly used in pattern recognition technique, especially Gabor filters which

present the advantages to be localized in space and frequency and so to be easily tuned to a specific

frequency and orientation. However they have the drawbacks not to be separable filter and to have

a continuous component. In this paper specific filters, derived from the log-normal distribution, are

introduced and a method to extract the local frequency is presented.

3.1 How to choose appropriate filters

Spectral filtering (or equivalently spatial filtering) is a technique commonly used in a great number of

pattern analysis problem (e.g. object recognition, face recognition, texture analysis). Facing the large

number of plausible filters [6], we have to choose the most appropriate one for the specific application. A

possible good starting point is to get inspiration from the visual cortex processing. As described before,

it is organized in columns of orientations and frequencies, leading to the sampling of the local spatial

spectrum within a given receptive field. In order to reproduce this decomposition of the image into local

patches, the chosen model of filters has to share the Gabor property of being localized both in space and

frequency (e.g.inside a defined spatial region). The use of the energy spectrum associated to the local patch

leads to be insensitive to local spatial translations and so to the local phase and, at the same time, to keep

the local the second order statistics. Another advantage is the local smoothing of these statistics leading

to a more robust estimation. Gabor filters can also be easily tuned in frequency and orientation leading

to a polar sampling of the spectrum. However they are not completely satisfying as models of complex

cells responses (see [6]). They also present some drawbacks like not to be separable filters in orientation

and frequency. A frequency modulation in the patch corresponds to a change of zoom factor. Similarly

a change in orientation in the spectrum corresponds to a rotation of the pattern. These two geometrical

transformations represent two free independent variables that have to be taken into account once studying

visual scenes in order to obtain a robust analysis. Instead of the classical Gabor filters, other kind of

filters have been developed notably by Field (log-gabor filters) [29] and Knutsson et al (log-normal filters)
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[25] and have been successfully employed in pattern recognition techniques. In this paper we propose new

filters which are a specific version of the log-normal filters, better adapted to affine transformations such

as zoom and rotation.

3.2 Log-Normal filters

In this section we present new filters specifically designed for zoom and rotation transformations. They

are derived from the log-normal function:

|Gi,j(f, θ)|2 = |Gi(f).Gj(θ)|2 = A
1

f2
exp

„
−1

2

„
ln(f/fi)

σr

«2«
.cos2n(

θ − θj

2
) (1)

where Gi,j is the transfer function of the filter, Gi(f) and Gj(θ) respectively represent the frequency

(radial) and the orientation (tangential) components of the filter, their shape are gaussian in log-frequency

and in orientation. fi is the central frequency, θj , the central orientation, σr , the frequency bandwidth,.

n controls the orientation bandwidth similarly to a gaussian shape. A is a normalization factor such as

||Gi,j(f, θ)||2 = 1 (A =
22n

2πCn
2n

1

σr

√
2π

).

These log-normal filters share the same properties of the Gabor filters: spatial localization; tuned

around a central frequency and a central orientation. In addition they are designed so as to be separable

in frequency and orientation (equation 1). The radial component Gi(f) represents the log-normal function

applied to frequency. The orientation component Gj(θ) is a cosine wave ensuring a 2π-periodic orientation

bandwidth and a finite support (null value at the angular limits of the filter). It approximates a gaussian

shape with an accuracy better than 0.1%.

Figure 3 presents a comparison between the Gabor and the log-normal filters which are represented in

3D, cartesian and log-polar coordinates. In cartesian representation the log-normal filter is asymmetrical

and this property increases with low central frequencies. Associated to the fact that the filter gain is null

at f = 0 whatever the bandwidth, the log-normal filter is well defined even at very low central frequencies

(Equation 3.2 imposes a null continuous component). This is not the case with Gabor filters which can

lead to spurious responses in very low frequencies, hence prohibiting the robust analysis of low frequency

components.
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Figure 3: Comparison between Gabor filters (first row) and log-normal filters (second row); left: 3D
representation; middle: filters and contours representing 50% and 90% of maximum energy in cartesian
coordinates; right: same filters but represented in log-polar coordinates.

One can also observe that in both cartesian and log-polar representations log-normal filters are well adapted

to a log-polar sampling of the spectrum. In log-polar coordinates log-normal filters become symmetric (with

a gaussian profile) and lead to a better coverage of the spectrum than the Gabor filters which become

asymmetric.
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Figure 4: First column: comparison between Gabor (top row) and log-normal (bottom row) filters pro-
files; second column: log-normal frequency profiles with 1/f amplitude factor (top row) and log-normal
orientation profiles (bottom row); the filters coverage is represented by their sum which follows a 1/f law
on amplitude and is constant on orientation.

