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25 Abstract Stochastic models have become the dominant meamsan body tracking is dominated by filtering. In genera-
26 of approaching the problem of articulated 3D human bodyive (top-down) tracking where the observation is viewed as
27 tracking, where approximate inference is employed toatalgt ‘caused’ by the true state, the most prevalent approach is
28 estimate the high-dimensional80D) posture space. Of thesgarticle filtering (Moeslunet al. 2006) which approximates
29  approximate inference techniques, particle filtering is th the state with a set of weighted Monte Carlo samples called
30 most commonly used approach. However filtering only takegarticles (Doucett al. 2000). However, research employing
g% into account past observations — almost no body tracking resmoothed inference for body tracking is almost non-extsten
33 search employs smoothing to improve the filtered inferencedespite the existence of several smoothing algorithms for
34 estimate, despite the fact that smoothing considers bath paparticle filters that have been shown to benefit other trackin
35 and future evidence and so should be more accurate. In dields (Douceet al. 2002; Godsillet al. 2004; Klaaset al.
36 effortto objectively determine the worth of existing smwot 2006), as well as alternative efficient approximate smabthe
37 ing algorithms when applied to human body tracking, thisinference techniques such as variational and Gibbs sagplin
38 paperinvestigates three approximate smoothed-infetenhe (Ghahramani and Jordan 1997).
39 niques: particle-filtered backwards smoothing, variaiap- This paper investigates approximate smoothing techniques
22 proximation and Gibbs sampling. Results are quantitativelin order to ascertain their worth for 3D multi-view articu-
42 evaluated on both the tMAN EVA dataset as well as a scene |ated human body tracking in both controlled and realistic
43 containing occluding clutter. Surprisingly, it is foundath  environments, where the latter contains occluding objects
44 ©Xisting smoothing techniques are unable to provide mucBych as tables and chairs. Such realistic scenes are rarely
45 improvement on the filtered §St|mate, and possible reasognsidered in human body tracking since occlusions pro-
46 astowhyare explored and discussed. duce observation ‘errors’ and thus often cause filteredirac
47 ing to fail for the duration of the occlusion. Our previous
48 . work (Peursumet al. 2007) showed that a strong motion
49 1 Introduction L . . _ _
model can minimise such failures, but this restricts tnagki
50 . . . . . e to modelled motions. In contrast, smoothing is applicable
51 Intime-series data with noisy observations, filtering is th ) . .
S . . to any motion dynamics and has been reported to improve
52 process of estimating (or tracking) the true state at time : ) oo . )
53 given all the observation&, v} that lead up td, and tracking estimates over filtering in other, lower-dimemsih
Lo e ’ . tracking fields (Doucett al.2002; Godsilet al.2004; Klaas
54 smoothing is the process of using all future observations : . . S . ,
55 o . . etal.2006). This paper investigates smoothing in both ‘clean
{y+n1,...,yr} to correct the filtering estimate in light of d cluttered envi tsto establish th diti h
56 the future evidence. Consequently, smoothing should pro"’—m cluttere enwr_omy”nen s 10 establish the conditionse/he
57 . . o ) . . smoothing is and isn’t beneficial for high-dimensional hu-
vide a better estimate than filtering since it takes all add . S C
58 . . o . man body tracking. Focus is given to smoothing in gener-
evidence into account. Hence it is common practice to use,. N
59 . . . . .ative models rather than discriminative (bottom-up) mod-
60 smoothed estimates in many fields such as signal processm% . )
o . : efs since although generative approaches are usuallyislowe
61 andspeech recognition. In contrast, research into aatied| . .
they generalise well to different people and naturally hand
gg Dept of Computing, Curtin University of Technology GPO Box missing/occluded observations, properties that are itapor
U1987, Perth, Western Australia in realistic scenes. In brief, this paper:
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— Examines the issues of applying existing smoothing alboth datasets to minimise any reliance apriori knowl-
gorithms to generative articulated tracking and proposesdge of the tracked person’s shape and ensure the tracker
the use of a mixture approximation to overcome thesgeneralises well to different people and clothing. To estab
issues whilst retaining modest computational coses ( lish the effect of motion models on smoothing, three mod-
no greater than filtering). els are employed for the pre-processing filter, two using a

— Quantitatively evaluates the performance of three popu‘generic’ motion model and the third using a learned (motion
lar smoothing algorithms based on three different filter-specific) motion model — in this case, of walking. The two
ing models and using two datasets(#aN EVA-I/lland  generic models differ in that one is filtered with the stan-
our own Q.UTTER dataset) in multi-view environments. dard particle filter (Doucegt al. 2000) and other with the

— Finds that, contrary to expectations and results in lowerannealed particle filter (Deutscher and Reid 2005). For the
dimensional problems (Doucet al.2002; Godsillet al.  third, a motion-specific model of walking is learned using
2004; Klaaset al. 2006), smoothing does not provide the factored-state hierarchical hidden Markov model (FS-
much benefit to high-dimensional articulated tracking.HHMM) of Peursunet al.(2007). The three smoothed-inference
Follow-up experiments indicate that dimensionality isalgorithms (FBS, variational, Gibbs) are then executeddtas
the cause of the poor smoothing performance. on these three pre-processing filters.

The three smoothed inference techniques investigated The results of each technique are evaluated quantitatively

include forwards-backwards smoothing (FBS), variationa nd compared V\."th one another as well as with f||ter.ed n-
approximation and Gibbs sampling. FBS is a natural choic erence. Eyaluatmn is based on the ground-truth position o
for particle-filtered inference but one which has rarelyrbee ;:r:mca:] Ft)r? mt;) (heag ' elsole’ ?and;,(jkn(et(hes, feet, Zt?' tﬁl
employed in articulated tracking (to our knowledge, theyonl ough the MIMANEVA dataset provides the ground tru

other example is Sminchisescu and Jepson (2004), who ugé these points via motion capture markers, most video se-

a dynamic programming approach that is similar to I:BS)‘quences typically have no associated motion capture data,

o : ; : C!ncluding our QUTTER dataset. Ground-truthing posture in
Variational and Gibbs sampling have seen some use in bogl h vid b llv definina “virtual kers’ (Bal
tracking but not as a means to smoathosstime — for ex- uch videos by manually defining ‘virtual markers’ (Balan

ample, mean-field Monte Carlo proposed by Hua and W t al. 2005) is a labour-intensive and time-consuming task.
(2007) optimises the observation likelihood at each time 0 minimise the tedium, a small Matlab GUI utility was de-

but still uses a particle filter to propagate the posturesscro velopeq for hand-labelling virtual markers from video, ac-
celerating the task so that each marker takes only 5—-10 min-

time. Moreover, in a generative model with a compleximage- )
based observation likelihood that is costly to evaluate, irtes tolabelin 500 frames (Peursum 2008). The source code

is computationally impractical to directly implement vari or th|§ utility 'S, avaﬂab!e for download. . .
ational or Gibbs sampling for smoothed inference. To over- This Paperis orggmsed as follows. Sectlon 2 SUMMArses
come this, we approximate the observation funcfitp, ;) recgnt work in the flleld of body trackm_g to plage thls pa-
with a more manageable mixture of Gaussians based onPEr N C_O”teXt- S_ecuons 3 and 4.despr|be the filtering and
‘pre-processing’ particle filter. This differs from Smirish smooth{ng algorithms eva!uated in this Paper, fpllowed by
escu and Jepson (2004), who approximated a handful of t _descr!puon of the experimental setup in Sgctlon 5 and a
maxima in the particle-filteregosterior P(z1.7|y1.z-) with liscussion of th.e results a_nd follow-up experiments in Sec-
a Gaussian mixture using gradient ascent optimisations irflons 6and 7. Finally, Section 8 presents the conclusions.
volving costly evaluations of the true(y,|z;).

Figure 1 gives an overview of this paper, depicting the
algorithms investigated and their relationships. Tragks 2 Background and Related Work
evaluated on both the HMANEVA-I and -II datasets (Si- . . . -
gal and Black 2006) and more difficult videos of r,neander_ArtlcuIated human body tracking has received significant re

; . . e . search attention over the past few years — a survey of work
ing walking sequences in a realistic indoors scene contain- . . ;
g g seq the field up to early 2006 is provided by Moesluetdal.

i luding tabl d chairs (h forth referred to al . . . .
Ing occluding tables and chairs (henceforth referred to & 2006). This paper is concerned with fully-articulated 3D

the QLUTTER dataset). The latter videos are difficult for . : . .
l?ody tracking, where articulation covers all of the major

fllterlng-qnly approaches to handle due_to the S.Ub_Optlmabody parts including the feet to produce a body model to-
observations caused by frequent occlusions. This paper fo-

cuses on walking since it will lead to repeated occlusionstalllng 28 degrees offreedom. Most contemporary appraache

in the Q_.UTTER dataset — although BMANEVA contains 0 S_UCh 3D body tracking are in terms of a stochastlc t.lme'
. . : . series framework where a human body model is explicitly

other motions €.g.throwing, boxing), this paper seeks to defined Ki fict f bod ts wh it |

contrast the results of the two datasets (arising from the di elined as a kinematic tree of body parts whose joint angles

ferences in the observing conditions) and so requiresaimil 1 pownload the Matlab source code from

motions in both. A loose-fitting body model is employed for http://impca.cs.curtin.edu.au/downloads/softwarg.ph
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Fig. 1 Overview of the algorithms and data sets investigated mphper. Both datasets are filtered with three filtering #lyms; each filtered
result is passed on to the three smoothing algorithms taugedine smoothing results, which are evaluated along Wwétitree filtering results.

evolve over time according to some motion dynamics sysmanifold is specific to a particular viewpoint of an actiyity
tem. The goal is to recover an estimate of the posture distrso multiple manifolds must be learned to handle different
bution via inference on the time-series probability modelviewpoints. A different approach is taken by Miindermann
The high dimensionality of the posture space means thait al. (2007) and Cheng and Trivedi (2007), who align a
approximate inference is necessary, and this usually take&D visual hull body model to an observed visual hull con-
the form of a sampling approach. Strategies for samplingtructed from silhouettes seen in multiple viewpoints in or
and evaluating postures can be grouped into two broad cadler to achieve viewpoint independence. Other researchers
egories: bottom-up (discriminative) models and top-down(Taycheret al. 2006; Sminichisescat al. 2006) utilise sta-
(generative) models. tistical time-series models such as conditional randorddiel
(CRFs) and maximum entropy Markov models (MEMMs)
to perform tracking. However, failures in detecting thestru
limb or the full silhouette and the need to train limb detec-
tors specific to the person being tracked means that discrim-
|nat|ve approaches have difficulty with observation ‘estor
e.g.occlusion by scene objects) and do not generalise well
o different people without retraining (Kanaugaal.2007).

