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Abstract

In this work we introduce the usage of bilinear models
as a means of factorising the shape variation induced by
subject variability and the contraction of the human heart.
We show that it is feasible to reconstruct the shape of the
heart at a certain point in the cardiac cycle if we are given
a small number of shapes representing the same heart at
different points in the same cycle, using the bilinear model.
Depending on pathology and the ratios between healthy and
pathological hearts in the training set, RMS reconstruction
errors measured between 1.39 and 16.58 millimetres, with
a median of 6.79 and 90th percentile of 9.95 millimetres.

1. Introduction

The use of statistical models of shape has established
itself as a popular approach to image analysis problems,
in the domain of both natural and medical image analy-
sis. Along the way, much research has been devoted to the
development of various types of shape models, as well as
to solving problems arising from the construction of such
models. Many of those models, however, are essentially
spatial models, and extension to the spatio-temporal domain
is not as trivial or trivially justifiable as the extension from
d to d + 1 spatial dimensions.

The analysis of Point Distribution Models (PDM’s) in
shape space received a significant amount of attention from
the mid-1980°s to the early 1990’s [6, 14, 15, 18]. The
most renowned result from this work is the emergence of
the Principal Components Analysis (PCA)-based statistical
shape model from Cootes et al. [7], who apply PCA to the
covariance matrix of their data set in order to extract a set of
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orthogonal variations of the sampled points, which became
well-known as the modes of variation of the shape class.

Attempts to extend linear shape models to the spatio-
temporal domain have been made before, for example by
Hamarneh and Gustavsson [12], in whose work each sam-
ple used for PCA consists of an entire sequence of obser-
vations of the same object sampled throughout the tempo-
ral exposure window. Mitchell et al. [20] and Bosch et
al. [3] employ the Active Appearance Model analogue of
this type to segment the endocardium in echocardiograms
and MR sequences, respectively. Another approach to add
the element of time to 3-dimensional segmentation using
statistical shape models was presented by Montagnat and
Delingette [21]. After building a PCA-based model treating
all subjects and all phases as separate samples, they employ
a scheme which segments the cycle as one single object,
rather than treating each frame as a separate entity. During
segmentation, temporal constraints are introduced in the op-
timisation to limit the differences between segmentations of
subsequent frames to reasonable values.

Statistical models of cardiac left ventricular deformation
only were constructed by Chandrashekara er al. [4], us-
ing data from one single subject. A comparable approach
to modelling respiratory motion of the liver was taken by
Blackall et al. [2].

To the best of our knowledge, this is the first time that dy-
namic shapes are statistically decomposed by acknowledg-
ing the fact that individual and temporal variations are dif-
ferent sources of variability. Before, either time was treated
as if it does behave in the same way as space [3, 20, 12], or
the application of the model was equipped with constraints
to limit the first-order derivative of shape points over time
[21]. By creating a spatiotemporal model of cardiac dy-



namics that decouples individual and temporal variations,
we can extrapolate cardiac phases from the statistical model
even when they are not available from the individual mea-
surements.

In biometrics, the separation of two (independent) pro-
cesses that account for variability is a well-known prob-
lem which has led to the introduction of bilinear models
by Tenenbaum and Freeman in [24], which are discussed
more thoroughly in [25]. Dubbing the two sources of vari-
ability style and content, these names can be assigned freely
depending on which is most natural given a specific prob-
lem. Aside from the examples used in [25], the literature
contains examples of the separation of

e face identity and facial expression [1]

e Jocation and content for sparse coding of natural im-
ages [11]

e emotion and speech content [5]

e gait (walking characteristics) and viewing conditions
[13, 16]

e pairs from the set {identity, action, viewpoint} [8].

The remainder of this paper is organised as follows: we
introduce the concept of bilinear models in Section 2, and
build bilinear models which factor out subject and temporal
variability of the shape of the human heart. Retraining the
model with incomplete cardiac cycles is done in Section 3,
after which the shapes from the remaining cardiac phases
are extrapolated. The extrapolation results are presented in
Section 4, followed by a discussion and future research di-
rections in Section 5. We conclude this work with Section
6.

2. Bilinear Models

A bilinear model is a two-factor model which is linear in
either factor when the other one is kept constant:

y = aWhb (D

where y is the observation, a and b are parameterisation
vectors defined by the factors, and W is a constant matrix
governing the interaction between the factors.