Figure 4 presents the different profiles of a bank of Gabor filters and of a bank of log-normal filters.

For this latter the profiles are plotted with and without the 1/f2 amplitude factor so as to observe
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the asymmetry in low frequencies. In addition, here we indicate two other specific properties of this

implementation of the log-normal filters (not directly exploited in this paper).

As described before, a frequency modulation can be induced by a zoom transformation of the image

and can be written as i(x, y) → i(αx, αy) which gives in the Fourier domain S(f, θ) → 1
α4

S(
f

α
, θ) where

α is the zoom factor and S the power spectrum of the image. In the following section, the developped

method is free from this 1/α4 coefficient.

If we express the response of the filter Ci,j on a log-polar scale with v = ln(f) we get:

Cij = A

Z 2π

θ=0

G2
θ(θ − θj)

Z +∞

v=−∞

1

α4
S(ev, θ)exp

„
−1

2

„
v − vi)

σr

«2«
dvdθ (2)

with v = ln(f). It has to be noted that the 1/f2 term cancels through the change of variable.

Applying equation 2 on S(
f

α
, θ) with vm = v + ln(α) we get:

Cij(α) = A

Z 2π

θ=0

G2
θ(θ − θj)

Z +∞

vm=−∞

1

α4
S(evm , θ)exp

„
−1

2

„
vm − (vi − ln(α))

σr

«2«
dvmdθ (3)

So a zoom transformation of the image can be perfectly tracked by the change in the filter response

thanks to the presence of the 1/f2 term and to the logarithmic frequency scale. In the case of Gabor filter,

the response to a frequency modulation is still dependent of an extra frequency factor and so does not

give a direct access to the zoom transformation. This property is not possible with Gabor, Log-Gabor or

Knutsson’s version of log-normal filters.

Figure 4 finally shows the good coverage on orientations of the filters with a constant sum of the different

profiles. Similarly to the frequency variable, the expression of a rotation of the image leads to a perfect

tracking of the transformation by the migration of the log-normal coefficients. A rotation of angle β only

induces a modification in the orientation component of the filter:

Cij(α, β) = A

Z 2π

θ=0

G2
θ(θ − (θj − β))

Z +∞

v′=−∞

1

α4
S(ev′

, θ)exp

„
−1

2

„
v′ − (vi − ln(α))

σr

«2«
dv′dθ (4)
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To sample the half symmetric power spectrum, we design a log-normal filters bank with constant relative

frequency and orientation bandwidths (see section 4.1 for more details). On figure 5 right, it is possible

to check that this design leads to a good coverage of the spectrum in cartesian coordinates and to a more

regular sampling in log-polar coordinates than a corresponding Gabor filter bank with similar bandwidth.
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0.4
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−0.2

Figure 5: Comparison between Gabor filters (first row) and log-normal filters (second row); left: contours
representing 50% and 90% of maximum energy;middle: bank of filters of the whole power spectrum in
cartesian coordinates; right: bank of filters (50% and 90% of maximum energy) in log-polar coordinates.

Finally the log-normal filters present other algebraic properties that make them very suitable for image

processing: the transfer function is C∞; the real and imaginary parts are in quadrature; the function is

self-similar and can be used as a mother wavelet.

According to [6], all the presented characteristics of the log-normal filters are shared with the cortical

complex cells properties. The log-normal filters can then be considered as a good approximation of their

spatial responses.

4 Local frequency estimation

In this section we will take advantage of the separability property of the log-normal filter so as to estimate

the local frequency of the image. Let’s take the response of the ith log-normal filter i:
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G2
i (f) =

1

f2
exp

„
−1

2

„
ln(f/fi)

σr

«2«
(5)

Similarly to Knutsson et al in [25], the ratio of two adjacent filters responses is expressed by:

G2
i+1(f)

G2
i (f)

= exp

„
− 1

2σ2
r

[(ln(f/fi+1)
2 − (ln(f/fi))

2]

«
(6)

=

„
f/

p
fifi+1

« ln(fi+1/fi)

σ2
r (7)

If σ2
r = ln(fi+1/fi), we finally get a simple relation between the filters responses:

G2
i+1(f) =

f√
fifi+1

G2
i (f) (8)

Now, in order to extract a scale information independently of the local orientations, we consider fre-

quency band tuned filters which result from the summation over all orientations j of the filters response

tuned to the same frequency i on the image spectra S(f, θ):

Ci =

Z
f

G2
i (f)

Z
θ

S(f, θ)
X

j

G2
j (θ)fdfdθ (9)

The ratio of the responses of two adjacent frequency band filters Ci+1 and Ci gives:

Ci+1

Ci
=

1√
fifi+1

< f >i (10)

where < f >i represents the narrow band local mean frequency estimated at the ith frequency band.

