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Abstract might happen that the images representing the digit ‘1’ can
be described with a different number of parameters than the

A framework for the regularized and robust estimation of images for the digit ‘2.’ Videos of diverse human motions

non-uniform dimensionality and density in high dimen- contain the same complexity variability. In these cases, it

sional noisy data is introduced in this work. This leads to s important to detect that there are different complesitie

learning stratifications, that is, mixture of manifolds rep present in the same (noisy) point cloud data. This is the

senting different characteristics and complexities indat subject of this work.

set. The basic idea relies on modeling the high dimensional ) . ) ) ] -

sample points as a process of Translated Poisson mixtures, NS problem, clustering-by-dimensionality astfatifi-

with regularizing restrictions, leading to a model which in ~ cation learning has recently been explored in a handful of

cludes the presence of noise. Theoretical asymptoticteesul WOrks. Barbara and Chen, [3], proposed a hard clustering
for the model are presented as well. The presentation of thd€chnique based on the fractal dimension (box-counting).
theoretical framework is complemented with artificial and Starting from an initial clustering, they incrementallydad
real examples showing the importance of regularized strat-POiNts into the cluster for which the change in the fractal di
ification learning in high dimensional data analysis in gen- mension after adding the point is the lowest. They also find
eral and computer vision and image analysis in particular, the number of clusters and the intrinsic dimension of the un-
derlying manifolds. Gionigt al, [13], propose a two-step
algorithm: First, they estimate the local correlation dime
1 Introduction sion and density for each point; then, standard clustering
techniques are used to cluster the two-dimensional repre-
Recently, there has been significant interestin analyiagt sentation (dimension + density) of the data. Souvenir and
intrinsic structure of high dimensional data, this is com- Pless, [30], use an Expectation Maximization (EM) type of
monly known asgnanifold learninge.g., [4, 6, 9, 20, 23, 27,  technique, combined with weighted geodesic multidimen-
32]. Often, points that live in a high dimensional space can sional scaling (weighted ISOMAP [32]). The weights mea-
be parametrized by a number of parameters much smalleisure how well each point fits the underlying manifold de-
than the ambient dimension. A representation (embedding)fined by the current set of points in the cluster. After clus-
of the data in a lower dimensional space is very helpful for tering, each cluster dimensionality is estimated follayvin
analysis and computations on the dataset. [23]. Vidal et al, [18, 34], cluster linear subspaces with an
Most of the works on manifold learning rely on the hy- algebraic geometric method based on polynomial differen-
pothesis that all the points under analysis are sample®of th tiation, called Generalized PCA (GPCA), which also finds
same manifold and thus there is a unique intrinsic dimen-the number of linear subspaces and their intrinsic dimen-
sion. However, this is often not a correct assumption. It is sions. Goh and Vidal [14] extend [26] to cluster a union of
likely that, for example, a collection of image portraits of .J, non-intersectingi-connected nonlinear manifolds. It is
the same person under varying pose and illumination, liesdone with the vectors spanning the null space of the LLE
on a manifold defined by a set of parameters related to thematrix [27], which are a linear combination of the member-
variations in pose and illumination. On the other hand, let ship vectors and the embedding vectors of freonnected
us consider a set of images representing scanned digits. lcomponents. The work of Mordohai and Medioni, [25], es-



timates the local dimension using tensor voting. Cao andproach for robust stratification learning. We show experi-
Haralick, [7], propose a hard clustering by dimensional- ments with synthetic and real data in Section 5, including
ity: First, local dimensionality is computed via local PCA; comparisons with critical literature, and finally, condtrss
and then, neighboring points are clustered together if theyare presented in Section 6.

have the same dimension and if the error of representing the

new cluster as a combination of basis functions in a kernel-

based feature space is small. Among these clustering-by? | ocal intrinsic dimension estima-
dimensionality techniques, only the one by Cao and Haral- .

ick includes spatial information in order to obtain a regula tion

ized classification. Recently, Lu and Vidal, [24], combined ) _ )

GPCA with an additional spatial constraint inkameans ~ L€vina and Bickel, [23], proposed a geometric and prob-
fashion. They showed that, by adding this constraint, the ab|I|s_t|c method_ which estimates the Ic_)cal dl_menspn and
classification is improved in the intersection of the linear density of a point cloud data. This dimension estimator
subspaces. From the computational geometry perspectivelS €quivalent to the one proposed in [31] in the context
a Voronoi-based technigue to compute local dimensionality ©f dynamical systems. Their approach is based on the
has been introduced in [11], and demonstrated for 3D pointideéa that if we sample am-dimensional manifold with”
cloud data. The diffusion distance framework, [8, 22], can POints, the proportion of points that fall into a ball around
work with stratifications, though no explicit estimation of & Pointz, is & ~ p(z,)V (m)R(x,)™. The given point
the clusters is performed and single maps into Euclideancloud, embedded in high dimensiof is X = {z; €
space are performed for the whole data set. Recently, anR”st = 1,...,T}, k is the number of points inside the
following in part the theory of persistent topology [12], a bPall, p(x:) is the local sampling density at point, V(1)
framework for studying stratas based on local homology hasiS the volume of the unit sphere iR™, and Ry () is
been introduced in [5]. the Euclidean distance from; to its k-th nearest neigh-

. bor (kNN). Then, they consider the inhomogeneous process
These recent works have clearly shown the necessity to ( ) y ! ! 9 usp

go beyond manifold learning, into “stratification learnihg N (R, z,), which counts the number of points falling into a

. small D-dimensional spherB(R, z;) of radiusR centered
In our work, we do not assume linear subspaces, and we

. . : .~ “Tatz;. This is a binomial process, and some assumptions
s!mul_taneo_usly estlmate_the soft clustering ar_ld the_ intrin need to be done to proceed. First]if— oo, k — oo, and
SIc dlmenglon and der_15|ty of t-he CIUSterS while pelng ro- k/T — 0, then we can approximate the binomial process by
bust to noise and outliers. .ThIS gollecuon (_)f attnbute; IS 2 Poisson process. Second, the density) is considered
not shared by any of the ploneering Work_s Just des.cr'be,d'constant inside the sphere, a valid assumption for sRall
Our ap_proac_h IS an extension of the Levina and Bickel's With these assumptions, the rateof the counting process
local dimension estimator [23]. They proposed to com- N(R, z;) can be written as

. . . . . . . , Lt

pute the intrinsic dimension at each point using a Maxi-
mum Likelihood (ML) estimator based on a Poisson dis-
tribution. We propose to compute a ML on the whole point
cloud data at the same time (and not one for each point in—T
dependently), based on a Translated Poisson mixture model,
which models the presence of noise and permits to have dif- R R
ferent classes (each one with their own dimension and sam-L(m(x:), 6(z;)) = /log A(ry z¢)dN (r, :vt)—/)\(n xy)dr,
pling density). This technique automatically gives a soft 0 0
clustering according to dimensionality and density, with a wheref(z;) = log p(z) is the density parameter and the

estimation O.f both quantities for eaph class. A prehmm_ary first integral is a Riemann-Stieltjes integral [28]. The max
version of this work was presented in [15] and a regularized .

