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Abstract The reconstruction problem is usually formulated
as a variational problem in which one searches for that im-
age that minimizes a so called prior (image model) while
insisting on certain image features to be preserved. When
the prior can be described by a norm induced by some inner
product on a Hilbert space, the exact solution to the vari-
ational problem can be found by orthogonal projection. In
previous work we considered the image as compactly sup-
ported in L, (R?) and we used Sobolev norms on the un-
bounded domain including a smoothing parameter y > 0 to
tune the smoothness of the reconstructed image. Due to the
assumption of compact support of the original image, com-
ponents of the reconstructed image near the image boundary
are too much penalized. Therefore, in this work we mini-
mize Sobolev norms only on the actual image domain, yield-
ing much better reconstructions (especially for y > 0). As
an example we apply our method to the reconstruction of
singular points that are present in the scale space represen-
tation of an image.
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1 Introduction

One of the fundamental problems in signal processing is the
reconstruction of a signal from its samples. In 1949 Shan-
non published his work on signal reconstruction from its eq-
uispaced ideal samples (Shannon 1949). Many generaliza-
tions (Papoulis 1977; Unser 2000) and applications (Kybic
et al. 2002; Candes et al. 2006) followed thereafter.

Reconstruction from differential structure of scale space
interest points, first introduced by Nielsen and Lillholm
(2001), is an interesting instance of the reconstruction prob-
lem, since the samples are non-uniformly distributed over
the image they were obtained from and the filter responses
of the filters do not necessarily coincide. Several linear and
non-linear methods (Nielsen and Lillholm 2001; Janssen et
al. 2006; Kybic et al. 2002; Lillholm et al. 2003) appeared
in literature which all search for an image that (1) is indis-
tinguishable from its original when observed through the
filters the features were extracted with, and (2) simultane-
ously minimizes a certain prior. If such a prior is a norm of
Sobolev type on the unbounded domain one can obtain vi-
sually attractive reconstructions while retaining linearity, as
we have shown in earlier work (Janssen et al. 2006; Duits
2005). However, boundaries often cause problems to signal
processing algorithms (see e.g. Mallat 1998, Chap. 7.5 or
Daubechies 1992, Chap. 10.7) and should be handled with
care.

The problem that appears in the unbounded domain re-
construction method is illustrated in Fig. 1. In this figure
the left image is a reconstruction from differential struc-
ture obtained from a concatenation of (mirrored) versions
of Lena’s eye. The input image is depicted on the right of
Fig. 1 and is still considered as a compactly supported ele-
ment in Ly (R?), as required in our previous work (Janssen
et al. 2006). So the mirroring has nothing to do with
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Fig. 1 The left image shows a reconstruction from differential struc-
ture obtained from the right image using the unbounded domain re-
construction method as presented in our previous work (Janssen et al.
2006). The upper circle in the right image shows a detail of an area
near the center of the image and the circle on the right shows a cor-
responding area near the boundary of the image. One would expect

boundary conditions. In this particular case we observe that
our previous work shows limitations. If the reconstruction
method on the unbounded domain would work properly, de-
tails that appear in the center of the image are also expected
to appear at the corresponding locations near the boundary
of the image. This is, however, not the case. To clarify this
observation we depicted two magnifications of correspond-
ing positions in the image. The upper circle in Fig. 1 con-
tains a magnification of a part taken from the center of the
reconstructed image. This will henceforth be called “magni-
fication a”. The circle on the right contains a magnification
of a corresponding patch near the boundary and is referred
to as “magnification b”. Note that magnification a contains
details that magnification b does not contain.

This problem can be attributed to the fact that kernels,
associated to the image-features, partly lay outside the im-
age domain and are “penalized” by the energy minimization
methods on the unbounded domain. As a result the recon-
structed image shows defects, in particular near the bound-
ary. Even kernels that are attached to features close to the
center of the image are unnecessarily suppressed by the en-
ergy minimization formulated on the unbounded domain. So
the reconstruction depicted in magnification a still suffers
from a boundary problem, although less visible than the re-
construction of magnification b.

A first rough approach to tackle this problem could be to
extend the image symmetrically in all directions and cut out
the center after reconstruction. This results in an increase in
computation time and it still does not solve the problem in a
rigorous manner. Instead, in this article we solve this prob-
lem by considering bounded domain Sobolev norms. An ad-
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that the same details would appear in both circles. However, this is not
the case since kernels that are associated to image-features partly lay
outside the image domain and are, as a consequence, penalized by the
energy minimization methods that are defined on the unbounded do-
main. This is illustrated by a marked circle, placed on top of the input
image that is displayed on the right

ditional advantage of our method is that we can enforce a
much higher degree of regularity than the unbounded do-
main counter part. Furthermore, we give an interpretation of
the 2 parameters that appear in the reconstruction framework
in terms of filtering by a low-pass Butterworth filter. This al-
lows for a good intuition on how to choose these parameters.