Equation 10 shows it can simply be extracted by the ratio of two adjacent filters given their two central

frequenciesfi and fi+1. This ratio allows also to be independent of the 1/α4 coefficient appearing in a

zoom transform of the image (see section 3.2).
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Finally summing over all the local estimations at different frequency bands i of mean frequency < f >i

we obtain the overall wide-band mean frequency < f >:

< f >=
X

i

CiP
i Ci

< f >i (11)

The final estimation < f > of equation 11 is based on the summation over the whole range of available

central frequencies. In this way it leads to an estimation that may be more robust with respect to noise.

The response Ci in equation 9 are chosen as the weighting coefficients. This choice is appropriate because

they reflect the presence of the frequency < f >i in the image observed around the central frequency fi,

e.g it corresponds to the extraction of a frequency component of the signal (see [25]).

Contrary to [20] and [24], this approach does not require any restriction to one best local scale (i.e

central frequency). The final estimation, using equation 11, is performed under the assumption that there

is only one local frequency to estimate. In other cases, equation 10 may be used to estimate the different

mean frequencies that can appear in the image at different central frequencies (e.g. case of transparency

or occlusion) [23]. Finally a very simplified model of cells combination for frequency extraction is obtained

which takes advantage of the whole range of available frequencies.

4.1 Non-constant relative frequency bandwidth

In order to evaluate the precision of our method we applied it on gratings where the local frequency was

perfectly known (figure 6 left). These gratings have a linear increase in frequency and the whole set of

gratings covers the frequency space from 0 to 0.33.

The final curves (figure 6 right) are obtained after curve fitting (simplex method) on all the estimations

performed along different spatial positions on the image grating. Each local frequency estimation is

performed inside a sliding window (2D patch) with a specific size (96X96 pixels). The dash curve represents

the estimation curve obtained with the bank of log-normal filters described in section 3.2. It can be observed

that the estimation is good in low frequencies but tends quickly to an asymptotic value.

One characteristic of the log-normal filters is that their relative frequency bandwidth does not depend on
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Figure 6: Estimation of the local frequency on a set of gratings; left: projected grating with the 1D
signal representing the corresponding modulated signal; right: straight line: real mean frequency of the
grating; dash curve: estimated mean frequency with constant relative bandwidth of the filters; solid curve:
estimated mean frequency with linearly decreasing relative bandwidth of the filters.

their central frequency f0. Indeed the mean frequency of one filter is uf = eσ2
r/2f0 (first order moment) and

its bandwidth is ∆f =
√

(eσ2
r − 1)eσ2

r/2f0 (second order moment). Hence the relative frequency bandwidth

is given by ∆f/uf =
√

(eσ2
r − 1) which only depends on the width of the gaussian σr. Here, equation 8

imposes σr to be equal to ln(fi+1/fi) in order to keep their ratio constant and equal to 1. Then the filters

of the first bank described in section 3.2 were defined with a constant relative frequency bandwidth equal

to 1.4 (with fi+1/fi = 1.5).

If we relax this constraint, the analysis of equation 8 shows that a decrease of the ratio counterbalances

for the quick saturation of the estimation precision for high frequencies. In this case this ratio becomes

slightly superior to 1 but allows to keep equation 9 as a valid approximation of the local mean frequency.

We found that for a linear decrease of σr with a coefficient equal to 2, the method yields to a very accurate

estimation of local frequencies (solid curve on figure 6 right) over the whole range of available frequencies

(from minimum central frequency fmin = 0.02, to maximum central frequency fmax = 0.25 of our bank of

filters). Figure 7 right presents estimations realized with different size of patches (128X128, 96X96, 64X64

and 3X32 pixels) and it can be observed that the accuracy remain closely the same.

This non-constant relative frequency bandwidth has been observed in the cortical cells. Data collected

in the human cortex (figure 7 left from [30]) and in the macaque cortex [2] clearly shows that the relative

bandwidth of the cortical filters of V1 is not constant but decreases linearly with the central frequencies.
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Figure 7: Left: the modified bank of log-normal filters with a non-constant relative frequency bandwidth;
right: data from [30] collected from human cortex and presenting a linear decrease of the frequency
bandwidth.

Hence the presented model of V1 analysis and extraction of the local frequency suggests an empirical

justification of the particular configuration of the cortical cells, a phenomenon never explained up to now.

