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Abstract Stochastic models have become the dominant means
of approaching the problem of articulated 3D human body
tracking, where approximate inference is employed to tractably
estimate the high-dimensional (∼30D) posture space. Of these
approximate inference techniques, particle filtering is the
most commonly used approach. However filtering only takes
into account past observations – almost no body tracking re-
search employs smoothing to improve the filtered inference
estimate, despite the fact that smoothing considers both past
and future evidence and so should be more accurate. In an
effort to objectively determine the worth of existing smooth-
ing algorithms when applied to human body tracking, this
paper investigates three approximate smoothed-inferencetech-
niques: particle-filtered backwards smoothing, variational ap-
proximation and Gibbs sampling. Results are quantitatively
evaluated on both the HUMAN EVA dataset as well as a scene
containing occluding clutter. Surprisingly, it is found that
existing smoothing techniques are unable to provide much
improvement on the filtered estimate, and possible reasons
as to why are explored and discussed.

1 Introduction

In time-series data with noisy observations, filtering is the
process of estimating (or tracking) the true state at timet

given all the observations{y1, . . ., yt} that lead up tot, and
smoothing is the process of using all future observations
{yt+1, . . ., yT} to correct the filtering estimate in light of
the future evidence. Consequently, smoothing should pro-
vide a better estimate than filtering since it takes all available
evidence into account. Hence it is common practice to use
smoothed estimates in many fields such as signal processing
and speech recognition. In contrast, research into articulated

Dept of Computing, Curtin University of Technology GPO Box
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human body tracking is dominated by filtering. In genera-
tive (top-down) tracking where the observation is viewed as
‘caused’ by the true state, the most prevalent approach is
particle filtering (Moeslundet al.2006) which approximates
the state with a set of weighted Monte Carlo samples called
particles (Doucetet al.2000). However, research employing
smoothed inference for body tracking is almost non-existent
despite the existence of several smoothing algorithms for
particle filters that have been shown to benefit other tracking
fields (Doucetet al. 2002; Godsillet al. 2004; Klaaset al.
2006), as well as alternative efficient approximate smoothed
inference techniques such as variational and Gibbs sampling
(Ghahramani and Jordan 1997).

This paper investigates approximate smoothing techniques
in order to ascertain their worth for 3D multi-view articu-
lated human body tracking in both controlled and realistic
environments, where the latter contains occluding objects
such as tables and chairs. Such realistic scenes are rarely
considered in human body tracking since occlusions pro-
duce observation ‘errors’ and thus often cause filtered track-
ing to fail for the duration of the occlusion. Our previous
work (Peursumet al. 2007) showed that a strong motion
model can minimise such failures, but this restricts tracking
to modelled motions. In contrast, smoothing is applicable
to any motion dynamics and has been reported to improve
tracking estimates over filtering in other, lower-dimensional,
tracking fields (Doucetet al.2002; Godsillet al.2004; Klaas
et al.2006). This paper investigates smoothing in both ‘clean’
and cluttered environments to establish the conditions where
smoothing is and isn’t beneficial for high-dimensional hu-
man body tracking. Focus is given to smoothing in gener-
ative models rather than discriminative (bottom-up) mod-
els since although generative approaches are usually slower,
they generalise well to different people and naturally handle
missing/occluded observations, properties that are important
in realistic scenes. In brief, this paper:
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– Examines the issues of applying existing smoothing al-
gorithms to generative articulated tracking and proposes
the use of a mixture approximation to overcome these
issues whilst retaining modest computational costs (i.e.
no greater than filtering).

– Quantitatively evaluates the performance of three popu-
lar smoothing algorithms based on three different filter-
ing models and using two datasets (HUMAN EVA -I/II and
our own CLUTTER dataset) in multi-view environments.

– Finds that, contrary to expectations and results in lower-
dimensional problems (Doucetet al.2002; Godsillet al.
2004; Klaaset al. 2006), smoothing does not provide
much benefit to high-dimensional articulated tracking.
Follow-up experiments indicate that dimensionality is
the cause of the poor smoothing performance.

The three smoothed inference techniques investigated
include forwards-backwards smoothing (FBS), variational
approximation and Gibbs sampling. FBS is a natural choice
for particle-filtered inference but one which has rarely been
employed in articulated tracking (to our knowledge, the only
other example is Sminchisescu and Jepson (2004), who use
a dynamic programming approach that is similar to FBS).
Variational and Gibbs sampling have seen some use in body
tracking but not as a means to smoothacrosstime – for ex-
ample, mean-field Monte Carlo proposed by Hua and Wu
(2007) optimises the observation likelihood at each timet,
but still uses a particle filter to propagate the posture across
time. Moreover, in a generative model with a complex image-
based observation likelihood that is costly to evaluate, it
is computationally impractical to directly implement vari-
ational or Gibbs sampling for smoothed inference. To over-
come this, we approximate the observation functionP (yt|xt)
with a more manageable mixture of Gaussians based on a
‘pre-processing’ particle filter. This differs from Sminchis-
escu and Jepson (2004), who approximated a handful of the
maxima in the particle-filteredposteriorP (x1:T |y1:T ) with
a Gaussian mixture using gradient ascent optimisations in-
volving costly evaluations of the trueP (yt|xt).

Figure 1 gives an overview of this paper, depicting the
algorithms investigated and their relationships. Tracking is
evaluated on both the HUMAN EVA -I and -II datasets (Si-
gal and Black 2006) and more difficult videos of meander-
ing walking sequences in a realistic indoors scene contain-
ing occluding tables and chairs (henceforth referred to as
the CLUTTER dataset). The latter videos are difficult for
filtering-only approaches to handle due to the sub-optimal
observations caused by frequent occlusions. This paper fo-
cuses on walking since it will lead to repeated occlusions
in the CLUTTER dataset – although HUMAN EVA contains
other motions (e.g. throwing, boxing), this paper seeks to
contrast the results of the two datasets (arising from the dif-
ferences in the observing conditions) and so requires similar
motions in both. A loose-fitting body model is employed for

both datasets to minimise any reliance ona priori knowl-
edge of the tracked person’s shape and ensure the tracker
generalises well to different people and clothing. To estab-
lish the effect of motion models on smoothing, three mod-
els are employed for the pre-processing filter, two using a
‘generic’ motion model and the third using a learned (motion-
specific) motion model – in this case, of walking. The two
generic models differ in that one is filtered with the stan-
dard particle filter (Doucetet al. 2000) and other with the
annealed particle filter (Deutscher and Reid 2005). For the
third, a motion-specific model of walking is learned using
the factored-state hierarchical hidden Markov model (FS-
HHMM) of Peursumet al.(2007). The three smoothed-inference
algorithms (FBS, variational, Gibbs) are then executed based
on these three pre-processing filters.

The results of each technique are evaluated quantitatively
and compared with one another as well as with filtered in-
ference. Evaluation is based on the ground-truth position of
critical points (head, elbows, hands, knees, feet, etc). Al-
though the HUMAN EVA dataset provides the ground truth
of these points via motion capture markers, most video se-
quences typically have no associated motion capture data,
including our CLUTTER dataset. Ground-truthing posture in
such videos by manually defining ‘virtual markers’ (Bălan
et al. 2005) is a labour-intensive and time-consuming task.
To minimise the tedium, a small Matlab GUI utility was de-
veloped for hand-labelling virtual markers from video, ac-
celerating the task so that each marker takes only 5–10 min-
utes to label in 500 frames (Peursum 2008). The source code
for this utility is available for download.1

This paper is organised as follows. Section 2 summarises
recent work in the field of body tracking to place this pa-
per in context. Sections 3 and 4 describe the filtering and
smoothing algorithms evaluated in this paper, followed by
a description of the experimental setup in Section 5 and a
discussion of the results and follow-up experiments in Sec-
tions 6 and 7. Finally, Section 8 presents the conclusions.

2 Background and Related Work

Articulated human body tracking has received significant re-
search attention over the past few years – a survey of work
in the field up to early 2006 is provided by Moeslundet al.
(2006). This paper is concerned with fully-articulated 3D
body tracking, where articulation covers all of the major
body parts including the feet to produce a body model to-
talling 28 degrees of freedom. Most contemporary approaches
to such 3D body tracking are in terms of a stochastic time-
series framework where a human body model is explicitly
defined as a kinematic tree of body parts whose joint angles

1 Download the Matlab source code from
http://impca.cs.curtin.edu.au/downloads/software.php
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Annealed Particle Filter

Particle Filter

FS−HHMM

Videos Filtering
Mixture Approximation

Smoothing

Variational Inference

Gibbs Inference

Particle Smoothing

Evaluation

HumanEva

Our Dataset

Ground Truths

HumanEva

Our Dataset

Fig. 1 Overview of the algorithms and data sets investigated in this paper. Both datasets are filtered with three filtering algorithms; each filtered
result is passed on to the three smoothing algorithms to produce nine smoothing results, which are evaluated along with the three filtering results.

evolve over time according to some motion dynamics sys-
tem. The goal is to recover an estimate of the posture distri-
bution via inference on the time-series probability model.
The high dimensionality of the posture space means that
approximate inference is necessary, and this usually takes
the form of a sampling approach. Strategies for sampling
and evaluating postures can be grouped into two broad cat-
egories: bottom-up (discriminative) models and top-down
(generative) models.

Discriminative Approaches Discriminative models are typ-
ically more efficient than generative models since they em-
ploy ‘limb detectors’ to search for candidate body parts in
the observed images and use these candidates in conjunc-
tion with the previous posture and kinematic constraints to
infer the next posture. Thus sampling is strongly guided by
the limb detectors towards good matches. Many discrimi-
native approaches also mix in generative aspects, using the
limb detector to define where a generative tracker should
sample from. Leeet al. (2002), Lee and Nevatia (2005) and
Guptaet al. (2007) detect the face and torso before deter-
mining in a top-down manner the rest of the body’s struc-
ture, whereas Sigalet al. (2004) detects all limbs and draw
samples in the neighbourhood of these detections for a gen-
erative tracker. In addition, Sigalet al. (2004) models the
dependencies among limbs so that the position of one limb
can provide useful evidence for the position of another. For
example, a person’s arms will usually swing in synchronisa-
tion with their legs during walking. Thus the position of the
legs can imply the likely position of the arms and vice-versa.

Pure discriminative approaches have also been taken.
Elgammal and Lee (2004) learn a non-linear mapping be-
tween observed silhouettes and their equivalent 3D body
postures. They first learn a mapping from silhouettes to a
low-dimensional manifold that represents the ‘path’ that a
given activity (e.g.walking) takes through the high-dimensional
space of human posture. This embedded manifold is then
mapped to 3D body postures. An observed silhouette can
then be efficiently mapped to its body posture via the mani-
fold, resulting in fast pose estimation. However, each learned

manifold is specific to a particular viewpoint of an activity,
so multiple manifolds must be learned to handle different
viewpoints. A different approach is taken by Mündermann
et al. (2007) and Cheng and Trivedi (2007), who align a
3D visual hull body model to an observed visual hull con-
structed from silhouettes seen in multiple viewpoints in or-
der to achieve viewpoint independence. Other researchers
(Taycheret al. 2006; Sminichisescuet al. 2006) utilise sta-
tistical time-series models such as conditional random fields
(CRFs) and maximum entropy Markov models (MEMMs)
to perform tracking. However, failures in detecting the true
limb or the full silhouette and the need to train limb detec-
tors specific to the person being tracked means that discrim-
inative approaches have difficulty with observation ‘errors’
(e.g.occlusion by scene objects) and do not generalise well
to different people without retraining (Kanaujiaet al.2007).