2 Theory

In order to avoid the problem discussed in the introduc-
tion and illustrated in Fig. 1 we restrict the reconstruc-
tion problem to the domain £2 C R? that is defined as the
support of the image f € Ly(R?) from which the features
{cp(f)}f), cp(f) € R are extracted. Recall that the L, (£2)-
inner product on the domain £ C R? for f, g € Lo(£2) is
given by

(f, L) = /Q f(x)g(x)dx. (1

A feature c,(f) is obtained by taking the inner product
of the pth filter ), € L (§2) with the image f € Lx(£2),

cp(f)=Wp, HLy2)- ()

An image g € L,(£2) is equivalent to the image f if
they share the same features, {cp(f)}f;=1 = {cp(g)}ﬁzl,
which is expressed in the following equivalence relation for
/.8 €La(82):

f~g & Wy D) =Wy 9L.(2)
forallp=1,..., P. (3)
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Next, we introduce the Sobolev space of order 2k on the
domain £2,

H*2)={f ela(2)||IAI f €Ly (2)}, k>0. (4

The completion of the space of 2k-differentiable functions
on the domain £2 that vanish on the boundary of its domain
052 is given by

2k 2k !
Hy (82) ={f e H™ (£2) | fla2 = 0}, k>§- ()
Now Hgk’y(.(?) denotes the normed space obtained by en-
dowing Hgk(.Q) with the following inner product,

2k L s
(f: Oshong) = (f Do) + Y (IAP £ 1A128)y, g

= (£ 9@ T (811 1. 8) oy ©

forall f, g € H3%(£2) and y e R™.

The solution to the reconstruction problem is the im-
age g of minimal Hék’y—norm that shares the same fea-
tures with the image f € Hék’y(()) from which the fea-
tures {c,(f )}11;:1 were extracted. The reconstructed image
g is found by an orthogonal projection, within the space
H(z)k’y(.Q), of f onto the subspace V spanned by the filters
K p that correspond to the v, filters,

. 2 _
argMin gy o) =Fv f @)
as shown in previous work (Janssen et al. 2006). The filters

Kp € ]I-]I(Z)k’y(.Q) are given by
kp =T +y* Ay, ©)

As a consequence (k, f)Hgk,y(Q) = (Vp, Ly (o) for all f

for (p =1... P). Here we assumed that f € H?* (£2). How-
ever, it suffices to take f € IL, (£2) if ¢ satisfies certain reg-
ularity conditions. The interested reader can find the precise
conditions and further details in Duits (2005).

The two parameters y and k that appear in the recon-
struction problem, allow for an interesting interpretation. If
2 =R, the fractional operator (I +y2*|A[¥)~! can be writ-
ten as

I +y*a-tr
=F Nor (1+y* o) " UF ) )

for all f € H** and w € R. Here F : Ly(R) — Lo(R) de-
notes Fourier transformation, which is defined almost every-
where as

(Ff) () = «/%TT /_ Z Fx)e i dx. (10)

Therefore it is equivalent to filtering with the classical low-
pass Butterworth filter (Butterworth 1930) of order 2k and
cut-off frequency wy = % The Fourier transform of this fil-
ter is defined as

B (‘”)— ! (11)
o) " 14120

The filter response of the Butterworth filter is shown in
Fig. 2. One can observe the order of the filter controls how
well the ideal low-pass filter is approximated and the effect
of y on the cut-off frequency.

2.1 Spectral Decomposition

In this section we set k = 1 and investigate the Laplace op-
erator on the bounded domain: A : H(z) (£2) — L, (£2). This
is a bounded operator, since [|Af||L,(2) < 1||f||H%(Q) for

all f e H(z) (£2), and its right inverse is given by the minus
Dirichlet operator:

Definition 1 (Dirichlet Operator) The Dirichlet operator D
is given by

Ag=—f,
g=Df < {g f (12)
glag =0

with f € L, (£2) and g € HZ (£2).

The Green’s function G : £2 x §2 — R of the Dirichlet

operator is given by
{ AG(X, ) = —bx, (13)

G(Xa ')|8.Q =0

for fixed x € £2. On the domain [—a, a] x [0, b] the closed
form solution is given by (see the Appendix)

r . _i2y = r . 2y =
sn(ry 250 4 i LMD ) — sn(y; L0 4 iy, L0

(14)

1
Gap(x,y) =——log
’ 2 - /T 7o~
Z(la,k) —I—i)QZ(l’ bl_kz),k)

sn(xq

z(1,1€)+iy2z<1,«/b1—1€2> 0

—sn(y;

a
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Fig. 2 The filter response of a
Butterworth filter, cf. (11). On
the left, y is kept constant and
the filter responses for different
k > 0 are shown. On the right,
the order of the filter, 2k, is kept
constant and the filter responses
for different y > 0 are shown

| Bk (yw)|

2k =28

Here x = (x1,x2),y = (1, y2) € §2, k € R is determined
by the aspect ratio of the rectangular domain 2, sn denotes
the Jacobi-elliptic function (Gradshteyn and Ryzhik 1994),
(Whittaker and Watson 1946, Chap. XXII), and

- 1 dr
z(1,k) =/ —, (15)
0 1 —12V1—k2¢2

In the Appendix we derive (14), and show how to ob-
tain k. Figure 3 shows a graphical representation of this
non-isotropic Green’s function for a square domain k ~
0.1716). Notice this function vanishes at its boundaries and
is, in the center of the domain, very similar to the isotropic
fundamental solution on the unbounded domain (Duchon
1977). In the Appendix we put a relation between the fun-
damental solution of the Laplace operator on the unbounded
domain and the Green’s function on the bounded domain
with Dirichlet boundary conditions. In terms of regulariza-
tion this means the Dirichlet operator smooths inwards the
image but never “spills” over the border of the domain £2.