The obtained bank of log-normal filters appears to be a very close approximation of the complex cells

organization and at the same time leads to very accurate local frequency estimations.

4.2 Local analysis of the amplitude information

In order to estimate the local frequency over the whole surface, a decomposition into patches is realized

(figure 8). A hamming window is also applied on each patch so as to remove the border effect in the Fourier

transform. Defining the optimal constant size of the patches to study the local properties of a texture is

still an open problem. In our case, 64X64 or 96X96 pixels wide patches are found to appropriately capture

the statistical properties of 256X256 pixels wide images. The spatial accuracy can be adapted varying the

shift between patches. Generally we choose a shift of 8 or 4 pixels corresponding to a decomposition of

the image into 21X21 or 42X42 patches.

This local decomposition into patches can be viewed as a model of the sampling operated by each cortical

cells where the covered spatial region is called the receptive field of the cell [2]. The local mean frequency

extraction described previously is performed on the amplitude spectrum of the local patch. Hence through

this decomposition, it is possible to recover the information on spatial location without the use of any

phase information.
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Figure 8: Different steps of the pretreatment: initial image of a sunflowers field; retinal preprocessing of
the image; local decomposition into patches of the whole image similarly to cortical cells analysis.

4.3 Cortical normalization

The frequency band tuned filters, corresponding to the Ci coefficients in equation 10 and 11, are obtained

after the summation over all the filters tuned to the same central frequency and tuned to different central

orientation. In order to compensate local irregularities in the texture, a local normalization is applied.

More precisely from one spatial location to another, variations in energy may occur due to local texture

non stationnarities (i.e size, position or density of the texture patterns). So as to reduce these variations

the filters tuned to the same orientation are normalized according to the sum of their responses over all

the central frequencies. Filter response G2
i can be rewritten as follow:

G2
i,norm(fk, θk) =

G2
i (fk, θk)P

j G2
j (fk, θk) + ε

(12)

Constant ε avoids the enhancement of the responses in case of global low energy responses for the

considered orientation band. Introducing G2
i,norm instead of G2

i leaves equation 10 and 11 unchanged.

This normalization enhances the presence of characteristic spectral components at the different orienta-

tions. Such cortical normalization processes have been severally reported and different models have been

proposed [31]. This computation of frequency band tuned filters may represent a simple way to separate

the frequency from the orientation information directly in cortical area V1. The frequency variations can

be analyzed independently to the orientation variations. This has to be related with the work of Li and
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zaidi [11] which advocate for the existence of two separate mechanisms involved in the analysis of the

frequency and the orientation for 3D shape perception.

5 Local surface representation and final shape recovery

This section describes how to recover the geometrical parameters (tilt and slant angles) information from

spatial frequency variation. Different strategies have been adopted which could be applied to our frequency

extraction method. In [16] and [17], the method consists in following paths of maximum frequency varia-

tions starting from a reference point supposed to be frontoparallel; however such a point does not always

exist, for example in the case of planar surfaces. In [19] the method is based on an exhaustive research of

tilt and slant angles and on the minimization of the parameters deviation in a backprojected version of the

surface. This method depends on the discretization of the parameters in the research step and requires

repetitive computation. In [21] and [22] methods are based on robust curve fitting of the local scales. The

tilt and slant angles can be directly extracted from the obtained parabolic curve.

Here we present another method to recover the geometrical parameters of the surfaces. First different

geometrical relationships are established: the relationship between the surface (viewed) local frequency

and the image local frequency under perspective projection and the expressions of the tilt and slant angles.

Secondly, the estimation of the orientation of local subregions made of several local patches is performed

and allows to solve the shape from texture problem without intensive computation.

5.1 Geometrical relationships

Figure 9 presents the coordinate system of the perspective model of a plane surface. (xw , yw, zw) represents

the world coordinates, (xs, ys), the surface coordinates and (xi, yi), the image coordinates. The zw axis

corresponds to the intersection between the center of projection, the origin of the image coordinates and

the origin of the surface coordinates. d (resp. zw0) is the coordinate of the image (resp. the surface) on

the zw axis. Let’s dzw0 be the distance between the image and the surface. τ represents the tilt which is

the angle between xi and the projection of the normal zs on the image plane. σ is the slant which is the
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angle between axis zw and the normal of the surface at zw0 and its values fall between 0 and π/2

Ys

Xs

n

Xi

Yi
Surface

Im
age

Zw0Zw

Xw

Yw

τ
σ

Figure 9: Model of perspective projection

The relationship between the coordinates (xs,ys) of the surface and the coordinates (xi,yi) of the image

under perspective projection can be expressed as (see [19]):

2
664

xs

ys

3
775 =

2
664

cos(σ) 0

0 1

3
775

2
664

cos(τ ) sin(τ )

−sin(τ ) cos(τ )

3
775

ai

2
664

xi

yi

3
775 =

A

ai

2
664

xi

yi

3
775 (13)

where ai =
−sin(σ)sin(τ )xi + cos(τ )sin(σ)yi + dcos(σ)

d + dzw0
which can be seen as a zoom factor depending on

the spatial position (xi, yi).