. . . : imum likelihood estimators lead to a computation for the
version together with asymptotic results in [16]. Theséitec . . . :
) . local dimension at point;, m(z:), depending on all the
nigues are particular cases of the more general Translated .

: . . . ; neighbors within a distancB from 23]. In practice, it
Poisson model introduced in this paper in order to handle. 9 . ca It [23] P
is more convenient to compute a fixed amokif nearest

MR, z;) = p(zy)V (m)mR™ L. 1)

he log-likelihood of the procesS (R, z;) is then given by

noise. neighbors. Thus, the local estimators at painare
The remainder of this paper is organized as follows: In
Section 2 we review the method proposed by Levina and b1 -1
Bickel, [23], which gives a local estimation of the intrin- m(zy) = 1 Zlog Ry () ’ )
sic dimension and has inspired our work. We reformulate k-1 e Rj(z)

this approach in Section 3 in order to include the presence
of noise in the statistical model. Section 4 explains our ap-  6(z¢) =log ((k -1/ (V(m(wt))Rk(xt)m(“))) ,(3)



where V(m(z:)) = (27rm(””t>/2)/(m(xt)l“(%)), and defines the random process which translates a distaimce

r(_m(;f>) = [T tm@)/21etqt  |f the data points be- the input space to a distaneen the observable space. If

long to the same manifold, the authors propose to average\(”; ), defined in (1), is the local rate of the Poisson pro-
over all local estimators:(z; ) in order to obtain a more ro- ~ ¢€ss which defines the counting process in the input space,
bust estimator. However, if there are two or more manifolds then(s), the intensity of the Poisson process in the output
with different dimensions, the average does not make senseSPace is given by
unless we first cluster according to dimensionality and then /
estimate the dimensionality for each cluster. Anotheriposs (s, @) = / f(s|r)elV (m)ymr™=1dr. 4
bility is to include this in the process via the simultaneous 0
soft clustering and estimation technique described in Sec-R’ is different from the radiug considered in the counting
tion 4. Before this, let us present the proposed frameworkprocessN (R, z;). We considerR’ > R in (4) because,
to naturally handle noise as part of the model. points originally at distance greater th&ifrom z, can be
placed within a distance less thdh after the translation
. rocess. In practice, the maximum translation is smalt (jus
3 Translated Poisson model 2 perturbatign because of the noise) and we consﬁfdef(J
. ) ) . R+ o in the particular case of a Gaussian transition density
Usually, point samples are contaminated with noise, thus(11). The log-likelihood of the translated Poisson proéess
the point process that we observe is not a simple sampling R R

of a low dimensional manifold but a perturbation of this _/ /
0 =/1 dN — A dr.
sample process. This can be modeled with a TranslatedL(m(xt)’ (z)) 0 0g(i(s, 2¢))dN (s, 1) o (ry e )dr

Po_isson Proce_ss [29], where an underlying (unobservab_le}rhe parameters of the maximum log-likelihood are ob-
point process is translated to an output (observ_able) poiNt5ined by solving the system of equatiahs/dm = 0 and
process. The input and output spaces of the points are nobL/@@ — 0. We then obtain the following expression for

necessarily the same or even of the same dimension (clearlyynen we use thé nearest neighbor&{NN) instead of the
noise brings points outside of the underlying manifold and points within distance less t8

into the higher dimensional embedding space). More con-
cretely, an input point at locatiom in the input spaceX
is randomly translated to a locatiarin the output spacg, m(xe)= [
according to a conditional probability densjtyz|x), called
thetransition density

For our purposes, we are going to consider the particular

’ —1
1 kil fOR F(Ri(xy)|r)r™ 1 log —R"S”)dr}
F-1E T AR —tdr ’
()
where, by an abuse of notation, we have identified=

L . m(x;) in the right hand side. Note that this expression re-
case where each pointis translated independently of the othduces o the Levina and Bickel estimator [23] in the particu-

ers and there are no deletions or insertions in the translati ) . -
ar case thaf (s|r) = d(s—r), i.e., there is no translation of

process (these more general cases are also studied in [29]*h iginal points. Thi ds to the ideal ith
We have the following critical theorem [29] which says that noenoorilglena points. This corresponds o the ideal case wi

a translated Poisson process is also a Poisson process: . . . . L
Equation (5) is a nonlinear recursive expressiornrin

Theorem (Snyder & Miller [29]). Let {N(A): A C X} which is difficult to solve. Thus, we are going to approxi-
be a Poisson process with an integrable intensity function mate it by an easier to compute closed expression. Since the
{A(z): z € X }. Points of this input point process are trans- translation density is modeling the effect of noise, theeff
lated to the output spac® to form the output point process tive support off (s|r) is going to be concentrated around
{M(B): B C Z}, where each point is independently trans- Then, we can substitut¢”— in (5) by its Taylor expansion
lated according to the transition densiff(z|z). Then, if aroundR;. Let us write (5) in the following way

there are no insertions and deletiods/(B): B C Z}isa 1

-1
Poisson process with intensit _ 1
1sson process With infenstty MM—I“¢K724 : (6)

M@=Aﬂmwwm. g

and expanad™ ! in the integrall; via its Taylor series

_ Since the_ intensity of the Eoisson_process in our mo_del fOR’ F(Ri|r)r™ ' log Ri(x:) g,

is parametrized by the Euclidean distances of the points I, := ST - O

(and not by the points themselves, see previous Section), we Joo f(Rilr)rm=tdr

are going to consider a random translation in the distances. fOR’ F(Ri|r) log ngzt)dr +AIn, +... Iy,
This means that we do not observe the original distancesbut = N =7
noisy distances. Lef(s|r) be the transition density which Joo f(Rilr)dr + Alp, + ... b



where

dr,
(7)

Aly, = (m — 1)R;1 /0 f(R;|r)(r — R;) log M

and

Alp, :

— =R [ SR - Ry @

0

These integrals are small since the effective support of
f(R;]r) has the same order than the level of noise (con-
sidered not very large), and the quantity- R;) is small in

the vicinity of R;. We can then approximate

R’ Tt
I~ Ik f(R/i|r) log %dr.
fo f(Rll’f‘)d’f‘
Notice that with this approximation df, the estimator (6)
still reduces to the noise-free Levina-Bickel estimatoy, (2
thatisZ; = log %, whenf (R;|r) = 6(R;—r). Inthe more
general case, (9) is the expected valuéogf% according

to the transition density(R;|r) and thus reducing the effect
of noise. Using the approximation (9) in (6) we obtain

T, fR
i

=1

(9)

, f(Rz|T) 10g %d?“| . (10)

S f(Rilr)dr

We explicitly estimate, in the following Section, the error
produced inn(x;) when we use the approximation (10) in-

m(xy) = [

stead of (5), for the particular important case of a Gaussian m(z)

transition density,

(s —1)?