When the Dirichlet operator, as defined in Definition 1,
is expressed by means of its Green’s function, which is pre-
sented in (14),

(Df)(x) = fg Gx.y) f(y)dy,
fela(2), Df e Hj (82) (16)

one can verify it extends to a compact, self-adjoint opera-
tor on L, (£2). As a consequence, by the spectral decom-
position theorem of compact self-adjoint operators (Yosida
1980), we can express the Dirichlet operator in an orthonor-
mal basis of eigenfunctions. The normalized eigenfunctions
fmn With corresponding eigenvalues ,,, of the Laplace op-
erator A : H(z) (£2) — L, (£2) are given by

= S (" (™
fmn(x,y)—\/;sm< P )sm( 5 ), a7n
2 2
we==((5) (7)) s
a b

(x,y) € 2 with 2 =[0,a] x [0,b] and m,n € N. These
functions can be found by the method of separation

@ Springer

(Kreyszig 1993). Since AD = —1, the eigenfunctions of the
Dirichlet operator coincide with those of the Laplace oper-
ator (17), and its corresponding eigenvalues are the inverse
of the eigenvalues of the Laplace operator (18).

2.2 Scale Space on the Bounded Domain

The spectral decomposition presented in the previous sub-
section, by (17) and (18), will now be applied to the con-
struction of a scale space on the bounded domain. We will
follow the second author’s previous work (Duits et al. 2003)
on scale spaces on the bounded domain. Here we recall from
(Duits et al. 2003) that Neumann boundary conditions are re-
quired in order to maintain most scale space axioms (Duits
et al. 2004). However, here we shall first consider Dirich-
let boundary conditions. In Sect. 2.4 we will also consider
Neumann boundary conditions. Before we show how to ob-
tain a Gaussian scale space representation of an image on
the bounded domain we find, as suggested by Koenderink
(1984), the image h € H? (£2) which is the harmonic exten-
sion of f|y¢. So it is the solution to

{ Ah(x,y)=0
h(x,y)= f(x,y) forallx,yeads2.

forall x, y € £2,
(19)

Now f = f — h vanishes at the boundary 952 (so this re-
quires Dirichlet boundary conditions in scale space) and can
serve as an initial condition for the heat equation on the
bounded domain. A practical method for obtaining ~ on an
arbitrarily shaped domain, is suggested by Georgiev (2005)
and a fast method on a rectangular domain is proposed by
Averbuch et al. (1998). Now f,,(x, y) is obtained by ex-
pansion of

F=>" (fun Proc@) fonn- (20)
m,neN

which effectively exploits the sine transform.

The (fractional) operators that will appear in the con-
struction of a Gaussian scale space on the bounded domain
can be expressed as

|A|kfmn :|)¥mn|kfmn’ (21)
e frun = € foun. (22)
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Fig. 3 From left to right plots
of the graph of x —~ G (Xx,y),
isocontours

{x e R?|G(x,y) = c} for various
¢ > 0, and isocontours of its
Harmonic conjugate H(X,y) =
S sn(xq +ixp, k) —sn(y1 +iya,k) y .

SRl

sn(xy+ixy,k)—sn(y;+iyz,k) 0.3 y
x1 runs along the horizontal axis 82 \\ :
whereas x; runs along the B - 4
vertical axis. In the upper row -1 Ty |

o |

(1, y2) = (0, ), and in the (4
bottom row (y1, y2) = (1,0.4).
To keep

log(z) =log(|z]) + i arg(z) =

/i lz %‘l d¢ single valued, we apply
a branch-cut on the negative real
axis. The thick lines in the
x1x2-plane are mapped to the
negative real axis, so here the
graph of H(-,y) is
discontinuous (the graph has a L
jump) =

o2

P
ool

We also note that the «, filters, defined in (8), are readily
obtained by application of the following identity

I+ 1A fon = 1 S (23)

1+ y2k| 5,

Consider the Gaussian scale space representation' on
bounded domain £2 (see Duits et al. 2003)

u?(x9y’s)= Z e“’)»mn(fmn, f)Lz(.Q)fmn(xvy) (24)

m,neN

where the scale parameter s € R™. It is the unique solution
to

Ju __
E—Au,

u(-,$)so =0 foralls >0, (25)

u(-,0) = f.

We note that by straight forward computation one has

AuF@.y.s)= Y e (fune Pia@) Afon(x. )

m,neN

= Z )\mneS)Lmn (fimns f)]LZ(Q)fmn (x,y)

m,neN

= as Z eS)Lmn (fmnv f)Lz(Q)fmn(xv Y)

m,neN

= asu? (x,,5). (26)

I"The framework in this paper is readily generalized to a-scale spaces in
general (see e.g. Duits et al. 2003) by replacing (—Aun) by (—Apn)>*.

——— \

L . |

g ™

‘/ o \\

f g b A\

( / - \\ |

i { @ |

\\\_\ i
—i.S -1 =05 0 0.5 1 ]:5

The filter ¢, that measures differential structure present in
the scale space representation u*? of f at a point p with

coordinates (X, yp, sp), such that
(D™ ) (xp. ypr $p) = (bpr Nz, @7)
is given by (writing multi-index n, = (n},, nf,))
¢p(x,y)
= D D™ fun) (p, ¥p) frun (X, ), (28)

m,neN

where we note that % sin(x) = cos(x) = sin(x + %) and

N U (ma\"s (nm\"
(D" fiun)(xp, yp) = o\ o
. (mmy, T ,
X sm( b + En”>

X sin Xy + | 29)
“nl),
a 2°°

X=(x,y) € 2, Xp=(xp,yp) € 2 and n, = (n},,n7) €
N x N. Here we use notation ¢, for the filters that measure
features of the type presented in (27). However, we stress
that this is just one particular case of the filters v, that are
used to measure the general features, cf. (2).

