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Abstract Given an image sequence of a scene consisting
of multiple rigidly moving objects, multi-body structure-
and-motion (MSaM) is the task to segment the image fea-
ture tracks into the different rigid objects and compute the
multiple-view geometry of each object. We present a frame-
work for multibody structure-and-motion based on model
selection. In a recover-and-select procedure, a redundant set
of hypothetical scene motions is generated. Each subset of
this pool of motion candidates is regarded as a possible ex-
planation of the image feature tracks, and the most likely ex-
planation is selected with model selection. The framework is
generic and can be used with any parametric camera model,
or with a combination of different models. It can deal with
sets of correspondences, which change over time, and it is
robust to realistic amounts of outliers. The framework is
demonstrated for different camera and scene models.
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1 Introduction

Structure-and-motion recovery from images, using the im-
age motion as the only source of information, has been ex-
tensively studied in the last decade. For the case of static
scenes, the problem of fitting a 3D scene compatible with
the images is well understood and essentially solved (Hart-
ley and Zisserman 2000; Faugeras et al. 2001; Ma et al.
2003). Soon after the main structure-and-motion theory had
been established, researchers turned to the more challeng-
ing case of dynamic scenes, where the segmentation into in-
dependently moving objects and the motion estimation for
each object have to be solved simultaneously (see Fig. 1).
Even in the case of rigidly moving scene parts, which we
will call multibody structure-and-motion or MSaM, the geo-
metric properties of dynamic scenes turned out to be non-
trivial. The solutions available so far can be broadly clas-
sified into algebraic methods, which exploit algebraic con-
straints satisfied by all scene objects, even though they move
relative to each other, and non-algebraic methods, which
essentially combine rigid structure-and-motion with seg-
mentation. Algebraic solutions based on matrix factoriza-
tion exist for the case of two views (Wolf and Shashua
2001; Vidal et al. 2002; Vidal and Ma 2004), for multiple
affine views (Costeira and Kanade 1995; Vidal and Hart-
ley 2004), and for multiple affine views of linearly moving
points (Han and Kanade 2000). Recently, an iterative alge-
braic solution for multiple perspective views has also been
presented (Li et al. 2007). Non-algebraic approaches, which
detect different motions iteratively, have been presented for
2 views (Irani and Anandan 1998; Torr 1998; Tong et al.
2004), and for multiple perspective views (Fitzgibbon and
Zisserman 2000). A non-algebraic approach, which recovers
all motions concurrently, has been developed for two views
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Fig. 1 The multibody structure-and-motion problem. From a number of tracked correspondences, estimate the number of moving objects, the
segmentation into different objects, and the 3D motion of the objects

in Schindler and Suter (2005), and extended to multiple per-
spective views in Schindler et al. (2006).

Here, we present a generic model-selection framework
for multibody structure-and-motion with any (parametric)
camera model. The setting is the following: a scene with
an unknown (small) number of rigidly moving objects is
recorded with a camera (the camera can be static or moving
as well, because only motion relative to the camera matters).
Image correspondences are tracked through the captured se-
quence with a feature point tracker. Points may be lost (e.g.,
due to occlusion), new points may be detected to replace the
lost ones, and the set of point tracks may contain outliers,
which have been wrongly matched between frames. Further-
more, the number of motions present may vary throughout
the sequence, e.g. when an object leaves the field of view.

The presented framework is a generic way to solve the
stated problem, and contains all the MSaM problems listed
earlier as special cases. Its main strength is that it can han-
dle arbitrary parametric projection models,1 and is robust to
large amounts of outliers and missing data. The missing data
problem does not arise in our method, since it is not based
on factorization, while the resistance to outliers is due to the
fact that model selection explicitly includes a model for un-
explained tracks so as to handle them correctly. An outline
of the complete process for multibody structure-and-motion
recovery is given in Algorithm 1.

We first introduce the generic model-selection framework
in Sect. 2, then describe a way to generate candidate motions
in Sect. 3. Experimental results and a discussion are given in
Sect. 4, and a conclusion sums up the paper and points out
limitations and possible extensions (Sect. 5).

1In practice, the method is not suitable for models with a large number
of parameters, since candidate generation relies on sampling with the
minimal solution.

Algorithm 1 Outline of n-view multibody structure-and-
motion method.
1. Tracking: track feature points through the sequence
2. Generating candidates: for each pair of consecutive

frames (j, j + 1)

(a) Sample a set of two-view motions {Qj
i }

(b) For each Qj
i , estimate inlier set and standard devia-

tion
(c) Cluster {Qj

i } and re-estimate representatives {Qj

i }
for each cluster

3. Motion linking: recursively link {Qj

i } through frames to
obtain candidate motions {Dk}

4. Model selection: pick the best subset from {Dk}
(a) build the codelength/likelihood function D(b) for the

candidate motions
(b) maximize D(b) over the index vector b to determine

the best subset
5. Postprocessing: enforce temporal consistency to clean up

segmentation
6. (optional) Triangulation: triangulate 3D coordinates of

feature points

2 Multibody Structure-and-Motion as Model Selection

Model selection is a branch of statistics and information the-
ory, which is concerned with finding the right parametric
model for a given set of data. This is accomplished by fitting
different models to the data, and devising a scoring function,
which assigns a scalar to each of the models. The model
with the best score is then selected as the most appropriate
one. Depending on whether the interpretation is probabilis-
tic or information-theoretic, models are scored according to
their probability P conditioned on the data, or according to
their coding length L, which is thought of as a measure of
simplicity. The two aims of maximum probability or mini-
mum codelength are essentially equivalent, since by Shan-
non’s theorem they are related by L ∼ − log(P) (Shannon
1948). Different approximations of the model coding length
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and different priors have led to a host of criteria being pro-
posed.

One of the most popular criteria is Akaike’s An Informa-
tion Criterion (AIC) (Akaike 1973), which aims to minimize
the residual of yet unobserved data by minimizing the ex-
pected entropy. It differs from the rest of the criteria in that
the penalty for model complexity is independent of the num-
ber of data. Unfortunately, AIC has a well-documented ten-
dency to overfit (Leontaritis and Billings 1987; Torr 2000;
Kanatani 2004).

Other popular model selection criteria are: Wallace’s
Minimum Message Length (MML) (Wallace and Boulton
1968; Wallace and Freeman 1987), probably the earliest rig-
orous approach to minimizing the coding length. Rissanen’s
very similar, but independently developed Minimum De-
scription Length (MDL) (Rissanen 1978, 1984). The propo-
nents of MDL aim to circumvent the problem of choosing a
prior distribution for the candidate models. From a Bayesian
standpoint, this is an impossible endeavor, and only amounts
to always using the same implicit prior. Consequently, the
Bayesian Information Criterion (BIC) of Schwarz (1978),
which is a first-order approximation of the posterior proba-
bility, assumes a diffuse Gaussian prior. Despite the some-
what different intentions this leads to a criterion very sim-
ilar to MML/MDL. Furthermore, there are variants of AIC
called CAIC and CAICF, which do take into account the vol-
ume of data in order to counter overfitting (Bozdogan 1987),
and are also similar to MDL/MML. Although proponents of
the different schools continue to argue in favor of one or the
other criterion, all these criteria are very similar and in prac-
tice mostly give the same results.