Generative Approaches In contrast to discriminative meth-
ods, generative approaches evaluate ‘guesses’ of the state
against the true observation in a predict-then-evaluate cycle,
a method that is almost always implemented with a particle
filter (Doucetet al.2000). Such an approach can generalise
well to different people and is better able to handle poor
observations than discriminative approaches. On the other
hand, generative models require evaluating an observation
likelihood which in many cases is an expensive projection
of each 3D posture ‘guess’ onto the 2D image and evalu-
ating the difference in a pixel-wise manner (Deutscher and
Reid 2005; Peursumet al.2007). An alternative approach is
to calculate a 3D representation of the observation, typically
a visual hull (Mikićet al. 2001; Cailletteet al. 2005). This
can facilitate a faster observation evaluation but is offset by
the visual hull’s need for accurate full-body silhouettes from
multiple views, which can be sensitive to errors in any one
view.

Strong motion models are becoming an increasingly com-
mon method of focusing sampled predictions onto good ar-
eas of the posture space so as to reduce the number of parti-
cles needed to achieve accurate tracking. Such models also
learn the conditional dependencies between limbs for a given
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motion, for similar reasons to the discriminative approachof
Sigalet al. (2004) described earlier. Many methods involve
learning a model of human motion dynamics in terms of
transitions of the∼30D state. Cailletteet al.(2005) learn the
transitions of a variable-length Markov model where each
state defines a Gaussian subset of possible postures. Simi-
larly, Peursumet al. (2007) employed a two-level factored-
state hierarchical HMM where the upper level defines the
‘phase’ (sub-sequence) of motion and the lower level defines
the motion dynamics of the posture for each phase. Husz and
Wallace (2007) proposed a hierarchical partitioned particle
filter, a variant on the annealed particle filter of Deutscher
and Reid (2005), in conjunction with ‘action primitives’,
which are motion sub-sequences similar to the phases of
Peursumet al. (2007). These action primitives are clustered
with EM and PCA and new sub-sequences are compared
against training primitives to determine which action is the
best match in order to draw samples for the next posture.
Along slightly different lines, other researchers incorporate
the physics of walking (foot collisions with the ground, stride
cycle length, etc) (Brubakeret al.2006, 2007; Vondraket al.
2008). This is used to strongly guide sampling as well as
achieve a more aesthetically believable tracking result. An-
other way to incorporatea priori information on motion is
through dimensionality-reduction methods, which attempt
to find a low-dimensional manifold in the circa-30D body-
motion space that represents most of the information of a
given action. One of the earliest examples is work by Siden-
bladhet al. (2000), who learned a multi-variate PCA model
of walking and showed that this could significantly outper-
form linear-Gaussian models. Urtasunet al.(2006) also uses
PCA and later (Urtasunet al. 2005) a Gaussian process la-
tent variable model (GPLVM) to find a mapping of walking
and a golf swing onto a simpler manifold. Lee and Elgam-
mal (2006) do a similar mapping onto a low-dimensional
torus, then sample particles (representing silhouettes) from
this torus and compare these samples against the observed
silhouette via a similarity measure.

Smoothed Body Tracking Given that this paper is concerned
with realistic scenes containing occluding clutter, we take
the path of generative models with a projection-based ob-
servation likelihood. One of the few to consider smooth-
ing for articulated tracking in a generative setting is Smin-
chisescu and Jepson (2004). They use a complicated mix
of particle filtering, second-order gradient ascent and vari-
ational methods to estimate the posture. Their system pro-
ceeds by extracting the eight most-likely (in terms of max-
imum a-posterior) particle trajectories from an initial parti-
cle filter. These trajectories are then optimised via Hessian-
based (second-order) gradient ascent over the entire distri-
bution P (x1:T , y1:T ) to produce a Gaussian mixture. This
is then the input to a variational step that further refines the

mixture. The final output is a Gaussian mixture that repre-
sents several modes ofP (x1:T |y1:T ). The authors demon-
strate tracking in a monocular view, a difficult task given
the lack of depth information. However, the resulting opti-
mised trajectories differ noticeably from one another even
in their 2D projections, and it is not clear how to deter-
mine which is the best trajectory since the gradient ascent
has ensured that all trajectories have high image likelihood.
In addition, the algorithm’s running time is not reported, al-
though the complexity of the algorithm and the need to opti-
mise over a projection-based observation functionP (yt|xt)

suggests it is computationally expensive. Finally, given that
the ground-truth was not available for comparison, it is also
uncertain as to what extent the system provides for more ac-
curate tracking (as opposed tosmoothertracking, which the
authors demonstrate).

3 Filtered Articulated Tracking

This paper employs three particle-based filtering models whose
outputs will later be smoothed in Section 4. The three vary
in their motion dynamics models and particle algorithms in
order to investigate the effect of such differences on smooth-
ing. Two of the three (Simple-PF and Simple-APF) use generic
motion models in that the next posture is assumed to be
distributed according to Gaussian diffusion of the current
posture’s joint rotations. They differ in that one model uses
the standard particle filter (Doucetet al. 2000) whilst the
other uses the annealed particle filter of Deutscher and Reid
(2005). The third filter (FSHHMM-PF) employs a motion-
specific model that is learned from training data, with filter-
ing via a standard particle filter. The motion model is built
on a factored-state hierarchical hidden Markov model (FS-
HHMM) to facilitate tractably modelling the non-linear dy-
namics of human motion. All three utilise the same body
model and observation likelihood function.

3.1 Particle Filter with a Simple Model (Simple-PF)

Observation
(Edges, Foreground)

Orientation

Joint
Angles

Location utvt

x1t
xDt

yt

x2t xdt

Fig. 2 Bayesian network of the model for generic (motion-agnostic)
articulated tracking. The body pose{xt, vt, ut} is fully factored.
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Overview Particle filtering, also known as sequential Monte
Carlo sampling (Doucetet al. 2000) is a popular technique
for approximatefiltered inference in a generative model due
to its algorithmic simplicity and ability to model non-linear,
non-Gaussian dynamics systems. Indeed, several special cases
of the technique have been independently developed and in-
troduced under various names, including the bootstrap filter
in signal processing (Gordonet al.1993) and CONDENSA-
TION (Isard and Blake 1998) in computer vision.

Given a true, though unobservable, statext, observations
yt (t = {1..T }), first-order Markov dynamicsP (xt|x1:t−1) =

P (xt|xt−1) and observation probabilityP (yt|x1:t, y1:t−1) =

P (yt|xt), the posterior distributionP (xt|y1:t) is approxi-
mated withN weighted samples (called particles){x(i)

t , w
(i)

t },
i = {1..N}. Particles(i) are independently propagated for-
ward in time by sampling from an arbitrary proposal distri-
butionQ(xt|x

(i)

t−1, yt) and updating the weights:

x
(i)
t ∼ Q(xt|x

(i)
t−1, yt) (1)

w∗(i)
t = w

(i)
t−1

P (yt|x
(i)
t )P (x

(i)
t |x

(i)
t−1)

Q(x
(i)
t |x

(i)
t−1, yt)

(2)

w
(i)
t =

w∗(i)
t∑N

j=1 w∗(j)
t

(3)

where∼ means ‘sampled from’. The algorithm has time
complexityO(NT ), but the particles only approximate the
filtering distribution since future observations have not been
taken into account. The proposal distributionQ controls how
efficient the particle filter is with its samples – a goodQ will
return samples in highly-weighted areas of the state space at
t+1. SettingQ = P (x(i)

t |x(i)

t−1, yt) is the optimal choice, en-
suring that samples are selected based on knowledge from
both the previous state and the current observation. Select-
ing this optimalQ reduces Eq (2) to:

w∗(i)
t = w

(i)
t−1

P (yt|x
(i)
t )P (x

(i)
t |x

(i)
t−1)

P (x
(i)
t |x

(i)
t−1, yt)

= w
(i)
t−1

P (yt, x
(i)
t |x

(i)
t−1)

P (x
(i)
t |x

(i)
t−1, yt)

= w
(i)
t−1P (yt|x

(i)
t−1)

(4)

One issue with the optimalQ is that it is often difficult to
directly evaluateP (yt|x

(i)

t−1) and one must instead evaluate∫
P (yt, xt|x

(i)

t−1)dxt. However, in the case of the articulated
models of this paper, the integration overxt is computation-
ally intractable sincext is a 24-dimensional variable. More-
over, it can be difficult to sample from the optimalQ, espe-
cially given the multiple modality engendered by the image-
based observation. Thus in this paperQ is set to the tran-
sition probabilityP (x(i)

t |x(i)

t−1) for all models (Simple-PF,
Simple-APF and FSHHMM-PF). Although thisQ is sub-
optimal since the observationyt is not taken into account

for sampling, it has the advantage of being easy to sample
from and reduces Eq (2) to a simple evaluation:

w∗(i)
t = w

(i)
t−1

P (yt|x
(i)
t )P (x

(i)
t |x

(i)
t−1)

P (x
(i)
t |x

(i)
t−1)

= w
(i)
t−1P (yt|x

(i)
t )

(5)

One issue for particle filters is that ofdegeneracy, where
the weights of all but a few particles tend towards zero af-
ter a few transitions. This occurs since only a few particles
will be consistently sampled from highly-weighted areas of
the state space. Although the problem of degeneracy can be
minimised by utilising the optimalQ, degeneracy cannot be
completely avoided. Thus a common strategy is to regularly
resample particles when the effective sample size (Doucet
et al.2000) drops below some threshold in order to multiply
high-weight particles and discard low-weight particles. Re-
sampling at every timet yields the Sequential Importance
Resampler (SIR) algorithm.

Articulated Tracking with the Simple-PF For articulated
tracking, this paper uses the state-space model of Figure 2,
wherex

{d}

t is the rotation for joint angle (d = {1..D}), vt

is the tracked person’s global position(posx, posy, posz),
ut is the person’s orientation in the scene andyt is the ob-
served image.P (xt|xt−1) is modelled with generic motion
dynamics where posture transitions are assumed to be Gaus-
sian distributed about the previous posturext−1 (i.e. Gaus-
sian diffusion:xt = xt−1 + ε, whereε is zero-mean Gaus-
sian noise). Note that it is more usual in the general track-
ing literature to include velocitẏxt into the state and im-
plement a second-order (constant velocity) motion model so
that predictions utilise the current velocity of the tracked ob-
ject (i.e.xt = xt−1 + ẋt−1 + εx andẋt = ẋt−1 + εv). Indeed,
Sidenbladhet al. (2000) and Poon and Fleet (2002) utilised
such a second-order model for human body tracking. How-
ever, later work by Bălanet al. (2005) showed that second-
order models actually perform worse in human body track-
ing than first-order (diffusion) approaches due to the highly
non-linear nature of human motion. Such issues could be
overcome by particle-filtered inference on a non-linear, non-
Gaussian model of human motion since the particle filtering
framework is not restricted to linear Gaussian models. How-
ever, such a model (e.g.as implemented by this paper in Sec-
tion 3.3) requires significantly more effort to construct than
the Simple-PF. Hence this paper employs first-order Gaus-
sian diffusion transition dynamics for the Simple-PF.

The Simple-PF also assumes thatxt fully factorises into
its component degrees of freedom (i.e. the covariance of
each joint’s rotations is diagonal), with variances set based
on the maximum change in rotation over one frame. This
greatly simplifies the task of manually specifying rotation
variances and allows the model to generically represent any
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human motion, at the cost of a weak motion model and
hence poor proposal distributionQ(xt|xt−1). To offset this
weakness filtering is performed with 10,000 particles, a rel-
atively large amount for a generative body tracker. More
sophisticated generic approaches could have been used to
make the model more efficient, such as dynamically adjust-
ing the covariance (Sminchisescu and Triggs 2001). How-
ever, this paper deals with articulated tracking in the pres-
ence of occluding objects, and the simpler model makes
fewer assumptions that may prove to be invalid during times
of occlusions and other problematic observations.