2.3 The Solution to the Reconstruction Problem

Now that we have constructed a scale space on the bounded
domain and shown how to measure its differential structure

@ Springer
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we can express the solution to the reconstruction problem
(recall (7) and (8)) in terms of eigenfunctions and eigen-
values of the Laplace operator. To this end we recall that
V =span{k,|lqg € 1,..., P} and we apply the orthogonal

projection operator Py : Hgk’y(.Q) —Vto f:

P
Pyf= Y G, f)Hgk(qu

p.q=1

P
= Z G (¢p, PLo(2)kq

P.q=1

P
= Z G cp(frg, (30)

p.q=1

where GP? are components of the inverse of the Gram
matrix. This implies G?"G,, = 85, with Gpq = («p,
Kq)Hgk,y( o) The filters «, satisfy

espkmn

kp,y)= Y 5

m,neN

X(anfmn)(xps yp)fmn(xa »). 3D
It can indeed be verified by direct computation that
P} =Py,

Py =Py, REPy) =V, (32)

so Py is indeed the orthogonal projection onto V. The pro-
jection that is made explicit in (30) is, due to the Pythagoras
theorem, the unique solution to the optimization problem

argmin| g1 [}t = argmin|| g — Py £ 1oy
— 0

g~f g~f
evi
72
P 1t (33)

2%

which was introduced in (7).

In order to compute the projection in (30) we apply
a singular value decomposition (SVD) (Press et al. 1988,
Chap. 2.9) to guarantee well-posedness of our algorithm. We
briefly outline the application of the SVD to the projection
in (30). Let the columns of the matrix V be composed of the
eigenvectors {V,} - of GT G, where G = [G,,q]p g=1’ with

corresponding eigenvalues 02 (o1 > 02 > ...). We define
D = diag{o;} and U = G VD_1 This implies U7 = U !
and (GTG)™'GT = v D~'UT, from which we deduce that

Py f= ZZ(Z“ C”(f)) K, (34
g=1iel \p=1

with u; the ith column of U and u
the vector u;. The set 7 isdefinedas I ={i e 1...

the pth element of
PIgt >
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tolerance}, thus directions corresponding to eigenvalues o;
such that Z—’l is smaller than a given tolerance are removed
from the projection.

2.4 Neumann Boundary Conditions

The axioms that naturally lead to -scale spaces (Duits et al.
2004) can not all be maintained in case of the bounded do-
main. One has to drop the axiom of translation invariance.
This can be observed from Fig. 3: the Green’s function of
the Laplace operator on the bounded domain deforms when
it is moved closer to the boundary. In order to maintain the
other axioms such as gray value invariance and increase of
entropy, Neumann boundary conditions should be chosen
(Duits et al. 2003). Imposing zero Neumann boundary con-
ditions coincides with the symmetric extension of the image
at the boundaries and periodic boundary conditions on the
extended domain. In this case the eigenvalues A,,;, (18) are
maintained, the eigenfunctions are given by

1
TG, ) = \/ab(l +8m0) (1 + 8,0)

X cos<@> cos(—mny), (35)
a b

where m, n € N. We note that again:

LA frn = Dmn frnn- (36)

When the eigenfunctions in (24) are replaced by the eigen-
functions in (35), (24) is the unique solution to

g” = Au,

S

614( A)| =0 foralls >0, 37)
u(-,0)=f,

where n is the outward normal of the image boundary 952.

When Neumann boundary conditions other than zero are
required, we proceed in a similar fashion as proposed in
Sect. 2.2. In this case, however, we have to take care that
Green’s second identity,

aof oh
f hAf—fAth:/ h— — f—do(x) (38)
Q 30 on on

with do (x) a boundary measure and x € £2, is not violated.
As a consequence, we can not find an & € H?(§2) such that

Ah =0,
{ Oh|o =3 (39)
n on
holds, since
oh
/ Ahdx—/ —do (x )—/ —da(x) (40)
I?) 92 On
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In order to solve this problem we introduce a constant source
term in (39) and find instead an & such that

oh, _ _ of 41)
saloe = 50

{ Ah=K,
with K = \.(12_|f39 %do(x) and |£2| the area of the do-
main. An efficient method to solve /& from (41) based on
the method by Averbuch et al. (1998) can be found in Ya-
matani and Saito (2006). Now f = f — h has zero normal
derivatives at the boundary 92 and can serve as an initial
condition for the heat equation that is presented in (37).

2.5 Singular Points

The theory presented in the previous subsections is applica-
ble to generic linear features, cf. (2). In Sect. 4 we will ap-
ply our reconstruction method to image reconstruction from
differential properties of so called singular points of a scale
space representation of an image. Therefore we will briefly
summarize how to obtain the locations of these points. A
non-Morse critical point of a scale space representation of
an image, to which we will henceforth refer to as a singular
point, is defined as follows:

Definition 2 (Singular Point) A singular point (x,y,s) €
R? x R* of a scale space representation u? (x,y,s) of the
image f is defined by the following equations, in which V
denotes the spatial gradient operator:

{ Vu}?(x, v,s)=0,
(42)

detVVTu}?(x, y,s)=0.