Assume for the moment that we already have a redundant
set S of candidate object motions, which contains the cor-
rect motions to explain our image measurements, but also
many other spurious motions (generating such a candidate
set will be treated in Sect. 3). Our goal is to prune all spuri-
ous motions, so that we end up with a minimal set to explain
the image feature tracks. This can be viewed as a model se-
lection problem: from the combinatorial set of explanations
given by all subsets of S , select the most appropriate one.
We will now derive a selection criterion for this problem.
Given the small practical differences (Kverh and Leonardis
2004), we see no need to use the higher-order approxima-
tions of MML or CAIC. We will therefore borrow mostly
from the derivations of BIC and MDL. Since for our pur-
poses the two are equivalent, we do not need to commit to
one or the other school of thought. Most of the derivation
follows an information-theoretic approach based on code-
lengths, while we adopt Torr’s extension of Schwarz’ BIC
approximation (Torr 2000) to estimate the coding length of
the structure-and-motion.

Note that such a hypothesize-and-select approach can
deal with model overlap, meaning the case, where a signifi-
cant number of data points have low residuals in more than

one potential motion. This is important in situations, where a
wrong motion model finds strong support in the data: then, a
decision has to be made to explain a set of points either with
the wrong motion model with higher residuals (and possibly
some outliers), or with two or more independent motions
with lower residuals, but fewer points. In such cases, the
correct decision can only be taken, if all candidate motions,
and their overlap, are considered in a joint optimization. It-
eratively searching for the strongest candidate will commit
to the wrong motion and fail.2

2.1 Coding the Data

Given is a sequence of F images, through which feature
points have been tracked. The tracker may lose points (e.g.,
due to occlusions) and replace them by detecting new ones.
The search area for the tracker is usually restricted to a win-
dow of size w × w around a point’s position in the previous
image (for unrestricted matching, w is the image size).

Now let us assume that over a part of the sequence, a rigid
object M has moved through the scene. The total number
of tracked 3D points on the rigid object is N , of which only
Ni are visible in each frame i ∈ {1, . . . ,F } (if the object
is not visible in all frames, then Ni = 0 for some frames).
Conversely, each 3D point xj is only seen in Fj of the F

frames. If we want to code these points without using the
scene structure, we need to specify their coordinates within
the search window for each frame. Assuming uniform den-
sity over the search area, the average coding length for one
point is the negative log-likelihood of a 2D uniform distrib-
ution, and the total coding length for the image tracks is

Limg =
F∑

i=1

Ni log
1

w2
. (1)

On the other hand, if the scene structure-and-motion is
known, then the approximate coordinates of each point can
be constructed by projecting the corresponding scene point
xj to an image point ṽij = pi(xj ), and only the residual
rij = |vij − ṽij | with respect to this location has to be coded.
Assuming that the residuals have zero-mean normal distrib-
ution with standard deviation σx = σy = σ , the codelength
for a point is the negative log-likelihood of the 2D Gaussian,
and we get

Lerr = 1

2σ 2

F∑

i=1

Ni∑

j=1

r2
ij +

F∑

i=1

Ni log(2πσ 2). (2)

2If there is only little overlap, iterative search will however be faster,
because only the most dominant motion has to be detected in each
iteration step, which is much easier than finding good candidates for
all present motions.
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2.2 Coding the Structure-and-Motion

However, if the image points shall be coded as projections
of the scene structure, we also have to encode the structure-
and-motion of the scene. The structure consists of N scene
points, each with λD coordinates xi , and the motion consists
of F frames, each with λC camera parameters ci . Both are
estimated from λV = 2

∑F
j=1 Nj image points vi , up to an

ambiguity of the global coordinate frame with λG degrees of
freedom. For convenience of notation, we collect all ci and
xi in a vector S, and all vi in a vector V. The structure-and-
motion is estimated from the image points by minimizing an
error function E(S,V):

Ŝ = arg minE(S,V). (3)

If the prior to the structure-and-motion parameters Ŝ is as-
sumed to be a very diffuse Gaussian, then the coding length
Lsam of the parameters is approximately the logarithm of the
determinant of the Hessian of E at Ŝ, Lsam ≈ 1

2 log |Ë|. This
is a classical result from model selection theory (Schwarz
1978; Ripley 1996). The coding length Lsam is estimated
with an asymptotic result for large samples:

log |Ë| ≈ λS log(λV ) for λV � λS, (4)

where λS is the number of free parameters, and λV is the
number of data to estimate the parameters. This last approx-
imation is based on the assumption that all parameters are
computed from all data points, and it has been shown to be
an overly crude approximation for the structure-and-motion
problem (Torr 1998).

For the case of two-view structure-and-motion, Torr
has developed the GBIC approximation (Torr 1998, 2000),
which uses the specific structure of the estimation problem
to devise a better approximation for Lsam. His idea can be
extended to the multi-view case: the error function E for
the multi-view bundle adjustment case has a near block-
diagonal form. A camera is only dependent on the image
points seen by that particular camera, and a structure point
is only dependent on all projections of that particular struc-
ture point, while the correlations between the two are com-
paratively small. This leads to the following structure of the
Hessian (an illustration is given in Fig. 2):

Ë =
[
ËCC ËXC

ËCX ËXX

]

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ëc1c1 0 . . . Ëc1x1 Ëc1x2 . . .

0 Ëc2c2 . . . Ëc2x1 Ëc2x2 . . .
...

...
. . .

...
...

. . .

Ëc1x1 Ëc2x1 . . . Ëx1x1 0 . . .

Ëc1x2 Ëc2x2 . . . 0 Ëx2x2 . . .
...

...
. . .

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Fig. 2 Schematic illustration of structure-and-motion estimation.
A camera is only estimated from the points it sees, and a scene point
is only estimated from its projections. The (linearized) error function
is sparse, and its Hessian is near block-diagonal. White denotes 0-ele-
ments, darker color means larger value

The elements of ËCX = (ËXC)T are small compared to the
elements of ËCC . Hence, their influence can be neglected,
and the determinant factors into the sub-determinants along
the block-diagonal:

|Ë| = |ËCC |∣∣ËXX − ËXC(ËCC)−1ËCX

∣∣ ≈ |ËCC | |ËXX|

=
F∏

i=1

|Ëcici
|

N∏

i=1

|Ëxixi
|. (6)

Each sub-determinant can now be evaluated independently
using (4), leading to

Lsam = 1

2
log |Ë|

≈ FλC − λG

2F

F∑

i=1

log(2Ni) + λD

2

N∑

i=1

log(2F i). (7)

The complexity has two parts, one for coding the mo-
tion parameters, and one for coding the structure points. For
the cameras considered in this paper, the appropriate values
are given in Table 1. The uncalibrated affine camera has 8
degrees of freedom, and the global coordinate frame has a
12-parameter ambiguity. The calibrated perspective camera
has 6 degrees of freedom, and the global coordinate frame
has a 7-parameter ambiguity. If the scene is planar, the scene
points have only 2 degrees of freedom each, but the global
ambiguity is reduced to 4 because the parameters of the
plane have to be computed. For simplicity, assume that the
scene is positioned in the xy-plane of the global coordinate
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Table 1 Complexity parameters for different camera and scene mod-
els

Camera type Scene type λC λG λD

Uncalibrated affine general 8 12 3

Calibrated perspective general 6 7 3

Calibrated perspective planar 6 4 2

system. Then only a 2D-translation, an in-plane rotation, and
a global scale are required to fix the coordinate frame, and
the z-coordinate of all scene points is frozen at zi = 0.