Each element y;¢ of a K-sized observation y*¢ can be
described by a bilinear model as

I J
vt =) wijalls. )

i=1 j=1

W is a matrix which forms a mapping from style and
content space into observation space. Each w;; is a K-
sized base observation, much akin to the eigenface [26] and

eigenshape [7]. In the case of sound recognition, one could
think of them as voice harmonics that need to be combined
to form a certain sound in a certain accent. The a and b
vectors provide the information on how to combine those
base observations. For the time being, we will adhere to the
original nomenclature and call these the style and content
vectors, respectively (hence the s and c superscripts).

The choice of bilinear models stems from the idea that
variations in a set of observations are the consequence of
the variation of two independent factors. The examples
used to illustrate the usefulness of bilinear models in [25]
call upon analysing the way we manage to recognise known
characters, people or phonemes in a font or under viewing
circumstances not observed before, or uttered in an accent
not heard before. Somehow, we know the invariants of that
character, person, or phoneme, and in an observation we can
recognise those irrespective of the variations induced by the
circumstances.

2.1. Asymmetric Models

A combining matrix A can be the result of contracting
aW into a single matrix, leading to an asymmetric model:

J
v = Db 3)
j=1
where
I
a;k = wajkaf- “)
i=1

This is useful when the mapping from content to observa-
tion is dependent on style. The .J observations of size K
each that make up A are then style-specific base observa-
tions that can be mixed using the parameterisation in b. In
essence, the model has then become a unilinear model. It is
possible to invert the roles of style and content, and build a
different asymmetric model from the same training data.

2.2. Symmetric Models

The symmetric model is the original bilinear model as
already presented in (2):

I J
vt =3 wijkalls,
i=1 j=1
where the mapping from style and content space to obser-
vation space, W, is dependent on neither style nor con-
tent. The elements of W are base observations that look
like eigenfaces [26] but do not represent an orthogonal ba-
sis like eigenelements. The base observations can then be
mixed using the a and b parameterisations to form any ele-
ment from the training set, and other parameterisations can
be used to construct observations of new style and/or new
content.



2.3. Factoring Individual and Temporal Variability
2.3.1 Representation of Training Data

The construction of the bilinear models as presented in [25]
assumes a vector representation of the observations. This
can easily be achieved by employing a surface representa-
tion as is commonly used for the construction of PDM’s
like those in [7]. In d-dimensional Euclidean space, each
training shape is annotated with n points — landmarks —
of anatomical correspondence throughout the training set.
The set of point coordinates is then concatenated to form an
(nd)-dimensional shape vector. This equals a single point
in an (nd)-dimensional shape space.

After annotation and vectorisation of our observations,
we have I.J (nd)-dimensional shape vectors: I frames per
time sequence, .J subjects (with one sequence each), n land-
marks in d dimensions. As is the case in [12], we construct
our observation matrix by ’stacking’ all frames for one ob-
ject onto each other, such that we obtain a Ind x J shape
matrix. This is the starting point for the construction of both
the asymmetric and the symmetric bilinear shape models.

Next up is the modeling, which consists of minimising
the squared reconstruction error between the original ob-
servations and the approximation the model will provide.
Denoting the approximation of y*¢ as

se { Asbe¢ if the model is asymmetric
y =

a®" Wbe  if the model is symmetric )

we minimise

s C
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2.3.2 Asymmetric Training

The training of an asymmetric model has a closed-form so-
lution if the number of observations is (nearly) equally dis-
tributed over the style and content classes [25]. As the ma-
trix with training data Y is the result of the product AB,
it suffices to compute the Singular Value Decomposition
(SVD)Y = usvT. Then, B can be defined as the first J
rows of VT, while A will be defined as the first J columns
of US.