Discriminative Approaches Discriminative models are typ-
ically more efficient than generative models since they em
ploy ‘limb detectors’ to search for candidate body parts in
the observed images and use these candidates in conjunc
tion with the previous posture and kinematic constraints t
infer the next posture. Thus sampling is strongly guided by
the limb detectors towards good matches. Many discrimi-
native approaches also mix in generative aspects, using tl@&enerative Approaches In contrast to discriminative meth-
limb detector to define where a generative tracker shouldds, generative approaches evaluate ‘guesses’ of the state
sample from. Leet al. (2002), Lee and Nevatia (2005) and against the true observation in a predict-then-evaluatiecy
Guptaet al. (2007) detect the face and torso before detera method that is almost always implemented with a particle
mining in a top-down manner the rest of the body’s strucilter (Doucetet al. 2000). Such an approach can generalise
ture, whereas Sigat al. (2004) detects all limbs and draw well to different people and is better able to handle poor
samples in the neighbourhood of these detections for a gepbservations than discriminative approaches. On the other
erative tracker. In addition, Siga&t al. (2004) models the hand, generative models require evaluating an observation
dependencies among limbs so that the position of one limbkelihood which in many cases is an expensive projection
can provide useful evidence for the position of another. Foof each 3D posture ‘guess’ onto the 2D image and evalu-
example, a person’s arms will usually swing in synchronisaating the difference in a pixel-wise manner (Deutscher and
tion with their legs during walking. Thus the position of the Reid 2005; Peursuret al.2007). An alternative approach is
legs can imply the likely position of the arms and vice-versato calculate a 3D representation of the observation, tylpica
Pure discriminative approaches have also been taken.visual hull (Miki€et al. 2001; Cailletteet al. 2005). This
Elgammal and Lee (2004) learn a non-linear mapping beean facilitate a faster observation evaluation but is ofge
tween observed silhouettes and their equivalent 3D bodthe visual hull’'s need for accurate full-body silhouettesti
postures. They first learn a mapping from silhouettes to anultiple views, which can be sensitive to errors in any one
low-dimensional manifold that represents the ‘path’ that aview.
given activity €.g.walking) takes through the high-dimensional Strong motion models are becoming an increasingly com-
space of human posture. This embedded manifold is themon method of focusing sampled predictions onto good ar-
mapped to 3D body postures. An observed silhouette cagas of the posture space so as to reduce the number of parti-
then be efficiently mapped to its body posture via the manieles needed to achieve accurate tracking. Such models also
fold, resulting in fast pose estimation. However, eachrledr learn the conditional dependencies between limbs for angive
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motion, for similar reasons to the discriminative approaich mixture. The final output is a Gaussian mixture that repre-
Sigalet al. (2004) described earlier. Many methods involvesents several modes &f(x1.7|y1.7). The authors demon-
learning a model of human motion dynamics in terms ofstrate tracking in a monocular view, a difficult task given
transitions of the-30D state. Caillettet al. (2005) learnthe the lack of depth information. However, the resulting opti-
transitions of a variable-length Markov model where eachmised trajectories differ noticeably from one another even
state defines a Gaussian subset of possible postures. Sinm-their 2D projections, and it is not clear how to deter-
larly, Peursurret al. (2007) employed a two-level factored- mine which is the best trajectory since the gradient ascent
state hierarchical HMM where the upper level defines théas ensured that all trajectories have high image liketihoo
‘phase’ (sub-sequence) of motion and the lower level defineln addition, the algorithm’s running time is not reported, a
the motion dynamics of the posture for each phase. Husz antHough the complexity of the algorithm and the need to opti-
Wallace (2007) proposed a hierarchical partitioned plartic mise over a projection-based observation funcfitiy, |x; )

filter, a variant on the annealed particle filter of Deutschesuggests it is computationally expensive. Finally, giveat t
and Reid (2005), in conjunction with ‘action primitives’, the ground-truth was not available for comparison, it i® als
which are motion sub-sequences similar to the phases aincertain as to what extent the system provides for more ac-
Peursunet al. (2007). These action primitives are clusteredcurate tracking (as opposedsmoothetracking, which the
with EM and PCA and new sub-sequences are comparelithors demonstrate).

against training primitives to determine which action is th

best match in order to draw samples for the next posture. ) )

Along slightly different lines, other researchers incagie 3 Filtered Articulated Tracking

the physics of walking (foot collisions with the groundjdé
cycle length, etc) (Brubakeit al.2006, 2007; Vondrakt al.
2008). This is used to strongly guide sampling as well a
achieve a more aesthetically believable tracking resuit. A
other way to incorporata priori information on motion is
through dimensionality-reduction methods, which attemp
to find a low-dimensional manifold in the circa-30D body-
motion space that represents most of the information of
given action. One of the earliest examples is work by Siden
bladhet al. (2000), who learned a multi-variate PCA model
of walking and showed that this could significantly outper-
form linear-Gaussian models. Urtasetral. (2006) also uses

This paper employs three particle-based filtering modeltzssh
gutputs will later be smoothed in Section 4. The three vary
in their motion dynamics models and patrticle algorithms in
order to investigate the effect of such differences on simoot
{ng. Two of the three (Simple-PF and Simple-APF) use generic
motion models in that the next posture is assumed to be
gistributed according to Gaussian diffusion of the current
posture’s joint rotations. They differ in that one modelsise
the standard particle filter (Doucet al. 2000) whilst the
other uses the annealed particle filter of Deutscher and Reid
(2005). The third filter (FSHHMM-PF) employs a motion-

PCA and later (Urtasuat al. 2005) a Gaussian process la- specific model that is learned from training data, with filter
' ing via a standard patrticle filter. The motion model is built

tent variable model (GPLVM) to find a mapping of walkin
and \; gIoIf swing on(to a simzﬂer :nanifold pf:aegannglgIar?w-on a factored-state hierarchical hidden Markov model (FS-

mal (2006) do a similar mapping onto a low-dimensional1HMM) to facilitate tractably modelling the non-linear dy-
torus, then sample particles (representing silhouettes) f nan('jncls o;hl;)man TO“?_E' ﬁ:l thdr?e u?_llse the same body
this torus and compare these samples against the obsen/8¢Ue! and observation fikelinood function.

silhouette via a similarity measure.

3.1 Particle Filter with a Simple Model (Simple-PF)

Smoothed Body Tracking Given that this paperis concerned

with realistic scenes containing occluding clutter, weetak

the path of generative models with a projection-based ob-
servation likelihood. One of the few to consider smooth-  sint
ing for articulated tracking in a generative setting is Smin ~"9's
chisescu and Jepson (2004). They use a complicated mix

of particle filtering, second-order gradient ascent and-var —~ ~
ational methods to estimate the posture. Their system pro=“*" @\\) / O
ceeds by extracting the eight most-likely (in terms of maxorientation @ @
imum a-posterior) particle trajectories from an initiarpa (Eé)g%?,rﬁitrfgmundgg .
cle filter. These trajectories are then optimised via Hessia

based (second-order) gradient ascent over the entiré-dist
bution P(z1.7, y1.7) to produce a Gaussian mixture. This
is then the input to a variational step that further refines th

Fig. 2 Bayesian network of the model for generic (motion-agngstic
brticulated tracking. The body po$e:, v+, u. } is fully factored.
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Overview Particle filtering, also known as sequential Montefor sampling, it has the advantage of being easy to sample
Carlo sampling (Doucett al. 2000) is a popular technique from and reduces Eq (2) to a simple evaluation:

for approximatdilteredinference in a generative model due _ o

to its algorithmic simplicity and ability to model non-liag w® = @ P(yt|17§1))P($§Z)|$§i)1)

non-Gaussian dynamics systems. Indeed, several spesésica * = p(xf) |x§i)1) (5)

of the technique have been independently developed and in- () ()

troduced under various names, including the bootstrap filte = wy Plyelay”)

in signal processing (Gordat al. 1993) and CONDENSA-  one issye for particle filters is that degeneracywhere
TION (Isard and Blake 1998) in computer vision. the weights of all but a few particles tend towards zero af-
Givenatrue, thoughunobservable, stateobservations  ter 5 few transitions. This occurs since only a few particles
ye (t = {1..T}), first-order Markov dynamic® («|x1:+1) = will be consistently sampled from highly-weighted areas of
P(x¢|x,-1) and observation probabilit? (ye[z1.1, y1:-1) = the state space. Although the problem of degeneracy can be
P(yt|x1), the posterior distributiorP(x¢[y1.) is approxi-  minimised by utilising the optimal), degeneracy cannot be

mated with\ weighted samples (called particlds)”, w;" }. completely avoided. Thus a common strategy is to regularly
i = {1..\}. Particles(i) are independently propagated for- resample particles when the effective sample size (Doucet
ward in time by sampling from an arbitrary proposal distri- gt a1. 2000) drops below some threshold in order to multiply

bution@(x: |z, , y:) and updating the weights: high-weight particles and discard low-weight particles- R
) ) sampling at every time yields the Sequential Importance
zp ~ Qaelzy, ye) 1) Resampler (SIR) algorithm.

S Pda) P |2)
w

t = Wi (@), (1) () Articulated Tracking with the Simple-PF For articulated
Q(It |It 1> Ut) . . i
” e tracking, this paper uses the state-space model of Figure 2,
ONS w*,' 3) wherez|” is the rotation for joint angled= {1..D}), v,
‘ Z;V:l w*? is the tracked person’s global positi@pos.., pos,, pos.),

u IS the person’s orientation in the scene apds the ob-
where ~ means ‘sampled from’. The algorithm has time served imageP(z;|x;—1) is modelled with generic motion
complexityO(NT), but the particles only approximate the dynamics where posture transitions are assumed to be Gaus-
filtering distribution since future observations have not beersian distributed about the previous postute (i.e. Gaus-
taken into account. The proposal distributi@rontrols how  sian diffusion:z; = 2. + ¢, wheree is zero-mean Gaus-
efficient the patrticle filter is with its samples — a ga@ahill sian noise). Note that it is more usual in the general track-
return samples in highly-weighted areas of the state spgace img literature to include velocityi; into the state and im-
t+1. SettingQ = P(z}"” |z{";, v+) is the optimal choice, en- plement a second-order (constant velocity) motion model so
suring that samples are selected based on knowledge frotinat predictions utilise the current velocity of the tragid-
both the previous state and the current observation. Seledect (.e.xy = x4 1 + 441 + €, andi; = &4 +¢,). Indeed,

ing this optimal@ reduces Eq (2) to: Sidenbladret al. (2000) and Poon and Fleet (2002) utilised
such a second-order model for human body tracking. How-
@ P(yt|x§”)P(x§”|x§i)1) e P(yt,xi”larﬁi{) ever, later work by Balaet al. (2005) showed that second-

W =Wy —

order models actually perform worse in human body track-
ing than first-order (diffusion) approaches due to the highl
= w§i>1p(yt|x§i>l) non-linear nature of human motion. Such issues could be
(4)  overcome by particle-filtered inference on a non-linean-no
Gaussian model of human motion since the particle filtering
One issue with the optima) is that it is often difficult to  framework is not restricted to linear Gaussian models. How-
directly evaluateP(y:|z” ;) and one must instead evaluate ever, such a modeg(g.as implemented by this paper in Sec-
[ P(ys, x|z} | )dz,. However, in the case of the articulated tion 3.3) requires significantly more effort to construcirth
models of this paper, the integration owgris computation- the Simple-PF. Hence this paper employs first-order Gaus-
ally intractable since;, is a 24-dimensional variable. More- sian diffusion transition dynamics for the Simple-PF.
over, it can be difficult to sample from the optin@] espe- The Simple-PF also assumes thafully factorises into
cially given the multiple modality engendered by the image-its component degrees of freedoire(the covariance of
based observation. Thus in this paggis set to the tran- each joint’s rotations is diagonal), with variances seebas
sition probability P(x{”|z\”;) for all models (Simple-PF, on the maximum change in rotation over one frame. This
Simple-APF and FSHHMM-PF). Although thi@ is sub- greatly simplifies the task of manually specifying rotation
optimal since the observatiapn is not taken into account variances and allows the model to generically represent any

P |20 y) P |20 y)
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human motion, at the cost of a weak motion model and
hence poor proposal distributidp(x;|x:1). To offset this
weakness filtering is performed with 10,000 particles, a rel
atively large amount for a generative body tracker. More |
sophisticated generic approaches could have been used taes
make the model more efficient, such as dynamically adjust-
ing the covariance (Sminchisescu and Triggs 2001). How-

Phase

ence of occluding objects, and the simpler model mak&Sentation
fewer assumptions that may prove to be invalid during timessservation

. . . (Edges, Foreground)
of occlusions and other problematic observations.