Finally, the goal is to model multiple motions, so we need
an index to store which points belong to object M in each
frame of the sequence. To this end, we need a binary index
of length N to indicate the scene points on M (the NM

points, whose projection belongs to M in any of its frames).
Furthermore, we have to code the index of the first frame,
in which M becomes visible, with coding length log(F ).
Finally, we have to look at the following FM frames (the
frames, in which the object remains visible), and for each of
the object’s points code the subset of frames in which the
point is visible. There are 1

2FM(FM − 1) such subsets, so
the total coding length is

Lidx = N log(2) + log(F ) + NM log

(
FM(FM − 1)

2

)
,

(8)

where the factor log(2) accounts for the fact that the binary
index requires N bits, while in the remaining derivation we
have used the natural logarithm, thus choosing log2(e) bits
as the unit of codelength.

2.3 Making up the Balance

Using the structure-and-motion representation, we reduce
the codelength by Limg, but increase it by (Lerr + Lsam +
Lidx). The total savings thus are

DM = log
w2

2πσ 2

F∑

i=1

Ni − 1

2σ 2

F∑

i=1

Ni∑

j=1

r2
ij

− λD

2

N∑

j=1

log(2Fj ) −
(

λC

2
− λG

2F

) F∑

i=1

log(2Ni)

−
[
N log(2) + log(F )

+ NM log

(
FM(FM − 1)

2

)]
. (9)

If this value is positive, using the structure-and-motion rep-
resentation reduces the total codelength, or equivalently, it

increases the probability of the model. Intuitively, (9) can be
interpreted in the following way:

• The first term rewards the motion for reducing the number
of outliers. The benefit per explained point is a function
of the relative dispersion between the uniform distribution
for an outlier and the Gaussian of standard deviation σ for
an inlier.

• The second term penalizes motions with large residuals,
aiming for goodness-of-fit.

• The third term penalizes the complexity of the scene
model and the fourth term that of the camera model, aim-
ing for a simple and concise explanation.

• The last term accounts for the book-keeping overhead of
the motion. In particular, this term assigns a basic cost
to each new motion which is introduced into the model,
thus making sure that motions are not arbitrarily broken
in time: due to the basic cost of a new motion, it will be
cheaper to explain the same set of tracks by a single mo-
tion over, say, four frames, than by two separate ones over
two frames each.

Remark Contrary to a number of model selection appli-
cations in computer vision (Torr 1998; Matsunaga and
Kanatani 2000; Kanatani 2004), we use model selection not
only to detect, whether the model we are fitting is degen-
erate and should be replaced by a more restrictive one, but
also to decide, whether we should fit a parametric model at
all. In other words, we are also comparing against a back-
ground model, which asserts that the data do not follow any
parametric constraint. Therefore the first and last term can-
not be dropped, other than in the case of degeneracy de-
tection, where they are discarded, since they are the same
independent of which model we fit to the data. The present
case, which has the option of not choosing any model, has
been treated in Leonardis et al. (1995), Maybank and Sturm
(1999), Kverh and Leonardis (2004) following a more ad-
hoc approach to model selection with an empirically en-
gineered cost function. In this work, we have attempted to
base the codelengths on simple underlying probability distri-
butions (even though some approximations have to be made
in the course of the derivations).

2.4 Dealing with Overlap

Now assume that we have two motions, M1 and M2. Then
a point ui may be an inlier to both, and it is at this stage
not possible to decide, which one it shall be assigned to. To
assure the minimal codelength, we therefore have to make
sure that the point is only coded once in each frame. Adding
the savings (D1 + D2) unjustly assumes that coding these
points twice could reduce the codelength further. To remedy
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this, we need a correction term, (D1 +D2 −D1∩2), where

D1∩2 = log
w2

2πσ 2

F∑

i=1

N |1 − 1

2σ 2

F∑

i=1

N |1∑

j=1

r2
1j

− N‖1 log

(
F 1(F 1 − 1)

2

)

+ log
w2

2πσ 2

F∑

i=1

N |2 − 1

2σ 2

F∑

i=1

N |2∑

j=1

r2
2j

− N‖2 log

(
F 2(F 2 − 1)

2

)
. (10)

The first term of the correction makes sure that the sav-
ings for those N |1 points, which have a larger normalized
residual in motion M1 (and thus a less efficient coding) are
only counted once, for motion M2. The second term cor-
rects for the codelength of their residual in M1, which is
no longer required. The third term takes into account that
the number of scene points, whose tracks are explained by
M1, has been reduced by N‖1 (which need not be the same
as N |1), and corrects the indexing cost accordingly. The re-
maining three terms have the same effect for those points,
which have larger normalized residuals in M2. Note that
the coding length for the structure-and-motion parameters is
not influenced by the overlap. Since the points fit both mo-
tions well, they can be used to estimate both of them, even
though they are later only coded using one of them.

Remark It is important to understand that correct treat-
ment of ambiguous points is a fundamental requirement in
a model selection scheme, which simultaneously recovers
multiple motions. If the deduction for the overlap is ne-
glected, any motion whose likelihood outweighs the com-
plexity penalty will increase the total likelihood, and will be
selected. As an extreme example, consider the case where
M2 consists of the first (F 1 − 1) frames of M1, i.e., it is a
subset of M1 representing the case that the object has left
the field of view or become occluded in the last frame. If M2

reduces the codelength, then in most cases so does M1, and
both will be selected, which clearly contradicts the desire to
minimize the model complexity. If, on the contrary, we take
care not to “explain the same points twice” by introducing
D1∩2, then the two will never both be selected, because if
one is a subset of the other, D1∩2 > min(D1,D2).

2.5 Minimizing the Codelength

To minimize the codelength one must maximize the total
savings D. The question is which motions to use, hence the
variable is a boolean vector b of length M , which indicates
the presence (bi = 1) or absence (bi = 0) of a motion in the

model (Leonardis et al. 1995; Stricker and Leonardis 1995).
The total savings in codelength, as a function of which mo-
tions are used, are then given by the quadratic boolean ex-
pression D(b) = 1

2 bTDb, where D is a symmetric matrix of
the following form:

D=

⎡

⎢⎢⎢⎣

2D1 −D1∩2 . . . −D1∩M

−D1∩2 2D2 . . . −D2∩M

...
...

. . .
...