3.2 Annealed Particle Filter w/Simple Model (Simple-APF)

Overview The annealed particle filter (APF), first proposed
by Deutscher and Reid (2005), is a variant of the SIR par-
ticle filter where initial particles generated from a particle
filter prediction step at timet are iteratively perturbed and
resampled based on an annealing schedule. The annealing
causes the system to gradually cluster particles into peaksof
the observation likelihood by weighting the likelihood:

Pℓ(yt|xt) = P (yt|xt)
λℓ 0 < λ1 < · · · < λL (6)

wherePℓ(·) is the annealed likelihood at theℓ-th annealing
iteration (ℓ = {1..L}). The monotonically increasing val-
ues of the annealing powersλℓ causePℓ(·) to become more
peaked as the schedule progresses, thereby placing increas-
ing emphasis on particles in more-likely parts of the obser-
vation. At each iterationℓ, the particles are evaluated with
Eq (6), resampled to proliferate the best particles and then
perturbed via Gaussian diffusion to search the neighbour-
hood around these best particles. The process is repeated
until the annealing schedule is completed. In this way, the
APF gradually focuses its search in the peaks of the obser-
vation likelihood at timet.

Articulated Tracking with the Simple-APF The Simple-
APF uses the same generic motion model with indepen-
dent (fully-factorised) joint rotations and Gaussian diffusion
for posture transitions that the Simple-PF employs, (Fig-
ure 2). Similarly, 10,000 particles are used for APF infer-
ence but these are empirically split into 10 annealing lay-
ers of 1,000 particles each. In comparison with the Simple-
PF, the Simple-APF will typically produce particle sets that
are densely packed in the observation likelihood peaks and
sparser elsewhere due to the iterative annealing.

3.3 Particle Filter with a Factored-State
Hierarchical Hidden Markov Model (FSHHMM-PF)

Overview The FS-HHMM (Figure 3) is a two-level hier-
archy (Peursumet al. 2007) that addresses the problem of

Observation
(Edges, Foreground)

Orientation

Joint

Phase

Angles

Location

xf1gt
xfDgt
yt

qt

utvt

et+1
xf2gtxfdgt

Fig. 3 Bayesian network of the FS-HHMM for learning-based articu-
lated tracking. Source: Peursumet al. (2007), c© 2007 IEEE.

compactly representing the non-linear dynamics of articu-
lated human motion in a Bayesian setting. The model is pa-
rameterised as follows:

Cmn , P (qt,n|qt−1,m) (7a)

A
{d}
nij , P (x

{d}
t,j |x

{d}
t−1,i, qt,n, e

{d}
t =0) (7b)

Λ
{d}
nj , P (x

{d}
t,j |qt,n, e

{d}
t =1) (7c)

φm , P (q1,m) (7d)

ϕ
{d}
mi , P (x

{d}
1,i |q1,m) (7e)

Ω
{d}
nmi , P (e

{d}
t |x

{d}
t−1,i, qt−1,m, qt,n) (7f)

Ψ{g} , P (v
{g}
t |v

{g}
t−1) (7g)

Υt , ω
u|u

t P (ut|ut−1) + ω
u|v

t P (ut|vt−1, vt) (7h)

where{x{1:D}

t , v
{1:G}

t , ut} represents the posture, position
and orientation of the person’s body andqt is the phase of
the motion (described below). Omitted is the observation
functionP (yt|x

{1:D}

t , v
{1:G}

t , ut), since it is a fixed heuristic
that evaluates the posture{x{1:D}

t , v
{1:G}

t , ut} against the ob-
served image, as described in Section 3.4. For more details
on the FS-HHMM see Peursumet al. (2007).

The FS-HHMM models a single human action (e.g.walk-
ing) by breaking it down into phases (sub-motions) that de-
fine a set of valid possible body configurations (postures)
and their transitions. The discrete nature of the HHMM al-
lows for learning arbitrary non-linear motion, an important
factor since human motion is not well-modelled with lin-
ear dynamics (Bălanet al. 2005). The phaseqt facilitates
factorising the body joint rotations – by assuming rotations
are conditionally independent given the phase, a particu-
lar phase defines a transition regime for each rotation and
collectively these regimes define the coordinated motion of
the limbs for the sub-motion represented by the phase. Note
that the FS-HHMM models body joint rotations with a dis-
cretext rather than the continuousxt of the Simple-PF and
Simple-APF. As mentioned, this allows for learning arbi-
trary non-linear motion transition distributions (Anij and
Λnj), at the cost of some loss in accuracy due to discreti-
sation.
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Articulated Tracking with the FSHHMM-PF As with the
Simple-PF and Simple-APF, the FSHHMM-PF utilises a par-
ticle filter for approximate inference,with a proposal distri-
bution Q , P (xt|xt−1). This Q is learned from training
data of the motion being represented (e.g.walking) and so
will channel particle-filtered sampling down good areas of
the predicted posture space (assuming that the person is per-
forming the modelled motion). Hence only 1,000 particles
are needed to provide reliable body tracking, far fewer than
the generic Simple-PF and Simple-APF models. For this pa-
per, an FS-HHMM is trained with a single walking sequence
of four steps along a straight line. This training data is suf-
ficient to model and track most walking motions (including
turns and pivoting).

3.4 Body Model and Observation Function

All three filtering models employ the same body model and
observation function. This paper focuses on human pose track-
ing with generative Bayesian models where the observation
function is projection-based to improve robustness to obser-
vation errors such as occlusions by scene objects (Peursum
et al.2007). A loose-fitting body model is used to avoid the
need to manually tune it to the specific physiques of the peo-
ple being tracked.

1 df

1 df

1 df

3 df

1 df

1 df

1 df

3 df2 df3 df

3 df3 df

y

z

x

Scale

Orientation

1 df

Fig. 4 28D ‘cardboard’
body model. Source:
Peursum et al. (2007),
c© 2007 IEEE.

Body Model This paper employs a
28-dimensional model of the hu-
man body (Figure 4), rooted at
the pelvis and parameterised by
24 joint rotations and four global
variables (x, y, z, orientation –
body pitch is modelled at the pelvis
so that it can be learned by the
FSHHMM-PF) as well as a fixed
scale. Scale applies to the en-
tire body model since the relative
length of each limb is fixed. Each
body part is modelled with a cylin-
der whose sides are projected onto
the 2D image and then joined with lines to produce the card-
board look for efficient projection (Sidenbladhet al.2000).
The model is fairly loose-fitting so that any tracker based
on it should generalise well to different people. Broad limits
on joint rotations are enforced to constrain postures to those
that are feasible for most human motions, but these limits
are not specific to any particular motion. No effort is made
to prevent body part intersection in 3D space.

Observation Likelihood Function This uses an observation
function P (yt|xt) based on projectingxt onto the image
yt and evaluating the difference between the two. Here,yt

is a tuple consisting of the edges and foreground images.

Foreground is extracted using a mixture of Gaussians back-
ground subtraction (Stauffer and Grimson 2000) and edges
are extracted with a thresholded Sobel detector, with the
foreground used as a mask on the edges. A modified ver-
sion of the cost function of Deutscher and Reid (2005) is
employed:

D = Dist
(
yt, P roj(xt)

)
(8)

which calculates the ‘distance’ betweenyt and the foreground
/ edges projections ofxt (see Peursum (2006) for details).
For the particle-filtered models in this paper (i.e.Simple-PF
and FSHHMM-PF), the observation probabilityP (yt|xt) is
then calculated via the exponential distribution andD:

P (yt|xt) = λe−λD (9)

whereλ > 0 and D > 0. The value ofλ controls how
sharply the distribution drops off with increasing values of
D (i.e. increasing distance), hence a largerλ will more heav-
ily penalise slightly incorrect particles. This is important
since most particles will return similar values forD due to
the high dimensionality of the state space. For example, if
two particles only differ significantly in their elbow angles,
95% (27 of 28D) of the body model is still much the same,
plus the forearm is not a large body part in the projection
and may even be occluded in some views.

For the APF, the observation probability is defined as
follows (according to Deutscher and Reid (2005)):

f(yt|xt) =
(
e−D

)λ
(10)

where the APF’s algorithm automatically setsλ, usually such
thatλ≫1 so that slightly incorrect particles are heavily pe-
nalised. Notice that, unlike Eq (9), this function is not a
probability density since it does not integrate to 1.0 unless
λ=1. However, note also that since particles in this paper are
weighted byP (yt|xt) (see Eq (5)) and then normalised, the
proportionality constant multiplierλ in Eq (9) is redundant
since it will be normalised away. With this insight in mind, it
is possible to see that (9) and (10) are effectively equivalent:

P (yt|xt) = λe−λD

= λ
(
e−D

)λ

∝
(
e−D

)λ

∝ f(yt|xt)

(11)

In other words, applying the annealing factorλ of the APF
as a power is merely another way of writing the general form
of the exponential distribution (disregarding the proportion-
ality constant, which is redundant in the particle filter dueto
normalisation). Thus a suitableλ≫1 could be chosen for the
Simple-PF to define its observation probability and similar
performance to the Simple-APF should result – this is pre-
cisely what is found in Section 6.1. Due to this equivalence,
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this paper will henceforth refer toλ as the annealing fac-
tor (rather than a more cumbersome term like ‘exponential
coefficient’).

However, there is still an important difference between
the particle filter and the APF in that the APF selects the
value ofλ dynamicallyfor each annealing layer. This means
that the APF is continually altering its definition ofP (yt|xt)

between annealing layers and time instants – one can argue
that this means the Simple-APF is not strictly a Bayesian
model. Indeed, the authors themselves make note of this in
(Deutscheret al. 2000). The Simple-PF and FSHHMM-PF
do not suffer from this problem sinceλ in Eq (9) is fixed
across all time instants, with values chosen empirically as
λ=8 andλ=10 respectively (the Simple-PF’s weak motion
model necessitates more aggressive ‘annealing’).

Although the observation probability is heuristic in that
it is constructed around the heuristic functionD, most gen-
erative human body trackers are forced to utilise such heuris-
tics due to the difficulty of constructing and learning an alge-
braic function that will produce a usable measure of similar-
ity between the state and observation in arbitrary scenes. The
consequence of using heuristics is that it creates an obser-
vation probability that cannot be trained and so will return
erroneous results during unforeseen circumstances such as
partial occlusions. Hence what this paper describes as ‘ob-
servation errors’ are in fact failures ofD to properly account
for the observation.

4 Smoothed Articulated Tracking

4.1 Issues of Existing Smoothing Techniques

As has been discussed, smoothed inference is rare in artic-
ulated tracking. Part of the reason for this is that the high
dimensionality of the posture space means that approximate
filtering is already a computationally expensive task, and
smoothing only adds to this cost. However, over the past
decade there has been increasing use in tracking and sig-
nal processing of efficient approximate smoothed-inference
techniques such as variational approximations, Markov Chain
Monte Carlo (MCMC) methods and particle smoothing.