202

f(slr) = (11)

\/21_770 P <_ ) '

In this particular case that the coordinates are perturlyed b

notice that the Gaussian is even with resped®t@nd that

(r — R;) is odd. Then, (8) is zero if the effective support of

the Gaussian is within the interviéll, R’], that is essentially

if R; € [30,R' —30]. If R; € [0,30] U[R' — 30, R'], (8)

is bounded byt.502(m — 1)/R;. We will use this bound

for AlIp, independently of the value d?,. Regarding the

integral (7), we use the Taylor expansionof- R;) log %

aroundR;,

Ry (’I’ - Ri)Q
i R;

0 + ...

R
(r — R;)log Tk = (r — R;)log

Again, we consider the worst case scenaRpg [0, 30] U
[R' — 30, R'], and we obtain

1. R
Aly, §4'502mR1- 1og§’:.

We use these bounds and error propagation theory to obtain
the relative error od;,

AIZ'_AINI. AIDi o 2m—1 1 Rk 1
L - Iv Ip T Tm R T )
and the relative error omy (z;),
Am(zy) AT 1
== ==Y Ar,
m(xy) I I(k—1) XZ:
which is bounded by
2 _
Am(zy) < 4.50 (mfzni)(w )2 <1 n m(zy) ) ’
min; (RZRl ’ ) m(xt7 0= O)
(13)

wherem(z,, o0 = 0) is (2), or equivalently, (5) witlr = 0,
andR," = Ip, = fOR f(R;|r)r™=tdr. This provides

a bound on the error of the approximation for the important
case of Gaussian noise. Similar computations can be per-

Gaussian noise, the error in the Euclidean distance can bei’ormed for other translation density (noise models). In the

approximated by a Gaussian as well (see Appendix A for
more details). Thus, the expression for the local dimension
estimator becomes

(Ri—1)?

foR exp (_ 202

In "exp (—

k—1

-1
1 )log %dr

)dr

3.1 Approximation error for a Gaussian
tranglation density

(Ri—r)?
202

(12)

In order to estimate the error of approximating (5) by (10),

case ofo = 0 (no noise), the approximation errdm(x;)

is zero, as expected. If we considér ~ R;, the bound
(13) is inversely proportional to the signal to noise ratid a
proportional to(m — 1) /R~ 2, which is a decreasing func-
tion of the dimensiomn for R; > 1. Note that the estimator
m(x), defined in (5), is invariant to distance rescalings so
we can always ensuie; > 1.

4 Dimensionality and density estima-
tion with ssmultaneous soft cluster-
ing

we compute the integrals (7) and (8), which are the largest
order error terms of the numerator and denominator, respecHaving introduced the critical translational Poisson mpde
tively, in the approximation ofn(z;). For the integral (8),  we are now ready to introduce the mixture of these models



to address the problem of stratification learning for noisy p(y:|t¢), and the log-likelihood is
point cloud data. We start with the basic model, and then
introduce a regularization term. We conclude the presenta- L(Y|) = log p(Y]4) = Z log p(ye| ). (14)

tion providing asymptotic results. =

Let us consider the hidden-state information, that is, Whic
41 Trangdation Poisson Mixture Mode mixture (or expert) generates each observation. We denote
(TPMM) by Z ={z € C;t =1,...,T} the set of hidden variables
and byC = {C*,C?,...C7} the set of class labels. Then,
In [15], we proposed to study a stratification by extend- z, = C7 means that thg-th mixture generateg,. UsingZ
ing the Levina and Bickel's technique. Instead of model- we can write the complete data log-likelihood as
ing each point and its local ball of radiug as a Poisson J
process and computing the maximum likelihood (ML) for j j
each ball separately, all the possible balls are considered logp(Z,Y[) = Z 25 log (yel) ] ’ (19)
the same time in the ML function. The probability density
function for the whole point cloud becomes a mixture of where a set of indicator variablé$, called membership
Poisson distributions with different parameters (dimensi  functions, is used in order to indicate the status of the hid-
and density) in each class. This allows for the presence ofden variables:
different intrinsic dimensions and densities in the ddtase
0l =6(z,C7) {

t=1 j=1

1 if 2 =Y,

These are automatically computed while being used for soft )
0 otherwise.

clustering. We extend this approach here to the more gen-
eral case when we have mixtures of translated Poisson proThe unknown parameters in (15) are: The membership
cesses (thereby handling the noise). function of an expert (class);, the mixture probabilities,
Let us consider/ different Poisson distributions in the 77, and the parameters of each expett,andd’. Usually,
mixture, each one with a (possibly) different dimension  proplems involving a mixture of experts are solved by the
and density parametér Let us denote by’ the vector set  Expectation Maximization (EM) algorithm [10] [21, Chap.

of parametersy = {7 = (7_Tj_a 07, ml)ij = 1,....J}, 3]. The EM is based on the following decomposition of the
wherer’ is the mixture coefficient for clags(the propor-  |og-jikelihood (14):

tion of distribution; in the dataset)’ is its density param-
eter 7 = ¢”’), andm/’ is its dimension. B ; N,
The observable event is, as in the Levina-Bickel ap- L(YTw, H) = - 1h () log [p(ye )]

proach, the number of points inside the bBI(R, ;) of ! (16)
radiusR centered at point;, denoted byy; = N(R, z:). j j

The total number of observationsTg andY = {y,;t = W (ye) log [ (o))
1,...,T"} is the observation sequence. Oftéih,= T, all ‘
points in the dataset are considered. Let us also denote byvhereH ={Wy) < Lit=1,....T,5 = 1,...,J}
p(-) the probability density function and by(-) the proba-  andh’(y;) is the probability that observationbelongs to
bility. The density function of the Poisson mixture modelis mixture j: hi(y:) = Ez[0]|y,¥] = P& = 1|y, ),

M=
Mk

o~
Il

] =
M~

<.
Il

t=1 1

given by whereEz(+) is the expectation with respect #a Since the
J membership functions are indicator variables, the firshter
() = ijp(ytwj,mj). in (16) is the expectation of (15) with respectZo Also
j=1 notice that the second term is the entropy of the membership
functions.