See Damon (1995), Florack and Kuijper (2000) for fur-
ther details, and Gilmore (1993) for a general introduction
to catastrophe theory. Figure 4 illustrates the set of singular
points for a typical image. Solutions of (42) can be found by
a zero-crossings method (Lorensen and Cline 1987; Kan-
ters et al. 2004). Given an initial approximate location of
a singular point, (x4, Y4, Ss), we can refine its position in
scale space to a corrected position, (x¢, yc, S¢), by calculat-
ing (x¢, Ye, S¢) = (xg +6x, y4 + 8y, 84 + 8s), where

Sx

sy | = (M(xa,ya,sa))_l

8s

g(Xq, Ya, Sa)
) [(detvau? )(xa,ya,sfz)] “
and where
VVTM}? w

M= L "l (44)
g(x,,s) zvujf(x,y,s), w =08, 45)

Fig. 4 A visualization of the “deep structure” of a Gaussian scale
space representation of an image. The gray paths represent critical
paths (paths of vanishing gradient), a red ball shows the location of
a singular point on a critical path. The surfaces show the iso-surfaces

s (x,y, u (x,y,
given by 4 f;;} ) _ 0, 24 gxyy 9 _ 0 and detVVTqu?(x, y,8) =0,
which are used in the calculation of the position of a singular

point. Critical paths are found by intersecting the surfaces that sat-

au? (x.y, . .
isfy W =0 and BN = 0. Singular points are found
by intersecting the critical paths with the surface that satisfies
(detVVTu‘j?)(x, v,8)=0

' (x,y,5)

zZ(x,y,s5) = VdetVVTu‘?(x, v,s),

c(x,y,s) =0, det VV u (x, y,9). (46)

Notice that all derivatives are taken in the point (x4, y4, S4)-
This procedure is repeated in order to obtain a more accu-
rate location of a singular point. For further details we refer
to Florack and Kuijper (2000), Platel (2007). In general, im-
ages are not determined by their singular points. Consider
for example the class of images

Fxy) = fun(x,y), (47)

whose bounded domain scale space representations are
given by

wf (x,y,8) =€ frun(x, ). (48)

These scale space representations do not contain any sin-
gular points. However, scale space representations of nat-
ural images do contain singular points attached to generic
topological transitions (Damon 1995). If one endows these
points with suitable attributes one can obtain a reconstruc-
tion that is visually close to the initial image (Janssen et al.
2006).
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3 Implementation

The implementation of the reconstruction method that was
presented in a continuous Hilbert space framework is com-
pletely performed in a discrete framework in order to avoid
approximation and truncation errors due to sampling. Here
we shall make use of a discrete sine transform (rather than
truncated Fourier series) and its inverse, which are exact on
the grid.

First we introduce the discrete sine transform Fy :
12(11?) — 12(15) on a rectangular domain 1P = {1,...,

N—1}x{l,....M—1}
(FsfHu,v)
M—-1N-1 . .
2 . 1um . jum L
-2 sm(v) mn(T) £, J), (49)
—

i=1

~

(i ®¢;)(u,v)

with (u,v) € 11?. Notice that this unitary transform is its
own inverse and that

((ﬂh @j){zuﬁ) :(Sijv (50

=1,....,M —
{(/)l®(pl|l]_1 LN —

inlL,(ID).

1 .
1 } forms an orthonormal basis

. . P
The Gaussian scale space representation uf’-v @, j,s) of

an image f € l2(11%])) introduced in the continuous domain
in (24) now reads

@2 ), j)
M—-1N-1

Z Zf(u v)e

ulvl

X (Qu @ pu) (0, j) (5D

P
us (i, j,s)=

M2+N2)n

where f (u,v) = (Fsf)(u,v). Differential structure of or-
der n, = (n},,nf,) € N x N at a certain position (ip, j,) €
1? and at scale s, € R™ is measured by

DOV is0)
f psJp>Sp
M—-1N-1

uz u2 2
Z M U)effl)(m‘f’ﬁ)ﬂ
ipum T
sm( ; —i—Enp)
VI
X sin(JpN +71 f,) (52)

The filters ¢,, with p = (ip, jp,Sp,np) a multi-index,
are given by

T\“

[\)
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¢p(i, J,s)

M—-1N-1
—Sp(uz+ 2) g
= Z D e V" (0 ® 9u) (i, )
u=1 v=1

ur \"r (v \" iUt N
X — ) sin —
M) N M 2"
. Jpy W,
X sm( N + Enp> (53)

and the filters «,, corresponding to ¢, read

Kp(i’ j?s)

2 2
e—sp(u_z“‘b_z)”2

||P12

M—
g {1+ (y) k(s + 2k

 fum " om \"
X(%@%)(lv])(ﬁ) (W)

iy T Jpvm 2
X sm( i + = 2 p> sm( N + 5 p> (54)
An element G, = (¢P’¢‘1)12(11€) of the Gram matrix

can, because of the orthonormality of the transform, be ex-
pressed in just a double sum,

7\

M—-1N-1

Gpg =~ ZZ

2
u=1 v= 1 + (”V)Zk( %)k
ur \"» [ v " . ([ipum N T
x| — — ] sin —
M N M 2
1 2
NEAE AT AR AN
><sm< N +2np)(M) <N>
figumr o )\ . [ JqVT T,
X sm( i + Enq> sm< N + Enq>. (55)
In order to gain accuracy we implement (55) by summing

in the reverse direction and multiplying by y2*. Then we
compute

2 2
o) G

P
g= Y Gry*c,(f)e, (56)

p.q=1

and find the reconstructed image g by filtering g by a dis-
crete version of the 2D Butterworth filter of order 2k and
with cut-off frequency wg = %