Fig. 3 Bayesian network of the FS-HHMM for learning-based articu-
lated tracking. Source: Peurswghal. (2007),(© 2007 IEEE.

3.2 Annealed Particle Filter w/Simple Model (Simple-APF) compactly representing the non-linear dynamics of articu-

. . ) . lated h tioninaB i tting. Th deli -
Overview The annealed particle filter (APF), first proposed ated human motion |n.a ayesian setiing. The modetis pa
rameterised as follows:

by Deutscher and Reid (2005), is a variant of the SIR par-

ticle filter where initial particles generated from a padic  C,,,, £ P(qs.n|q1.m) (7a)
filter prediction step at time are iteratively perturbed and @ & p, B, @ @_g 7b
resampled based on an annealing schedule. The annealing® — (@ 5215 Gens €7 =0) (7b)
causes the system to gradually cluster particles into pafaks Afldj} £ P(xt{dj} ey efd}: 1) (7c)
the observation likelihood by weighting the likelihood:
Y WEIghHng Sm 2 Pa1m) (7d)
Py(yelze) = Plyeae)™ 0< M << Ap (6) ol & P(x%ql,m) (7e)
whereP,(-) is the annealed likelihood at tieth annealing % 2 p® |1 o 4 ) (7)
iteration ¢ = {1..L}). The monotonically increasing val- " ’ ’
Cannoting S becomemore 7Y £ POE) (79)

ues of the annealing poweks causeP,(-) to become more

peaked as the schedule progresses, thereby placing increas 1; £ w;" P(us|ueq) + wi" Pug|vey, vy) (7h)
ing emphasis on particles in more-likely parts of the obser- (D) G .
vation. At each iteratior, the particles are evaluated with Wgere_ {o ’Utf h’ut} repr?sebntjs the posr;[ureh posm;)n
Eq (6), resampled to proliferate the best particles and thefid Orientation of the person's body apdis the phase o

perturbed via Gaussian diffusion to search the neighbou?;-he motion (de{slf:gbe{cli:cb}elow). Omitted is the observation

hood around these best particles. The process is repeat Ct'onlp(yt|xth Ut ’ufl):;}smﬁi}'t s a f|x§d hthI’ISI)IC
until the annealing schedule is completed. In this way, thd"at evaluates the postufe; ", v, u;} against the ob-

APF gradually focuses its search in the peaks of the obsererved image, as described in Section 3.4. For more details
vation likelihood at time. on the FS-HHMM see Peursuet al. (2007).

The FS-HHMM models a single human acti@ng.walk-

Articulated Tracking with the Simple-APF The Simple- ing) by breaking it down into phases (sub-motions) that de-

APF uses the same generic motion model with indepenf_ine a set of valid possible body configurations (postures)

dent (fully-factorised) joint rotations and Gaussianusfon and their trant5|t|0ns..The dlscre_te nature.of the HHMM al-
for posture transitions that the Simple-PF employs, (Fig-IOWS for learning arbitrary non-linear motion, an impoitan

ure 2). Similarly, 10,000 particles are used for APF infer-factor sincg hum:';ln motion is not Well-modelled. With lin-
ence but these are empirically split into 10 annealing |ay9ar dynamics (Balaet al. 2005). The phase, facilitates

ers of 1,000 particles each. In comparison with the Simple':"JICtoriSing the body joint rotations — by assuming rotagion

PF, the Simple-APF will typically produce particle setsttha &€ conditionally independent given the phase, a particu-

are densely packed in the observation likelihood peaks an@” Phase defines a transition regime for each rotation and
sparser elsewhere due to the iterative annealing. collectively these regimes define the coordinated motion of

the limbs for the sub-motion represented by the phase. Note

that the FS-HHMM models body joint rotations with a dis-
3.3 Particle Filter with a Factored-State cretex, rather than the continuous of the Simple-PF and
Hierarchical Hidden Markov Model (FSHHMM-PF) Simple-APF. As mentioned, this allows for learning arbi-

trary non-linear motion transition distributionsl,(;; and

Overview The FS-HHMM (Figure 3) is a two-level hier- A,;), at the cost of some loss in accuracy due to discreti-
archy (Peursunet al. 2007) that addresses the problem ofsation.
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Articulated Tracking with the FSHHMM-PF As with the  Foreground is extracted using a mixture of Gaussians back-
Simple-PF and Simple-APF, the FSHHMM-PF utilises a parground subtraction (Stauffer and Grimson 2000) and edges
ticle filter for approximate inference,with a proposal dist are extracted with a thresholded Sobel detector, with the
butionQ £ P(x¢|z¢4). This Q is learned from training foreground used as a mask on the edges. A modified ver-
data of the motion being representedg( walking) and so  sion of the cost function of Deutscher and Reid (2005) is

will channel particle-filtered sampling down good areas ofemployed:

the predicted posture space (assuming that the person is per

forming the modelled motion). Hence only 1,000 particles? = Dist (yt, PTOJ'(CCt)) (8)

are needed to provide reliable body tracking, far fewer than

the generic Simple-PF and Simple-APF models. For this paV-VhiCh calculates the ‘distance’ betwegrand the foreground

i . . . . . / edges projections of; (see Peursum (2006) for details).
per, an FS-HHMM s trained with a single walking SequenceFor the particle-filtered models in this papee(Simple-PF

f f t I traight line. This training data is suf . . .
ot four steps along a straignt fine. 1his training data 1s sut, |, FSHHMM-PF), the observation probabil®(y; |x;) is
ficient to model and track most walking motions (including _ o,

then calculated via the exponential distribution dnd

turns and pivoting).
P(yilz) = Ae P 9)

3.4 Body Model and Observation Function where\ > 0 and D > 0. The value ofA controls how
sharply the distribution drops off with increasing valués o

All three filtering models employ the same body model andp (j.e.increasing distance), hence a largavill more heav-
observation function. This paper focuses on human pose-trag; penalise slightly incorrect particles. This is imparta
ing with generative Bayesian models where the observatiogince most particles will return similar values fbrdue to
function is projection-based to improve robustness to Bbsethe high dimensionality of the state space. For example, if
vation errors such as occlusions by scene objects (Peursuiio particles only differ significantly in their elbow angle
etal.2007). A loose-fitting body model is used to avoid thegs (27 of 28D) of the body model is still much the same,
need to manually tune it to the specific physiques of the pegs|us the forearm is not a large body part in the projection
ple being tracked. and may even be occluded in some views.

For the APF, the observation probability is defined as
follows (according to Deutscher and Reid (2005)):

f(yelze) = (eiD)

where the APF’s algorithm automatically sgtsisually such
AL that A\>1 so that slightly incorrect particles are heavily pe-
l nalised. Notice that, unlike Eq (9), this function is not a
y
1df,

Body Model This paper employsa 1
28-dimensional model of the hu-
man body (Figure 4), rooted at
the pelvis and parameterised by |,;
24 joint rotations and four global scae
variables (x, y, z, orientation —
body pitch is modelled at the pelvis
so that it can be learned by the
FSHHMM-PF) as well as a fixed
scale. Scale applies to the en- -

A (10)

) probability density since it does not integrate to 1.0 usles
orematon  A=1. HOowever, note also that since particles in this paper are
1o weighted byP(y;|x:) (see Eq (5)) and then normalised, the

tire body model since the relativeFig. 4 28D ‘cardboard’ p_ropo_rtlo_nallty consta_mt multipliek n Eq (.9) IS redun(_jant_
length of each limb is fixed. Eachbody model. ~Source: since it will be normalised away. With this insight in mind, i
body part is modelled with a. cylin- Peursumet al. (2007), is possible to see that (9) and (10) are effectively equitale

der whose sides are projected ont6® 2007 IEEE. P(y;|zy) = Ae ?P

the 2D image and then joined with lines to produce the card- ' A

board look for efficient projection (Sidenblaghal. 2000). = )‘(e ) (11)
The model is fairly loose-fitting so that any tracker based x (e—D)A

on it should generalise well to different people. Broad gni o f(ys|ze)

on joint rotations are enforced to constrain postures teg¢ho
that are feasible for most human motions, but these limit$n other words, applying the annealing factoof the APF
are not specific to any particular motion. No effort is madeas a power is merely another way of writing the general form
to prevent body part intersection in 3D space. of the exponential distribution (disregarding the projmort
ality constant, which is redundant in the particle filter dne
Observation Likelihood Function This uses an observation normalisation). Thus a suitables-1 could be chosen for the
function P(y:|z:) based on projecting; onto the image Simple-PF to define its observation probability and similar
y; and evaluating the difference between the two. Hgre, performance to the Simple-APF should result — this is pre-
is a tuple consisting of the edges and foreground imagesisely what is found in Section 6.1. Due to this equivalence,
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this paper will henceforth refer ta as the annealing fac-
tor (rather than a more cumbersome term like ‘exponential
coefficient’).

However, there is still an important difference between
the particle filter and the APF in that the APF selects the
value of A dynamicallyfor each annealing layer. This means
that the APF is continually altering its definition B y: |x+)

between annealing layers and time instants — one can argue

that this means the Simple-APF is not strictly a Bayesian

model. Indeed, the authors themselves make note of this in-

(Deutscheet al. 2000). The Simple-PF and FSHHMM-PF
do not suffer from this problem sincein Eq (9) is fixed

across all time instants, with values chosen empirically as

A=8 and =10 respectively (the Simple-PF’s weak motion
model necessitates more aggressive ‘annealing’).
Although the observation probability is heuristic in that
it is constructed around the heuristic functibn most gen-
erative human body trackers are forced to utilise such keuri
tics due to the difficulty of constructing and learning arealg
braic function that will produce a usable measure of similar
ity between the state and observation in arbitrary sceres. T

consequence of using heuristics is that it creates an obser-

vation probability that cannot be trained and so will return

— Variational methods require the ability to take expecta-

tions and differentials of the joint probability parame-
ters. However, the observation likelihood function in a
generative tracker is often implemented as a complex
heuristic function. Such functions are difficult to express
algebraically (precluding analytical solutions) and are
computationally expensive to evaluate (making numer-
ical methods such as gradient descent and MCMC inte-
gration impractical).

MCMC / Gibbs samplinglso face difficulties with the
high computational cost of the heuristic observation func-
tion. Efforts to obtain a faster observation functien.
Caillette et al. (2005)) rely on extracting a 3D visual
hull for the observation, but this requires multiple views
and is sensitive to observation erroesg.occlusions by
scene objects), thus robustness will suffer accordingly.
Particle smoothinglgorithms do not require evaluations
of the observation function but are limited to adjusting
particle weights and so will not explore new parts of the
posture space during smoothing. In addition, these algo-
rithms haveO(N2T) complexity whereN is the num-
ber of particles, which may be computationally imprac-
tical sinceN is usually quite large.

erroneous results during unforeseen circumstances such as

. . . . . Most of the issues centre around the computational cost
partial occlusions. Hence what this paper describes as ‘ob- ) : _ . )
. ) . . of executing the various smoothing algorithms. This paper
servation errors’ are in fact failures 6fto properly account

f . proposes to facilitate efficient execution of variationatia
or the observation. : C .
Gibbs methods by approximating the computationally-gostl
observation function with a mixture of Gaussians derived
from a pre-processing particle filter. Particle smoothisg i
also implemented and shown to have a reasonable compu-
tational cost with respect to filtering fa¥ < 10,000 due
to the high overheads that the projection-based observatio
As has been discussed, smoothed inference is rare in artigkelihood adds to filtering. Note that this paper considers
ulated tracking. Part of the reason for this is that the higha smoothing algorithm to be “computationally feasible” if
dimensionality of the posture space means that approximatg runtime is comparable to, or less than, that of the pre-
filtering is already a computationally expensive task, anthrocessing particle filter run on the same sequence. Com-
smoothing only adds to this cost. However, over the pasplexity analysis (O-notation) is not suitable here sinciois
decade there has been increasing use in tracking and siget indicate constant overheads and there is no way of com-
nal processing of efficient approximate smoothed-infegencparing algorithms whose complexity terms differ.
techniques such as variational approximations, MarkovrCha
Monte Carlo (MCMC) methods and particle smoothing.