Since the observations follow a Poisson distribution, aad w
use the translated Poisson model introduced in the previous
section, we have

An interesting interpretation of the EM algorithm is
introduced in [17], where the EM is seen as an alter-
nate optimization algorithm of the log-likelihood (16).
Then, the E-step is nothing else than the maximization of

(Y|w7 H) with respect taH with the additional constraint
thatz L W (y:) = 1 for each observation = 1,...,T.
Thus, the variables’ (y;) at stepn + 1 of the optimization
algorithm are

p(ye|07,m?) = eJo 1o () AN (s.we) o= Jg* X (r)dr

where M (r) = e V(m/)m/r™' = and pi(s) =

fOR/ f(s|r)e?” V(m?)ymir™' =1dr. If Y containsT sta-
tistically independent variables (a standard assumption)
then the probability density function of the observation se B () = p(yelmi,, 07l 17)
guence is the product of the individual probability demesiti n+1\Yt ZzJ—1p(yt|ml L) n'

n»-n




In the same way, variables are obtained by maximizing other observations in the sequence,

L(Y|v, H) with respect to) with an additional constraint g

for the mixture probabilitiesz;.]:1 mI=1. This gives equa- S(H) = — Z Z W (y)D(t, j, X, H). (19)
tions (21)-(23) for the variables at step+ 1. In order

j .
to computemn;,,; we have used the same approach as in

t=1 j=1

[23], by means of & nearest neighbor graph. The TPMM  The expression (19) provides a generic framework for intro-
approach just described is summarize®iT PMM Algo- ducing constraints in the soft classification, besides tieso
rithm below, for the particular case of = 0 (no regular-  already present in the TPMM model, namely dimensional-
ization, see below). ity and density. One possibility, as in the NEM algorithm, is

to introduce spatial regularity. Then, as dissimilarityane
sure we usé® = Dy defined as

Dr =3 (1 W (y))

The TPMM algorithm seeks a soft clustering according to ot
dimensionality and density, considering noise in the data
but does not (explicitly) take into account spatial informa

4.2 Regularized TPMM

' Different neighborhoods definitions iRz result in differ-

tion. Adding regularization is the goal of this section. Re gnt kind_s of regularization. A natural ch_oice Is thg man-
greg N g ifold neighborhood, for that, we can define as neighbors

larization further helps to improve the classification ingyo : e 2
P P the k nearest neighbors. However, for specific applications

data and points lying close to manifold edges (see results in ) _ . : :
figures 1 and 2). This regularization is inspired in part by one might be interested in other neighborhoods, e.g., pixel

the work in [1] for the neighborhood EM (NEM), where the neighborhqods or cqntiguous frames in video applications
authors extend the EM algorithm adding spatial constraints (se@exper;?eTt |n.F|gure 8 anq 'Il'a_ble 5)'I

This neighborhood spatial informationis introduced as-ape . € could also Impose spa‘u_a _mt_ra—p ass cqmpactness
nalization term in the log-likelihood, following Hathaway with the definition of a proper dissimilarity function, as in

: ; 16].
EM interpretation [17]. | text, lete (16) | _ o
withlg gggizﬁé?%(;}) n our context, we complete (16) As noted in [1], the EM algorithm with additional con-
' straints can be seen as finding the Gibbs distribution with
F(y,H)=L(Y|y,H) + aS(H) (18) energy—F (¢, H). In the particular case when the ad-

ditional constraint is neighborhood dependeiw,z s (H)

wherea is a parameter that controls the tradeoff between @ndS(H) with Dy, the Gibbs distribution defines a Markov
the spatial term and the likelihood. Its value is also re- Random Field. _ . _

lated to the amount of noise in the dataThen, function ~ The maximization off” (Equation (18)), is obtained as
F is maximized with an alternate optimization technique. in [1], with an alternate optimization technique which re-
Since the new term$, only depends or, the optimiza- sults in an EM-type algc_>r|thrT_1. Maximizing (18) W|th_re-
tion procedure results in a EM-type algorithm with a mod- SPecttoH, with S(H) defined in (19) — with the constraints
ified membership probability that not only depends on the Z;}:l B (y:) = 1 for each observation = 1,...,T, by
likelihood but also on the spatial criteria. The NEM algo- means of Lagrange multipliers — results in the following ex-

rithm uses (note the similitude with MRFs, see below) pression for the membership probabilities:
_ mi, 09yl e—oP(t.4.X.H)
AT j h (ye) = 6(‘%' )i . (20)
Surin) = 33" W00 X ) S
t=1 j=1 I~t

Since the only term in (18) which depends ah is
wherel ~ ¢ indicates that there is a neighborhood relation- L(Y |+, H), the optimal values ofy’ = {(=7,67,m7) for
ship between observatiohandt. By maximizingthisterm,  j = {1,...,J}} do not change with respect to the original
we want, for each observatianas many neighbors as pos- TPMM algorithm. The regularized version of the TPMM
sible with high probability of belonging to the same class as algorithm is summarized in the-TPMM Algorithm be-
observatiort, thus regularizing the classification. However, low (Regularized Translated Poisson Mixture Model Algo-
we will use a more general expression &(H) based on  rithm).

a dissimilarity measure), between every observation and The EM suffers from local maxima, this can be allevi-
ated running the algorithm several times with different ini

'The study of the possible connection between the regutimizéac- tializations. In particular, we add to the EM iterations an
tor o and the level of noise and the translation density in thestedion extra loop where the parametefs” and®’ of each class
Poisson model is an interesting subject of future resedxtdte that this R . . . .
regularization is important beyond the noise, e.g., at foltts edges, see ~ ar€ reinitialized every odd iteration and every even iter-
experimental results. ation.




R-TPMM Algorithm

REQUIRE: The point cloud datd, (number of desired classes),

(scale of observation)y (regularization parameter), amd(noise
level or full noise/translation functiofi).

ENSURE: Regularized soft clustering according to dimemsiity
and density.

1. Compute the local estimators

1 fO )lOg Rk(*t)dri|
! [ -1 z f(Ri(mt)lr)dr
blar) =log ((k -/ (V(m(mt))Rk(m)mm)))

In particular, we use the definition gfgiven in (11).

2. Initializepo = {mj, m}, 035} andeyo = {7}, mj, 63} to any

sﬁet of v?llues which ensures tha}, 7 = >~ 7 = 1 and
Ho={h(ye)=1/J;j=1,...,J,t=1,...,T}.
3. lterations or,
3A. If [ odd _ B ‘
Setm] = m{ and®] = 6], forallj =1,...,J.
Else

Setr] =1/J,forallj =1,...,J.
3B. lIterations om,
Forallj=1,...,J:
3B.1: Compute, foralk =1,...,T,

p(yelmi,, 03l e P X )

h
n+1(yt) Zz L p(ye|ml,, 0L,)mh e—aD(tLX, Hp)'
whereH,, = {hd(y); 5 =1,...,J, t=1,...,T}.
3B.2: Compute
Tp41 = Z hJ (ye) (21)

T -1

M 1= [Z W (ye)m(ze) ™Y hz;(yﬂ] (22)

. j i r . i r . -t
Phy=e = [Z W (ye) f(ze) ™'/ Y B, (yt)}

t=1 t=1 (23)

wherep(z;) = e(*t),

Until convergence of,,, that is, when |y, 41 —¥n |2 <
¢, for a certain small value.