Let’s take a spatial region Li centered on the position xi, the corresponding local Fourier transform ILi

is expressed by:

ILi(fi, xi) =
∫
u

ii(u)wi(u − xi)e−j2π(u−xi)
tfidu (14)

where ii is the image and wi, a spatial window in this image. Let’s take an equivalent spatial window ws

in the surface is, assuming that v = T−1u and xs = T−1xi, regions of the image and of the surface are

linked by: is(v)ws(v − xs) = ii(u)wi(u − xi).
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Using the inverse Fourier transform associated to is(v)ws(v − xs) defined in equation 14, we obtain:

ILi(fi, xi) =
∫
u

(∫
fs

ILs(fs)ej2π(v−xs)tfs

)
e−j2π(u−xi)

tfidudfs (15)

=
∫
fs

ILs(fs)
∫
u

ej2π((v−xs)tfs−(u−xi)
tfi)dudfs (16)

Using equation 13, the first order approximation of (v − xs)t is given by:

(v − xs)t =
1
ai

(
I − ∇aix

t
i

ai

)
Ats(u − xi)t = Rt(u − xi)t (17)

Replacing in equation 16, we obtain a relation between ILi and ILs:

ILi(fi, xi) =
∫
fs

ILs(fs)
∫
u

ej2π(u−xi)
t(Rt(xi)fs−fi)dudfs (18)

=
∫
fs

ILs(fs)δ(Rt(xi)fs − fi)dfs =
1

|det(R)|ILs(R−t(xi)fi) (19)

Finally we obtain the relation between fi and fs (for δ not null):

fi = Rt(xi)fs ≈ 1
ai

(
I − ∇aix

t
i

ai

)
Atfs (20)

So as to link the frequency variation with the shape of the surface, an homogeneity hypothesis on the

texture is required, as described before. Then a frequency variation on hte image can be directly related

to the inclination of the surface before projection.

Using equation 20, the expression of the local frequency variation is:

dfi = − 1
ai

[∇taidxi + ∇aidxt
i

]
fi (21)

The frequency of the image fi can be expressed in polar coordinates by fi = vi[cos(ϕi) sin(ϕi)]t. Equation
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21 becomes:

dfi = dvi[cos(ϕi) sin(ϕi)]t + vi[−sin(ϕi) cos(ϕi)]tdϕi (22)

= −∇taidx

ai
vi[cos(ϕi) sin(ϕi)]t − 1

ai
∇aidxt

ivi[cos(ϕi) sin(ϕi)]t (23)

Considering the gradient dfi in the direction ϕi, multiplying by [cos(ϕi) sin(ϕi)]t, equation 23 becomes:

dvi = −∇taidx

ai
vi − 1

ai
[cos(ϕi) sin(ϕi)]∇aidxt

i[cos(ϕi) sin(ϕi)]tvi (24)

Summing over ϕi (on [0, 2π]) we obtain:

dvi

vi
= −3

2
∇at

idxi

ai
(25)

and then

dln(vi) = −3
2

sin(σ) [−sin(τ)cos(τ)]t [dxidyi]
ai

(26)

Finally for an homogeneous textured region, the tilt angle corresponds to the direction of the frequency

gradient (ratio between the components of vi according to axis xi and yi) and the slant angle is proportional

to the norm of the log-frequency gradient |dln(vi)| in the tilt direction:

tan(σ) =
|dln(vi)|f

3
2
|dx| − |dln(vi)|(−sin(τ)xi + cos(τ)yi)

(27)

with |dx| corresponding to the unitary spatial shift.

5.2 Shape recovery

The obtained geometrical relationships allow to compute the tilt and slant angles at any local position

providing the computation of the associated frequency gradient. The estimation method is based on local
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extraction of mean frequency gradients in subregions of the final frequency estimation surface (i.e averaging

over subsets of patches) (figure 10). We suppose that the surface covered by the subregion is planar that

is the slant and tilt angles are supposed constant all over the subregion. The tilt and slant angles are

computed using 27 and this operation is carried out on all the subregions over the whole image. The size

of the subregions can be adjusted as a smoothing parameter while integrating over the local estimations. In

case of a planar surface, the mean tilt and mean slant are computed from the whole set of local estimations.