−D1∩M −D2∩M . . . 2DM

⎤

⎥⎥⎥⎦ . (11)

Note that no parameters have to be tuned in (9, 10). The
formulation as a quadratic problem is only possible, because
the contributions of different motions to the codelength have
been separated, and this is achieved by the simplification of
only considering the joint probabilities of up to 2 motions.3

Obviously, we are only interested in candidate motions,
which can potentially reduce the codelength. This implies
that the diagonal elements of matrix D are strictly positive,
{∀i : Di > 0}, and its off-diagonal elements are non-positive,
{∀i 	= j :Di∩j ≤ 0}. It is easy to see that a quadratic boolean
function with the latter property is a submodular set func-
tion (Nemhauser et al. 1978). Maximizing D over b is
known to be NP-hard. However, a few simple observations
can help us to solve it for our specific case. As a starting
point, we know that our solution will only contain few mo-
tions. Furthermore, the following holds:

Lemma 1 Let b̂ be the vector, at which D attains the global
maximum, and let b′ be a subset of b̂, {∀i : b̂i ≥ b′

i}. Let
b′′ be obtained by switching exactly one 0-element of b′
to 1, |b′′ − b′| = 1. Then, b′′ can be a subset of b̂ only if
D(b′′) > D(b′). If ∀b′′ : D(b′′) ≤ D(b′), then b′ = b̂.

Proof Let b′
k denote one of the 0-elements of b′ which needs

to be switched to 1 to obtain b̂, {̂bk > b′
k}. Let b− de-

note the vector which is obtained by starting from b̂ and
switching off element k: b−

k = 0, |̂b − b−| = 1. Since b̂
is the global maximum, D(̂b) − D(b−) > 0. Submodular-
ity implies D(b′) − D(b) ≥ D(̂b) − D(b−), and therefore
D(b′) −D(b) > 0. �

The lemma states that the path from any subset b′ to
b̂ does not contain descent steps. Making use of the fact
that the scene only contains a small number R of mo-
tions, and that the empty solution b = 0M×1 is a subset

3If ≥3 motions share points, their joint use is over-penalized, e.g., for
3 motions the last term of the joint savings D1 + D2 + D3 − D1∩2 −
D1∩3 − D2∩3 + D1∩2∩3 is disregarded. However the influence of this
approximation is small, because the number of affected points is small,
whenever the candidate motions are significantly different (which in
our scheme is ensured by the clustering stage).
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of b̂, one can devise a multi-branch ascent method (see Al-
gorithm 2). The method always leads to the global max-
imum, however it is still exponential in complexity. For
larger sets of candidate motions, one has to resort to a
heuristic version: for each level of the search, the solutions
are sorted by the objective value D(b) and only the best
ones for each branch are retained. The number of branches,
which are retained for the next step, decreases in geomet-
ric progression with factor α from one level to the next,
say α = 4, T = {128,32,8, . . .}, so that the total number of
search paths is {128,4096,32768, . . .}. Retaining multiple
sub-branches avoids getting stuck at a weak local minimum
and only gradually focuses on the most promising branches.
The complexity for M candidates and R actual motions is
O(( 1

α
)(1+2+···+R)M(R+1)). Theoretically, the heuristic does

not guarantee a global maximum anymore. In practice it pro-
duces good solutions, and in our experiments it outperforms
all-purpose search methods such as Tabu-search or multi-
start gradient ascent, which do not exploit the special struc-
ture of the problem to the same extent.

Remark Simple greedy gradient-ascent is not a suitable
method for the problem. The theoretical error bounds are
so loose that they are meaningless (Nemhauser et al. 1978),
and in practice it fails more often than not. For an exemplary
illustration, consider the following simple example: given is
a scene with two motions, each giving rise to the same num-
ber of tracks. Furthermore, there is a candidate in the set,
which explains significantly more than half of the points, al-
beit with somewhat higher error. Hill-climbing will commit
itself to this candidate without knowing about the next step,
and never will be able to recover. This behavior can actually
be seen in our experiments: the strongest motion after the
first selection step is often not part of the final solution.

3 Multibody Structure-and-Motion Algorithm

A unifying property of all model-selection methods is that in
fact they are scoring methods. They provide a way of com-
puting the scalar score of a given model, but are not con-
cerned with a search procedure which leads to a model with
a high score. To make model selection useful, it needs to be
integrated into an optimization framework. In this section
we will devise a Monte-Carlo type framework, which starts
from randomly generated candidate motions, progressively
refines and filters the set of candidates to a set of putative
motions for a given sequence, and then uses model selec-
tion to pick the best combination of motions from this set
as a model for the sequence. Langs et al. have proposed a
different optimization strategy in the context of active shape
models (Langs et al. 2005): to find the best collection of

Algorithm 2 Multi-branch optimization for D = 1
2 bTDb.

1. Level 0: Start from a scene without any motions: R = 0,
D = 0, b = 0M×1

2. Level 1: Compute the value of D for all M possible solu-
tions with (R = 1) motion

3. Discard all solutions with D ≤ 0, since adding motions to
such a solution cannot lead to the maximum (Lemma 1)

4. Level 2: Build all pairwise combinations (R = 2) of the
remaining motions, and compute D for them

5. Discard those pairs, which do not attain a higher value
than any of the two motions alone (again, these cannot
lead to the maximum)

6. Level 3: Join the remaining pairs to triplets (R = 3) and
compute D for them (Note that based on the previous
steps, computing D for an R-tuple of motions only re-
quires R additions)

7. Level R: Keep discarding dead-end search paths and in-
creasing R, until no (R + 1)-tuple exceeds the previous
maximum attainable with R motions

sub-models, they start from a heavily oversegmented data
set and in a random fashion merge segments such that the
codelength is reduced. In this way, they arrive at a set of
local minima. The best of these local minima is selected
with a second model scoring step. While potentially more
efficient, their concept is not applicable in the presence of
outliers, since outliers will cause the merging procedure to
break down, yet the outliers are hard to detect on the small
initial segments due to the small amount of data.

A candidate motion is a hypothetical object moving in
3D space, modeled as a number of scene points x. The ob-
ject moves through the field of view for a number of frames,
and the points x give rise to point tracks v through these
frames, which satisfy an appropriate n-view constraint. For
two consecutive frames, points on the same rigid object have
to satisfy the appropriate two-view constraint. The set of
candidates, which forms the input for model selection, may
be redundant, but for each moving object actually present
in the scene, there has to be at least one candidate, which
describes it well.

We start from a sequence of F frames recorded with
some camera. With the point tracker, N points have been
tracked through the sequence. Each of these points appears
in at least 2 and at most F consecutive frames. At this point,
it is unknown how many moving objects are visible in the se-
quence, and hence it is also unknown, which object a point
belongs to, or whether the track for that point contains false
matches.

As atomic hypotheses to start from, two-view constraints
between consecutive frames are generated at random and
linked to longer motions. Since brute-force random sam-
pling and linking leads to a combinatorial explosion, some
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care has to be taken: very improbable motions need to
be pruned from the candidate set as early as possible,
and redundant motions, which are very similar, need to be
avoided. As will be seen, the important notion here is that in
correspondence-based structure-and-motion, a moving ob-
ject is modeled as a rigidly moving set of points. The com-
mon trait of the steps in this section is that they focus on this
inlier set, rather than the motion parameters, to compare and
judge tentative motions.4

3.1 Pairwise Sampling

Let an (unknown) 3D scene point be denoted by x, and its
image in the ith frame by a homogeneous 3-vector vi , with
i ∈ {1, . . . ,F }. Candidate motions will be generated by ran-
domly generating two-view constraints between neighbor-
ing frames and linking them to longer motions. Different
camera models and scenes lead to different constraints. In
the following, we will consider two camera models and two
scene models.