A variational approach to smoothed inference has great.2 Particle Smoothing
potential for articulated tracking since it has been shawn t
scale well to high dimensionality (Ghahramani and Jordahere are several methods that have been proposed to pro-
1997). MCMC methods such as Gibbs sampling (Andriewide smoothed inference from a forward pass by a parti-
et al. 2003) are also worthwhile exploring given their flexi- cle filter: the forwards-backwards smoother (FBS; Doucet
bility and typically polynomial (though difficult-to-mease) et al. (2000)), smoothed distribution sampling, (SS; Doucet
convergence. Finally, the forward-filter backward-smeoth et al. (2002); Godsillet al. (2004)), maximum a-posteriori
(Doucetet al.2000) or two-filter smoother (Klaat al.2006) smoother (MAP; Doucett al. (2002); Klaaset al. (2006))
for particle filters would be obvious smoothing choices forand two-filter smoother (TFS; Klaaat al. (2006)). While
existing particle-filtered methods. However, all of thepe a their details vary, all of these smoothing algorithms are es
proaches face obstacles when applied to articulated trgcki sentially methods to re-weight the particles of the inifilal
in a generative model: tering pass to take into account the future data. The parti-

4 Smoothed Articulated Tracking

4.1 Issues of Existing Smoothing Techniques
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cles themselves are not adjusted towards better areas of tiiais is particularly important for posture tracking in risét
state space. Moreover, all af§ N2T') complexity, although  scenes, where posture failures caused by (say) an occluding
Klaaset al. (2006) describes an approximate technique usehair tend to ‘stick’ until the occlusion ceases or the error
ing KD-trees that can reduce thisctb((NlogN)T). becomes large enough to force the tracker to correct itself

The FBS calculates new weights for the particles at eacfPeursumet al. 2007). For particle smoothers, the gap be-
time t by considering the level of ‘support’ that each parti- tween the failure and the correction is a void that cannot be
cle has in the future, where supportis the mass of partitles éilled since no particles exist in this space. This motivates
time ++1 that a particler}” could (hypothetically) transition the search for other smoothed inference algorithms that are
to, weighted by the probability of those transitions. Thés-i  not so restrictive.
ates froml™—1. .. 1, carrying the smoothing backwards until Unfortunately, as described in Section 4.1, existing ap-
all weights are smoothed. The SS approach is substantiveytoximate inference techniques cannot be applied dirémtly
similar to FBS, differing mainly in that the FBS re-weights generative pose tracking, mostly due to the computational
the particles to estimate the smoothed distribution wteereacost of the observation functioR (y;|x;). This paper re-
SSsamplesarticles trajectories from this smoothed distri- solves this by approximating’(y;|z;) with a more man-
bution. Thus SS can be loosely viewed as a resampled vesgeable functionP(y;|z;). Since the observation function
sion of FBS, consequently losing some of the smoothed dissmployed in this paper is based on heuristic edge and fore-
tribution’s information. The MAP smoother also resamples ground comparisons between the projected body model and
but differs from SS in that it computes a Viterbi-like state the observation, approximating the function in geneial (
path through the particle trellis and samples only $he  for any observation-model pairing) is not an easy task. How-
gle most likely particle trajectoryin a MAP sense), and so ever, a discrete approximation 8y;|z;) is available from
discards even more of the distribution than SS. particle filtering — to evaluate a particle P(y;|={”) must

In contrast to the other methods, the TFS approach inbe calculated. In effect, each particle can be thought of as
volves a second, independent, particle filter that is run isampling fromP(y,|z;) with a weight equal to the func-
reverse (froml’ to 1). The smoothed particle weights are tion’s probability atz}”. P(y,|z;) could then be approxi-
calculated based on the mutual support between the two filnated with a Gaussian mixtut(y,|=;") that is learned
ters’ particle sets, much like the FBS weight update. Unlikefrom these weighted samples:
the other particle smoothing methods, the reverse run allow

the TFS to explore parts of the state space not represented by K

the forward filter. However, the trajectories of the pagicl P(y|z) ~ P(y:|z) = Z e N (24| g, X (12)
in the two filters must overlap somewhat in order for there k=1

to be reasonable support between particles in the two filters

Given that the reverse filter evolves independently of the fo WhereA is the Gaussian distribution amg, 11, and X' are
ward filter, this overlap can be difficult to guarantee in high the weight, mean and covariance for comporenin this
dimensional state spaces. In 28D human posture tracking f@per, the covariance is held constant for all mixture com-
is possible that the reverse filter explores a local maxima aponents, hence the mixture is quite similar to kernel dgnsit
the state space that is entirely isolated from the forwatetfil €stimation (KDE, also known as Parzen window density es-
at a given time. In such a case, the mutual support betweerimation). The main difference from KDE is that the mixture
the two particle sets may not be very meaningful. Finally, th adjusts the weights for each component via learning. This is
reverse filter is itself a significant processing overhead focrucial since otherwise the approximation will not faitifu
generative trackers where the observation function is sloweflect the true observation probability distributiBiy;|:).

to evaluate. Due to the reduced information of SS and MAPA lesser difference is that mixture learning also shifts the

and the potential issues of TFS, this paper employs FBS. component means about, although in practice the shifts are
small and if one fixes the means (as in KDE) a very similar

approximation is produced.
4.3 Mixture Approximation off(y | ) To illustrate the need for adjusting the component/kernel
weights, consider the case of kernel density estimatioh wit
Gaussian kernels, where each particle is the kernel for a
f:omponent i(e. up = x, K = N). If each kernel is
weighted by the observation probability of the particlettha
generated it, the probability of any given = z, is then:

4.3.1 Motivation and Overview

The fact that particle smoothers do not shift the position o
the filtering particles given the future evidence from snheot

ing is their main drawback. Ideally, smoothing would ex-
plore new areas of the state space that both past and future N

evidence indicates is promising (the TFS reverse filter ig—P ) = DN (G 2D 5 13
nores the past and so is no better than the forward filter). (bef2) ;p @le,”, ) (13)
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where it is preferred thakl <NV for the sake of efficiency.
For the particle-filtered samples, eagh® x| has an asso-
ciated weighp; = P(y;|={” ). This can be incorporated into
the EM equations by reinterpreting the weights as represent
ing the relative number of samples at each locatiprFor
example, the update fo, becomesj, = + vazl(pi Tik)s

as if there werep;-worth of data points at; (whereZ =
Nxszj). Sincer; ;, is the weight for the assignment of

to Gaussiark andp; is the weight of each;, one will find

Fig. 5 Example mixture approximation generated from particlefilt thatr; ; always occurs together with,. Hence it is conve-

samples. Solid green curve is the true functiofy:|«:); vertical blue  pient to definer!, = pi 7i.x. The update equations for the
bars indicate particles; dashed red curve is the mixtureoxppa- ’ '

tion P(ye|z+) produced from the Gaussian components (thin dashed>MM approximation(y;|;) at a givert thus become:

orange). /
e N (@il prs L)

PO 1%)

wherep® = P(y,|z{"). The problem with this definition 77 x = Pi Tik = pi g (18)
is that the weights of closely-spaced componeaig.com- 2o N (@il 2j)
ponents less than one standard deviation apart) will add up, , 1 N ,
causing?(y|z\” > P(y:|z\") at these closely-packed points 7k = NS .0 Z Tik (19)
and thus misrepresenting(y:|z;). Hence it is necessary N ’ ) =t
to adjust the weights (and optionally shift the means) via ., _ Dim1 Thg Ti (20)
Expectation-Maximisation (EM) in order to faithfully repl i Zf-v:1 Tk
cate the values aP (1| =" ) with the mixture. N, ) .

In comparison to the discrete particles, the continuousﬁ;C = iz Tip (@i — o) (@i — k) (21)

nature of the Gaussian mixture should be a better repre- vazl Tk
sentation of the similarly-continuoud(y:|z:), as depicted
in Figure 5. In particular, the mixture will partially “filln’ ] __ e
the voids between the discrete particles, providing a reaso cluding deciding how many componeristo use, the ini-

able representation of the observation function’s behavio tial value of each .component’s parameters and Whether to
in the vicinity of the particles. The idea is that the mixture Place any constraints on the EM updates. Due to the high

will facilitate a range of inference techniques and providedimensionality ofP(y.|z;) (28D), this paper is fairly con-

them with some flexibility in exploring the state space wihils S€vative in its choices to avoid causiftgy,|;) to become

remaining acceptably accurate to the t@gy,|«;). Subse- unrepresentative of the truE(yt|xt). There is however a
quent inference is then effectively a smoothing of the erigi radeoff between speed and faithfully representtg, |z;).
nal particle filter used to generate the mixture. Hence Gaussian modes are chosen based on the distribu-

tion of samples (by weight), selecting all samples that are
_ . . above-average.é. p; > % ijj) and using the corre-
4.3.2 Learning the Gaussian Mixture sponding value of:{” as the initial mean for each mode.
) ) ) ) _ The assumption is that below-average particles are in un-
Learning a Gaussian mixture model (GMM) via EM is ainteresting areas oP(y,|a;) and so can be safely ignored

well-knqwn procedure. Givendatg, i = {1..V} a”‘?' Gaus- a5 seeds for mixture componenfs. is roughly the same
sians with ' components whose means, covariances angS the filter's effective sample size at each timavhich

weights are{ i, Uy, 1}, k = {1..K'}, the EM update equa- j, yhig paper is betwee®05N and0.2N. As with particle

tions for estimating a GMM are: resampling, the approach retains more mixture components
during times of problematic observations such as when oc-

The usual practical issues arise in the approximation, in-

e N (| pe, X)

Tik = =% (14)  clusions occur. These cause the effective sample size to in-
2= 5 N (il 5) crease i(e. the distribution becomes more uniform) since
1 X all particles are somewhat in error accordingR¢y;|x+)
M = N Z i,k (15)  due to the occlusion. Conversely, fewer samples are retaine
i=1 with clean observations. This behaviour is desirable — dur-
L vazl Tik Ti 16 ing an occlusion, particles that are more probable accord-
Hie = Zij\il Tik (16) ing to P(y:|z;) are oftenlessaccurate in truth since they
. T have latched onto spurious edges and foreground (Peursum
. D oiea Tik(@i — fue) (s — fur) e ; .
X = = (17) et al. 2007). Initialising EM with more components will
D=1 Tik thus include a broader range of particles, giving smoothing
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X2 R allow for modelling arbitrary non-linear/non-Gaussian-mo
—”»\:‘ tion in its transition distributions. Therefore, ratheathde-
rive two sets of variational update equations for what is es-
sentially the same model, we derive the approximation for
the discrete FSHHMM-PF and reuse this for the Simple-
PF/Simple-APF by quantising their filtered postures andlhan
crafting a discrete generic transition model that repéisat
their Gaussian diffusion dynamics. This entails some loss
of accuracy on the part of the continuous Simple-PF and
Fig. 6 Example Gaussian (dashed red) and mixture of Gaussiares (bIlSimple-APF, but the quantisation error is small when com-
circles) fitted to a set of samples (crosses). Although eaofiponent  nared to errors caused by tracking failures due to occlssion
of the mixture assumes independence among dimensionsyénell .
mixture still captures the covariance of the samples. and poor observations (Pe_ursml' 2(_)07)' Moreover_’ the
manual ground-truth obtained with virtual markers is only
accurate to within about50mm. The remainder of this sec-
the chance to override the erroneous observation informajon describes the changes made to the FSHHMM-PF model

tion with future data. Although there are fewer componentgf Figure 3 forthe purposes of variational and Gibbs approx-
than particles, the low weights of the below-average partiimation.