Sety); 1 = ¢ andH; 1 = H,.

Until ||'J}l+1—'€[;l||2 < €, ||I_{l+1—H1||2 <eorl= lmax.2

2|n the experiments we usgax = 10

Remark 1. The PMM and R-PMM algorithms introduced
respectively in [15] and [16] are particular cases of the pa-
rametersa (regularization) ands (noise) in the R-TPMM
algorithm . Let us introduce the following notation for the
particular cases of these parameters:

¢ PMM: a=0ando = 0.
e R-PMM:a > 0 ando = 0.
e TPMM:aw = 0 ando > 0.
e R-TPMMx > 0 ando > 0.

We will use the above notation in the experiments in Section
5.

Remark 2. Notice that the estimator§22)(23) in the
PMM and R-PMM approachess( = 0) are weighted
harmonic means of the local estimatq&-(3) of Levina-
Bickel. The weight at each point is the probability of
the membership functior,. In the particular case of

a unique class,/ = 1, we obtain the global dimen-
sion estimator proposed by MacKay and Ghahramani
(http://www.inference.phy.cam.ac.uk/mackay/dime}io

a particular case of our proposed framework.

As proved in [2], ifa is small enough, (18) has a guar-
anteed global maximum for a fixed valuef and the ad-
ditional termS(H) does not affect the convergence of the
EM-type algorithm. It can be shown (see Appendix B) that,
for the case oDp, the corresponding bound enis

1
2maxy ;> (1 —hi(zy))

Notice thatap < 1/(2k) in the worst case scenario.

Using the same analysis as in Section 3.1 we find that the
relative error produced in (22) by using the approximation
(10) form(zx;) is

ap <

Am/ < 4.50%(m/ — 1) (1 N m? )
M ming, (Ri(yt)Ri(yt)mj_l) mi(o=0)/

wheremi (o = 0) is (22) witho = 0, and R; (y,)™ ~! =
Ip, (yt)-

4.3 Asymptotic analysis

Levina and Bickel show in [23] that under the assumptions
T — o0, k — oo, andk/T — 0, that is when the Poisson
approximation is correct, the mean and variance of the di-
mension estimator (2) (witk — 2 instead ofk — 1 in the
denominator) are

Elm(z,)] = mgp, Varim(z)] =



where ny- is the actual dimension. We can apply the same PMM [ RPMM || TPMM [ R-TPMM

; ; : Estimated parameters
type of_ anaIyS|s_ to our model in the particular case of hard —— 55 T Tor 150 100 1T 167 103 T 87 ot
clustering, that is P

1.01 | 1.10 1.00 | 1.13 || 1.05| 1.09 || 1.03 | 1.11
Points in each class

W () {1 if j = argmaxh’(y;), Pl |[ 787 | 13 || 798 | 2 788 | 12 || 798 | 2
Yt) =

. Sp. || 21 | 279 || 22 | 278 || 21 | 279 || 22 | 278
0 otherwise.

We assume, in addition, that all the points that belong to Table 1: Estimated parameters and clustering results of a
class;j are well classified. Then, we obtain the following spiral and a planek = 30, J = 2).
results

Bl = mi+ — T
[m?] = my. + (k—1)N; =1’ We test TPMM and R-TPMM with a small value efdif-
' ferent than zero even if there is no noise just to show that
Var[m’] = (m%,)20 ( 1 ) ’ a small error in the estimation of does not significantly
(k—=1)N; —4 affect the result. Notice that the regularized versionsusf o

proposed algorithm improve the classification at the edges.
In the Souvenir-Pless algorithm we use= 10 and dimen-
sions 2 and 2 (it gives a better result than using the actual
dimensions, 2 and 1, as parameters). The GPCA algorithm
does not give good results because it is designed for linear
manifolds. Table 1 contains quantitative results of the dif
ferent versions of our algorithm.

Next, we added Gaussian noise, with standard deviation
5 Experimental results 0.66, to the point coordinates. Then, if we approximate the

transition density with a Gaussian (see Appendix A), we use

We now present experimental results with synthetic and realth® estimated standard deviatior= 0.66v2 = 0.93. The
data for the proposed R-TPMM and its variants. We also €St Of the parameters we use are- 40, J = 2, a = 2,
compare some of the results with the ones obtained with@nd for Souvenir-Plesg; = 20 and dimensions 2 and 2.

GPCA [33] and the Souvenir and Pless [30] algorithms. We The quali_tati\{e comparisop of thg different algorithms can
fixed a ando experimentally. For we usually use values ~°€ Seen in Figure 2. Again, notice how the classification
in the interval[0, 3] except for the video experiment with  ©f the points at the edges is better in the regularized ver-
temporal regularization where we use= 40. As for the sions. Table 2 contains the quantitative results for the dif

case ofr we use a value in the order of the mean distance f€rent variants of the proposed algor_ithm. _In particu_l‘ar, i_
to the first neighbors = vR;, whereR, = % WACH can be seen that the translaf[ed versions give an estimation
and0 < v < 1. In the experiments with real data — dig- 0" the dimensionn less sensible to noise.

its, faces, video activities, and motion — we use the follow-

ing values forv: 0.4,0.4, 0.25, and 1 respectively. In the ST

first (artificial data) experiment, since we know the level of ")q—' ")ﬁ— ST —

noise in the point coordinates, we use the estimates \ : : i

where n, is the correct intrinsic dimension of clagsand

N; is the amount of points classified as clgssSee Ap-
pendix C for the details of the proof. The analysis of the
density estimato#’ is the subject of current research, as
it is the study of the asymptotic behavior for the full soft
clustering model.

e e AN

computed in Appendix A. The only parameter in GPCA is -

the number of clusters. In the Souvenir-Pless algorithm the

input parameters are the number of nearest neighbors and (2) PMM (b) R-PMM (c) TPMM

the dimension of each cluster. We also fixed these parame- e e, J—

ters experimentally in order to obtain the best classificati . q— T a‘— ,‘g__

results. L) { ) ; Ly
First, we work with a synthetic point cloud data formed S e S

by 300 samples of a spiral and 800 of a plane, both in 3D

embedding space. We compare the following algorithms: (d) R-TPMM (e) GPCA (f) Souvenir-Pless

PMM, R-PMM, TPMM, R-TPMM, GPCA, and Souvenir-

Pless. Figure 1 shows, for each algorithm, the point cloud Figure 1: Clustering of a spiral and a plane. Results with
with each point colored and marked differently according to different algorithms (this is a color figure).

its classification. In the different versions of our propbse

algorithm we set = 30, J = 2, a = 0.5, ando = 0.1.