In the case of an uncalibrated affine camera viewing a
general scene, two views are related by the affine epipolar
constraint (vi+1)TFAvi = 0, where FA denotes the affine
fundamental matrix. For a calibrated perspective camera,
they are related by the epipolar constraint (ui+1)TEui = 0,
where E denotes an essential matrix, and u denotes an image
point in canonical coordinates ui = K−1vi . K is the calibra-
tion matrix containing the intrinsics of the camera. These
relations only hold for the most general scene model, a full
3D scene. If the scene viewed by the two cameras is pla-
nar, then the epipolar constraint degenerates. For example,
for the case of a perspective camera viewing a planar scene,
we get the projectivity constraint (vi+1) ×Hvi = 0, where H
denotes a 2D homography.

As atomic hypotheses to start from, two-view constraints
are generated from minimal subsets of the data. To simplify
the explanation, we will assume for the following expla-
nation that the camera is known to be perspective, but the
scene model is unknown. The described method works in
exactly the same way for other combinations. An essential
matrix for two calibrated perspective cameras can be esti-
mated with the five-point algorithm of Nistér (2004). By ex-
amining the residuals of all correspondences with respect to
the estimated essential matrix, it is possible to separate in-
liers, which satisfy the constraint within a small tolerance,

4We are aware that making hard inlier/outlier decisions at an early
point is theoretically questionable from a statistical point of view. For
the sake of simplicity, we will nevertheless explain the method using
hard decisions. The described algorithms can easily be extended to
fuzzy membership values by replacing the binary inlier/outlier index of
each point with its inlier probability. However, the practical difference
is small, and in our view does not warrant the additional computational
burden.

from outlier, which do not. We use the TSSE estimator of
Wang and Suter for this task (Wang and Suter 2004), but any
statistical outlier rejection procedure could be used. Such
procedures are sometimes called “robust estimators”, how-
ever the task really is to determine the inlier set, from which
it is trivial to estimate the parameters of the constraint with
a least-squares fit.

To cover the possibility of a planar scene, it may also
be necessary to estimate homographies, which can be done
with linear methods (Hartley and Zisserman 2000). Since
the projectivity is a tighter constraint than the epipolar
geometry, all points which satisfy the projectivity will also
satisfy the epipolar geometry, even though the estimation of
the latter is ambiguous. The robust estimation problem is
therefore much easier, because only the points already iden-
tified as inliers to the epipolar geometry form the base data.

To increase the chance of finding an uncontaminated
sample, we recommend using a local sampling scheme
(Schindler and Suter 2005). Except for transparent objects,
points belonging to the same rigid object will be clustered in
the image plane, and local sampling will dramatically reduce
the number of samples required to find an uncontaminated
one.5

Note that for each moving object we only have to make
sure good candidates are found in one of the sub-regions. If,
as in most practical scenarios, the minimum image area cov-
ered by an object is known, it is easy to find such a subdivi-
sion. This means that the required sample number per frame
is constant, independent of the number of motions, and the
total number of samples grows linearly with the length of
the sequence.

Having estimated the inlier set and standard deviation
of all putative two-view motions, the candidate set can be
pruned for the first time: only plausible candidates in terms
of inlier count and standard deviation are retained. The
thresholds can be chosen conservatively, since they only
serve to discard the most improbable candidates: an upper
bound for the allowable standard deviation is the localiza-
tion uncertainty of the image points, which is easily obtained
from the point tracker, while the minimum inlier number is
set to some very low value, say 5% of all image points in a
frame.

3.2 Estimating the Standard Deviation

In most cases the standard deviation (i.e., the scale of the
measurement uncertainty of the image points) is unknown

5For the experiments in Sect. 4, images were was subdivided into
3 overlapping rows and 3 overlapping columns, and samples were
drawn from the entire image, each column, each row, and each of
the 9 regions defined by a row-column intersection. This hierarchical
scheme proved to be a reasonable compromise between local coher-
ence and global extension, which works well for different images.
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and needs to be estimated from the data. As pointed out by
Kanatani (2004), the standard deviation should always be es-
timated from the residuals of the most general motion: this
estimate is correct even for degenerate cases, where parame-
ter estimation becomes ambiguous—the motion parameters
cannot be estimated reliably precisely because the error is
similar for different sets of parameters. Although computing
the standard deviation from the residuals of a more restric-
tive model will yield a higher value, it would be unreason-
able to assume that the measurement uncertainty of the same
point set changes depending on what motion we later fit to
the measurements.

3.3 Motion Clustering

The two-view motions recovered at this point will be highly
redundant. Many of the candidates will correspond to the
same object and be similar. Conversely, it is improbable that
there are many clusters of similar motions among the spu-
rious candidates, which have survived to this point. Clus-
tering will detect and remove as much as possible of the
redundancy. This will both reduce the number of candidate
motions further, and allow an improved estimation of the re-
maining ones.

Clustering in parameter space is difficult. Even similar
sets of moving points may yield motions with very different
parameters. We therefore return to the definition of similar-
ity as “explaining the same tracks”, and resort to clustering
based on the inlier sets, similar to Wills et al. (2003). A two-
view motion is represented by a binary vector of size N ,
with entries 1 for its inliers, and entries 0 for its outliers. The
Hamming-distance dH between these vectors (the number of
differing bits) is then used as a similarity measure for clus-
tering. dH = 0 means that two inlier sets are identical, while
dH = N means that the outliers of one set are exactly the in-
liers of the other. Our implementation uses simple average-
linkage hierarchical clustering (Duda et al. 2001), however
more sophisticated methods could potentially be used.

The new set of candidates is now given by the representa-
tive “mean” motions of all clusters. These “means” are ob-
tained with a simple consensus mechanism: the inliers of
the “mean” are all points, which are inliers to >50% of the
cluster members. The epipolar geometry of a cluster is re-
estimated from this inlier set. Optionally, one can discard
very small clusters (say, with ≤2 members), which are likely
to be spurious motions, in order to further reduce the candi-
date set.

Remark Clustering random samples by their inlier sets and
then forming a consensus per cluster can be regarded as a
simple refinement step, which seeks to polish the candidates
at low computational cost. The alternative, to polish each in-
dividual sample with an iterative algorithm, and then prune

candidates which have converged to identical solutions, is
usually not tractable, because of the high computational cost
of iteratively fitting such a large number of models.

3.4 Motion Linking

After clustering, we are left with a small number of putative
two-view motions (in practice, <10 per frame), each repre-
senting the motion of a set of points from one frame of the
sequence to the next. It is important to notice that we have
not yet achieved an optimal set for each pair of consecu-
tive frames. It is quite possible that some of the candidate
motions only explain part of a moving object, or that they
explain two objects, if their relative motion between the two
frames is small. It is also quite likely that some spurious
motions accidentally are strong enough to survive up to this
point.