A variational approach to smoothed inference has great
potential for articulated tracking since it has been shown to
scale well to high dimensionality (Ghahramani and Jordan
1997). MCMC methods such as Gibbs sampling (Andrieu
et al.2003) are also worthwhile exploring given their flexi-
bility and typically polynomial (though difficult-to-measure)
convergence. Finally, the forward-filter backward-smoother
(Doucetet al.2000) or two-filter smoother (Klaaset al.2006)
for particle filters would be obvious smoothing choices for
existing particle-filtered methods. However, all of these ap-
proaches face obstacles when applied to articulated tracking
in a generative model:

– Variational methods require the ability to take expecta-
tions and differentials of the joint probability parame-
ters. However, the observation likelihood function in a
generative tracker is often implemented as a complex
heuristic function. Such functions are difficult to express
algebraically (precluding analytical solutions) and are
computationally expensive to evaluate (making numer-
ical methods such as gradient descent and MCMC inte-
gration impractical).

– MCMC / Gibbs samplingalso face difficulties with the
high computational cost of the heuristic observation func-
tion. Efforts to obtain a faster observation function (e.g.
Caillette et al. (2005)) rely on extracting a 3D visual
hull for the observation, but this requires multiple views
and is sensitive to observation errors (e.g.occlusions by
scene objects), thus robustness will suffer accordingly.

– Particle smoothingalgorithms do not require evaluations
of the observation function but are limited to adjusting
particle weights and so will not explore new parts of the
posture space during smoothing. In addition, these algo-
rithms haveO(N2T ) complexity whereN is the num-
ber of particles, which may be computationally imprac-
tical sinceN is usually quite large.

Most of the issues centre around the computational cost
of executing the various smoothing algorithms. This paper
proposes to facilitate efficient execution of variational and
Gibbs methods by approximating the computationally-costly
observation function with a mixture of Gaussians derived
from a pre-processing particle filter. Particle smoothing is
also implemented and shown to have a reasonable compu-
tational cost with respect to filtering forN 6 10,000 due
to the high overheads that the projection-based observation
likelihood adds to filtering. Note that this paper considers
a smoothing algorithm to be “computationally feasible” if
its runtime is comparable to, or less than, that of the pre-
processing particle filter run on the same sequence. Com-
plexity analysis (O-notation) is not suitable here since itdoes
not indicate constant overheads and there is no way of com-
paring algorithms whose complexity terms differ.

4.2 Particle Smoothing

There are several methods that have been proposed to pro-
vide smoothed inference from a forward pass by a parti-
cle filter: the forwards-backwards smoother (FBS; Doucet
et al. (2000)), smoothed distribution sampling, (SS; Doucet
et al. (2002); Godsillet al. (2004)), maximum a-posteriori
smoother (MAP; Doucetet al. (2002); Klaaset al. (2006))
and two-filter smoother (TFS; Klaaset al. (2006)). While
their details vary, all of these smoothing algorithms are es-
sentially methods to re-weight the particles of the initialfil-
tering pass to take into account the future data. The parti-
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cles themselves are not adjusted towards better areas of the
state space. Moreover, all areO(N2T ) complexity, although
Klaaset al. (2006) describes an approximate technique us-
ing KD-trees that can reduce this toO

(
(N logN)T

)
.

The FBS calculates new weights for the particles at each
time t by considering the level of ‘support’ that each parti-
cle has in the future, where support is the mass of particles at
time t+1 that a particlex(i)

t could (hypothetically) transition
to, weighted by the probability of those transitions. This iter-
ates fromT−1 . . .1, carrying the smoothing backwards until
all weights are smoothed. The SS approach is substantively
similar to FBS, differing mainly in that the FBS re-weights
the particles to estimate the smoothed distribution whereas
SSsamplesparticles trajectories from this smoothed distri-
bution. Thus SS can be loosely viewed as a resampled ver-
sion of FBS, consequently losing some of the smoothed dis-
tribution’s information. The MAP smoother also resamples,
but differs from SS in that it computes a Viterbi-like state
path through the particle trellis and samples only thesin-
gle most likely particle trajectory(in a MAP sense), and so
discards even more of the distribution than SS.

In contrast to the other methods, the TFS approach in-
volves a second, independent, particle filter that is run in
reverse (fromT to 1). The smoothed particle weights are
calculated based on the mutual support between the two fil-
ters’ particle sets, much like the FBS weight update. Unlike
the other particle smoothing methods, the reverse run allows
the TFS to explore parts of the state space not represented by
the forward filter. However, the trajectories of the particles
in the two filters must overlap somewhat in order for there
to be reasonable support between particles in the two filters.
Given that the reverse filter evolves independently of the for-
ward filter, this overlap can be difficult to guarantee in high-
dimensional state spaces. In 28D human posture tracking it
is possible that the reverse filter explores a local maxima of
the state space that is entirely isolated from the forward filter
at a given timet. In such a case, the mutual support between
the two particle sets may not be very meaningful. Finally, the
reverse filter is itself a significant processing overhead for
generative trackers where the observation function is slow
to evaluate. Due to the reduced information of SS and MAP
and the potential issues of TFS, this paper employs FBS.

4.3 Mixture Approximation ofP (yt|xt)

4.3.1 Motivation and Overview

The fact that particle smoothers do not shift the position of
the filtering particles given the future evidence from smooth-
ing is their main drawback. Ideally, smoothing would ex-
plore new areas of the state space that both past and future
evidence indicates is promising (the TFS reverse filter ig-
nores the past and so is no better than the forward filter).

This is particularly important for posture tracking in realistic
scenes, where posture failures caused by (say) an occluding
chair tend to ‘stick’ until the occlusion ceases or the error
becomes large enough to force the tracker to correct itself
(Peursumet al. 2007). For particle smoothers, the gap be-
tween the failure and the correction is a void that cannot be
filled since no particles exist in this space. This motivates
the search for other smoothed inference algorithms that are
not so restrictive.

Unfortunately, as described in Section 4.1, existing ap-
proximate inference techniques cannot be applied directlyto
generative pose tracking, mostly due to the computational
cost of the observation functionP (yt|xt). This paper re-
solves this by approximatingP (yt|xt) with a more man-
ageable function̂P (yt|xt). Since the observation function
employed in this paper is based on heuristic edge and fore-
ground comparisons between the projected body model and
the observation, approximating the function in general (i.e.
for any observation-model pairing) is not an easy task. How-
ever, a discrete approximation ofP (yt|xt) is available from
particle filtering – to evaluate a particlei, P (yt|x

(i)

t ) must
be calculated. In effect, each particle can be thought of as
sampling fromP (yt|xt) with a weight equal to the func-
tion’s probability atx(i)

t . P (yt|xt) could then be approxi-
mated with a Gaussian mixturêP (yt|x

(i)

t ) that is learned
from these weighted samples:

P (yt|xt) ≈ P̂ (yt|xt) =

K∑

k=1

ηk N (xt|µk, Σk) (12)

whereN is the Gaussian distribution andηk, µk andΣk are
the weight, mean and covariance for componentk. In this
paper, the covariance is held constant for all mixture com-
ponents, hence the mixture is quite similar to kernel density
estimation (KDE, also known as Parzen window density es-
timation). The main difference from KDE is that the mixture
adjusts the weights for each component via learning. This is
crucial since otherwise the approximation will not faithfully
reflect the true observation probability distributionP (yt|xt).
A lesser difference is that mixture learning also shifts the
component means about, although in practice the shifts are
small and if one fixes the means (as in KDE) a very similar
approximation is produced.

To illustrate the need for adjusting the component/kernel
weights, consider the case of kernel density estimation with
Gaussian kernels, where each particle is the kernel for a
component (i.e. µk = x

(i)

t , K = N ). If each kernel is
weighted by the observation probability of the particle that
generated it, the probability of any givenxt = x̃t is then:

P̂ (yt|x̃t) =

N∑

i=1

ρ(i)N (x̃t|x
(i)
t , Σ) (13)
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Fig. 5 Example mixture approximation generated from particle filter
samples. Solid green curve is the true functionP (yt|xt); vertical blue
bars indicate particles; dashed red curve is the mixture approxima-
tion P̂ (yt|xt) produced from the Gaussian components (thin dashed
orange).

whereρ(i) = P (yt|x
(i)
t ). The problem with this definition

is that the weights of closely-spaced components (e.g.com-
ponents less than one standard deviation apart) will add up,
causingP̂ (yt|x

(i)
t )≫P (yt|x

(i)
t ) at these closely-packed points

and thus misrepresentingP (yt|xt). Hence it is necessary
to adjust the weights (and optionally shift the means) via
Expectation-Maximisation (EM) in order to faithfully repli-
cate the values ofP (yt|x

(i)

t ) with the mixture.
In comparison to the discrete particles, the continuous

nature of the Gaussian mixture should be a better repre-
sentation of the similarly-continuousP (yt|xt), as depicted
in Figure 5. In particular, the mixture will partially ‘fill in’
the voids between the discrete particles, providing a reason-
able representation of the observation function’s behaviour
in the vicinity of the particles. The idea is that the mixture
will facilitate a range of inference techniques and provide
them with some flexibility in exploring the state space whilst
remaining acceptably accurate to the trueP (yt|xt). Subse-
quent inference is then effectively a smoothing of the origi-
nal particle filter used to generate the mixture.

4.3.2 Learning the Gaussian Mixture

Learning a Gaussian mixture model (GMM) via EM is a
well-known procedure. Given dataxi, i = {1..N} and Gaus-
sians withK components whose means, covariances and
weights are{µk, Σk, ηk}, k = {1..K}, the EM update equa-
tions for estimating a GMM are:

τi,k =
ηk N (xi|µk, Σk)

∑K

j=1 ηj N (xi|µj , Σj)
(14)

η̂k =
1

N

N∑

i=1

τi,k (15)

µ̂k =

∑N
i=1 τi,k xi∑N

i=1 τi,k

(16)

Σ̂k =

∑N
i=1 τi,k(xi − µ̂k)(xi − µ̂k)T

∑N

i=1 τi,k

(17)

where it is preferred thatK≪N for the sake of efficiency.
For the particle-filtered samples, eachxi , x

(i)

t has an asso-
ciated weightρi = P (yt|x

(i)

t ). This can be incorporated into
the EM equations by reinterpreting the weights as represent-
ing the relative number of samples at each locationxi. For
example, the update forηk becomeŝη′

k = 1
Z

∑N
i=1(ρi τi,k),

as if there wereρi-worth of data points atxi (whereZ =

N×
∑

jρj). Sinceτi,k is the weight for the assignment ofxi

to Gaussiank andρi is the weight of eachxi, one will find
thatτi,k always occurs together withρi. Hence it is conve-
nient to defineτ ′

i,k = ρi τi,k. The update equations for the

GMM approximationP̂ (yt|xt) at a givent thus become:

τ ′
i,k = ρi τi,k , ρi

η′
k N (xi|µk, Σk)

∑K

j=1 η′
j N (xi|µj , Σj)

(18)

η̂′
k =

1

N
∑

jρj

N∑

i=1

τ ′
i,k (19)

µ̂′
k =

∑N
i=1 τ ′

i,k xi
∑N

i=1 τ ′
i,k

(20)

Σ̂′
k =

∑N

i=1 τ ′
i,k(xi − µ̂k)(xi − µ̂k)T

∑N
i=1 τ ′

i,k

(21)

The usual practical issues arise in the approximation, in-
cluding deciding how many componentsK to use, the ini-
tial value of each component’s parameters and whether to
place any constraints on the EM updates. Due to the high
dimensionality ofP (yt|xt) (28D), this paper is fairly con-
servative in its choices to avoid causingP̂ (yt|xt) to become
unrepresentative of the trueP (yt|xt). There is however a
tradeoff between speed and faithfully representingP (yt|xt).
Hence Gaussian modes are chosen based on the distribu-
tion of samples (by weight), selecting all samples that are
above-average (i.e. ρi > 1

N

∑
jρj) and using the corre-

sponding value ofx(i)

t as the initial mean for each mode.
The assumption is that below-average particles are in un-
interesting areas ofP (yt|xt) and so can be safely ignored
as seeds for mixture components.K is roughly the same
as the filter’s effective sample size at each timet, which
in this paper is between0.05N and0.2N . As with particle
resampling, the approach retains more mixture components
during times of problematic observations such as when oc-
clusions occur. These cause the effective sample size to in-
crease (i.e. the distribution becomes more uniform) since
all particles are somewhat in error according toP (yt|xt)
due to the occlusion. Conversely, fewer samples are retained
with clean observations. This behaviour is desirable – dur-
ing an occlusion, particles that are more probable accord-
ing to P (yt|xt) are oftenlessaccurate in truth since they
have latched onto spurious edges and foreground (Peursum
et al. 2007). Initialising EM with more components will
thus include a broader range of particles, giving smoothing
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x2

x1

Fig. 6 Example Gaussian (dashed red) and mixture of Gaussians (blue
circles) fitted to a set of samples (crosses). Although each component
of the mixture assumes independence among dimensions, theoverall
mixture still captures the covariance of the samples.

the chance to override the erroneous observation informa-
tion with future data. Although there are fewer components
than particles, the low weights of the below-average parti-
cles means that they can be modelled with the tails of the
Gaussian components spawned from the above-average par-
ticles.