cles means that they can be modelled with the tails of the
Gaussian components spawned from the above-average PEr 1 Graphical Model with the Mixture
ticles. o

Another practical issue is the relative isolation of ManyFigure 7a depicts the adjusted FS-HHMM used for varia-
samples in the high-dimensional (28D) space given thagthegignal approximation of posture, whef@(y,|z,) has been
are only 1,000-10,000 particles. Gaussian components thatpstituted with the mixture approximatid?l(yt|a:t). The
are assigned to relatively isolated samples by EM will havgy,gqel parameters differ slightly from that of the original

their covariance collapse towards zero. Even fairly dgnsel eg_HHMM in Figure 3. Egs (7a)—(7€) remain unchanged.
sampled areas are unlikely to always contain enough pagqditional parameters are:

ticles to properly characterise the covariance of the neigh

x1

bourhood in the trueP(y;|=;). Hence this paper fixes the ™ 2 p(sih) (22a)

covariance of all components to a diagofak29 matrix K

(i.e. each dimension within a component is independent) p(, {4, {%) — ank)f\/(wi{d” gidi(k%Rg}) (22b)

with each diagonal variance manually set to a reasonable ’ =1 ’ -

value for the posture dimension it represents. Specifically K

the 24 joint rotation variances are all set to 9 (in degrees,P(yi‘fﬂv;{"’}) = Znt(k)N(vfg” gi‘ﬁ(k), R;;{}) (22c)

i.e. standard deviation i8°) global position variances of k=1 ‘

{x=400,y =400, z=100} (millimetres) and global orien- K

tation variance set to 25 (degrees). Note that although8he 2 P (Yu.tlu) = Y nON (uel 357, Ry (22d)
k=1

posture dimensions are assumed to be indepeniémn
each component of the mixture, dependencies between di- .
mensions are still modelled by tleverall mixture. To il- and Egs (7g) and (7h) are changed to:

lustrate how this is possible, consider Figure 6, where each . G R —
Gaussian component is diagonal but together they form gt = P(of”) = N(vil pots 20%) (22€)
strongly covariant mixture. Ty £ Pue) =N (] prug L) (22f)

wheres; in Eq. (22a) is the mixture component ‘selector’
4.4 Variational Smoothing expressed as a Boolean vect¢r k = {1..K} andn,"” is

the mixture weightsX is indexed as a superscript to rein-
Replacing the heuristi®(y:|x;) with its mixture approxi- force the fact that mixture componertts) arise from parti-
mationP(y, |z, ) facilitates the derivation of a variational ap- cles(i)). The means for the 28 dimensions of each compo-
proximation for Figure 3. Note that the Bayesian model fornentk in the observation mixture are split across body joint
the FSHHMM-PF (Figure 3) reduces to that of the Simple-anglesz;” , global body positiom” , g € {pos., pos,, pos. }
APF and Simple-PF (Figure 2) when there is only one phasgéhe g factors are not explicitly shown in the figure) and
q:- The difference between the two is that the Simple-PFjlobal body orientation,. Observation mixture means are
/ Simple-APF posture is continuous and has Gaussian dithus defined ag.”"’, 7, and 3" respectively, with
fusion transitions, whereas the FSHHMM-PF is discrete tassociated empirically-specified variané&$ , R\ andR,, .
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Fig. 7 (a) FS-HHMM with a mixture approximatio# (y:|=) for the observation likelihood. (b) Quasi-mean-field védiaal representation of
(a) — the dependency structure ﬂB(et{d} lgt, qm,x}d}) is retained since it is deterministic.

Note the peculiarity that the observatiaps; are in factthe 4.4.2 Variational Equations
means of the Gaussian mixture andis the data variable,
rather than vice-versa @(y,|z;) would imply. This isn't  Variational approximation proceeds by obtaining a lowerrmb
a problem since Gaussians are symmetric about their mea®n the log-likelihood of the true posterigr = P(z1.7|y1.7)
hence viewing either variable as the mean is equivalent. ~usinga more tractable distributi@z;.7). This lower bound
{19, 9% and {1, Y1} are the means and vari- is achi_eved by varyin@ to minimise the Ku!lback-LiebIer
ances for the priors ony andw,. Note that the dynamics de- (KL) divergence betweeR andQ, whereKL is defined as:
pendenciesd(v;|v,) and P(u:|u,) have been dropped;
j[his has bee_n facilitated by thg mixture’s propertie_s. 8pec krg|p) = / O(z1.7) log ( O(z1.7) ) g
ically, the mixture has low variance for the dimensions rep- P(zirlyr)
resenting the person’s global 3D position and orientation :/Q(%T)log Q(x1.7) dx 1.7

{5, §u.¢}. This is due to the fact thaF these.dimensions !ie _/Q(xl:T)IOgP(xl:T‘yl:T) derr @4)
at the very root of the body model’'s kinematic tree (see Fig-

ure 4) and so do not accumulate the uncertainties of nodes = lEg<log Q> - lEg<log7>>

higher up in the tree. In other word®(y|vt, us) is non-

zero only in a small area and so the dynamics dependemherer;.; 2 {z{/”, v{%% wuy.p, 517} inthe FS-HHMM

cies are largely redundant. In fact, the assumption of the li andEp(f) is the expectation of with respect to the dis-
ear dynamics model foP(v;|v;) is actually detrimental tribution P. For a more detailed introduction to variational
since people do not move in a strictly linear fashion, butapproximation in the context of factored HMMs, the reader
the dynamics will erroneously bias a variational approximais referred to Ghahramani and Jordan (1997). Note that the
tion towards such linear motion. Instead(v;) and P(u;) KL divergence can be interchanged with the variational free
are characterised by fitting a Gaussian to the particleseof thenergyKL » (Sminchisescu and Jepson 2004), which dif-
pre-processing filter: fers fromKL only in thatPz = P(z1.7,y1.7) < P. This

is useful since it is usually algebraically easier to workhwi
@ 5 @® the joint probability and{L » does not change the minimum

Mot = Z Wy " Uy (23a)  of theKL divergence. This can be shown by expanding the

i " second term of Eq (24):

i N2 2

= (w0 ) = () (23b)

' N EQ<10g7)> = ]EQ<10gP($1:T\ylzT)>

— i), (i) 23

Put = Zwt Uy (23c) _E <log P(mlzT:ylzT)>

2 2 D Pl (25)
Dut = Z(wt Uy ) - (/Lu=t) (23d) = ]EQ<10gP(fB1:T,yl:T)>—]EQ<10g7’(y1:T)>

' .~.EQ<1ogP> = EQ<1og7Df> - K
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whereK = P(y1.1), a constant with respect @ and hence the dynamic Bayesian networks of Figure 7 are being im-
it has no effect on the position of thél. minimum. plicitly ‘unrolled’ across time to match the length of the-ob
In this paperQ is essentially a mean-field versionBf  served sequencg.r, hence the list of(-) variables is also
where almost all of the hidden states are assumed to be ifixed (.e. the variational updates are occurring on a fixed
dependent, as shown in Figure 7b. However, the model dogwtwork).
retain some structure from Figure 7a, specifically the condi  Thesed(-) are then optimised by iteratively evaluating
tional dependencies fa?(e{” |q;, qi1, #,” ). This S|mpl|f|es all the fixed-point equations for eadf-) one round at a
variational inference because notonly do¥s.” ¢, g1, 21" time. Specifically, a single iteration round involves céddu
cancel out in th& L divergence (since it exists in bothand  ing the new value of each(-) in turn using the latest ver-

Q), it also does not require an inference calculation since ision of all the othe#(-)’s (i.e. use the new values @f-)’s
is deterministic. From Peursuet al. (2007),¢; is: that were updated earlier in the current iteration rountdg T
order of updating thé(-) variables is in terms of moving
@ 1 iV, PafP=j g e, q0) =0 along the Bayesian network from top-to-bottom before
€ = 0 otherwise (26) x;) and left-to-right { = 1 beforet = 2, etc), although con-
vergence should occur regardless of the chosen ordering. It
The definition of the variational distributio@ is thus: erating these update rounds will then converge to a locally

optimal solution, where convergence is monitored by cal-
culating theKL divergence after each update iteration, and

g wm T 2 comparing this to the previous iteratioikd. divergence.
191 (CTRE 18101 (CE0) png i 0 e :
T G . i
< [TTIN @600, 6(v,) ) 4.5 Gibbs Smoothing
t=1g=1 @7)
T T K Ne 5(0) As with the variational approximation, Gibbs inference {An
x t_HlN(“t'(’( p0uz)y) X t_HlkU (o) drieu et al. 2003; Ghahramani and Jordan 1997) uses the
P, - model described in Section 4.4.1, with the Bayesian network
<111 P(e® gt gra1, 2% of Figure 7a. Gibbs sampling is one of the simplest Markov
t=2d=1 Chain Monte Carlo methods, and proceeds by implicitly un-

rolling the dynamic Bayesian network to a fixed network

where P(ef” |qi, g1, 2\%;) is not further expanded into its of lengthT" to match the observed sequenge,. Hidden
parametric form2'” . since it will end up cancelling out states are then set to an initial value before repeatedly sam
with the equivalent term if? when calculatindg<L(Q|P).  pling new values for each state given its Markov blanket un-
Here, the parametef$q), ., 0(x)(" , 0(s),, 0(v,)% 0(v,.){",  til N samples of the full joint distribution are drawn. Sam-
6(u,), andd(u,), are thevariational parametersvhich  pling occurs in rounds, where during roupda sample is
will be used to approximate the original parameters,  drawn for each hidden state given the current value of the
z{% s, v andu, in P. Note thati = {1..120} for z;  other states (whose value may have been updated earlier in
since this paper quantises the joint rotation8aintervals  roundp, depending on the order of processing). Again, the
(3x120=360). Also note that the distributions foy andu;  orderin which the states are processed is from top-to-trotto
are similar to the priors irP (Eqs (22e)—(22f)), differing and left-to-right along the Bayesian network. Once allestat
in that they are parameterised by the variatioh@)) and  have been sampled the process is repeated for rpund
0(-,.) rather than Eqgs (23a)—(23d). continuing untilp = N. The full set of sampled values