The two-view motions have to be concatenated to longer
motion chains. It is not known, when each moving object has
entered and left the field of view, so all chains of length ≥2
frames are potential candidates. Again, exhaustively linking
all possible chains of length ≤F leads to a combinatorial
explosion, and it disregards the temporal coherence of mo-
tions. Since sequence analysis only makes sense, if the scene
changes slowly compared to the frame-rate, few tracks on
each moving object will be lost per frame. Linking only mo-
tions with similar inlier sets, thus enforcing the temporal co-
herence, greatly reduces the number of candidates. Only a
loose threshold (say, 50%) should be used, so as not to elim-
inate motions with strong self-occlusions due to rotation.

At the linking stage, we can no longer avoid the inherent
complexity of the problem. Unlike the previous steps, mo-
tion linking provokes a potentially exponential increase in
the number of candidates. This is why great care has been
taken to prune the candidate set as early as possible. Al-
though the described pruning measures are extremely sim-
ple, they are efficient. Experimentally, for sequences of up to
4 motions and 15 frames, the number of candidate motions
is generally <1000.

Note that generating motions by linking epipolar geome-
tries in this way does not impose any restrictions on the mo-
tion other than rigidity, so long as the inlier sets are consis-
tent. Within the limitations of the feature tracker, irregular
and jerky motions are not penalized compared to smooth
ones, since there is no temporal prediction involved.

3.5 Model Selection

In the hypothesis generation stage described so far, we
have generated the required input for the model selection
procedure—a redundant set of M putative object motions,
each given by a changing set of image point tracks observed
through some part of the sequence. From this set, the best
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explanation for the observed image point tracks is selected
by applying the theory developed in Sect. 2. Each candi-
date motion is described by a number of scene points NM,
its length in frames FM, a number NM

i of image points
in each of these frames (with NM

i ≤ NM), and their cor-
responding residuals with respect to the estimated motion,
{rij }. With this information, the entries of matrix D are com-
puted using (9, 10), and the objective function maximized as
described in Sect. 2.5.

3.6 Motion Segmentation

Model selection yields an optimal set of motions and their
respective inlier sets. Segmentation therefore reduces to the
problem of disambiguating points, which change from one
motion to the next over time, or satisfy more than one mo-
tion model. An obvious solution in the presence of multiple
frames is to enforce temporal consistency. So far, tempo-
ral consistency has only been used to link motions between
consecutive pairs of frames, but not at the multi-frame level.
Since a scene point is located on a physical object, it cannot
normally pass from one motion to another, while the two
objects continue to move independently. An exception is the
case that the tracker drifts, i.e., it wrongly matches a point
between two frames, but then locks onto the new point and
tracks it correctly.

If in a part of the sequence a point switches back and forth
between motions, or is an inlier to more than one motion, we
form a consensus over time. Within the time window, dur-
ing which both motions exist, the point is assigned such that
it drifts at most once, while changing as few class member-
ships as possible. This will clean up any false assignments
due to points accidentally satisfying the epipolar constraint
(the vast majority of cases). Even in the case that a point
truly drifts from one motion to the other, the heuristic will
detect this behavior and try to fix it, but the transition may

happen in the wrong frame. Note that by temporal consis-
tency, we again mean consistent class membership, rather
than smoothness of tracks. The effect of the consensus over
time is illustrated on a practical example in Fig. 3.

The segmentation of correspondences between motions
is almost perfect (i.e., very few points are assigned to the
wrong motion). However, some points on moving objects
are often miss-classified as outliers. This is an inherent dif-
ficulty of robust classification methods, which provide a re-
jection class for outliers. The parameters of each class are
estimated at the same time as the class membership, there-
fore there exists the possibility of estimating slightly incor-
rect parameters based on a subset of the class, and assigning
the remainder of it to the outliers. Methods without an out-
lier class do not encounter this problem, because all points
have to be assigned to one of the motions.

4 Experimental Evaluation

4.1 Synthetic Data

A synthetic data set was generated with 5 views of 4 ro-
tating planar objects. The experiment was designed to test
the method as well as study the influence of correct mod-
eling of degenerate scenes. Each object has 50 tracks, and
50 outliers were added by randomly generating tracks with
a displacement between adjacent frames, which is similar to
the correct tracks. The image size was set to (512 × 512)

pixels, and the image point coordinates were contaminated
with Gaussian noise of magnitude 0.5 pixels. Two differ-
ent camera models were applied: in a first experiment, the
data was segmented using a perspective camera model and
a 3D scene model, while in a second experiment the algo-
rithm should also classify each moving object as planar or

Fig. 3 Enforcing temporal consistency to improve motion segmenta-
tion. The two rows show the same region of the “flowershirt” sequence,
with several points satisfying both epipolar geometries. Top row: seg-

mentation based on individual residuals without enforcing coherence
over time. Bottom row: segmentation after building a consensus over
time
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Table 2 Segmentation results for “spinning wheels” sequence (4 moving objects with 50 points each, 50 outliers). False positives (FP) are outliers
assigned to a motion, false negatives (FN) are points from the motion classified as outliers. No points were assigned to the wrong motion

General object Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Motion A FP / FN 0 / 0 0 / 0 0 / 0 1 / 1 1 / 0

Motion B FP / FN 0 / 0 2 / 0 2 / 0 1 / 0 0 / 0

Motion C FP / FN 1 / 0 2 / 0 2 / 0 4 / 0 2 / 0

Motion D FP / FN 0 / 1 2 / 0 2 / 0 1 / 0 0 / 3

Total error 1.0% 3.0% 3.0% 4.0% 3.0%

Planar object

Motion A FP / FN 0 / 0 1 / 0 2 / 0 1 / 0 0 / 0

Motion B FP / FN 0 / 0 0 / 0 0 / 0 1 / 0 1 / 1

Motion C FP / FN 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0

Motion D FP / FN 0 / 1 0 / 0 0 / 0 0 / 0 0 / 0

Total error 1.0% 0.5% 1.0% 1.0% 1.0%

Fig. 4 Segmentation of the synthetic “spinning wheels” sequence.
Top: feature tracks (colors denote the ground truth segmenta-
tion), and two views of the recovered 3D points in the first
frame. Note that these results were computed using a 3D scene

model, thus the coplanarity of the points visually proves the ac-
curacy of the recovered motions. Bottom: recovered segmentation
through the sequence. Yellow dots are points classified as out-
liers

non-planar. In the first experiment, the method correctly re-
covered the 4 motions. The segmentation into the 5 classes
(including outliers) is 97.5% correct. In the second exper-
iment, the method also recovered the 4 motions, and also
classified all 4 objects as planar. The segmentation into the
5 classes is 99.3% correct—the tighter constraint leaves less
room for miss-classification. See Table 2 and Fig. 4.