Another practical issue is the relative isolation of many
samples in the high-dimensional (28D) space given that there
are only 1,000–10,000 particles. Gaussian components that
are assigned to relatively isolated samples by EM will have
their covariance collapse towards zero. Even fairly densely-
sampled areas are unlikely to always contain enough par-
ticles to properly characterise the covariance of the neigh-
bourhood in the trueP (yt|xt). Hence this paper fixes the
covariance of all components to a diagonal29×29 matrix
(i.e. each dimension within a component is independent)
with each diagonal variance manually set to a reasonable
value for the posture dimension it represents. Specifically,
the 24 joint rotation variances are all set to 9 (in degrees,
i.e. standard deviation is3◦) global position variances of
{x=400, y=400, z=100} (millimetres) and global orien-
tation variance set to 25 (degrees). Note that although the 28
posture dimensions are assumed to be independentwithin
each component of the mixture, dependencies between di-
mensions are still modelled by theoverall mixture. To il-
lustrate how this is possible, consider Figure 6, where each
Gaussian component is diagonal but together they form a
strongly covariant mixture.

4.4 Variational Smoothing

Replacing the heuristicP (yt|xt) with its mixture approxi-
mationP̂ (yt|xt) facilitates the derivation of a variational ap-
proximation for Figure 3. Note that the Bayesian model for
the FSHHMM-PF (Figure 3) reduces to that of the Simple-
APF and Simple-PF (Figure 2) when there is only one phase
qt. The difference between the two is that the Simple-PF
/ Simple-APF posture is continuous and has Gaussian dif-
fusion transitions, whereas the FSHHMM-PF is discrete to

allow for modelling arbitrary non-linear/non-Gaussian mo-
tion in its transition distributions. Therefore, rather than de-
rive two sets of variational update equations for what is es-
sentially the same model, we derive the approximation for
the discrete FSHHMM-PF and reuse this for the Simple-
PF/Simple-APF by quantising their filtered postures and hand-
crafting a discrete generic transition model that replicates
their Gaussian diffusion dynamics. This entails some loss
of accuracy on the part of the continuous Simple-PF and
Simple-APF, but the quantisation error is small when com-
pared to errors caused by tracking failures due to occlusions
and poor observations (Peursumet al.2007). Moreover, the
manual ground-truth obtained with virtual markers is only
accurate to within about±50mm. The remainder of this sec-
tion describes the changes made to the FSHHMM-PF model
of Figure 3 for the purposes of variational and Gibbs approx-
imation.

4.4.1 Graphical Model with the Mixture

Figure 7a depicts the adjusted FS-HHMM used for varia-
tional approximation of posture, whereP (yt|xt) has been
substituted with the mixture approximation̂P (yt|xt). The
model parameters differ slightly from that of the original
FS-HHMM in Figure 3. Eqs (7a)–(7e) remain unchanged.
Additional parameters are:

η
(k)
t , P (s
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P (y
{d}
x,t|x

{d}
t ) =

K∑

k=1

η
(k)
t N (x

{d}
t | ȳ
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and Eqs (7g) and (7h) are changed to:

Ψt , P (v
{g}
t ) = N (vt| µ

{g}
v,t, Σ

{g}
v,t) (22e)

Υt , P (ut) = N (ut| µu,t, Σu,t) (22f)

wherest in Eq. (22a) is the mixture component ‘selector’
expressed as a Boolean vectors

(k)

t k = {1..K} andη
(k)

t is
the mixture weights (k is indexed as a superscript to rein-
force the fact that mixture components(k) arise from parti-
cles(i)). The means for the 28 dimensions of each compo-
nentk in the observation mixture are split across body joint
anglesx{d}

t , global body positionv{g}

t , g ∈ {posx, posy, posz}
(the g factors are not explicitly shown in the figure) and
global body orientationut. Observation mixture means are
thus defined as̄y{d}(k)

x,t , ȳ
{g}(k)

v,t and ȳ
{g}(k)

u,t respectively, with
associated empirically-specified variancesR
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Fig. 7 (a) FS-HHMM with a mixture approximation̂P (yt|xt) for the observation likelihood. (b) Quasi-mean-field variational representation of
(a) – the dependency structure forP (e

{d}
t |qt, qt+1, x

{d}
t ) is retained since it is deterministic.

Note the peculiarity that the observationsȳx,t are in fact the
means of the Gaussian mixture andxt is the data variable,
rather than vice-versa asP (yt|xt) would imply. This isn’t
a problem since Gaussians are symmetric about their mean,
hence viewing either variable as the mean is equivalent.

{µ{g}

v,t, Σ
{g}

v,t} and {µu,t, Σu,t} are the means and vari-
ances for the priors onvt andut. Note that the dynamics de-
pendenciesP (vt|vt−1) andP (ut|ut−1) have been dropped;
this has been facilitated by the mixture’s properties. Specif-
ically, the mixture has low variance for the dimensions rep-
resenting the person’s global 3D position and orientation
{ȳ{g}

v,t, ȳu,t}. This is due to the fact that these dimensions lie
at the very root of the body model’s kinematic tree (see Fig-
ure 4) and so do not accumulate the uncertainties of nodes
higher up in the tree. In other words,P (yt|vt, ut) is non-
zero only in a small area and so the dynamics dependen-
cies are largely redundant. In fact, the assumption of the lin-
ear dynamics model forP (vt|vt−1) is actually detrimental
since people do not move in a strictly linear fashion, but
the dynamics will erroneously bias a variational approxima-
tion towards such linear motion. Instead,P (vt) andP (ut)

are characterised by fitting a Gaussian to the particles of the
pre-processing filter:
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4.4.2 Variational Equations

Variational approximation proceeds by obtaining a lower bound
on the log-likelihood of the true posteriorP = P (x1:T |y1:T )

using a more tractable distributionQ(x1:T ). This lower bound
is achieved by varyingQ to minimise the Kullback-Liebler
(KL) divergence betweenP andQ, whereKL is defined as:

KL(Q‖P) =

Z

Q(x1:T ) log

„

Q(x1:T )

P(x1:T |y1:T )

«

dx1:T

=

Z

Q(x1:T ) logQ(x1:T ) dx1:T

−

Z

Q(x1:T ) logP(x1:T |y1:T ) dx1:T

= EQ

D

logQ
E

− EQ

D

logP
E

(24)

wherex1:T , {x{1:D}

1:T , v
{1:G}

1:T , u1:T , s1:T } in the FS-HHMM
andEP 〈f〉 is the expectation off with respect to the dis-
tribution P . For a more detailed introduction to variational
approximation in the context of factored HMMs, the reader
is referred to Ghahramani and Jordan (1997). Note that the
KL divergence can be interchanged with the variational free
energyKLF (Sminchisescu and Jepson 2004), which dif-
fers fromKL only in thatPF = P (x1:T , y1:T ) ∝ P . This
is useful since it is usually algebraically easier to work with
the joint probability andKLF does not change the minimum
of theKL divergence. This can be shown by expanding the
second term of Eq (24):
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logP
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E

= EQ
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log
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P(y1:T )

E

= EQ
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E

∴ EQ
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logP
E
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logPF

E

− K

(25)
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whereK = P(y1:T ), a constant with respect toQ and hence
it has no effect on the position of theKL minimum.

In this paper,Q is essentially a mean-field version ofP
where almost all of the hidden states are assumed to be in-
dependent, as shown in Figure 7b. However, the model does
retain some structure from Figure 7a, specifically the condi-
tional dependencies forP (e{d}

t |qt, qt+1, x
{d}

t ). This simplifies
variational inference because not only doesP (e{d}

t |qt, qt+1, x
{d}

t )

cancel out in theKL divergence (since it exists in bothP and
Q), it also does not require an inference calculation since it
is deterministic. From Peursumet al. (2007),et is:

e
{d}
t =

{
1 if ∀j, P (x

{d}
t =j, qt|x

{d}
t−1, qt−1) = 0

0 otherwise
(26)

The definition of the variational distributionQ is thus:
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whereP (e{d}

t |qt, qt−1, x
{d}

t−1) is not further expanded into its
parametric formΩ

{d}

mni since it will end up cancelling out
with the equivalent term inP when calculatingKL(Q‖P).
Here, the parametersθ(q)

t,m
, θ(x){d}t,i , θ(s)

t
, θ(v

µ
){g}
t

, θ(v
Σ
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t ,
θ(u

µ
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and θ(u
Σ
)t are thevariational parameterswhich

will be used to approximate the original parametersq
t,m

,
x

{d}
t,i, s

t
, v

{g}

t and ut in P . Note thati = {1..120} for xt

since this paper quantises the joint rotations at3◦ intervals
(3×120=360). Also note that the distributions forvt andut

are similar to the priors inP (Eqs (22e)–(22f)), differing
in that they are parameterised by the variationalθ(·µ) and
θ(·

Σ
) rather than Eqs (23a)–(23d).

For purpose-built models such as the FS-HHMM the
derivation of the variational approximation is quite lengthy
since the most basic ‘building block’ is the entire structure at
a single time-slicet. Hence for the sake of brevity, the reader
is referred to Peursum (2008) for details on deriving the vari-
ational update equations of the FS-HHMM model. Instead,
the remainder of this section will describe the process of util-
ising the update equations found in (Peursum 2008). Briefly,
to derive the update equations one must plug Eq (27) and
the equivalent equation for the joint probability ofP into
the KL divergence (24), then take derivatives with respect
to the variousθ(·) parameters and solve for zero. This leads
to a set of fixed-point update equations. Note that to do this,

the dynamic Bayesian networks of Figure 7 are being im-
plicitly ‘unrolled’ across time to match the length of the ob-
served sequencey1:T , hence the list ofθ(·) variables is also
fixed (i.e. the variational updates are occurring on a fixed
network).

Theseθ(·) are then optimised by iteratively evaluating
all the fixed-point equations for eachθ(·) one round at a
time. Specifically, a single iteration round involves calculat-
ing the new value of eachθ(·) in turn using the latest ver-
sion of all the otherθ(·)’s (i.e. use the new values ofθ(·)’s
that were updated earlier in the current iteration round). The
order of updating theθ(·) variables is in terms of moving
along the Bayesian network from top-to-bottom (qt before
xt) and left-to-right (t = 1 beforet = 2, etc), although con-
vergence should occur regardless of the chosen ordering. It-
erating these update rounds will then converge to a locally
optimal solution, where convergence is monitored by cal-
culating theKL divergence after each update iteration, and
comparing this to the previous iteration’sKL divergence.