For purpose-built models such as the FS-HHMM theover all roundsV then provides the sufficient statistics for
derivation of the variational approximation is quite lemgt the Gibbs estimate of each state — in the case of a discrete
since the most basic ‘building block’ is the entire struetat  distribution this is the histogram of the samples and for a
a single time-slice. Hence for the sake of brevity, the reader Gaussian it is the sample mean and covariance. See Peur-
is referred to Peursum (2008) for details on deriving thé var sum (2008) for details on the Gibbs sampling distributions
ational update equations of the FS-HHMM model. Insteadnecessary for Figure 7a. Intuitively, Gibbs sampling works
the remainder of this section will describe the processibf ut by drawing a new sample that is ‘consistent’ with the current
ising the update equations found in (Peursum 2008). Brieflyyalues of states that can influencd.ie(its Markov blanket).
to derive the update equations one must plug Eq (27) anthis consistency is then propagated along the network one
the equivalent equation for the joint probability &finto  link at a time, resulting in states concentrating their sam-
the KL divergence (24), then take derivatives with respecpling in areas of the state space that ‘make sense’ given the
to the varioud)(-) parameters and solve for zero. This leadsstate’s location in the unrolled Bayesian network. Eveliyua
to a set of fixed-point update equations. Note that to do thighis leads to the samples effectively being drawn from the
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true posterio”(z;|y:.7). Since the initial values may notbe _
very consistent with each other, the Markov sampling chainu
usually requires time (called burn-in) to converge to sam-g
pling from P(x1.7|y1.7). Thus the first 5%-10% of samples 2
are typically excluded from the final Gibbs estimate. The
number of burn-in samples needed to achieve convergencef
depends on the initial state values and the distributiomgbe
sampled from, and is difficult to estimate in advance. 3
In this paper, the number of Gibbs samples is set to 2,00@
for the 1,000-particle FSHHMM-PF. Empirical tests showed
:EZt éill;zselsat:?ne;t:ailg d?(;ggggd?hzft:zfvrgg::éz Lrggrg\e/z:ri]g. 8 Example écre(?nsho-ts of the two datasets used in this paper.
reached. For the Simple-PF / Simple-APF (10,000 partiplestS_ed for. trackmg in this Paper. A!thOUQh th_e data;et con-
5,000 Gibbs samples are used. Although one would expelt?ms various actions (wa_lklng, bo>_<|ng, ges_turmg), thlper
that the 1 difference in filtering particles would suggest pnly cor_15|ders the sections of V|de_o Wh'f:h contain walk-
the use of 20,000 Gibbs samples, the lower value of 5,000 i&'9 motion where the_ actor _walks in a circle for up to a
chosen so as to keep the computational runtime of Simplép'nUte' Ground-truth is provided by the marker-based mo-

PE/Simple-APF Gibbs smoothing in the same ballpark aéion capture, and this paper evaluates accuracy with most of

the computational time of Simple-PF/Simple-APF ﬁltering.the gvailable joipts (13 of 15 un?q.ue 3_D jpints — upper leg
Burn-in time for all filters is set to the first 5% of Gibbs proximals were ignored due to difficulties in defining corre-

samples. See Section 5.2 for details on initialisation. sponding points on the bOdY madel _that matche_d well).
The QLUTTER data set (Figure 8) is captured in a ¥8m

room monitored by four ceiling-mounted colour cameras,
one in each corner. All views are used for tracking. The
room contains a variety of furnishings and whitegoods. A

The filtering and smoothing algorithms described in this pa{@Ple and chairs were placed in the center of the room to
per were evaluated against twelve video sequences — sevBfpduce a reasonably cluttered home-like scene and three
HUMAN EVA-I videos, two HUMANEVA-I1 sequences (Si- video sequences were captured where the placement of the
gal and Black 2006) and threeLGTTER videos captured occluding tables and chairs was changed for each sequence.
in scenes containing occluding tables and chairs. Each s¢1deos are captured at 38288 resolution and 25fps, with

quence is processed with 12 algorithms (Table 1) to produc&€ room initially empty for background learning before the
144 tracking results in total. actor enters and walks through the cluttered scene for about

a minute. No motion-captured ground-truth exists, henee th
ground-truth was manually labelled using a GUI utility de-
veloped to minimise the tedium of the task (Peursum 2608).

H

o
i
[
[
o

5 Experimental Setup

Filtering Simple-PF Simple-APF FSHHMM-PF

FBS Simple-PF+FBS Simple-APF+FBS FSHHMM-PF+FBS

Variational | Simple-PF+Vartnl ~ Simple-APF+Vartnl  FSHHMM-PF+Vartnl H H H H _
Gibbs Simple-PF+Gibbs _Simple-APF+Gibbs _FSHHMM-PF+Giblys EVlUation of Error Although the various filtering and smooth

ing algorithms return a distribution of postures, for simopl
Table 1 Filtering and smoothing combinations (12 in total) emptbye ity the mean posture is taken and compared against the ground

for tracking in each video. truth. In the case of particle filtering and FBS, this mean is
the weighted mean of the particle set. For the variationgl an
5.1 Test Scenes and Ground-Truth Gibbs approximations the mean of each joint rotation is cal-
culated independently (due to the factorisation assumgtio
Datasets Twelve video sequences of walking are used forof the models in Figures 2 and 3).

test data, seven from theuMmAN EVA-| dataset, two from In order to be consistent with other research based on the
the HUMANEVA-II dataset and three froml@TTER. The  HumANEVA dataset, the difference between the mean pos-
HUMANEVA sequences (Figure 8) consists of several videogure and ground-truth for a sequence is described in terms of
captured in tandem with marker-based motion capture, heng@ge mean and variance of the 3D Euclidean error (in millime-
actors are restricted to moving on a 38m mat. Several tres¥, as defined in Equations (3)—(6) of Sigal and Black
actors are used, each with different physiques. Videos ar@006). Since multiple views are employed the absolute 3D
captured at 64480 resolution and 60 frames per second P——— - —— —

(P9) ~ HanEva | uses three colourcameras whereas, = "D & Sussn debton_ aioen St

HUMAN EVA -1l employs four colour cameras (this paper do€g in the ranggo . . . o), the Gaussian is a reasonable approximation
not use the greyscaletHiAN EVA videos). All views were  and its mean and variance parameters are far more intuitive.
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Sequence— HE-11.1 HE-11.2 HE-12.1 HE-12.2 HE-13.1 HE-13.2 HE-14.2 | HE-l2.1 HE-Il4.4 Clu1l Clu 2 Clu3
Frames 6-59( 660  6-43¢ 660t  6-44¢ 6-60¢ 6-605 1-38( 2-380 | 265-86! 300-1301 270-1270
Simple-PF Mean 79.9 120.4 100.4 103.2 86.3 120.9 1036  104.7 83.2 131.5 188.5 184.7
StdDev +21.6 +16.2 +17.8 +193 +294 +219 4275 +12.9 +23.6 +50.1 +66.2 +56.3
Simple-APF Mean 81.: 113.C 112.] 97.¢ 81.1 87.¢ 100.3 118.2 95.6 143.¢ 218.¢ 193.9
StdDev +2457 £29.7 +16.5 £33.¢ 385 +43EF +20.0 +29.€ +22.5 +50.2 +60.4 +61.1
FSHHMM-PF  Mean 85.5 89.6 116.9 87.8 84.7 98.2 87, 106.6 92.0 102.2 105.4 123.8
StdDev +35.7 +9.7 +£119 £10.1 +£22.3 +10.9 +9.9 +8.2 +21.0 +29.5 +25.2 +34.2

Table 2 Mean error and standard deviation of error for each of theriiii algorithms on the sevenutAN EVA -1 (HE-I), two HUMAN EVA-I11
(HE-I1) and three CUTTER (Clu) sequences. All sequences are of walking (faAN EVA-11, only the frames with walking were used).
HUMAN EVA sequences are abbreviated as follows: HES= HUMAN EVA -1, Actor A, Walking Sequenc&

error is calculated. Note that for theeCTTER dataset, the 1998; Neal and Hinton 1998). For Gibbs sampling, good ini-
ground-truth obtained via virtual markers is itself una@rt tial values are important in order to minimise the time taken
due to the manual nature of the labelling — for thed©TER  for the Gibbs MCMC chain to reach convergence.

dataset this uncertainty is approximateiOmm.

6 Results and Analysis

5.2 Training and Initialisation
6.1 Filtering Performance

Filtering Both the Simple-PF and Simple-APF have their
Gaussian diffusion parameters empirically defined. Fopg&5f Table 2 summarises the accuracy of each pre-processing fil-
video, rotation variances af@, 8,4} (in degrees) of each ter (Simple-PF, Simple-APF and FSHHMM-PF) with re-
joint’s azimuth, elevation and roll respectively, positicari- ~ SPect to the ten sequences. Note that some of the Simple-
ances ardx = 300,y = 300, z= 100} and orientation vari- APF sequences ((MANEVA-I 2.1 and all QUTTER) suf-
ance20 (also in degrees). Variances are scaled to accommdered from severe tracking failures where the person’s body
date the HUMANEVA dataset’s 60fps. The initial posture is orientation becomes reversed over the course of about 10
also manually defined by the user. frames (Figure 10). This brittleness of the Simple-APFeais
For the FSHHMM-PF, the ground-truth posture from abecause annealing discards much of the particle distoibuti
single video sequence of a person taking four steps in & focus on one or two modes and selection of a poor mode
straight line is used to train a walking model. This is suf-can lead to severe tracking failures. Conversely, the Simpl
ficient for the FSHHMM-PF to track a person through turnsPF does not suffer from the same issue. To avoid biasing the
even though the training data does not contain these movéLbsequent smoothing results against the Simple-APF, the
ments (Peursunet al. 2007). Training data is captured at frames during which the failures occur were excluded from
50fps, and although the test data is captured at 25fps tHe error calculation.
FSHHMM-PF can handle the difference in frame rates. The
FSHHMM-PF also estimates the initial posture without hu-HumanEva Dataset For the HIMAN EvA-l and -l sequences,
man intervention. the average filtering error across all sequencd4@dmm,
98mm, 94mn} for the Simple-PF, Simple-APF and FSHHMM-
Smoothing The variational and Gibbs inference approxi- PF respectively. Of interest is that the FSHHMM-PF (with
mations both require initialisation of their state. Rattiem ~ ©nly 1,000 particles, an added error due to its discretesjode
initialise randomly, both initialisations are extractedri ~ and trained on a walking model that contains no turns) is
the particles from the filtering step. For variational this i ©On par with the 10,000-particle Simple-PF and Simple-APF
volves calculating the distribution of each hidden stateda despite the WMANEVA actors continuously walking in a
on the particles, whereas for Gibbs sampling each stat¢ is séght circle. Overall, the tracking accuracy of the threeefis
to the value of the most-likely particle at each tim&ood IS comparable to the results of other recent body tracking
initialisation is important for both smoothing techniquiest ~ Systems tested with thedt1ANEVA walking sequences.
for different reasons. In particular, the optimisationfaoe
in variational approximation can have multiple local max-Clutter Dataset As expected, accuracy is worse in thel@-
ima (Corduneanu and Bishop 2001; Winn and Bishop 2005y Er dataset, with the average error risind i668mm, 185mm,
and so initialisation will determine which local maxima is 110mmy}. Here, the motion model of the FSHHMM-PF min-
selected. This is very similar to the Expectation-Maxirtiea imises the degradation in tracking by guiding tracking when
(EM) algorithm, given that both EM and variational can beocclusions, poor contrast and/or low resolution cause the
viewed as optimising the KL divergence (Barber and Bishombservations to become unreliable. In contrast, the generi
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HUMANEVA-I:3.1

CLUTTER-2

Simple-PF: 154.2mm Simple-APF: 148.0mm FSHHMM-PF: 74.9mm
Fig. 9 Examples of tracking for each filter with corresponding erfdl camera views are shown.

6.2 Smoothing Performance

Figure 12 shows the relative performance of the three smooth
ing algorithms for all three pre-processing filters. Contra

to expectations that incorporating additional eviden@aih

lead to a better estimate, most of the smoothing results are
often lessaccurate than the pre-processing filter that they
are based upon. This is particularly noteworthy in the case
of the QLUTTER sequences where the poor observation con-
ditions cause temporary ambiguities in filtering that srheot
ing should have been able to improve on.