The implementation was written using the sine transform
as defined in (49) where we already explicitly mentioned

that the transform can be written as

(Fsf)u,v) =
M—1N-1

(i @ @j)(u,v) f(, j). (57)

- JMN —~

i=1

~.
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Now we define the cosine transform, Fy : 12(110/ ) —

12(1,%, on a rectangular domain, IIJ\}[ ={0,...,.N — 1} x
{0,..., M — 1}, in a similar manner
M—-1N-1
(FeHw,v)=Y" > (@ ®F)wu,v) [, ), (58)
i=0 j=0
where

il _
(§5i®<P~j)(u,v):cos<n(l;[2)“> /2 M5u0
. l —
Os<n(]+2)v) [2 — 840 (59)
M N

and (u,v) € IIQ/ . These cosine basis functions

{¢i ® ¢ l]:z%jyv: 11} form an orthogonal basis in

(I ]j\y ) and can thus be used to transform the reconstruction
method that was explicitly presented for the Dirichlet case
into a reconstruction method based on Neumann boundary
conditions.

4 Experiments

We evaluate the reconstruction method by applying it to
the problem that was presented in the introduction. The up-
per row of Fig. 5 shows from left to right: the image from
which the features were extracted, a reconstruction by the
unbounded domain method (Janssen et al. 2006) (parame-
ters: y = 50, k = 1), and a reconstruction by the newly in-
troduced bounded domain method using Dirichlet boundary
conditions (parameters: y = 50, k = 1). Features that were
used are up to second order derivatives measured at the sin-
gular points (see Sect. 2.5) of the scale space representation
of the original image f. One can clearly see that the struc-
ture that is missing in the middle image (cf. Fig. 1) does
appear when the bounded domain method is used (top-right
image in Fig. 5).

The visual quality of the reconstruction in the top-right
image in Fig. 5 is not appealing. In order to obtain a more ap-
pealing reconstruction one could, like in our previous work
on image reconstruction (Janssen et al. 2006), endow the
feature points with higher order differential structure. An-
other possibility is to select a different set of features. We
proceed with the latter approach.

Singular points of a scale space representation of an
image tend to catch blob-like structures, whereas singular
points of the scale space representation of the Laplacian of
an image (henceforth called Laplacian singular points) are
more likely to catch information about edges and ridges in
the image. This happens because the Laplacian tends to act
as an edge detector. Furthermore, the number of singular

points that manifest themselves in the scale space of an im-
age is much smaller than the number of Laplacian singu-
lar points of an image. If more information about the im-
age is used by the reconstruction algorithm, e.g. in the form
of more features, one can expect to obtain a more appeal-
ing reconstruction. This motivates us to reconstruct from the
properties of Laplacian singular points instead of singular
points.

The bottom row of Fig. 5 shows reconstructions from
up to second order differential structure obtained from the
scale space representation of f, evaluated at the locations of
the singular points of the scale space representation of the
Laplacian of f. On the left the unbounded domain method
was used with y = 100 and k = 1, this leads to a recon-
structed signal that has “spilled” too much over the border
of the image and therefore is not as sharp as the reconstruc-
tion obtained by our newly proposed method using Dirich-
let boundary conditions (parameters: y = 100 and k = 1).
Due to this spilling, the Gram matrix of the unbounded do-
main reconstruction method is harder to invert since basis
functions start to become more and more dependent. This
problem gets worse when y increases. Our bounded domain
method is immune to this problem as long as the parameter
k is not chosen too high.

In order to quantify the observation that the Gram ma-
trix is harder to invert when y gets larger, we applied both
the reconstruction method presented in this paper and the
unbounded domain method (Janssen et al. 2006) to the re-
construction from up to second order derivatives measured
at the singular points of the scale space representation of
Lena’s eye. Lena’s eye is the left-most image in Fig. 6 and
has dimensions of 64 x 64 pixels. We fixed k = 1 and set the
tolerance of the singular value decomposition (SVD) algo-
rithm that was used to compute the inverse of the Gram ma-
trix (see Sect. 2.3, (34)) to 10~7. The percentage of features
that were removed by the SVD algorithm as a function of y
is displayed in Fig. 7. From this figure we can observe the
unbounded domain method breaks down for y >> 0, whereas
the method that is presented in this paper is much more ro-
bust. Even for y > 0 barely any features are removed by the
thresholding step in the SVD algorithm.

If the order of the Sobolev space k is chosen too high,
our method also breaks down. Figure 8 shows several re-
constructions from up to second order differential structure
taken at the locations of the singular points of Brabara’s
face using Dirichlet boundary conditions. The image from
which the features were obtained is the right-most image in
Fig. 6 and has dimensions of 128 x 128 pixels. From top
to bottom the parameter k = {0.5 + ¢, 1.0, 1.5, 2.0, 2.5} (in-
troduced in (4)), which controls the order of the Sobolev
space we are projecting in is varied. From left to right the
parameter y = {1, 4, 16, 64,256, 1024} (introduced in (6)),
which controls the importance of smoothness is varied. One
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i T
=30

Fig. 5 Top left: The image f from which the features were extracted.
Top center and right: reconstruction from second order structure of
the singular points of f using the unbounded domain method (Janssen
et al. 2006) (parameters: y = 50,k = 1) and the bounded domain
method (parameters: y = 50, k = 1). Bottom row: unbounded domain
(left) and bounded domain (right) reconstruction from up to second
order differential structure obtained from the scale space represen-