2.3.3 Symmetric Training

The training of the symmetric model requires the notion of
the vector transpose, which is explained in Appendix A.
This time, an iterative method is required to minimise F.
To this end, first A and B are computed. Upon convergence
of those computations, W' is computed using the results.
Analogously to the case of K = 1, the simplified
model equation Y = AWB can be rewritten as Y =

(WYTA)"" Baswellas YT = (WB)Y™" A. This leads
to two equations that are familiar from the training of the
asymmetric model:

(YBT)"" = WVTA = USV” (7

and -
(YVTAT)"" =WB =USV". (8)

By iterating over these equations, starting from an initial
estimate of B using the SVD of Y, convergence towards
the real A and B is guaranteed [17]. Upon convergence of
the computation of A and B, what is left is the computation
of W:

w = ((vB")"" AT)VT . ©)

3. Experiments

We performed experiments to verify the ability of bilin-
ear modelling to capture the dynamics of the shape of the
beating heart. To this end we constructed models factorising
the temporal and inter-subject variations. Then, the models
were used for extrapolating the learnt dynamics to subjects
not present in the training set.

3.1. Data

Our test data consists of 45 full hearts acquired consec-
utively, with closed surface representations for each of five
subparts: left and right ventricular myocardium, left and
right atrial myocardium, and the fibrous skeleton. The pop-
ulation is distributed as 60% healthy and asymptomatic sub-
jects, 20% subjects with Coronary Artery Disease (CAD)
without a history of Myocardial Infarction (MI), and 20%
subjects with CAD and a history of MI. The average age
of the subjects was 58 years with a standard deviation of 8
years. Of all subjects, 56% were men.

The imaging was performed using a Toshiba Aquilion
64 multi-slice CT system (Toshiba Medical Systems, Japan)
with 64 detector rows. Between 80 and 100 ml of contrast
material (Xenetic 350) was administered at an injection rate
of 5 ml/s. The rotation time of the scanner was, depend-
ing on the subject’s heart rate, between 400 and 500 ms,
and image reconstruction was performed on a Vitrea post-
processing workstation (Vital Images, USA). The resulting
dataset consisted of 15 image volumes (temporal phases)
obtained using retrospective ECG gating [22] with voxel
dimensions of 0.4 x 0.4 x 2.0mm? per subject. Figure 2
shows the gating sequence over the cardiac cycle, albeit that
the ECG used is schematic. Temporal relationships are only
preserved with respect to the R-R interval. Overlaid on this
sequence are the Root Mean Square (RMS) differences be-
tween subsequent shapes, using an annotation scheme as
explained hereafter. The value after the 15th phase reflects
the RMS difference between phases 15 and 1.



The data set was then used for the annotation as pre-
sented in [9], resulting in 26230 points per volume. The
point set sampled on the average shape was triangulated us-
ing Amira 3.0 (Mercury Computer Systems, USA) to facili-
tate visualisation of this shape, all shapes in the training set,
and all shapes generated using the bilinear model.

With np, landmarks describing our shapes, we denote the
point set in R? equivalent to shape vector y as the n, x 3 ma-
trix X. The first phase Xf}riginal of each cycle 7 was trans-
lated to position its center of gravity at the origin. Then, it
was rescaled to have unit norm. Subsequently, Procrustes
alignment [10] was performed on these shapes, which, for
each subject ¢, yielded a translation t;, rotation R; and
isotropic scaling s;. Then, for each phase 7,

— . j
=8 X Xoriginal

j
Xaligned

R; +t,;. (10)

This way, the spatial relationships within the cycles were
preserved.

3.2. Experiment pipeline

We performed 2-fold, 3-fold, 5-fold and 9-fold experi-
ments, splitting our data set into subsets of 22, 15, 9 and
5 subjects, respectively. Models were then built using all
but one of the subsets, after which the remaining subset
was used as test data. For each of the subjects from the
test subset, five consecutive phases were used to derive the
subject parameterisation using the constructed model. The
remaining ten phases were then approximated and the re-
construction errors recorded. Errors were grouped by phase
and model dimensionality, and by phase set.

3.3. Extrapolation

What we wish to do amounts to extrapolation, which is
only one of several applications of bilinear models, as is
shown in [25]. For an incomplete set of data in a new style
Y, anpn < IAV) K i =i & j =k, where [ is
the number of content classes, the missing elements need to
be reconstructed using the characteristics of those contents
learned from the training data (other styles), and the style
characteristics that are derived from the newly presented ob-
servations.