In case of a curved surface, the local estimations are used to recover the normal to the surface at each

position (e.g. center of the subregion).

t=92.12° s=49.55°t=.°   s=.°

Figure 10: Estimations all over the image. Left: image of a sunflower field; middle: local estimations of
the tilt (direction of arrows) and slant angle (length of arrows) located at the center of the patches; right:
final planar estimation (average on all the local estimations) represented by an equivalent projected grid
(using the available projection parameters).

The shape information is obtained without any assumption on the orientation statistics, e.g. without any

isotropy assumption. Only a local homogeneity assumption is required, which means a local stationarity

(or weak stationarity) in the spatial statistics of the frequency components. The presented method does

not rely on an optimisation procedure. The shape is retrieve in a complete feedforward way. This approach

can be related to known cortical cells structure dedicated to the estimation of gradients such as texture

gradients [9] or optical flow [32].

6 Results

The proposed algorithm to extract the shape from the texture based on a local frequency estimation can

be viewed as a successive combination of filters responses and local averaging. The complexity is linear
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for the retinal filtering stage, the filters combination stage and the final shape recovery stage. The most

expensive part is the computation of the filters responses which requires a Fourier transform on all the

patches. This one depends on the total number of local patches (here, 21X21 = 441 corresponding to a

size of 96X96 pixels with a shift of 8 pixels). An asymptotic precision level is reached for 7X7 = 49 filters

(frequency and orientation) which is equivalent to the reported number of filters in V1 [2] . The size of

the subregions for the computation of the local normals has been fixed to 10X10 patches. For all the

presented results and tests, all these parameters have been fixed to these values. With a 2GHz processor,

estimating the shape of a 256X256 pixels large texture takes approximately 1 minute with a basic Matlab

implementation.

First we present an evaluation of the accuracy of the proposed method in comparison with two other

techniques developped by Super and Bovik [19] and Hwang et al [21]. Figure 11 presents the results

obtained on the database of Super and Bovik. In [21], a comparison of the accuracy of the two methods

can be found for each image. Super and Bovik obtained mean error on the estimation of the or tilt angle

and on the estimation of the slant angle respectively of 3.70o and of 2.84o; Hwang et al obtained a mean

error respectively of 1.75o and of 2.18o. The proposed algorithm reaches a mean error of 2.41o on the tilt

estimation (without taking into account the results for a very weak inclination), which is comparable to the

other two techniques, and of 4.95o on the slant estimation, which corresponds to a slightly inferior accuracy.

To evaluate the robustness of our method to different texture statistics, we created a texture database

made of 208 samples. Most of the samples come from the Brodatz texture collection, some of them are

artificially created, the remaining ones come from natural scenes. 1. Each sample is primarily projected

with a tilt equal to 0o with three slant values: 30o, 45o and 60o. Similarly each sample is projected for a

fixed slant equal to 45o with three tilt values: 0o, 45o and 90o.

The estimation error is averaged over all the samples over all the different orientation configurations.

We obtain a mean precision of 18.15o (deviation 25.61o) on the tilt estimation and of 12.35o (deviation

8.10o) on the slant estimation. Figure 12 presents estimation results on texture samples from the used

1this database can be downloaded at this URL: http://www.lis.inpg.fr/massot

21



t=0°   s=55° t=−2.10° s=59.57° t=−90°   s=10° t=−82.82° s=12.43° t=0°   s=30° t=−5.98° s=26.69°

t=90°   s=70° t=89.44° s=68.07° t=45°   s=70° t=44.88° s=71.69° t=90°   s=70° t=87.87° s=73.11°

t=90°   s=40° t=90.88° s=38.89° t=0°   s=0° t=−89.85° s=29.83° t=90°   s=20° t=91.99° s=20.85°

t=180°   s=30° t=179.25° s=45.68°t=180°   s=20° t=177.06° s=28.13°t=180°   s=10° t=178.02° s=14.78°

Figure 11: Results obtained on the Super and Bovik texture database [19].

database exhibiting different types of irregularities. Figure 13 presents the table detailing the results for

the different orientation configurations. On figure 13 right, textures samples which lead to the worst

estimations are presented. Bad estimations are obtained on textures presenting only very high frequencies

which, when slanted in space, may induce aliasing problem on the spectral analysis (first row). The

algorithm reaches also its limits when applied on textures which contain only very low spatial frequencies