4.5 Gibbs Smoothing

As with the variational approximation, Gibbs inference (An-
drieu et al. 2003; Ghahramani and Jordan 1997) uses the
model described in Section 4.4.1, with the Bayesian network
of Figure 7a. Gibbs sampling is one of the simplest Markov
Chain Monte Carlo methods, and proceeds by implicitly un-
rolling the dynamic Bayesian network to a fixed network
of lengthT to match the observed sequencey1:T . Hidden
states are then set to an initial value before repeatedly sam-
pling new values for each state given its Markov blanket un-
til N samples of the full joint distribution are drawn. Sam-
pling occurs in rounds, where during roundp a sample is
drawn for each hidden state given the current value of the
other states (whose value may have been updated earlier in
roundp, depending on the order of processing). Again, the
order in which the states are processed is from top-to-bottom
and left-to-right along the Bayesian network. Once all states
have been sampled the process is repeated for roundp+1,
continuing untilp = N . The full set of sampled values
over all roundsN then provides the sufficient statistics for
the Gibbs estimate of each state – in the case of a discrete
distribution this is the histogram of the samples and for a
Gaussian it is the sample mean and covariance. See Peur-
sum (2008) for details on the Gibbs sampling distributions
necessary for Figure 7a. Intuitively, Gibbs sampling works
by drawing a new sample that is ‘consistent’ with the current
values of states that can influence it (i.e. its Markov blanket).
This consistency is then propagated along the network one
link at a time, resulting in states concentrating their sam-
pling in areas of the state space that ‘make sense’ given the
state’s location in the unrolled Bayesian network. Eventually
this leads to the samples effectively being drawn from the
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true posteriorP (xt|y1:T ). Since the initial values may not be
very consistent with each other, the Markov sampling chain
usually requires time (called burn-in) to converge to sam-
pling fromP (x1:T |y1:T ). Thus the first 5%–10% of samples
are typically excluded from the final Gibbs estimate. The
number of burn-in samples needed to achieve convergence
depends on the initial state values and the distributions being
sampled from, and is difficult to estimate in advance.

In this paper, the number of Gibbs samples is set to 2,000
for the 1,000-particle FSHHMM-PF. Empirical tests showed
that values larger than 2,000 do not significantly improve
the Gibbs estimate, indicating that convergence has been
reached. For the Simple-PF / Simple-APF (10,000 particles),
5,000 Gibbs samples are used. Although one would expect
that the 10× difference in filtering particles would suggest
the use of 20,000 Gibbs samples, the lower value of 5,000 is
chosen so as to keep the computational runtime of Simple-
PF/Simple-APF Gibbs smoothing in the same ballpark as
the computational time of Simple-PF/Simple-APF filtering.
Burn-in time for all filters is set to the first 5% of Gibbs
samples. See Section 5.2 for details on initialisation.

5 Experimental Setup

The filtering and smoothing algorithms described in this pa-
per were evaluated against twelve video sequences – seven
HUMAN EVA -I videos, two HUMAN EVA -II sequences (Si-
gal and Black 2006) and three CLUTTER videos captured
in scenes containing occluding tables and chairs. Each se-
quence is processed with 12 algorithms (Table 1) to produce
144 tracking results in total.

Type Algorithms
Filtering Simple-PF Simple-APF FSHHMM-PF
FBS Simple-PF+FBS Simple-APF+FBS FSHHMM-PF+FBS
Variational Simple-PF+Vartnl Simple-APF+Vartnl FSHHMM-PF+Vartnl
Gibbs Simple-PF+Gibbs Simple-APF+Gibbs FSHHMM-PF+Gibbs

Table 1 Filtering and smoothing combinations (12 in total) employed
for tracking in each video.

5.1 Test Scenes and Ground-Truth

Datasets Twelve video sequences of walking are used for
test data, seven from the HUMAN EVA -I dataset, two from
the HUMAN EVA -II dataset and three from CLUTTER. The
HUMAN EVA sequences (Figure 8) consists of several videos
captured in tandem with marker-based motion capture, hence
actors are restricted to moving on a 3m×3m mat. Several
actors are used, each with different physiques. Videos are
captured at 640×480 resolution and 60 frames per second
(fps) – HUMAN EVA -I uses three colour cameras whereas
HUMAN EVA -II employs four colour cameras (this paper does
not use the greyscale HUMAN EVA videos). All views were
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Fig. 8 Example screenshots of the two datasets used in this paper.

used for tracking in this paper. Although the dataset con-
tains various actions (walking, boxing, gesturing), this paper
only considers the sections of video which contain walk-
ing motion where the actor walks in a circle for up to a
minute. Ground-truth is provided by the marker-based mo-
tion capture, and this paper evaluates accuracy with most of
the available joints (13 of 15 unique 3D joints – upper leg
proximals were ignored due to difficulties in defining corre-
sponding points on the body model that matched well).

The CLUTTER data set (Figure 8) is captured in a 7m×6m
room monitored by four ceiling-mounted colour cameras,
one in each corner. All views are used for tracking. The
room contains a variety of furnishings and whitegoods. A
table and chairs were placed in the center of the room to
produce a reasonably cluttered home-like scene and three
video sequences were captured where the placement of the
occluding tables and chairs was changed for each sequence.
Videos are captured at 384×288 resolution and 25fps, with
the room initially empty for background learning before the
actor enters and walks through the cluttered scene for about
a minute. No motion-captured ground-truth exists, hence the
ground-truth was manually labelled using a GUI utility de-
veloped to minimise the tedium of the task (Peursum 2008).1

Evaluation of Error Although the various filtering and smooth-
ing algorithms return a distribution of postures, for simplic-
ity the mean posture is taken and compared against the ground-
truth. In the case of particle filtering and FBS, this mean is
the weighted mean of the particle set. For the variational and
Gibbs approximations the mean of each joint rotation is cal-
culated independently (due to the factorisation assumptions
of the models in Figures 2 and 3).

In order to be consistent with other research based on the
HUMAN EVA dataset, the difference between the mean pos-
ture and ground-truth for a sequence is described in terms of
the mean and variance of the 3D Euclidean error (in millime-
tres)2, as defined in Equations (3)–(6) of Sigal and Black
(2006). Since multiple views are employed the absolute 3D

2 This implies a Gaussian distribution – although a Rayleigh distri-
bution may be better suited to modelling Euclidean error since the error
is in the range[0 . . .∞), the Gaussian is a reasonable approximation
and its mean and variance parameters are far more intuitive.
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Filtering Error (mm)
Sequence→ HE-I 1.1 HE-I 1.2 HE-I 2.1 HE-I 2.2 HE-I 3.1 HE-I 3.2 HE-I 4.2 HE-II 2.1 HE-II 4.4 Clu 1 Clu 2 Clu 3

Frames 6-590 6–605 6–438 6–605 6–448 6–605 6–605 1–380 2–380 265–865 300–1300 270–1270
Simple-PF Mean 79.9 120.4 100.4 103.2 86.3 120.9 103.6 104.7 83.2 131.5 188.5 184.7

StdDev ±21.6 ±16.2 ±17.8 ±19.3 ±29.4 ±21.9 ±27.5 ±12.9 ±23.6 ±50.1 ±66.2 ±56.3
Simple-APF Mean 81.3 113.0 112.1 97.8 81.1 87.9 100.3 118.2 95.6 143.8 218.9 193.9

StdDev ±24.7 ±29.7 ±16.3 ±33.9 ±38.3 ±43.5 ±20.0 ±29.6 ±22.5 ±50.3 ±60.4 ±61.1
FSHHMM-PF Mean 85.5 89.6 116.9 87.8 84.7 98.2 87.5 106.6 92.0 102.2 105.4 123.8

StdDev ±35.7 ±9.7 ±11.9 ±10.1 ±22.3 ±10.9 ±9.9 ±8.2 ±21.0 ±29.5 ±25.2 ±34.2

Table 2 Mean error and standard deviation of error for each of the filtering algorithms on the seven HUMAN EVA -I (HE-I), two HUMAN EVA -II
(HE-II) and three CLUTTER (Clu) sequences. All sequences are of walking (for HUMAN EVA -II, only the frames with walking were used).
HUMAN EVA sequences are abbreviated as follows: HE-IA.S= HUMAN EVA -I, Actor A, Walking SequenceS.

error is calculated. Note that for the CLUTTER dataset, the
ground-truth obtained via virtual markers is itself uncertain
due to the manual nature of the labelling – for the CLUTTER

dataset this uncertainty is approximately±50mm.

5.2 Training and Initialisation

Filtering Both the Simple-PF and Simple-APF have their
Gaussian diffusion parameters empirically defined. For 25fps
video, rotation variances are{6, 8, 4} (in degrees) of each
joint’s azimuth, elevation and roll respectively, position vari-
ances are{x = 300, y = 300, z = 100} and orientation vari-
ance20 (also in degrees). Variances are scaled to accommo-
date the HUMAN EVA dataset’s 60fps. The initial posture is
also manually defined by the user.

For the FSHHMM-PF, the ground-truth posture from a
single video sequence of a person taking four steps in a
straight line is used to train a walking model. This is suf-
ficient for the FSHHMM-PF to track a person through turns
even though the training data does not contain these move-
ments (Peursumet al. 2007). Training data is captured at
50fps, and although the test data is captured at 25fps the
FSHHMM-PF can handle the difference in frame rates. The
FSHHMM-PF also estimates the initial posture without hu-
man intervention.

Smoothing The variational and Gibbs inference approxi-
mations both require initialisation of their state. Ratherthan
initialise randomly, both initialisations are extracted from
the particles from the filtering step. For variational this in-
volves calculating the distribution of each hidden state based
on the particles, whereas for Gibbs sampling each state is set
to the value of the most-likely particle at each timet. Good
initialisation is important for both smoothing techniques, but
for different reasons. In particular, the optimisation surface
in variational approximation can have multiple local max-
ima (Corduneanu and Bishop 2001; Winn and Bishop 2005)
and so initialisation will determine which local maxima is
selected. This is very similar to the Expectation-Maximisation
(EM) algorithm, given that both EM and variational can be
viewed as optimising the KL divergence (Barber and Bishop

1998; Neal and Hinton 1998). For Gibbs sampling, good ini-
tial values are important in order to minimise the time taken
for the Gibbs MCMC chain to reach convergence.

6 Results and Analysis

6.1 Filtering Performance

Table 2 summarises the accuracy of each pre-processing fil-
ter (Simple-PF, Simple-APF and FSHHMM-PF) with re-
spect to the ten sequences. Note that some of the Simple-
APF sequences (HUMAN EVA -I 2.1 and all CLUTTER) suf-
fered from severe tracking failures where the person’s body
orientation becomes reversed over the course of about 10
frames (Figure 10). This brittleness of the Simple-APF arises
because annealing discards much of the particle distribution
to focus on one or two modes and selection of a poor mode
can lead to severe tracking failures. Conversely, the Simple-
PF does not suffer from the same issue. To avoid biasing the
subsequent smoothing results against the Simple-APF, the
frames during which the failures occur were excluded from
the error calculation.

HumanEva Dataset For the HUMAN EVA -I and -II sequences,
the average filtering error across all sequences is{100mm,
98mm, 94mm} for the Simple-PF, Simple-APF and FSHHMM-
PF respectively. Of interest is that the FSHHMM-PF (with
only 1,000 particles, an added error due to its discrete nodes,
and trained on a walking model that contains no turns) is
on par with the 10,000-particle Simple-PF and Simple-APF
despite the HUMAN EVA actors continuously walking in a
tight circle. Overall, the tracking accuracy of the three filters
is comparable to the results of other recent body tracking
systems tested with the HUMAN EVA walking sequences.