To gain an insight into why smoothing performs so un-
Fig. 10 The Simple-APF experiences severe tracking failures in sevexpectedly a closer look was taken at the tracking sequences
eral sequences, such as this complete reversal of bodytatf@nfor  that were output by the various algorithms. This inspection
HUMAN EVA sequence 2.1. found that there are certain times when smoothiogsim-
rove tracking accuracy, but this is offset by other ocaasio
here smoothing performs more poorly than filtering.

models of the Simple-PF and Simple-APF cannot provid
similar guidance and so erratic tracking and failures ensue
Note that the Simple-PF and Simple-APF perform sim-
ilarly to each other, confirming the findings of Balahal.
(2005) that the APF does not perform much better than a
standard PF with the same motion model. This seemingly
contradicts Deutscher and Reid (2005), who found that the

i i B RO

PF was far less accurate. However, Deutscher did not ‘an- '
neal’ the PF observation likelihood as this paper does — if ~Fr330 Fr33l Fr332 Fr622 Fr623 Fr624 Fr625
SEQUENCECLU 1 SEQUENCECLU 2

Ais setto 1in Eq (9), the Simple-PF does indeed fail very
quickly as Deutscher found. In contrast, given=l0 Ta-  Fig. 11 Examples of smoothing (light yellow) correcting a tempyrar
ble 2 shows that the Simple-PF returns similar results to th&g error in filtering (dark blue).

Simple-APF. The APF's strategy of focusing on the peaks of

the observation likelihood modes while discarding the restWhere Smoothing Works Although in each sequence there
of the distribution means that when observing conditiors arare many frames in which smoothing outperforms filtering,
poor it can follow a poor mode and have difficulty recover-most of these seem to be random fluctuations in accuracy.
ing when observations improve, hence the Simple-APF petHowever, there are circumstances in which smoothing con-
forms slightly better than the Simple-PF in theedANEVA  sistently improves upon the accuracy of filtering. In partic
sequences and worse in the WI'TER sequences, in addi- lar, smoothing is able to correct filtering ‘lag’. This is whe
tion to occasionally experiencing the aforementioned bodyhe filter lags behind the true motion when the person moves
reversal tracking failures. faster than the motion model predictsd. as the person’s
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Fig. 12 Comparison of filtering and smoothing algorithm resultschesub-figure depicts the filtering and smoothing error esja@wvery sequence
for a given pre-processing filter: (a) Simple-PF, (b) SirspleF, (c) FSHHMM-PF.

Datasets are labelled as follows: HE.IS= HuMAN EVA-I (Actor A, Walking Sequencé); HE-Il A.S= HUMANEVA-II; Clu = CLUTTER.

leg swings forward during a stride). When such a lag occursas particles explore the multitudes of distracting modes in
only a few particles are able to keep up with the motion. Al-the high-dimensional space.
though these particles are highly-weighted they are not nu- Interms of filtering algorithms, the Simple-PF and Simple-
merous enough to dominate the mean body posture used APF do not realise smoothing benefits in theuUSTER se-
error evaluation. This creates a lag effectin the filteradkr  quences because the frequent occlusions produce observa-
that is often corrected by the filter a few frames later due taion ambiguities that result in the filters being unable torma
resampling and/or the motion slowing down enough to allowtain a good tracking lock for very long. These same ambi-
the particles to catch ug(g.at the end of the leg swing).  guities also affect the FSHHMM-PF, but its strong motion
Smoothing is able to overcome this lag since the filtemodel minimises the duration and magnitude of the result-
has sampled at least some particles along the correct4rajeing tracking failures. In fact, if filtered tracking fails thi
tory and so smoothing can downgrade the contribution oény of the three filtering algorithms and the filter does not
lagging particles since they have a low probability of tran-quickly correct itself, resampling will ensure that theosrr
sitioning to future states. In particular, FBS downgradiest becomes permanent. Smoothing will then often result in a
weight of lagging particle whereas variational and Gibbs aplower accuracy than filtering because the smoother adjusts
proximations never visit the lagging mixture componentshe filtered trajectory towards arroneouduture state and
since they are unlikely transition targets given the futureso propagates the error backwards in time. Whether or not
states. Figure 11 shows examples of this lag correction.  this causes the smoother to produce poorer accuracy de-
pends on the nature of the error.

Where Smoothing Fails The positive smoothing effect de-
scribed above is only prevalent with the FSHHMM-PF when
tracking in the QUTTER sequences. Tracking in theuH
MANEVA sequences does not see as much benefit because
filtering rarely lags behind the true motion given that the
HUMANEvA frame rate is comparable to the FSHHMM-
PF’s training frame rate (60fps vs 50fps). In contrast, the Fr557 Fr558 Fr559

CLUTTER sequences are at 25fps and so motion often out-

paces the motion model's predictions. However, if N0 pargig 13 Example of variational smoothing (light yellow) causing an
ticle keeps up with the motion, the lag cannot be overcomedd limb posture during a lag error in filtering (dark blue). flame

since particles attempting to ‘bridge the gap’ will havew lo 558 the smoothed calf rotation is carried over from Frame &5iereas

weight and so are discarded during resampling. Since th@e thigh rotation better matches that of Frame 559. Corsidede-
endently, both joint angles have good support from the uméxap-

frame-to-frame ef_feCt_ive sample size is quite low a_t argunlgroximationﬁ(yt|mt), but together they create an odd limb posture.
0.05-0.2, resampling is unavoidably frequent and will elim-

inate all but a few particles. In fact, in a 1,000-particle fil

ter only one particle at time can expect to have surviving In comparison to FBS, variational and Gibbs smoothed
‘descendents’ at+3! This rate of degeneracy means thatinference are less adept at correcting lag. This is not too su
mode exploration is limited, hence errors lasting more thaprising given that the former two are approximate smoothers
a couple of frames are not resolvable by smoothing. Unforbased on another approximation — the observation mixture
tunately, such aggressive resampling is necessary sihee otP(yt|:vt), which is in turn based on a particle filter approxi-
erwise the filter will lose coherence and become inaccuratmation. In cases where FBS is able to smooth a lag, the vari-
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Fig. 14 Smoothing with a synthetic non-linear, multi-modal mod&gure (a) shows the root mean squared error (RMSE) wherigaseHb)
depicts the ratio between smoothing and filtering.

ational and Gibbs approximations instead may return poser of modes grows exponentially with dimensionality. Un-
tures with odd limb positioning (see Figure 13). Such posder this hypothesis, the FSHHMM-PF is able to gain more
tures do not exist in the original filtered particle set; theybenefit from smoothing than the Simple-PF or Simple-APF
arise due to the independence assumptions of the mixtusnce the former employs a strong motion model to sample
approximation, which means that the joint rotations inaari particles from good areas of the state space. Such a motion
tional and Gibbs inference are estimated independentlys Thmodel is implicitly channelling its particle sampling atpa

odd joint combinations may occur, especially when the fil-lower-dimensional manifold according to the model’s train
ter is shifting from one mode to another such as during laging data, effectively performing a type of dimensionaligy r

In contrast, FBS smooths by adjusting the weights of entireluction.

particles, where the weights reflect the full body posture, Follow-up experiments were thus conducted to test the
and thus joint dependencies are enforced given the obsetypothesis that the ‘curse of dimensionality’ is the mai fa
vation. Despite these handicaps, the variational and Giblsr behind the unimpressive smoothing results seen in this
approximations actually provide an improvement in accupaper. The experiments are based on the same non-linear
racy for three FSHHMM-PF HMAN EVA sequences and is multi-modal synthetic model that Godsilt al. (2004) em-
only significantly worse than FBS in two cases (also in theployed to demonstrate the worth of smoothing (a similar
FSHHMM-PF; HE-I 1.1 and HE-1 1.2). Given the variability model was also used by Klaas$ al. (2006)). The model's

of the variational and Gibbs approximations’ performancesdynamics equation and observation emission equation is as
it is likely that they are being limited by how well the mix- follows:

ture approximates the important areas of the true observa-

tion likelihood, which in turn is limited by the performance ;, — lxt—l 25211 S +8cos(1.2t) + 1 (28)
of the particle filter. Since the image-based observatlas li 2 1+ (#¢4)
lihood will contain a high number of local maxima (Smith  (z¢)?

Yt = + wt (29)

and Lovell 2006), it is difficult to approximat@(y, |z, ) with 20

a reasonable number of mixture components even if the par—h q G . . ith .
ticle filter visits several modes. wherer; andw; are zero-mean Gaussian noise with covari-

ances 10 and 1 respectively, and the initialis sampled

from a zero-mean Gaussian with covariance 10. The square

7 Follow-up Experiments term in the observation equation (29) creates a dual mgdalit
where the observeg fits +x, equally well, and the strongly

7.1 Effect of Dimensionality non-linear dynamics of Eq (28) ensures that particles which
are slightly incorrect can easily select the wrong mode.

In Section 6 smoothing only provided consistent improve- Filtering and FBS smoothing was performed with be-

ments when there were at least some particles in the filtedween 100 and 50,000 particles. The ground-truth and

that follow the correct (though less-likely) mode and the am sampled observations.r with 7 = 100 are generated ac-
biguity does not last so long that the particles are lostrduri cording to equations (28) and (29) for a 1D case as well
resampling. Thus it is probable that the ineffectiveness oés an analogous 3D case whegeandy; are three-element
smoothing stems from an insufficient number of particles fowvectors. For simplicity the 3D case assumes a diagonal co-
the size of the 28D state space — the filter is simply unable teariance with all variances set to 10. Variational and Gibbs
keep track of enough modes, especially given that the nunsampling were not tested against this synthetic model since
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their ability to scale to high dimensionality given a well- few modes due to the use of multiple views, or the multi-
behaved observation function with simple Gaussian noiseodality was too ‘messy’ since it was being produced by
has been previously demonstrated (see Ghahramani and Jocclusions. In either case it could be argued that smooth-
dan (1997)). ing is presented with few viable opportunities to overcome
Figure 14a plots the root mean squared error (RMSE) opoor filtering, hence the weak smoothing results. Therefore
the filtered and FBS-smoothed trajectories for both the 1 quasi-synthetic video was generated in which only a sin-
and 3D cases. Only one run was conducted for each particle monocular view is used to capture a person walking in a
ular particle count hence the trend as particles increase &raight line at an angle away from the camera. Such a sce-
somewhat noisy, especially for the 3D case. Figure 14b usesario will experience strong depth ambiguities since much
the same data but depicts the ratio between the smoothed the person’s motiong(g.leg and arm swinging) will be
and filtered cases to indicate the relative improvement thailong the depth axis. In order to eliminate other distragctin
smoothing provides. The behaviour of the 1D case is similasources of ambiguity, a real video was captured of a walking
to that reported by Klaast al. (2006) in that FBS is able person and ground-truthed. This was then used to generate
to significantly improve upon filtering, with diminishing-re a synthetic video by animating the body model of Figure 4.
turns starting to occur beyond a certain number of particle¥ his ensures that the body model can perfectly fit the obser-
(in this case, at around 500). For the 3D case smoothing igtion (avoiding ambiguities caused by a loose fit) as well
unable to provide any real improvement on filtering (and isas removing background clutter. Moreover, the grounditrut
sometimesvorsethan filtering) until at least 2,000 particles was in fact the training data of the FSHHMM-PF downsam-
are used, at which point smoothing begins to increasinglpled to 25fps (see Figure 15), further reducing ambiguity
improve upon filtering. However, this improvement is lim- caused by deviations from the expected motion model of the
ited — for the 3D case smoothing is only 10% better tharFSHHMM-PF. Thus the only significant sources of ambigu-
filtering at 50,000 particles, in comparison to the more tharity should be due to depth and self-occlusions.
50% benefit that smoothing brings to the 1D case with just

500 particles.