(second row). As the patches have a constant and predefined size, these spatial variations may not

be included by them. Finally it is sensible to strong position and size irregularity, meaning local non-

stationnarity, creating missing frequency information (third row left)and to the violation of the constant

mean frequency hypothesis (third row right). To overcome these two last limitations two mechanisms

can be combined to the frequency estimation: an automatic adaptation of the patch size to the mean

frequency; a regularization procedure allowing to robustly smooth the resulting surface of local frequency

estimation before the shape recovery.
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The quality of the performances are difficult to evaluate since very few methods have been fully tested

on a great number of natural textures presenting a large variety of irregularities. Nevertheless we compare

them with the performances obtained by Lelandais et al [22] technique and by Hwang et al [21] tech-

nique on about ten natural textures [22]. These two methods obtain a precision around 1o on the tilt

estimation. However it has to be noted that the textures are, in majority, relatively regular with strong

orientations or structure patterns. On slant estimation, the two methods obtain respectively a precision

of 15.90o (deviation 14.90o) and of 31.40o (deviation 23.30o). The mean precision obtained by our method

is then comparable with, in addition, less dispersion (lower deviation). These results show that the ac-

curacy of the propose method is comparable with those obtained by techniques especially developed to

solve the shape from texture problem when these ones are evaluated on a great number of natural textures.

Figure 14 presents results obtained on natural scenes. The first four images are taken from [20] on

which the proposed technique obtains very similar results. The remaining images are unreferenced exam-

ples. Figure 15 presents also estimations on different regions of a multi-textured scene. It has to be noted

that the results have been obtained with exactly the same parameters as in the preceding tests excepted

the size of the analyzed region which is adapted so as to respect the homogeneity assumption. All these

results show the ability of the method to deal with textures directly extracted from natural scenes so as

to retrieve a perspective information.

Figure 16 presents estimation results of the shape of curved surfaces. The two first samples are taken

from the Super and Bovik texture database. The four following samples present cylinders with increasing

irregularity. The second and the fourth one come from Sakai and Finkel [16] work and were designed to mis-

lead moment based methods. The algorithm is able to retrieve a cylinder shape in each case. The last two

samples are taken from Maureen and Mallat work [24] and the shape are closely similar to their estimations.

Finally figure 17 presents results on samples created for psychophysical experiments. The first sample

comes from Knill work [12] and represents a slanted planar surface (tilt is equal to 90o and slant, to 45o)
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covered by ellipses with random size and position. The following four samples are taken from Li and Zaidi

work [11]. All shapes are strictly similar, only the texture characteristics are modified. For the last sample

the algorithm is unable to recover the shape similarly to the visual perception. It can also be observed

that the algorithm is perfectly able to recover the shape on the third sample, representing only a frequency

variation with all orientation cue removed. However in this case the visual system fails at recovering the

shape. As discussed in [11], this would suggest a specific overweighting of the orientation cue for the

estimation of the surface curvature in a cue fusion process [34]. In this case the visual system may be

strongly biased by the lack of orientation information, overriding the frequency one.

7 A model of the frequency analysis in the visual cortex

In the preceding sections a model of local frequency extraction on artificial and natural images has been

presented and tested. It can be seen as a biologically plausible model of the cortical analysis. Indeed

it is based on a the analysis of the amplitude spectrum which avoids the use of the phase information.

Locally it is robust to translations and realized a smoothing of the texture statistics. The sampling of

the spectrum is realized by specific log-normal filters which are adapted to zoom transformations and are

a good approximation of the cortical cells responses. This cortical model, dedicated to the extraction of

the local mean frequency, realizes the separation between the frequency and the orientation information.

It allows the independent analysis of the zoom and of the rotation transformations. Two independent

mechanisms can then be developed each one dedicated to the study of each corresponding gradient [11].

It is applied to the shape from texture problem and, only under an homogeneity assumption, manages to

retrieve an accurate shape information even on irregular textures and reproduces the perception on some

of the main psychophysical stimuli in 3D monocular perception.

Figure 18 presents the cortical model of frequency analysis on images. This one can be seen as a simple

feedforward cells combination. It is divided into four stages: (1) the model of V1, (2) the frequency bands

computation, (3) the filters combination and (4) the final frequency estimation over the whole image.

In each patch the responses of all filters are computed. This modelizes the cortical decomposition of
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the image into its local frequency and orientation components. Figure 18.1 shows the response of each

individual filter tuned to one specific central frequency and orientation and spatially localized at the center

of the studied patch. It is then possible to observe the spatial evolution of the energy response at every

frequency and orientation. A combination of each pair of adjacent frequency band filters, using equation

10, gives an estimation of the mean frequency at each patch center on the whole image (figure 18.3). The

final combination is performed according to equation 11 (figure 18.4). This leads to a very simplified

model of cells combination for frequency extraction and takes advantage of the global range of available

frequencies leading to a robust estimation without discarding any information.