Fig. 6 Input images that were
used in the experiments. The left
image shows Lena’s eye, which
is an image patch of 64 x 64
pixels. On the right Barbara’s
face is shown. This is an image
patch of 128 x 128 pixels

can clearly see the effect of the parameters. We will interpret
the results in terms of the low-pass Butterworth filter intro-
duced in (11). When k is increased the order of the filter
increases and consequently approximates the ideal low-pass
filter more closely. In the bottom row of Fig. 8 (k = 2.5)
the filter is too sharp (i.e. it approximates the ideal low-
pass filter too closely) which results in a reconstruction that
does not satisfy all features. This effect is even visible when

@ Springer

tation of f, evaluated at the locations of the singular points of the
Laplacian of f. The parameters for the reconstruction algorithm are
k =1 and y = 100. The latter value of y results in a blurred recon-
struction for the unbounded domain method, whereas the bounded do-
main method does produce a visually appealing reconstruction (lower
right) of the image that is shown in the upper left corner of this figure

y = 1. Increasing y corresponds to decreasing the cut-off
frequency of the filter, which smooths the “bumpy” features
that are most apparent in the top-most sub-images of Fig. 8.
If k = 1 increasing y does not cause problems for the inver-
sion of the Gram matrix (and consequent loss of features).
This can also be observed from Fig. 7. It does have a smooth-
ing effect on the reconstructed image. Therefore it is pre-
ferred touse a y > 0.
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Fig. 7 The percentage of
features dropped by the singular
value decomposition (SVD)
algorithm that is used for the
inversion of the Gram matrix as 80 @@ unbounded domain method
a function of y. The y axis is
sampled logarithmically.
Features used are up to second
order derivatives measured at
the singular points of the scale
space representation of Lena’s
eye (see Fig. 6). The SVD
tolerance is set to 10~/ and

k =1 for both the bounded
domain and the unbounded
domain method

B8 }ounded domain method

3

3

% of removed equations

]
=}

10 100 1000

Fig. 8 Reconstructions from
second order differential
structure taken at the locations
of the singular points of the
scale space representation of
Brabara’s face using Dirichlet
boundary conditions. From top
to bottom
k=1{0.54+¢,1.0,1.5,2.0,2.5}
and from left to right

y =1{1,4,16, 64,256, 1024}.
The image from which the
features were obtained is shown
in Fig. 6

5 Conclusion tune the smoothness of the reconstructed image. Due to the

assumption of compact support of the original image com-
In previous work we considered the image as compactly sup-  ponents of the reconstructed image near the image bound-
ported in Ly(R?) and we used Sobolev norms on the un-  ary are too much penalized. Therefore we proposed to mini-

bounded domain including a smoothing parameter y > 0to  mize Sobolev norms only on the actual image domain, yield-
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ing much better reconstructions (especially for y > 0). We
give a closed form expression for the Green’s function of
the Dirichlet operator in the spatial domain and put a rela-
tion between the fundamental solution of the Laplace op-
erator on the unbounded domain and the Green’s function
on the bounded domain with Dirichlet conditions. Both fea-
ture extraction and the reconstruction method are formulated
on the bounded domain in terms of the eigenfunctions and
corresponding eigenvalues of the Laplace operator on the
bounded domain: A : H% (82) — L, (£2). By changing the
eigenfunctions the Dirichlet boundary conditions can be in-
terchanged with Neumann boundary conditions. The imple-
mentation is done completely in the discrete domain and is
exact on the grid, avoiding truncation or approximation er-
rors. This is achieved by making use of fast discrete sine or
discrete cosine transforms.

We also showed an interpretation for the parameter y and
the order of the Sobolev space k in terms of filtering by the
classical Butterworth filter. In future work we plan to exploit
this interpretation by automatically selecting the order of the
Sobolev space.
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Appendix: Closed from Expression of the Green’s
Function of the Dirichlet Operator on a Rectangle

The Green’s function G : 2 x §£2 — R of the Dirichlet op-
erator D (recall Definition 1) can be obtained by means of
conformal mapping?. A visualization of the mappings used
to arrive at the solution can be found in Fig. 9.

To this end we first map the rectangle to the upper half
space in the complex plane. By the Schwarz-Christoffel for-
mula the derivative of the inverse of such a mapping is given
by

LTS TP (R I A
dw_ ],éw w w k w =

1 1
=C ,
Vi—w? /1 - 22

(60)

2Qur solution is a generalization of the solution derived by Boersma et
al. (2002).
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where C € RT and w(41/k) = +a + ib. As a result

~ w dr
z(w,k)=C/ =
0 V1—12/1—k*?

S w()= sn(i, 12),

C (61)

where sn denotes the Jacobi-elliptic function (Gradshteyn
and Ryzhik 1994; Whittaker and Watson 1946, Chap. XXII).
We have sn(0, l;) =0, sn(+a, k) = £1, sn(d+a + ib, k) =

£(1/k) and sn(i(b/2), k) = i /v/k, where the elliptic modu-
lus k is given by

bz, B =2(1.y1- ).

We note that for every fraction b/a € R* there is a unique k
that satisfies (62). For example, in case of a square b/a =2
we have k ~ 0.1715728752. The reader must be aware that
k is a function of the aspect ratio b/a.