The models we built were symmetric models, but we
used them as if they were asymmetric. Knowing which are
the phases we have for deriving the subject parameterisa-
tions, we used the phase parameterisations from the model
associated with these:

cYt = WVTA{Tilmin}. (11)
What remains is a linear system of equations

Y{il...in} = Clbnew (12)

(c) (d)
Figure 1. Surface rendering of one of the training hearts. In dark
(a) the left ventricle, (b) left atrium, (c) right ventricle, (d) right
atrium, and (e) fibrous skeleton.

which, when solved, gives us a parameterisation bye,, of
the new subject. This system has many more equations than
unknowns (the ratio running into the thousands). Therefore,
a least squares approximation is found.

3.4. Reconstruction

Using the resulting by,e,, from (12), we approximate the
remaining set of phases Y5\ i), Vi, ki =i & j =

VT VT A T
Cyt=WYTAL i (13)
Yiinin i} = Cobrew. (14)

The reconstruction error is then recorded as the RMS er-
ror between Y i, iy and Y5, gy for each of the ap-

proximations §, which are columns of Y ., i;}:

Z. v )2
RMS(g) = | 2T =¥ (15)
ny
where ny, again is the number of landmarks used to describe
each of our shapes. Thus, we deviate slightly from the RMS
concept by not averaging over the observation vector size,
but over only a third of that. Thus, our results are /3 times
that of the standard formulation of the RMS, but they will
provide us with a better idea of the error in 3-space.

The results are presented for three disjoint sets of phases
({1...5}, {6...10} and {11...15}) used for retraining
(the derivation of a new subject’s parameterisation) and thus
for the reconstructed groups {6...15}, {1...5,11...15}
and {1...10}, respectively.

4. Results

In Figure 3, we present the mean RMS error of the worst
and best reconstructed phases, as well as the mean over
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Figure 2. The intervals used in the retrospective ECG gating over-

laid on a standard schematic ECG. The plot is the RMS difference
between two subsequent shapes, averaged over our 45 subjects.

all phases, against the size of the training sets (and con-
sequently against the number of folds). It can be noted that
larger training set sizes produced more accurate reconstruc-
tions. Additionally, the tendency of the curves suggests that
significant performance improvement could be achieved by
further increasing the training set size.

From the same figure, it is possible to conclude that, in
general, the worst and best reconstructed phases retain that
status irrespective of the training set size. For clarity, the
plots of all phases lying in between were removed, but the
dramatic transition of phase 8 from worst phase to compa-
rable to average that is observable in Figure 3 (a) is an ex-
ception. Thus, the quality of the reconstruction depends to
some extent on the reconstructed phase. It also appears that
the phases used for retraining influence the success of the
reconstruction. This would be clearer had the plots been po-
sitioned next to each other, but the reconstructions after re-
training with phases 6 through 10 are somewhat better than
those using the other two retraining sets.

The fourth factor that has a certain degree of influence is
which shape is being reconstructed, both regarding phase,
as we pointed out at the hand of Figure 3, and subject. Fig-
ure 4 shows the mean approximation error for each subject
in the 9-fold experiment. The order of the subjects in the
plot follows that of the folds. It is obvious that the shapes
of certain subjects turn out to be reconstructed poorly at ev-
ery phase, regardless of the phase set used for deriving the
subject parameters. Thus, the model did not generalise well
to these subjects.

Figure 6 shows the RMS errors against the percentage
of reconstructions. With the bell curve overlaid constructed
using mean and standard deviation of the RMS errors, it
gives an idea of the distribution of the error sizes. The me-
dian error is 6.79 millimetres, while of all approximations,
90% have errors below 10 millimetres.

Finally, Figure 5 shows the local errors of the reconstruc-

tions. The errors are color-coded on the surface representa-
tion of the reconstruction, while the wireframe mesh shows
the shape that was supposed to be reconstructed. It should
be noted that mainly the most complex parts of the heart
shape, namely the atrial and valvular sections, appear to be
the most difficult to approximate accurately.

5. Discussion and Future Work

The acquisition scheme as shown in Figure 2 is geared
towards the best visibility of the coronary arteries. There-
fore, phases 14 and 15 both have a short time span. The
bulk of cardiac motion, however, lies just behind the QRS
complex, resulting in phases 1, 2 and 3 to be integrated over
a time interval with larger spatial changes than the rest. A
different temporal sectioning might therefore influence the
results.