It is interesting to observe that this model of 3D monocular shape from texture perception can be

associated to other 3D perception models, also based on bank of filters analysis, such as Qian stereoscopic

model [35], Gautama et al shape from motion model [32] and Fleming et al shape from shading model [36].

It is then possible to see the emergence of similar filter based models dedicated to 3D perception each one

dedicated to a specific modality but elaborated with the same biological substrate. This common basis

may also allow the emergence of a common way to represent the 3D information through the different

modalities and an easy way to implement their fusion (for example based on the modified weak fusion

model [34]) in order to encode the visual space (i.e objects shape or natural scenes spatial layout).

Finally this frequency analysis is a general purpose model which can be adapted to other visual mecha-

nisms such as attentional model with the creation of saliency maps and local feature extraction for object

recognition and scene categorization tasks [37] [38].

8 conclusion

In this paper we have presented new filters which are a specific version of log-normal filters. Their properties

(e.g., frequency orientation separability, good spectral coverage) have been stated. We have derived a

method to estimate the local frequency of textured regions, which is based on the use of the whole range of

frequency tuned filters. We derived the analytical estimation of the tilt and slant angle from the frequency

variation, and finally, we have proposed a new algorithm to recover the shape from the texture based on
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the local decomposition of the image into patches, and on the combination of the whole bank of filters.

The method has been proved to be robust and accurate for both regular and irregular textures. On

natural scenes, it is able to retrieve a perspective information which can be integrated as a feature in

the categorization or the classification of images. The model can be improved by the integration of a

robust regularization process on the estimation of the frequency all over the surface and by an automatic

adaptation of the patch size to the mean frequency. To go further, this model can be transposed so as to

extract the vanishing points of the projected texture by an analog analysis of the variation of the texture

orientations which would lead to an improvement of the estimation performances.
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Figure 12: Examples of results obtained on our texture database (208 samples, each one projected according
to five different tilt and slant configurations leading to a total of 1040 textures); these examples have been
chosen so as to give an overview on the different irregularities contained in the database; results are
organized such as the precision decreases from the top row to the bottom row.

30



σ
τ = 0o

tilt slant
30o 26.65 (34.62) 7.21 (5.25)
45o 17.31 (27.85) 11.13 (7.90)
60o 15.21 (23.12) 18.83 (11.23)

τ
σ = 45o

tilt slant
45o 16.97 (22.26) 12.66 (8.27)
90o 14.61 (20.19) 11.96 (7.77)

t=0°   s=45° t=50.42° s=17.88°t=0°   s=45° t=65.49° s=27.56°

t=0°   s=45° t=69.51° s=33.68° t=0°   s=45° t=−41.8° s=44.76°

t=0°   s=45° t=172.75° s=32.71° t=0°   s=45° t=81.88° s=27.51°

Figure 13: Mean estimation errors obtained on the five different orientation configurations over all the
sample of the texture database; standard deviation is indicated in parenthesis.

t=.°   s=.° t=88.72° s=65.23°

t=.°   s=.° t=−80.79° s=56.03°

t=.°   s=.° t=89.34° s=56.6°t=.°   s=.° t=21.04° s=43.77°

t=.°   s=.° t=84.29° s=53.93°

t=.°   s=.° t=86.04° s=36.48°t=.°   s=.° t=93.63° s=49.16° t=.°   s=.° t=−1.8° s=57°

t=.°   s=.° t=72.77° s=36.4°

Figure 14: Results obtained on natural scenes taken from [20] and on unreferenced images; no theoretical
estimation is provided for these images; from the first to the fourth image, results compare favorably with
results obtained by Lindeberg and Garding in ([20]).
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Figure 15: Result obtained on a multitextured scene.
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Figure 16: Results obtained on curved surfaces; each sample result presents the original texture, the needle
map corresponding to the estimation and, for the samples of the second column, the shape reconstruction
of the surface from the tilt and slant information (needle map and shapelets reconstruction code provided
by Peter Kovesi [33]).
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Figure 17: Results obtained on planar and curved surfaces from the psychophysical litterature [12] [11].
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Figure 18: Cortical modeling of frequency analysis: (1) decomposition into frequencies and orientations:
each small image represent the response of the individual filter on each patch over the whole image; (2)
frequency bands computation after orientation normalization; (3) filters combination using equation 10;
(4) final frequency estimation on the whole image using equation 11, due to the orientation normalization,
each scale weight is directly the frequency band response.
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