(@) PMM (b) R-PMM (c) TPMM @J=2k=30 (b)J=3k=20 (c)J=3k=30

o T KR 2 T o R

Figure 3: Clustering of a spiral and a plane with 2.5% of

;""NMK%*. - outliers with R-TPMMg = 1 ando = 0.1 (this is a color
Mg K figure).
(d) R-TPMM (e) GPCA (f) Souvenir-Pless

two different classes, according to the different densitie
The estimated dimensions are: 1.98, 1.02 and 0.99. And
the estimated densities: 0.49, 0.53 and 6.89 respectively.

Figure 2: Clustering of a spiral and a plane with noise.
Results with different algorithms (this is a color figure).

PMM [ RPumMm ] TPMM ] RTPMM | [
Estimated parameters

m 247 | 151 248 | 143 | 1.86| 1.35| 1.87 | 1.32

0 0.13 | 0.03 || 0.15| 0.03 || 0.87 | 0.34 || 0.83 | 0.40

Points in each class

PI. 764 | 36 800 0 784 | 16 800 0

Sp. 22 278 25 275 27 273 29 271

Table 2: Estimated parameters and clustering results of a

spiral and a plane with noisei(= 40, J = 2). Figure 4: Clustering of a Swiss roll and a line with two
different densities with R-TPMM, = 20, J = 3, anda =
2 (this is a color figure).

In orfder tlo see hovr\]/ the R'TP'\SN(; perfoormfs 'r? the Pres- — asatestof the performance with real data, we first work
?hneces Oira?lu;rﬁjrs,lwe a¥i pert_ur_ el 25{0 0 tde p?lnts N \with the MNIST database of handwritten digitsyhich has

€ spiral plane. € original point Coordinates areé , ot set of 10.000 examples. Each digit is an image of
within the mtgrvals[—ll, 21].’ 5, 25].’ and [._11’ 14].' The_ 28 x 28 pixels and we treat the data as 784-dimensional vec-
perturbed points follow a uniform distribution within the-i tors. We analyze the mixture of digits one and two, some
ter;als[—30, 30].’ 15, 35&’ and[h—30|, 30]..f.We_ useo :I ! f examples of those scanned digits as well as the clustering
;nreg d:iffgé'nt':égg;i_?’ 5 f)vlesl; f goézs)'}ci“gnkr%gé? " results are in Figure 5. Observe how the classification im-
S T proves adding regularization and including the noise in the

b) J =3, k :132'0-”'3 S|r8n;nb5|(inoseolit2ged Z‘ltze;g thrlezgnodel (Translated Poisson). We have used R-PMM with
casesare: a)1.10and 1.88;b) 1.06, 1.88, and 14.30, €) LS, _ 3 ‘rpmut with o = 1.5, and R-TPMM witha = 2

1.85, and 11.16. When we set two classes, the outliers are, |, " | = oo Bickel's technique gives a dimension

classified as the same class as the spiral. Note that the estiz, o o 11 26 and Costa-Hero's 9. These methods give a
mation of the embedding dimensions are not affect_ed,by thedimension in between the two different dimensions present
outllers._ Wher_w we set three classes the <_:Iass o_utl|er has 3n the point cloud. With the R-TPMM algorithm (and its
Iarggr d|men_s|0n and the ampunt of outlle_rs which belong variants), we are able to separate the points (images)-corre
to this class is reduced Wh(mncre‘aseg ﬁlnce we do not sponding to each digit, both sets have different dimension-
have Qnoughsamples ofthe cla}ss outlier’in each ball éher ality and density, and handle the noise and regularization.
are mixed samples from the spiral and/or the plane), we Ob'We have observed that some other digits do have the same
tain a very large dimension. In these balls, the assumptiondimensionality as expected. Observe in the Table of Fig
of approximate constant density is not satisfied either. 5 how the diménsion is redu;:ed with the (R-)TPMM, these'
The experiment in Figure 4 illustrates how the soft clus- | 5jues are much closer (than the ones with (R-)PMM) to
tering is done according to both dimensionality and density 1e dimension obtained with Isomap, see graph in Figure 6,

The data consists of 2000 points on the Swiss roll, 400 0n gy jied to each one of the digits by separate. The fact that
a line with high density and 50 on another less dense line.

We have set/ = 3 and the algorithm clusters the line in 3http:/fyann.lecun.com/exdb/mnist/




the dimension is reduced when considering the translated PMM R-TPMM
process indicates that the high dimensions were originally k=35 || k=50 [ k=35 [ k=50

. . . h Estimated dimension

due to thg noise (thls_ can be also inferred by observing the————279 [ 294 437 2.79 || 3.34 | 2.50 ]| 3.60 | 2.59
Isomap eigenvalues in Fig.6). Points in each class

569 16 575 10 584 1 584 1
0 65 0 65 0 65 0 65

»n
o u

0.2 08

07|

@ 0.6
8

£
S 05|

5, Table 3: Clustering results of the mixture of subject 5 (all
;%ZZ poses, all illuminations) and subject 6 (one pose, all iilum
o1 nations) in the Yale Face Database B. PMM and R-TPMM
tsomap dmongionaty © T omap dmongionaiy© (o = 0.25, 0 = 1) algorithms with two different values of
(a) Digit 'L’ (b) Digit "2 k. The algorithms are applied in th&t x 48 dimensional
space.
Figure 6:1somap dimensionality of Digits one and two. The
graph show the residual variance of the first ten Isomap em-
bedding dimensionalities.

Residual variance
°

GPCA [ Souvenir-Plesg
Points in each class

Subject5|| 325 | 260 || 476 109

Subject6| 0 65 20 45

We also analyze images from the Yale Face Database

B,* which contains images of 10 subjects under 585 view- Table 4: Clustering results of the mixture of subject 5 (all
ing conditions (9 poses and 65 illumination conditions, se poses, all illuminations) and subject 6 (one pose, all ilum
Fig. 7. Each image has a sizea0 x 480 pixels. Forcom-  nations) in the Yale Face Database B. We apply GPCA and

putational reasons we subsampled the images by a factor o§ouvenir-Pless algorithms to the data pre-projected onto a
ten and use eactvl x 48 image as a vector in a high di- 5 dimensional space.

mensional space. We analyze the point cloud formed by the

585 images of subject 5 (varying pose and illumination) to-

gether with the 65 images of subject 6 only in the first pose for example, a fixed pose under varying illuminations, in
and under varying illuminations. The estimated dimensions both subjects, all the points are classified in the same class
and confusion matrices using the PMM and R-TPMM al- since both manifolds have the same dimension (complex-
gorithm witha = 0.25 ando = 1 are presented in Table ity). In this particular case, we tested the GPCA algorithm
3. Note how both subjects are well separated, and the set ofind it gives a 100% accurate classification.