Secondly, the poor derivation of certain subjects’ param-
eters, as seen in Figure 4, may well be due to the fact that
both training and testing data were mixes of healthy and
pathological heart shapes. The ratios of these shapes (3:1:1)
may have resulted in a bias towards the healthy hearts, re-
sulting in poor approximations of the pathological hearts.
While it was out of the scope of this paper, whether the bi-
linear models are powerful enough to separate these groups
may be a topic of further research. Also, whether the results
would be better if model and test data consisted of only a
single class — healthy, or one specific pathology — is an im-
portant issue into the abilities of bilinear models.

As approximations get worse, they show a tendency to
be rotated with respect to the shape they were to form, as
can be noted in Figure 5. This could indicate a non-linear
variation. A different alignment method, such as Procrustes
alignment treating each subject and phase as a different
sample, may reduce the approximation errors. However,
the relationship between phases of one single subject would
need to be preserved in some other way, should this be of
importance. Other options would be to pick a most reliable
phase, to construct a mean phase, or to treat the entire cycle
as one shape during the alignment.

We reported the RMS errors of the reconstructions.
While these numbers were not unsatisfactory, they have no
clinical application. Future experiments will focus on the
prediction of clinical parameters such as Left Ventricular
Volume and Ejection Fraction, Wall Thickening and Wall
Motion.

Finally, the reconstruction errors could decrease further
if the training set were larger. Assuming that an appropri-
ate number of training samples for PCA-based models of a
complex shape, such as the human heart, easily runs into the
triple digits [23], there is room for improvement by increas-
ing the number of training samples for the bilinear model as
well.
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Figure 3. The best, worst and mean RMS reconstruction errors
plus and minus the standard error in millimetres, after retraining
with (a) phases 1 through 5, (b) 6 through 10, and (c) 11 through
15, using models built with increasing training set sizes.

6. Conclusion

We have shown in this work how to construct bilinear
models of the human heart shape, and how to retrain these
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Figure 4. Plot of the mean RMS reconstruction error for each sub-
ject. It shows that some subjects have a notoriously bad recon-
struction, whereas other subjects’ heart shapes were relatively easy
to approximate.

models with a new subject’s data in order to extract its sub-
ject parameterisation. Subsequently, we showed that with
these parameterisations we could reconstruct the shape of
the heart in remaining cardiac phases with a mean RMS er-
ror below 7 millimetres, and that 90% of all reconstructions
returned an error below 10 millimetres. This suggests that a
bilinear factorisation of the heart shape may be appropriate
to separate individual and temporal variability.

Qualitative inspection of the reconstructions in Figure 5
show that even the bad approximations still represent heart
shapes. Unlike shape reconstructions made using a PCA-
based shape model, this is not trivial, as there is no mean
shape, which in itself is a valid instance of the modelled
shape class, to which deformations are added, and the con-
straints usually applied to the deformation of such models
(typically a cutoff value in the number of standard devia-
tions) are not present here.

A. Vector Transpose

The training of the symmetric model requires the notion
of the vector transpose. Unlike the original application of
this term, namely the conversion of a column vector into a
row vector and vice versa, the vector transpose we use here
is a matrix operation.

Given an I K x J matrix, where each column was con-
structed by stacking I K -dimensional column vectors onto
each other, the vector transpose [19] of this matrix is a
JK x I matrix. In the case where K = 1, the vector trans-
pose is the normal transpose of the matrix. Otherwise, the
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Figure 5. Reconstructions of the hearts (surface rendering) using
the highest dimensional model and the hearts that were approx-
imated (wireframe). (a) the best RMS error (1.39 mm), (b) the
25th percentile (5.64 mm), (c) the median (6.79 mm), (d) the 75th
percentile (8.23 mm), (e) the 90th percentile (9.95 mm) and (f) the
worst RMS error (16.58 mm).
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vector transpose looks like
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(16)
for K = 3. A prerequisite is that the size of the vectors is
known, but K is usually a user-defined number. Finally, it
is easy to see from (16) that the vector transpose operation

is invertible: (XVT)VT =X.
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Figure 6. Histogram and bell curve plot of RMS errors over all
reconstructions. As each shape occurs twice in the set of shapes to
be reconstructed (and once as part of the set of shapes used for the
derivation of subject parameters), each shape is represented twice
in this histogram.
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