For the moment we assume

(62)

a=2z(1,k) (63)
and
b:z(l,\/1—£2), (64)

which implies C = 1. The next step is to map the half plane
onto the unit disk By = {x € R?|||x|| < 1}. This is easily
done by means of a linear fractional transform

z —sn(yi +iy2, k)

x(@) = (65)

z—sn(y1 +iy2, k)

To this end we notice that | x (0)] = 1 and that the mirrored
points sn(y; 4 y», k) and sn(y; + iy2, k) are mapped to the
mirrored  points  x(sn(y; + iy,k)) = 0 and

x(sn(yy +iy2, k) = 0. B
Now define F': C— Cand F: £2 — By by

F=yxo sn(-,E), i.e.
. sn(x; +ix ,I; —sn(y; +1i ,Ig
Fx 4 i) = (x1 2 ~) 1 +iy2 ~)’
sn(xy +ixp, k) —sn(y; + iy, k)
F(x1,x2) = (Re(F (x1 +ix2)), Im(F (x; +ix2))7,

(66)

then F is a conformal mapping of £2 onto By j with F(y) =
0. As a result we have by the Cauchy-Riemann equations

Arx = IF(x)] ' Ay, (67)
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Fig. 9 Mapping from a square (top left) to the upper half space in
the complex plane (bottom) followed by a mapping to the disc (up-
per right). The concatenation of the two mappings (from fop left to

where the scalar factor in front of the right Laplacian is the
inverse Jacobian:

IF'(x)| ™" = (detF'(x))

B @ 2+ % 2\ —1
= (o) (&)

= |F'(x1 +ixp)| ™, (68)
for all x = (x1, x2) € £2.

Now G(u, 0) = ;—ﬂl log ||lu|| is the unique Green’s func-
tion with Dirichlet boundary conditions on the disk By i
with singularity at 0 and our Green’s function is given by

top right) is used to obtain the Green’s function of the Dirichlet op-
erator. In this particular example a = 1, b = 2, and (y;, y2) = (0, 1)

G=GoF,ie.
G(x,y) 1
=—5—log|(x osnc, k))(x1 +ix2)|
T
_ _%1 sn(xqy +ixy, 12) —sn(y; + iyz,lz) . 69)
JT

sn(xy + ixy, /;) —sn(y] +iy2, l;)

In (63) and (64) we assumed a certain scaling of @ and b
such that C = 1. To obtain the Green’s function for the cor-
rectly scaled domain we can simply apply an isotropic scal-
ing to the Green’s function found in (69). Hence we obtain
for the Green’s function G4, : §£2 x £2 — R of the Dirichlet
operator D,
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A —
1 fsn(e 28R g, VI

—sn(y;

Ga,b(xv y) =% lOg

. . — .
Z(L’k)"‘IYZZ(LVbl k),k)

(70)

2

sy 2R 4, 20V 7y

—sn(y;

- —_
z(la,k) +iy21(1,\/b1 k ),k)

. . L (1,k)
Here we applied the following mappings: x; — %,

xosn(1,4/1—k?) 1> yisn(1,k) yasn(1,4/1—k2)
b ’ a

X2 = ;and yp > S p———
This is an isotropic scaling because of (62).

The Green’s Function on the Unbounded Domain as a
Limit of the Dirichlet Kernel

Next we shall put a relation between the fundamental solu-
tion of the Laplace operator on the unbounded domain and
the Green’s function on the bounded domain with Dirichlet
conditions (i.e. the impuls response of the Dirichlet oper-
ator) on the square, i.e. b = 2a. Here we shall rewrite the
solution (70) for b = 2a as follows

1
Gap=2a(X,y) = —5—log|d(Bz) — ¢ (Bv)

1 J—
+ 5 loglp(Bz) — ¢(Bv)l,

7 71

where z = x; + ix; and v = y; + iy and ¢(Bz) =
sn(Z(fl—’k)(xl +ix2), k), B = Z(la—k) > 0. We recall that k is
the unique solution of (62) with b = 2a. Furthermore, we
note that ¢ (v) = ¢ (v) for all v € C.

By taking the limit a — oo and b = 2a — oo in the rec-
tangular case we arrive at the Dirichlet problem on the up-
per plane {(x1, x2) € R2|x2 > 0}. It is well-known, see e.g.
(Kreyszig 1993), that the solution of this problem is given by
a superposition of two fundamental solutions (the Green’s
function of the Laplace operator on R?). In this case one fun-
damental solution is centered with plus sign at (y1, y2) and
one fundamental solution is centered at (y;, —y») with neg-
ative sign. This is based on the well-known Schwarz prin-
ciple and the fact that the difference of these fundamental
solutions is zero at the boundary so that the Dirichlet condi-
tion is satisfied. In the field of electro-magnetics this result is
obvious since the electric potential due to a negative charge
at (y1, y2) cancels out to the electric potential due to a pos-
itive charge at (y;, —y2). From this observation we should
get

lim Ga,b:Za (Xs Y)
a—00

1 1
=——1log|z—v|+ —log|z — 7|, (72)
2 21

which we shall verify next.

The mapping ¢ : [—a, a] +i[0, b] — C is analytic and
by means of the mean-value theorem there exist Szl’ g €
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Bgy,ple—v = {w € Cllw—Bu| < Blz—vl},&2 4 € Bg; 4. y-
Therefore we have

$(2)=¢w)+¢'(EHz—w) and

(73)
$(@) =) +¢'())(z — W)

so that we have

lim Ga,b:2a (x,y)
a—00

! I
=——/|1lo
21 &

where we recall that 8 = (Z(la—’k)). As a — oo, ie. f— 0,
¢’(s§>|
¢'(€2)

¢'(EhH
¢'(£2)

+loglz —v| —log|z —ﬁl>, (74)

it follows by the continuity of z — ¢'(z) that log |
log 1 =0, from which the result in (72) follows.
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