4.2 Real Data—Affine Camera

The method has been tested on various real data sets with
different camera and scene models. The first set of exper-
iments was conducted with the affine camera model, and
general 3D scenes. The first image sequence has 12 frames
and shows 3 objects moving on a table. A total of 173
points were tracked through the sequence. Since this se-
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Table 3 Segmentation results for “three cars” sequence (3 moving objects). False positives (FP) are points wrongly assigned to a motion, false
negatives (FN) are missed points on a motion

#tracks Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

Motion A 44 FP / FN 0 / 9 0 / 4 0 / 4 0 / 5 0 / 5 0 / 5

Motion B 49 FP / FN 0 / 4 4 / 1 4 / 2 4 / 1 4 / 0 4 / 0

Motion C 81 FP / FN 0 / 9 0 / 1 0 / 0 0 / 2 0 / 1 0 / 2

Total segmentation error 12.7% 3.5% 3.5% 4.6% 3.5% 4.0%

#tracks Frame 7 Frame 8 Frame 9 Frame 10 Frame 11 Frame 12

Motion A 44 FP / FN 0 / 4 0 / 5 0 / 5 0 / 5 0 / 6 0 / 9

Motion B 49 FP / FN 4 / 0 4 / 1 4 / 0 3 / 1 4 / 2 4 / 2

Motion C 81 FP / FN 0 / 1 0 / 3 0 / 4 0 / 5 0 / 4 0 / 15

Total segmentation error 2.9% 5.2% 5.2% 6.4% 6.9% 15.0%

Fig. 5 Segmentation of the “three cars” sequence. Top: first frame,
first frame with feature points superimposed, first frame with feature
tracks superimposed. Bottom: recovered segmentation through the se-

quence. Yellow dots are points classified as outliers. All results are
overlayed on the same frame, the remainder of the video was not avail-
able

quence was originally designed for a non-robust method (Vi-
dal et al. 2002), only those features which could be tracked
through all frames have been retained, and no outliers are
present. This setup made it easy to assess the results quan-
titatively. The segmentation results are 93.9% correct—see
Table 3 and Fig. 5. In Vidal and Hartley (2004), the authors
achieved a 95.4% correct segmentation, using the additional
constraints that the number of motions is known, there are no
outliers, and each point belongs to the same motion through-
out the sequence.

The second sequence for affine cameras consists of
8 frames showing a person moving diagonally towards the
camera, while the camera itself moves through an office.

200 initial points were tracked with the KLT-tracker (Tomasi
and Kanade 1991), lost points were immediately replaced,
and points, which could not be tracked for at least one frame
after their initial detection were removed. This led to a set
of 263 tracks, including several outliers on apparent con-
tours. The method was applied and correctly recovered two
motions. Results are shown in Fig. 6.

4.3 Real Data—Perspective Camera

Next, the method was tested for the perspective camera
model. This case, including the experiments given, has been
treated earlier in Schindler et al. (2006). The first example is
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Fig. 6 Segmentation of the “flowershirt” sequence. Top: first frame, fifth frame with feature points superimposed, last frame with feature tracks
superimposed. Bottom: recovered segmentation through the sequence. Yellow dots are points classified as outliers

a sequence of 10 frames showing two independently moving
piles of boxes. 300 initial points were tracked with the KLT-
tracker, lost points were immediately replaced, and points
which could not be tracked for at least one frame were re-
moved, leading to a total of 350 tracks. The set of tracks
includes several outliers on apparent contours. The method
was applied and correctly recovered two motions. For this
scene the 3D reconstruction has actually been computed (us-
ing the knowledge that the camera did not move). Figure 7
shows the first and last frame with the point tracks superim-
posed, and the recovered motions both in the image plane
and in a top view to show the motion of the 3D scene.

The second scene is a sequence of 10 frames showing 3
objects moving on a table (see Fig. 8). 300 feature points
per frame were tracked, resulting in a total of 439 tracks.
The third object is not visible in the beginning, but enters the
field of view later, and a part of the box on the upper right
leaves the field of view towards the end of the sequence.
Furthermore, the motion is not smooth, with two of the three
objects stopping at some point.

4.4 Real Data—Different Scene Models

In this section experiments are shown where the method also
had to choose between a 2D or 3D scene model. Both experi-

ments were carried out with a calibrated perspective camera.
The first scene consists of 6 frames showing a (planar) mag-
azine moving through a laboratory environment, while the
camera itself moves through the environment independently.
300 feature points per frame were tracked, resulting in a to-
tal of 316 tracks, with several wrongly tracked outliers (see
feature tracks in Fig. 9). The method correctly recovers the
two motions and recognizes the magazine as planar. A few
background points in the periphery are missed, because the
background spans the entire image and is affected by rem-
nants of radial distortion. Again, the 3D reconstruction was
computed for this scene, this time keeping the background
static. Figure 9 depicts the segmentation results, as well as
a 3D view of the scene showing the positions of the camera
and the magazine in the first and last frame with respect to
the static background.

Note that the correct number of motions and a largely
correct segmentation can also be obtained if only the most
general scene model (a 3D object) is used. Some back-
ground points will however be wrongly assigned to the mag-
azine motion. Using the tightest possible model reduces the
chance that tracks satisfy the wrong model. Furthermore, it
improves the 3D reconstruction of the scene by making sure
the constraint is satisfied by the reconstructed scene.
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Fig. 7 Segmentation of the “boxes” sequence. Top: first frame, fifth frame with feature points superimposed, last frame with feature tracks
superimposed. Bottom: recovered segmentation and top view of 3D tracks through the sequence. Yellow dots are points classified as outliers

The last scene consists of 11 frames from the movie
“Groundhog Day”. It shows a car moving diagonally to-
wards the camera, while the camera itself pans to the right
(see Fig. 10). 300 feature points per frame were tracked,
resulting in a total of 524 tracks. The feature sets on both
objects change a lot due to the fast motion, and there are
several false matches due to strong motion blur. Again, the
system was also allowed to choose between a general or pla-
nar scene. The camera motion is small and all background
points are distant from the camera, therefore the most ap-
propriate model for it is the planar scene model, while the

van in the near field is best modeled as a general scene. The
background motion disappears at the ninth frame because
the visible background becomes almost featureless.

Again, a largely correct segmentation can also be ob-
tained if only the most general scene model is used (as
shown for this particular data set in Schindler et al. (2006)).
However, in such a setting it goes unnoticed that the recon-
struction of the 3D structure becomes unreliable due to the
small baselines, whereas the choice between different scene
models presented here explicitly uncovers the information
that the background is (nearly) planar in relation to the mo-
tion.
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Fig. 8 Segmentation of the “lightbulb” sequence. Top: first frame, fifth frame with feature points superimposed, last frame with feature tracks
superimposed. Bottom: recovered segmentation through the sequence

Fig. 9 Segmentation of the “magazine” sequence. Top: first frame
with feature points superimposed, last frame with feature tracks super-
imposed, 3D view of reconstructed motion. The gray rectangles have

been added manually for better visual impression. Bottom: recovered
segmentation through the sequence. The selected type of scene model
is printed into the first frame of each selected motion

4.5 Analysis of Possible Failures

The “delivery van” sequence is also used to demonstrate
possible failures of the proposed method. The aim of this
section is to point out potential pitfalls of model-selection
based methods and give a guideline for their proper design.