This discrepancy can be explained by considering the Algorithm Fiter FBS Vartnl Gibbs
difference in size of the two state spaces; if around 200 par- Simple-PF 1111 1121 1201 1117
ticles gives good results in a 1D case, one would expect that FSHHMM-PF | 541 476 573 571

2002 = 8,000,000 particles is necessary to see a similar per-
formance in the 3D case. Figure 14 seems to bear this ruldable 3 Results of monocular tracking with the simulated video.

of-thutr:b O_Il_J; for_ bgth :_he 2&_\trt_|cllgkfllltetrha:1d theti_ssm_:lated The Simple-PF and FSHHMM-PF were run against the
SMOOTNEr. Thus in Section b ILIS fIkEy that SMOOthiNG IS UN-5 nin a1e g sequence, along with all smoothing algorithms.

able tq benefit tracking since an impractically large number].he Simple-APF was not used since it would perform sim-
of particles would be necessary to properly explore the 28[ﬂarly to the Simple-PF. Table 3 lists the RMSE across all

state space. Itwould t,’e intgresting tosee Whethe:r Sm@pthir}oints of the body model in terms of relative 3D error. Over-
would be more effective with trackers that explicitly reduc all the trends are similar to Section 6, indicating that stheo

dimensionality, such as that of Elgammal and Lee (2004) Ofng does not provide added benefit to monocular views with

Urtasunet al. (2006). the algorithms employed. Note that the error of the Simple-

PF is disappointingly high given the perfect observations
7.2 Effect of Multi-Modality and use of relative error.
The variational and Gibbs approximations are no more
accurate than filtering, probably because the mixf(g |2 )
is still attempting to approximate a 28D space with rela-
tively few particles. These methods may find more success
in lower-dimensional problems. The FSHHMM-PF does ben-
l/ efit from FBS smoothing, but as with Section 6 this is mostly

in terms of correcting filtering lag (although the lag is more

pronounced here due to the self-occlusions in a single view)

Depth ambiguities in the filtering step are minimal since the

Fig. 15 Example screenshots of the monocular video generated by a’ktrong motion model of the ESHHMM-PE reduces the num-
imating a known ground-truth with the body model of Figure 4. . . ..

ber of observation modes that the filter can visit.

In contrast to the FSHHMM-PF, the Simple-PF experi-

Another possible explanation for the poor smoothing perences significant depth ambiguities since the generic motio

formance of Section 6 is that the experiments either had tomodel places few constraints on the filter’s evolution. The
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filter therefore has little difficulty finding highly-weigatl  garbage collection were all extensively used, and no assem-
— though often inaccurate — postures. Vondeakl. (2008)  bler or multi-threading was employed outside of the video
found a similar effect when filtering with the APF in monoc- decoding functions.
ular views. Since the person does not turn and there is no Note that the Simple-APF is faster than the Simple-PF
other viewpoint, little evidence exists for smoothing ta-co for the variational and Gibbs approximations. This is due to
rect the filtering trajectories. Thus filtering and smoothin the fact that duplicate particles are ignored during the con
return similar results, with smoothing slightly less aater  struction of the mixture approximatidﬁ(ytm), which sig-
One potential way to overcome this lack of evidence isnificantly reduces the number of components for the Simple-
the kinematic jump sampling of Sminchisescu and TriggsAPF since annealing crowds many particles together that
(2003). This involves sampling particles from a predictedbecome identical when the state space is quantised to 3
postureandthe prediction’s depth-ambiguous mirrors, thereligtervals (see Section 4.4). The CrTER videos also pro-
maintaining multi-modality for longer periods and hence-pr cess slightly faster than the equivalenitan Eva -1 videos
viding smoothing with the chance to choose between comsince the variance of particle weights is higher inUCTER
peting modes. However, ambiguities caused by factors othelue to it having more difficult scenes, hence fewer particles
than depth €.g. occlusions, loose-fitting body models) are are retained as the seeds for components in the mixture.
unlikely to be resolved by such an approach. General-perpos For the 1,000-particle FSHHMM-PF, the overhead of
methods for maintaining multi-modality (Vermaekal.2003) smoothing is low for all algorithms (5%-20% extra com-
in conjunction with a strong motion model may be a worth-putation time on top of filtering) since the constant cost of

while alternative to explore. evaluating the observation likelihood during filtering dem
nates processing time. However, this gap largely disagpear
7.3 Time Efficiency of Algorithms with the 10,000-particle Simple-PF and Simple-APF. Even

the variational approximation becomes a significant foarcti
of the filtering time due to the increased number of mixture
components that the 10,000 particles generate. Although th

HUMANEVA-I Dataset: smoothing efficiency is better than one would expect given
Simple-PF - - - 240s 240s ; ; ; i ; ; i
FBS ) 1385 1384 3780 tr_]at particle filtering is generally seen as be!ng quite effi
Variational 30s 40s  70s 310s cient (Klaaset al. 2006), the fact that smoothing does not
Gibbs 30s 200s 230s 470s P s yiec
Simple-APF N ~ oa5e 2455 mprove Qccgracy mgkes it difficult tq rec_ommend, at least
FBS = 140s  140s 385s with the filtering algorithms explored in this paper.
Variational 14s 15s 29s 274s
Gibbs 14s 93s  107s 352s
FSHHMM-PF - - 25s 25.0s
FBS - 0.8s 0.8s 25.8s 8 Conclusions
Variational 0.5s 14s 1.9s 26.9s
Gibbs 0.5s 17s 23s 27.3s . .
CLUTTER Dataset: This paper has presented a study of three smoothed-inferenc
Simple-PF - - - 95s 95s f : g
P FBS . 1335 133 | 298s algorlthms (fgrward—backward smoothing, yarlgtlonal and
Variational 30s 34s  64s 159s Gibbs sampling) for 3D human body tracking in genera-
Gibbs 30s 108s 138s 233s . del fth d hod . d d
Simple-APE - _ 9ss 08s tive models. As part of the study, a method was introduce
FBS - 134s  134s 232s to facilitate the efficient execution of the latter two algo-
Variational 15s 12s 27s 125s . . . . . . .
Gibbs 15s 88s  103s 201s rithms by approximating the observation likelihood with a
FSHHMM-PF fos ; 065 0132 18-32 mixture of Gaussians. Although it is generally expected tha
Variational |  0.4s 0.8s 12s| 11.2s smoothing will improve upon the filtering estimate since
Gibbs 0.4s 15s 1.9s 11.9s

smoothing incorporates future evidence, results in a multi
Table 4 Average runtimes per frame for filtering and smoothing al- V!ew enVIronmem show that the SmOOthmg algorithms pr,o_
gorithms. HJMANEVA-I video consists of three camera views at Vide no real improvement on the tracking accuracy of fil-
640x 480 whereas QUTTER video comprises four views 38284  tering and in fact can produce amcreasederror. Simula-
(this only affects filtering runtime since smoothing does wse the  tjons with monocular views indicate that the same issues ex-
video). Experiments were run on an Intel Core-2 6420 2.13GHz ist in single views despite depth ambiguities being a clas-
sic case of multi-modality that smoothing should be well
Table 4 shows the runtime of the experiments from Secsuited to handling. The cause of the poor performance of
tions 5 and 6. All algorithms are implemented in C++ andsmoothing can be traced to the high-dimensional nature of
share a common set of video and image processing routindsody tracking — as with earlier studies, smoothing on a low-
No particular effort was made to optimise the code to in-dimensional signal is shown to significantly improve upon
crease performance. For example, object-oriented ptaxip filtering, but when the dimensionality is increased then ex-
(information hiding, polymorphism), assertion checks andoonentially more particles are needed to support effective
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smoothing. In the high-dimensional state space of humaglgammal, A. and Lee, C.-S. (2004). Inferring 3D body posanfr
posture this would require an impractica”y |arge number of silhouettes using activity manifold learning. Rmoceedings of the

particles. Thus for the filtering algorithms explored insthi IEEE Conference on Computer Vision and Pattern Recogpition
volume 2, pages 681-688.

paper, smoothing does not significantly improve body trackghanramani, z. and Jordan, M. I. (1997). Factorial Hiddenkda
ing accuracy and the time spent on smoothing would be bet- Models. Machine Learning29, 245-273.

ter spent on increasing the number of particles for filteringGodsill, S. J., Doucet, A., and West, M. (2004). Monte Cantwsth-

e : PR ing for nonlinear time seriesJournal of the American Statistical
Methods to overcome the difficulties facing smoothing in Association9%(465), 156-168.

high-dimensional human body tracking are needed in ordetordon, N., Salmond, D., and Smith, A. (1993). Novel apphoic
to take advantage of the benefits that smoothing can give nonlinear/non-Gaussian Bayesian state estimaRadar and Sig-
during times of poor or ambiguous observations. In addition ~ hal Processing, IEE Proceedings-F402), 107-113.
to investigating new approaches to smoothing and method&/P'& A Mittal, A, and Davis, L. S. (2007). Constraintegration

e . L ) . . for efficient multiview pose estimation with self-occlusg IEEE
to maintain multi-modality in the filter, a more immediate

possibility is to apply forward-backward particle smoaoitpi

Transactions on Pattern Analysis and Machine IntelligeB3€€3),
493-506.

to dimensionality-reducing body trackers, sidestepping t Hua, G. and Wu, Y. (2007). A decentralized probabilistic rapph

problem of high dimensionality altogether.
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Response to Reviewer Comments

REVIEWER 1 COMMENTS

In section 3.1 at the end of the overview of particle filteting authors correctly note that resampling at every timédgiéhe
SIR algorithm. It may also be worth noting that in the trackiiterature, this algorithm was introduced as CONDENSANIO
by Isard and Blake (IJCV, 1998)

Response We have included a sentence mentioning and citing some afabeial cases of sequential Monte Carlo that have
been independently developed over the years, including@ENSATION and the bootstrap filter. This discussion is ledat
at the beginning of Section 3.1.

The only particularly egregious problem is in section 4.5@ibb’s sampling. On lines 38-41 the authors claim that “The
order in which states are processed is not an issue sincelgagip based only on the previous round’s samples...” Havev
this is not true of Gibb’s sampling in general, see for ingt@athe description of Gibbs sampling in Andrieu et al, 2003

Response We have corrected the description since it was definitelgrirect, and we thank the reviewer for pointing it out.

Finally, one comment concerning the effectiveness of dnmapin general and the FBS method in particular. ... Frecuen
resampling causes the approximatiorft(fz,|y1..,,) computed by the FBS to quickly collapse to a single point asieases.

In practice this can happen even with seemingly modest saifig, say 5-10. One interesting statistic to monitor is the
survival rate of particles over a period of time, i.e., hownyiainique particles at timehave survived until timé+ p

Response This is a valid point, and we have accordingly added a disonssf the role that degeneracy and resampling
plays in limiting smoothing’s performance (Section 6.2atieg “Where Smoothing Fails”). This also required desngh
the effective sample size earlier in the paper (Sectionl&st paragraph of Overview).

OTHER CHANGES

In addition to the above comments, we have also made thenfiogpminor changes to the manuscript:

— Improved the clarity of the bullet points summarising thatcibutions of the paper (Introduction, top of page 2).
— Corrected the URL in footnote 1.

— Added IEEE copyright notices to Figures 3 and 4.

— Improved the description of how we generated the synthédigovin Section 7.2.

— Corrected various minor grammar and typo errors.