Clutter Dataset As expected, accuracy is worse in the CLUT-
TERdataset, with the average error rising to{168mm, 185mm,
110mm}. Here, the motion model of the FSHHMM-PF min-
imises the degradation in tracking by guiding tracking when
occlusions, poor contrast and/or low resolution cause the
observations to become unreliable. In contrast, the generic
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Fig. 9 Examples of tracking for each filter with corresponding error. All camera views are shown.

Fig. 10 The Simple-APF experiences severe tracking failures in sev-
eral sequences, such as this complete reversal of body orientation for
HUMAN EVA sequence 2.1.

models of the Simple-PF and Simple-APF cannot provide
similar guidance and so erratic tracking and failures ensue.

Note that the Simple-PF and Simple-APF perform sim-
ilarly to each other, confirming the findings of Bălanet al.
(2005) that the APF does not perform much better than a
standard PF with the same motion model. This seemingly
contradicts Deutscher and Reid (2005), who found that the
PF was far less accurate. However, Deutscher did not ‘an-
neal’ the PF observation likelihood as this paper does – if
λ is set to 1 in Eq (9), the Simple-PF does indeed fail very
quickly as Deutscher found. In contrast, given aλ=10 Ta-
ble 2 shows that the Simple-PF returns similar results to the
Simple-APF. The APF’s strategy of focusing on the peaks of
the observation likelihood modes while discarding the rest
of the distribution means that when observing conditions are
poor it can follow a poor mode and have difficulty recover-
ing when observations improve, hence the Simple-APF per-
forms slightly better than the Simple-PF in the HUMAN EVA

sequences and worse in the CLUTTER sequences, in addi-
tion to occasionally experiencing the aforementioned body
reversal tracking failures.

6.2 Smoothing Performance

Figure 12 shows the relative performance of the three smooth-
ing algorithms for all three pre-processing filters. Contrary
to expectations that incorporating additional evidence should
lead to a better estimate, most of the smoothing results are
often lessaccurate than the pre-processing filter that they
are based upon. This is particularly noteworthy in the case
of the CLUTTER sequences where the poor observation con-
ditions cause temporary ambiguities in filtering that smooth-
ing should have been able to improve on.

To gain an insight into why smoothing performs so un-
expectedly a closer look was taken at the tracking sequences
that were output by the various algorithms. This inspection
found that there are certain times when smoothingdoesim-
prove tracking accuracy, but this is offset by other occasions
where smoothing performs more poorly than filtering.

Fr 330 Fr 331 Fr 332 Fr 622 Fr 623 Fr 624 Fr 625
SEQUENCECLU 1 SEQUENCECLU 2

Fig. 11 Examples of smoothing (light yellow) correcting a temporary
lag error in filtering (dark blue).

Where Smoothing Works Although in each sequence there
are many frames in which smoothing outperforms filtering,
most of these seem to be random fluctuations in accuracy.
However, there are circumstances in which smoothing con-
sistently improves upon the accuracy of filtering. In particu-
lar, smoothing is able to correct filtering ‘lag’. This is where
the filter lags behind the true motion when the person moves
faster than the motion model predicts (e.g.as the person’s
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Fig. 12 Comparison of filtering and smoothing algorithm results. Each sub-figure depicts the filtering and smoothing error against every sequence
for a given pre-processing filter: (a) Simple-PF, (b) Simple-APF, (c) FSHHMM-PF.
Datasets are labelled as follows: HE-IA.S= HUMAN EVA -I (Actor A, Walking SequenceS); HE-II A.S= HUMAN EVA -II; Clu = CLUTTER.

leg swings forward during a stride). When such a lag occurs,
only a few particles are able to keep up with the motion. Al-
though these particles are highly-weighted they are not nu-
merous enough to dominate the mean body posture used in
error evaluation. This creates a lag effect in the filtered track
that is often corrected by the filter a few frames later due to
resampling and/or the motion slowing down enough to allow
the particles to catch up (e.g.at the end of the leg swing).

Smoothing is able to overcome this lag since the filter
has sampled at least some particles along the correct trajec-
tory and so smoothing can downgrade the contribution of
lagging particles since they have a low probability of tran-
sitioning to future states. In particular, FBS downgrades the
weight of lagging particle whereas variational and Gibbs ap-
proximations never visit the lagging mixture components
since they are unlikely transition targets given the future
states. Figure 11 shows examples of this lag correction.

Where Smoothing Fails The positive smoothing effect de-
scribed above is only prevalent with the FSHHMM-PF when
tracking in the CLUTTER sequences. Tracking in the HU-
MAN EVA sequences does not see as much benefit because
filtering rarely lags behind the true motion given that the
HUMAN EVA frame rate is comparable to the FSHHMM-
PF’s training frame rate (60fps vs 50fps). In contrast, the
CLUTTER sequences are at 25fps and so motion often out-
paces the motion model’s predictions. However, if no par-
ticle keeps up with the motion, the lag cannot be overcome
since particles attempting to ‘bridge the gap’ will have a low
weight and so are discarded during resampling. Since the
frame-to-frame effective sample size is quite low at around
0.05–0.2, resampling is unavoidably frequent and will elim-
inate all but a few particles. In fact, in a 1,000-particle fil-
ter only one particle at timet can expect to have surviving
‘descendents’ att+3! This rate of degeneracy means that
mode exploration is limited, hence errors lasting more than
a couple of frames are not resolvable by smoothing. Unfor-
tunately, such aggressive resampling is necessary since oth-
erwise the filter will lose coherence and become inaccurate

as particles explore the multitudes of distracting modes in
the high-dimensional space.

In terms of filtering algorithms, the Simple-PF and Simple-
APF do not realise smoothing benefits in the CLUTTER se-
quences because the frequent occlusions produce observa-
tion ambiguities that result in the filters being unable to main-
tain a good tracking lock for very long. These same ambi-
guities also affect the FSHHMM-PF, but its strong motion
model minimises the duration and magnitude of the result-
ing tracking failures. In fact, if filtered tracking fails with
any of the three filtering algorithms and the filter does not
quickly correct itself, resampling will ensure that the error
becomes permanent. Smoothing will then often result in a
lower accuracy than filtering because the smoother adjusts
the filtered trajectory towards anerroneousfuture state and
so propagates the error backwards in time. Whether or not
this causes the smoother to produce poorer accuracy de-
pends on the nature of the error.

Fr 557 Fr 558 Fr 559

Fig. 13 Example of variational smoothing (light yellow) causing an
odd limb posture during a lag error in filtering (dark blue). At frame
558 the smoothed calf rotation is carried over from Frame 557, whereas
the thigh rotation better matches that of Frame 559. Considered inde-
pendently, both joint angles have good support from the mixture ap-
proximationP̂ (yt|xt), but together they create an odd limb posture.

In comparison to FBS, variational and Gibbs smoothed
inference are less adept at correcting lag. This is not too sur-
prising given that the former two are approximate smoothers
based on another approximation – the observation mixture
P̂ (yt|xt), which is in turn based on a particle filter approxi-
mation. In cases where FBS is able to smooth a lag, the vari-
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Fig. 14 Smoothing with a synthetic non-linear, multi-modal model.Figure (a) shows the root mean squared error (RMSE) whereas Figure (b)
depicts the ratio between smoothing and filtering.

ational and Gibbs approximations instead may return pos-
tures with odd limb positioning (see Figure 13). Such pos-
tures do not exist in the original filtered particle set; they
arise due to the independence assumptions of the mixture
approximation, which means that the joint rotations in varia-
tional and Gibbs inference are estimated independently. Thus
odd joint combinations may occur, especially when the fil-
ter is shifting from one mode to another such as during lag.
In contrast, FBS smooths by adjusting the weights of entire
particles, where the weights reflect the full body posture,
and thus joint dependencies are enforced given the obser-
vation. Despite these handicaps, the variational and Gibbs
approximations actually provide an improvement in accu-
racy for three FSHHMM-PF HUMAN EVA sequences and is
only significantly worse than FBS in two cases (also in the
FSHHMM-PF; HE-I 1.1 and HE-I 1.2). Given the variability
of the variational and Gibbs approximations’ performances,
it is likely that they are being limited by how well the mix-
ture approximates the important areas of the true observa-
tion likelihood, which in turn is limited by the performance
of the particle filter. Since the image-based observation like-
lihood will contain a high number of local maxima (Smith
and Lovell 2006), it is difficult to approximatêP (yt|xt) with
a reasonable number of mixture components even if the par-
ticle filter visits several modes.

7 Follow-up Experiments

7.1 Effect of Dimensionality

In Section 6 smoothing only provided consistent improve-
ments when there were at least some particles in the filter
that follow the correct (though less-likely) mode and the am-
biguity does not last so long that the particles are lost during
resampling. Thus it is probable that the ineffectiveness of
smoothing stems from an insufficient number of particles for
the size of the 28D state space – the filter is simply unable to
keep track of enough modes, especially given that the num-

ber of modes grows exponentially with dimensionality. Un-
der this hypothesis, the FSHHMM-PF is able to gain more
benefit from smoothing than the Simple-PF or Simple-APF
since the former employs a strong motion model to sample
particles from good areas of the state space. Such a motion
model is implicitly channelling its particle sampling along a
lower-dimensional manifold according to the model’s train-
ing data, effectively performing a type of dimensionality re-
duction.

Follow-up experiments were thus conducted to test the
hypothesis that the ‘curse of dimensionality’ is the main fac-
tor behind the unimpressive smoothing results seen in this
paper. The experiments are based on the same non-linear
multi-modal synthetic model that Godsillet al. (2004) em-
ployed to demonstrate the worth of smoothing (a similar
model was also used by Klaaset al. (2006)). The model’s
dynamics equation and observation emission equation is as
follows:

xt =
1

2
xt−1 +

25xt−1

1 + (xt−1)2
+ 8 cos(1.2t) + νt (28)

yt =
(xt)

2

20
+ ωt (29)

whereνt andωt are zero-mean Gaussian noise with covari-
ances 10 and 1 respectively, and the initialx1 is sampled
from a zero-mean Gaussian with covariance 10. The square
term in the observation equation (29) creates a dual modality
where the observedyt fits±xt equally well, and the strongly
non-linear dynamics of Eq (28) ensures that particles which
are slightly incorrect can easily select the wrong mode.

Filtering and FBS smoothing was performed with be-
tween 100 and 50,000 particles. The ground-truthx1:T and
sampled observationsy1:T with T = 100 are generated ac-
cording to equations (28) and (29) for a 1D case as well
as an analogous 3D case wherext andyt are three-element
vectors. For simplicity the 3D case assumes a diagonal co-
variance with all variances set to 10. Variational and Gibbs
sampling were not tested against this synthetic model since
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their ability to scale to high dimensionality given a well-
behaved observation function with simple Gaussian noise
has been previously demonstrated (see Ghahramani and Jor-
dan (1997)).

Figure 14a plots the root mean squared error (RMSE) of
the filtered and FBS-smoothed trajectories for both the 1D
and 3D cases. Only one run was conducted for each partic-
ular particle count hence the trend as particles increase is
somewhat noisy, especially for the 3D case. Figure 14b uses
the same data but depicts the ratio between the smoothed
and filtered cases to indicate the relative improvement that
smoothing provides. The behaviour of the 1D case is similar
to that reported by Klaaset al. (2006) in that FBS is able
to significantly improve upon filtering, with diminishing re-
turns starting to occur beyond a certain number of particles
(in this case, at around 500). For the 3D case smoothing is
unable to provide any real improvement on filtering (and is
sometimesworsethan filtering) until at least 2,000 particles
are used, at which point smoothing begins to increasingly
improve upon filtering. However, this improvement is lim-
ited – for the 3D case smoothing is only 10% better than
filtering at 50,000 particles, in comparison to the more than
50% benefit that smoothing brings to the 1D case with just
500 particles.