Obviously, if a too restrictive model is used, the segmen-

tation will be incorrect for those feature tracks, which do

not satisfy the model. As an example, the sequence was

segmented allowing only planar scenes. As can be seen in

Fig. 11, the algorithm does its best to fit a planar scene,

which explains as much of the van as possible, and there-



174 Int J Comput Vis (2008) 79: 159–177

Fig. 10 Segmentation of the “delivery van” sequence. Top: first frame,
fifth frame with feature points superimposed, last frame with feature
tracks superimposed. Bottom: recovered segmentation through the se-

quence. The selected type of scene model is printed into the first frame
of each selected motion

Fig. 11 Possible failures of model selection methods. The selected
type of scene model is printed into the first frame of each selected
motion. 1st row: too restrictive scene model. Only planar scenes were
allowed, hence only the largest planar part of the van was detected.
2nd row: oversegmentation in time. The candidate set is incomplete

because of overly restrictive linking, hence the van is split into two
motions, and, the background model terminates one frame earlier.
3rd row: undersegmentation in space due to a grossly overestimated
standard deviation. 4th row: oversegmentation in space. This case has
been added for completeness, but did not occur in practice

fore assigns the points on the van, which are off its front
plane, to the outliers.

Another source of failure are errors at the candidate gen-
eration stage: if model selection is not fed with the right can-
didates, it can only find the most reasonable solution with
the motions at hand. If the candidate set does not contain an
appropriate motion due to insufficient samples, then the cor-
responding object will usually be missed altogether, and its

tracks will be classified as outliers. On the other hand, if all
required two-view motions are present, a too restrictive link-
ing procedure could still result in a candidate being broken
into two, one for the first part of the sequence, and one for
the second part. Model selection will typically select both
parts, leading to oversegmentation in time—see Fig. 11.

Finally, in which cases does model selection itself fail,
despite being supplied the correct input? The most severe
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Fig. 12 Ambiguous cases. Top/bottom: segmentations returned by two
different runs of the method for five frames taken from the “dance” se-
quence (affine camera model). The two forearms together undergo a
nearly rigid motion. Depending on the randomly sampled candidate

set, they are explained as one or two rigid motions. The model scores
D̂ for the two solutions differ by less than 4%. All results are over-
layed on the same frame, the remainder of the video was not avail-
able

failure happens when the maximum allowable standard de-
viation is grossly overestimated. The system will then gen-
erate motions, which cover more than one object, at least
partially. Due to the weak nature of the epipolar constraint,
the penalty for the goodness-of-fit of such a model may
not be large enough to outweigh the benefit of saving on
model complexity, and the scene will be under-segmented.
An example of this behavior is shown in Fig. 11. The al-
lowable standard deviation was set to 3 pixels instead of 1,
leading to an incorrect fit. Over-segmentation caused by
the model selection criterion, while theoretically possible,
is rarely a problem in practice. For the given sequence, we
could only produce this case by unrealistically biasing the
system against outliers: the size w of the matching window
in (1) had to be set to 7000 pixels (10 times the image size)
in order to justify an oversegmentation, which reduces the
outlier count compared to the correct result (Fig. 11).

Remark One more situation should be mentioned, in which
the approach may not give repeatable results. Model selec-
tion is built on the assumption that a reliable decision for
one or the other model can be made, since there is no grad-
ual transition from, say, a planar to a general scene model.
However, it is quite common in practice that a scene has
no clear explanation, but is on the borderline between dif-
ferent models. For example, the depth relative to the focal
length is often such that the images are on the borderline
between an affine and a perspective projection, or the depth
range of the scene relative to the focal length is such that
the scene is on the borderline between planar and full 3D.
In these cases, the system does recover the correct number
of motions and a good segmentation, but may not be able
to reliably select the type of model, because the question
which model is correct is ill-posed. The decision taken be-
comes dependent on small variations in the fitting residuals,
standard deviation, and inlier numbers. Even the fluctuations
caused by different random samples can change the deci-
sion. Note however that it usually does not matter, which

way the decision goes, because the problem is caused pre-
cisely by the fact that there is no clearly better model to de-
scribe the scene.6 The same considerations apply in the case
where the relative motion between two objects is small, so
that they move almost like one single rigid object. In that
case, the two possible solutions (two independent motions,
or one common motion with slightly higher reprojection er-
rors) will obtain very similar scores, and fluctuations due to
random sampling will determine the outcome. An example
is given in Fig. 12.

5 Concluding Remarks

We have presented a generic scheme for multibody struct-
ure-and-motion of image sequences. The scheme is robust
to outliers, can deal with unknown and varying number of
moving objects, and with a set of correspondences, which
changes over time. It recovers both the segmentation of the
correspondences into different rigidly moving objects, and
the structure of the underlying scene.

The method starts from atomic two-view motions and
links them to tentative motions through the sequence, while
constantly pruning redundant and overly unlikely motions
to keep the size of the search space under control. In the fi-
nal set of candidate motions, the best solution is found via
model selection, and temporal coherence of the inlier sets is
used to improve the segmentation.

6While the aim of an engineering application is to recover the model
with the highest probability (the MAP solution), a strictly Bayesian
view would be to recover the probability distribution over different
models. The model scores, being essentially log-likelihoods, can be
regarded as samples from that distribution, and the described situation,
where no clear decision can be made, corresponds to a multi-modal
distribution. A possible solution is to make the multi-modality explicit
and return a set of possible solutions with their scores.
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An important limitation of the method is that it is based
on a set of candidate motions generated by random sam-
pling, therefore it can handle only a small number of moving
objects, because of the exponentially growing number of re-
quired samples. In this context, it should be mentioned that
multibody structure-and-motion, as opposed to 2D tracking,
only makes sense for a relatively small number of moving
objects, because the 3D structure can only be recovered re-
liably for objects which subtend a sufficiently large viewing
angle, and hence cover a reasonable part of the image plane.

Furthermore, the current implementation can only handle
sequences of limited length (≈15 frames), because of the
potentially exponential increase in candidates. Both these
limitations are not caused by the model selection procedure,
but by the hypothesis generator which feeds it. If candidates
can be generated within tighter limits or subjected to a more
rigorous pre-selection, the model selection framework can
be applied to larger problems.

A more deep-rooted problem concerns objects with very
few tracked points. The explicit outlier model introduces a
limit for the smallest identifiable motion: there must come
a point where it is cheaper to assign the small set of points
to the outliers, rather than to add a more complex, hence
more expensive motion model. A similar problem exists
for object parts with very few points: for example, points
on a small protrusion on a predominantly planar object
will be assigned to the outliers, because the benefit of the
simpler model outweighs the cost of a few outliers. The
latter case can be remedied with recent methods devel-
oped in the context of RANSAC fitting (Chum et al. 2005;
Frahm and Pollefeys 2006).

A point which needs to be addressed in more detail is
to properly account for consistency, both in space and time.
While we have used the assumption that tracks on the same
object are clustered in space and continuous over time in
an ad-hoc manner, we did not incorporate this prior belief
into model selection. More research is needed to investigate
how to integrate these constraints by means of a probabilistic
prior.
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