images of subject 5 has a dimension one unity larger than
the dimension for subject 6, since we do not consider the
pose variation for this subject. The classification resarés
improved using regularization and the translated Poisson
model. Observe also that changing the number néarest
neighbors does not significantly change the results. Table 4
contains the confusion matrix obtained with the GPCA and
the Sou_vemr—PIess algc_)rlthms. These aIgonthms are .Com'Figure 7:Examples of images of subjects 5 and 6 of the Yale
puted with a pre-projection of the data onto a 5-dimensional Face Database B. See results in Table 3

spacé. This is necessary in the GPCA because, although ' '

not being an iterative algorithm, it consumes a lot of time in

high dimensional spaces. For the Souvenir-Pless algorithm The R-TPMM framework is also tested to study differ-
this point is not so critical but we obtained better clasa#fic  ent human activities in video. We created a point cloud with
tion results in the reduced dimensionality space. However,the frames of a video of a person performing four different
W|_th_ the proposed R-TPMM we obtain better results in the getivities: Standing, walking, jumping, and arms waving,
original space. B _ all performed in a static background. Each original frame is
It must be clarified that the R-TPMM is able to sepa- 480 x 640, sub-sampled td8 x 64 pixels, with 1673 frames
rate both subjects because their corresponding images lie i (see some frame examples in Figure 8). This is mainly to
manifolds of different dimensions. However, if we consider speed up computations. In video applications, one may be
ihttpiiove.yale.edulprojectslyalefacesBlyalefachsBl interested in tgmporal regqlarlzatlon. For that, we cosrsid
SWe compute the SVD of the matrix dafa= UXV” and consider ~ & temporal ne'thorhoqd PR, more conc_retely we tgke
the matrix formed by the first 5 columns &L as the embedded data. into account the 6 previous and 6 posterior frames in the
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PMM [ R-PMM [ TPMM [ RTPMM
Estimated parameters

: 7.33 12.79 7.34 12.87 2.86 7.14 2.88 7.24
’ -7.38 | -23.99 || -7.50 | -23.11 || -1.52 | -12.70 || -1.62 | -12.90
Points in each class

T 1032 0 1032 0 1032 0 1029 3
2 70 1065 57 1078 36 1099 17 1118

<3

Figure 5:Clustering of scanned digits ‘1’ and ‘2. Some examples gitdiand table with estimated parameters and clustering
results for different variants of the R-TPMM algorithm witk=2, k=30 (recall that the density i = e’ and thusp > 0 for
6 € R).

regularization term. The confusion matrix with the classifi quence. As in [34] we pre-project the data, originally in

cation results using the R-TPMM algorithm (with= 10, a 60-dimensional space (2 coordinate80 frames), onto
a = 40 ando = 0.25) is presented in Table 5. The errorin a 5-dimensional space. In Table 6 we show the classifica-
the classification affects only 4% of the frames. tion effectiveness for different methods: Costeira-Kanad

Ichimura, Kanatani-Sugaya (the three of them reported in
[19]), Souvenir-Pless, GPCA and R-TPMM. For the R-
TPMM we usek = 10, « = 2 ando = 0.05. We also
tested our algorithm with the other two sequences used in
[19, 34] and obtained a single class since the two differ-
ent motions have the same dimension (complexity). Thus,
it is necessary to introduce an additional constraint in the
R-TPMM approach in order to deal with these cases.

Figure 8:Four sample frames of human activities in video.

Samples in each cluster
ClL|{C2| C3| cC4 Figure 9: Two frames of a sequence of the motion segmen-
Standing|| 505 | O 6 0 tation database of the Kanatani Laboratory.

Walking 0 464 | 45 14
Waving 1 1 |430| O
Jumping 0 0 0 | 207

| Method | Effectiveness|
. s . Costeira-Kanade| 60.3%
Table 5: Classifying human activities in video with the R- Ichimura 92 6%

TPMM algorithm ¢ = 10, a = 40 ando = 0.25). We Kanatani-Sugay4 100%

use the 6 previous and 6 posterior frames as neighbors in Souvenir-Pless 93.38%
Dr, which results in a temporal regularization. The global GPCA 100%
classification is 96% accurate. RTPMM 100%

Finally, we tested the R-TPMM algorithm in a mo- Table 6: Classificati ing diff hods. f
tion segmentation application. We use a sequence of the able ©: Classification rates, using difierent methods, for

Kanatani Lab® see some examples of frames in Figure 9. the motion segmentation in t_he _Kanatani Laboratory se-
This sequence was originally used in [19] and then in [34]. quence (see example frames in Fig. 9).

The data consists of the 2D projection coordinates of the
trajectories along the sequence of some interest points. Th
sequence that we analyze corresponds to a car moving i
a parking lot and there are two different motions in the se-

Regarding the computational time, the most expensive
art is the kNN-graph. In the digits experiment (Fig. 5),
167 points of dimension 784, the execution takes 18.37s

while 10.29s of the total time is spent in the computation of
Bhttp://www.suri.it.okayama-u.ac.jp/data. html the kNN-graph. For the experimentwith the Yale faces (Fig.

11



7, 650 points of dimension 3072) the execution time is 7.64sn; ~ N(0,0?), i.e., X is a noisy version of{. Let D;;
(3.70s for the kNN-graph). In the video experiment (Fig. (resp. D;;) be the Euclidean distance between points

8, 1673 points of dimension 3072) the total time and the andz; (resp.#; andi;). We can WriteDij as a function of
kNN-graph time are, respectively, 29.78s and 24.87 (CPU: {he original pointsz; andz;:

Pentium Core 2 Duo, 2.0 GHz, 2.0 GB memory).

Dyj =||2; — ;|2

6 Conclusions

In this paper we developed a framework for the simulta-
neous and regularized/constrained estimation of thenintri

1/2
= (D + lIni = nyll5 + 2 <(zi — z;), (ns —ny)>) '~

Expanding the previous expression in a Taylor series around
D;; (considering the rest of the terms sufficiently small), we

sic dimensionality and density of high dimensional noisy obtain,

point cloud data sampled from a stratification, as the basis . <(z; —x5), (i —n)>  |ni —njl|3
for complexity/density based soft-clustering. The altori ij ~Dij + D.. + 2D,

is based on a statistical model which addresses the pres- v 9 N
ence of noise in the measurements. Our previous related _ L@ = ), (i = nj)>) +0(c®)
works [15, 16] are particular cases of the R-TPMM algo- 8 Digj

rithm introduced in this paper. We showed that regulariza-
tion constraints can be naturally introduced in this appioa
The experiments showed the importance of incorporating

=D;j + Dy, + Dy, + Dy, + O(c?).