This discrepancy can be explained by considering the
difference in size of the two state spaces; if around 200 par-
ticles gives good results in a 1D case, one would expect that
2003 = 8,000,000 particles is necessary to see a similar per-
formance in the 3D case. Figure 14 seems to bear this rule-
of-thumb out for both the particle filter and the associated
smoother. Thus in Section 6 it is likely that smoothing is un-
able to benefit tracking since an impractically large number
of particles would be necessary to properly explore the 28D
state space. It would be interesting to see whether smoothing
would be more effective with trackers that explicitly reduce
dimensionality, such as that of Elgammal and Lee (2004) or
Urtasunet al. (2006).

7.2 Effect of Multi-Modality

Fig. 15 Example screenshots of the monocular video generated by an-
imating a known ground-truth with the body model of Figure 4.

Another possible explanation for the poor smoothing per-
formance of Section 6 is that the experiments either had too

few modes due to the use of multiple views, or the multi-
modality was too ‘messy’ since it was being produced by
occlusions. In either case it could be argued that smooth-
ing is presented with few viable opportunities to overcome
poor filtering, hence the weak smoothing results. Therefore,
a quasi-synthetic video was generated in which only a sin-
gle monocular view is used to capture a person walking in a
straight line at an angle away from the camera. Such a sce-
nario will experience strong depth ambiguities since much
of the person’s motion (e.g. leg and arm swinging) will be
along the depth axis. In order to eliminate other distracting
sources of ambiguity, a real video was captured of a walking
person and ground-truthed. This was then used to generate
a synthetic video by animating the body model of Figure 4.
This ensures that the body model can perfectly fit the obser-
vation (avoiding ambiguities caused by a loose fit) as well
as removing background clutter. Moreover, the ground-truth
was in fact the training data of the FSHHMM-PF downsam-
pled to 25fps (see Figure 15), further reducing ambiguity
caused by deviations from the expected motion model of the
FSHHMM-PF. Thus the only significant sources of ambigu-
ity should be due to depth and self-occlusions.

Relative Error (mm)
Algorithm Filter FBS Vartnl Gibbs
Simple-PF 111.1 112.1 120.1 111.7
FSHHMM-PF 54.1 47.6 57.3 57.1

Table 3 Results of monocular tracking with the simulated video.

The Simple-PF and FSHHMM-PF were run against the
animated sequence, along with all smoothing algorithms.
The Simple-APF was not used since it would perform sim-
ilarly to the Simple-PF. Table 3 lists the RMSE across all
joints of the body model in terms of relative 3D error. Over-
all the trends are similar to Section 6, indicating that smooth-
ing does not provide added benefit to monocular views with
the algorithms employed. Note that the error of the Simple-
PF is disappointingly high given the perfect observations
and use of relative error.

The variational and Gibbs approximations are no more
accurate than filtering, probably because the mixtureP̂ (yt|xt)

is still attempting to approximate a 28D space with rela-
tively few particles. These methods may find more success
in lower-dimensional problems. The FSHHMM-PF does ben-
efit from FBS smoothing, but as with Section 6 this is mostly
in terms of correcting filtering lag (although the lag is more
pronounced here due to the self-occlusions in a single view).
Depth ambiguities in the filtering step are minimal since the
strong motion model of the FSHHMM-PF reduces the num-
ber of observation modes that the filter can visit.

In contrast to the FSHHMM-PF, the Simple-PF experi-
ences significant depth ambiguities since the generic motion
model places few constraints on the filter’s evolution. The
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filter therefore has little difficulty finding highly-weighted
– though often inaccurate – postures. Vondraket al. (2008)
found a similar effect when filtering with the APF in monoc-
ular views. Since the person does not turn and there is no
other viewpoint, little evidence exists for smoothing to cor-
rect the filtering trajectories. Thus filtering and smoothing
return similar results, with smoothing slightly less accurate.

One potential way to overcome this lack of evidence is
the kinematic jump sampling of Sminchisescu and Triggs
(2003). This involves sampling particles from a predicted
postureandthe prediction’s depth-ambiguousmirrors, thereby
maintaining multi-modality for longer periods and hence pro-
viding smoothing with the chance to choose between com-
peting modes. However, ambiguities caused by factors other
than depth (e.g.occlusions, loose-fitting body models) are
unlikely to be resolved by such an approach. General-purpose
methods for maintaining multi-modality (Vermaaket al.2003)
in conjunction with a strong motion model may be a worth-
while alternative to explore.

7.3 Time Efficiency of Algorithms

Runtime per frame (sec.)
Filter Smoother GMM Smooth Total w/Filter
HUMAN EVA -I Dataset:
Simple-PF - - - 240s 240s

FBS - 138s 138s 378s
Variational 30s 40s 70s 310s
Gibbs 30s 200s 230s 470s

Simple-APF - - - 245s 245s
FBS - 140s 140s 385s
Variational 14s 15s 29s 274s
Gibbs 14s 93s 107s 352s

FSHHMM-PF - - - 25s 25.0s
FBS - 0.8s 0.8s 25.8s
Variational 0.5s 1.4s 1.9s 26.9s
Gibbs 0.5s 1.7s 2.3s 27.3s

CLUTTER Dataset:
Simple-PF - - - 95s 95s

FBS - 133s 133s 228s
Variational 30s 34s 64s 159s
Gibbs 30s 108s 138s 233s

Simple-APF - - - 98s 98s
FBS - 134s 134s 232s
Variational 15s 12s 27s 125s
Gibbs 15s 88s 103s 201s

FSHHMM-PF - - - 10s 10.0s
FBS - 0.8s 0.8s 10.8s
Variational 0.4s 0.8s 1.2s 11.2s
Gibbs 0.4s 1.5s 1.9s 11.9s

Table 4 Average runtimes per frame for filtering and smoothing al-
gorithms. HUMAN EVA -I video consists of three camera views at
640×480 whereas CLUTTER video comprises four views 384×284
(this only affects filtering runtime since smoothing does not use the
video). Experiments were run on an Intel Core-2 6420 2.13GHz.

Table 4 shows the runtime of the experiments from Sec-
tions 5 and 6. All algorithms are implemented in C++ and
share a common set of video and image processing routines.
No particular effort was made to optimise the code to in-
crease performance. For example, object-oriented principles
(information hiding, polymorphism), assertion checks and

garbage collection were all extensively used, and no assem-
bler or multi-threading was employed outside of the video
decoding functions.

Note that the Simple-APF is faster than the Simple-PF
for the variational and Gibbs approximations. This is due to
the fact that duplicate particles are ignored during the con-
struction of the mixture approximation̂P (yt|xt), which sig-
nificantly reduces the number of components for the Simple-
APF since annealing crowds many particles together that
become identical when the state space is quantised to 3◦

intervals (see Section 4.4). The CLUTTER videos also pro-
cess slightly faster than the equivalent HUMAN EVA -I videos
since the variance of particle weights is higher in CLUTTER

due to it having more difficult scenes, hence fewer particles
are retained as the seeds for components in the mixture.

For the 1,000-particle FSHHMM-PF, the overhead of
smoothing is low for all algorithms (5%–20% extra com-
putation time on top of filtering) since the constant cost of
evaluating the observation likelihood during filtering domi-
nates processing time. However, this gap largely disappears
with the 10,000-particle Simple-PF and Simple-APF. Even
the variational approximation becomes a significant fraction
of the filtering time due to the increased number of mixture
components that the 10,000 particles generate. Although the
smoothing efficiency is better than one would expect given
that particle filtering is generally seen as being quite effi-
cient (Klaaset al. 2006), the fact that smoothing does not
improve accuracy makes it difficult to recommend, at least
with the filtering algorithms explored in this paper.

8 Conclusions

This paper has presented a study of three smoothed-inference
algorithms (forward-backward smoothing, variational and
Gibbs sampling) for 3D human body tracking in genera-
tive models. As part of the study, a method was introduced
to facilitate the efficient execution of the latter two algo-
rithms by approximating the observation likelihood with a
mixture of Gaussians. Although it is generally expected that
smoothing will improve upon the filtering estimate since
smoothing incorporates future evidence, results in a multi-
view environment show that the smoothing algorithms pro-
vide no real improvement on the tracking accuracy of fil-
tering and in fact can produce anincreasederror. Simula-
tions with monocular views indicate that the same issues ex-
ist in single views despite depth ambiguities being a clas-
sic case of multi-modality that smoothing should be well
suited to handling. The cause of the poor performance of
smoothing can be traced to the high-dimensional nature of
body tracking – as with earlier studies, smoothing on a low-
dimensional signal is shown to significantly improve upon
filtering, but when the dimensionality is increased then ex-
ponentially more particles are needed to support effective
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smoothing. In the high-dimensional state space of human
posture this would require an impractically large number of
particles. Thus for the filtering algorithms explored in this
paper, smoothing does not significantly improve body track-
ing accuracy and the time spent on smoothing would be bet-
ter spent on increasing the number of particles for filtering.
Methods to overcome the difficulties facing smoothing in
high-dimensional human body tracking are needed in order
to take advantage of the benefits that smoothing can give
during times of poor or ambiguous observations. In addition
to investigating new approaches to smoothing and methods
to maintain multi-modality in the filter, a more immediate
possibility is to apply forward-backward particle smoothing
to dimensionality-reducing body trackers, sidestepping the
problem of high dimensionality altogether.
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1

REVIEWER 1 COMMENTS

In section 3.1 at the end of the overview of particle filteringthe authors correctly note that resampling at every time yields the
SIR algorithm. It may also be worth noting that in the tracking literature, this algorithm was introduced as CONDENSATION
by Isard and Blake (IJCV, 1998)

Response We have included a sentence mentioning and citing some of thespecial cases of sequential Monte Carlo that have
been independently developed over the years, including CONDENSATION and the bootstrap filter. This discussion is located
at the beginning of Section 3.1.

The only particularly egregious problem is in section 4.5 onGibb’s sampling. On lines 38-41 the authors claim that “The
order in which states are processed is not an issue since sampling is based only on the previous round’s samples...” However,
this is not true of Gibb’s sampling in general, see for instance the description of Gibbs sampling in Andrieu et al, 2003

Response We have corrected the description since it was definitely incorrect, and we thank the reviewer for pointing it out.

Finally, one comment concerning the effectiveness of smoothing in general and the FBS method in particular. ... Frequent
resampling causes the approximation ofP (xt|y1:t+p) computed by the FBS to quickly collapse to a single point as p increases.
In practice this can happen even with seemingly modest values of p, say 5-10. One interesting statistic to monitor is the
survival rate of particles over a period of time, i.e., how many unique particles at timet have survived until timet + p

Response This is a valid point, and we have accordingly added a discussion of the role that degeneracy and resampling
plays in limiting smoothing’s performance (Section 6.2, heading “Where Smoothing Fails”). This also required describing
the effective sample size earlier in the paper (Section 3.1,last paragraph of Overview).

OTHER CHANGES

In addition to the above comments, we have also made the following minor changes to the manuscript:

– Improved the clarity of the bullet points summarising the contributions of the paper (Introduction, top of page 2).
– Corrected the URL in footnote 1.
– Added IEEE copyright notices to Figures 3 and 4.
– Improved the description of how we generated the synthetic video in Section 7.2.
– Corrected various minor grammar and typo errors.

Response to Reviewer Comments