In order to estimate the probability density function of the

the noise in the model and also of adding regularization in three error termg,,,, i = 1...3, in D;; we make use of
the classification. We also showed that the algorithm is ro- the following properties:

bust to outliers. With the proper dissimilarity functiondan
neighborhood type, we are able to add spatial or temporal
regularity in the classification or intra-class spatial parci-

ness. Other type of constraints are possible under the same 2.

proposed framework. Asymptotic theoretical results were
also presented.

We would like to follow this direction of work and study
other constraints which can be useful for stratificatiomiea
ing. One possibility is to define a dissimilarity function
which leads to separate different manifolds that share the
same dimensionality and density. This will define a new
constraint that will also help in the classification process
when there is an intersection of two manifolds (and where
the algorithm fails at the present stage). Since the den-
sity depends on the dimension, we are intrinsically giving
more importance to the dimension criterion in our frame-
work. The control of the relative importance of these two
criteria needs also to be addressed.

Appendix A: Estimation of the distri-
bution of distanceerrors

In this section we derive the distribution of the error in the

1. If X ~ N(p,0?)anda, b € R, thenaX +b ~ N(au+
b, (ac)?).

If X ~ N(ux,0%)andY ~ N(uy,o%) are inde-
pendent variables, then:

(@ X +Y ~ N(ux + py,0% + 0v),

(b) X —Y ~ N(ux —,uy70§( +O'}2/)

3. 1If Xq,..

thenU = >, (U—”) follows a Chi-square dis-
tribution with p degrees of freedond] ~ X,%-

., X, areiid variables s.tX; ~ N(u;,0?),

4. If X is a random variable with probability density
function f(z) andY = aX, wherea € R, then, the

probability density function ot is ﬁf(%).

5. The probability density function of the sum of two in-

dependent random variabl@sandY with probability
density functiong’ andg is the convolution

s = [ " fwge - v) dy.

The error termD,,, ~ N(0,202), by using proper-

distance between a pair of points when this distance is com+jes 1, 2(4) and2(b) (notice that the denominator cancels
puted from noisy points. We are interested in the particular ot the weights in the numerator when adding the indi-
case when the noise follows an i.i.d. Gaussian distribution;igyal (constant) variances in each coordinate). The sec-

in each of the point coordinates. N D;; Di; .
Lot X — {;Jt € RVt — 1. . T} andX — (i € ond term,D,, ~ X2 D2 (a—;x) (properties 2(b)

RP;t = 1,...,T} be two point clouds which are related in N4 3)- And {)gr the IastDEerm, using properties 1 - 4,
: i . oo 32D2 3202,
the following way: #; = z; + n., for each index, where ~ Dny ~ Xi = —24x1 (— L :v)
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Finally, using the previous results and Property 5, we can Substituting the last expression with values in (24) gives

write

D~ Dij +W; where W ~ N(0,20%) * {2 * Xi.

In Figure 10 we show the distributioN (0, 20%) com-
pared with the estimated distributid# for o = 0.5, p = 3
and two different values foD;;: 1.0 and 3.0. As we can
see in this Figure, for a fixed, asD;; gets larger, the dis-
tribution W is closer to aV (0, 2¢%) distribution. Then, for
values% not very small, thatis, for sufficient SNR, we can
approximate the probability density function of the errror i
the distance as a Gaussian.

0.03

- = = Gaussian
—— Estimated D=1
Estimated D=3

0.025r

0.02r

0.015r

0.01r

0.005r

Figure 10: Gaussian distributioi (0, 202) with o = 0.5,
compared to the estimated distributidn for two different
values ofD;;: 1.0 and 3.0.

Appendix B: Bound on « for conver-
gence

We now show that, for a fixed, F'(v, H) defined in (18)

has a global maximum. For that, we follow the same lines

as in [2]. Let us callFy, (H) the functional (18) when is
fixed. Fy,(H) has a global maximum if it is strictly concave,
i.e. if its Hessian matrig{, with components

) ~1/h] if i = jandl =t
0°F ; .
Hirje = Shishl 20(1—h]) ifi=jandl~t,
L 0 otherwise,

(24)

is strictly negative. The Gerschgorin-Hadamard Theorem

tell us that the eigenvaluesof this Hessian matrix belong
to the union of discs indexed ly, t) and defined by

> Ml

(@D#3:t)

IA = Hje jt] <

13

Sinceh! € [0,1], H is strictly negative, i.e., every eigen-
value\ < 0, if ’)\ - hl—J‘ < 1, and this is true for

2204 l—hj <2amaxz l—hj

I~t I~t

1

a < i
2max; Y, (1 —h)

(25)

In the particular case of hard clustering (25) becomes

1
<3 max; (# neighbors of in other clasy’

and in the worst casey < 1/(2k).

Appendix C: Proof of the asymptotic
analysis

When we consider the particular case of hard clustering we
have

1 if j = argmaxh’(y,),
0 otherwise.

hj(yt) = 55 = {

The estimator of the dimension in clagsan be expressed
as

-1

Zl
whereN; is the number of points clustered in clgsand

i
fo Ri(

In the (R-)PMM approach we havR; = R;. We can
rewrite (26) as

,  (26)

[t

3t1

) log rdr
)|r)dr

log R;(y:) = (27)

m? = Nj(k —1)mj,Z 71, (28)

where 4, is the actual dimension of clagandZ is

T

k_
7 — SV Y =m? 11 Ry(y1)
B SR
t=1 =1

With the proper definition of the upper limi’ in the inte-
gral in (27) and the transition densiff(2;|r) when R; is
close toR’, we can guarantee th&t; < Ry (always true in

(R-)PMM). In this case, we use the fact tha; /R;,)™




is distributed, under the Poisson assumption, as a Uni- [2] C. Ambroise and G. Govaert. Convergence of an EM-type

form(0,1) distribution, the—log of such a distribution is
an Exponential(1), and then, the sum(&f— 1) Exponen-
tial(1) distributed variables is a Gamma{ 1,1). Then,
Y, ~ Gammag — 1,1) and the sum oV; Gammag — 1,1)
distributions givesZ ~ Gamma(V;(k — 1),1) andZ~! ~
Inverse-Gamma{ — 1)N;,1). The expectation of ~! is

1/(N;(k—1)—1), and substituting in (28), considering that

1 < N,(k — 1), yields

1 m%
E[m’] = —
=t N, =

Regarding the variance,
Varm’] = N7 (k — 1)*>Var[Z "],

where

VelZ = NG PG =)

We now define

o 2—5Nj(k—1)
TN —1) —2)

After simple computations and under the hypothesis that

la| < 1, we obtain

i (mj )2
A R

1+ ia"‘| ,
n=1

and since the second term is smaller than the first one, we[

can write

Varim’] = (m},)20 (W) .
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