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Spectral-Driven Isometry-Invariant Matching of 3D Shapes

Mauro R. Ruggeri - Giuseppe Patané -
Michela Spagnuolo - Dietmar Saupe

Abstract This paper presents a matching method for 3D
shapes, which comprises a new technique for surface sam-
pling and two algorithms for matching 3D shapes based on
point-based statistical shape descriptors. Our sampling tech-
nique is based on critical points of the eigenfunctions related
to the smaller eigenvalues of the Laplace-Beltrami operator.
These critical points are invariant to isometries and are used
as anchor points of a sampling technique, which extends the
farthest point sampling by using statistical criteria for con-
trolling the density and number of reference points. Once a
set of reference points has been computed, for each of them
we construct a point-based statistical descriptor (PSSD, for
short) of the input surface. This descriptor incorporates an
approximation of the geodesic shape distribution and other
geometric information describing the surface at that point.
Then, the dissimilarity between two surfaces is computed by
comparing the corresponding sets of PSSDs with bipartite
graph matching or measuring the L-distance between the
reordered feature vectors of a proximity graph. Here, the re-
ordering is given by the Fiedler vector of a Laplacian matrix
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associated to the proximity graph. Our tests have shown that
both approaches are suitable for online retrieval of deformed
objects and our sampling strategy improves the retrieval per-
formances of isometry-invariant matching methods. Finally,
the approach based on the Fiedler vector is faster than us-
ing the bipartite graph matching and it has a similar retrieval
effectiveness.

Keywords Isometry-invariant matching - 3D model
retrieval - Feature points - Local statistical shape
descriptors - Laplace-Beltrami operator

1 Introduction

Recent developments in 3D modelling and acquisition tech-
niques contributed to the large spread of 3D models in many
field such as CAD/CAM, architecture, computer entertain-
ment, culture heritage, and medicine. In these contexts, 3D
models represent non-rigid or deformable 3D objects with
different postures or deformations. For instance, in compo-
nent inspection for CAD/CAM engineering applications 3D
models of articulated objects can be scanned, modelled, and
stored in different postures. In an articulated object, compo-
nents are attached through joints and can move about. Sim-
ilarly, human faces and organs may be subject to different
facial expressions and deformations, respectively. The de-
formations that transform a shape without stretching or tear-
ing its surface, i.e., preserving the geodesic distances among
points, are called isometries. Therefore, isometry-invariant
comparison techniques are useful for shape recognition,
retrieval, and classification Figure | shows an isometry-
invariant deformation applied to an articulated object.

In this paper, which extends the work presented in Rug-
geri and Saupe (2008), we consider the problem of sampling
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Fig. 1 An articulated object is shown in two different postures after
applying an isometric deformation. The geodesic distance between the
selected points as well as the geodesic path does not change with the
deformation

3D shapes to achieve an efficien and effective isometry-
invariant matching. Section 2 briefl reviews previous work
on this and related topics. As 3D shape, we consider a
surface represented by a triangle mesh; however, the pro-
posed technique is independent of the surface representa-
tion. The basic idea of our approach is to ensure a compar-
ison of the most geometrically meaningful parts of shapes
through a novel sampling technique, which uses the critical
points of the eigenfunctions of the Laplace-Beltrami oper-
ator as anchor points (see Sect. 3). Low frequencies of the
Laplace-Beltrami spectrum are related to information about
the global structure and features of the input surface, while
high frequencies reflec fin changes in its shape. These an-
chor points are located on geometrically and topologically
meaningful regions of the shape and are invariant with re-
spect to isometries. Then, we enrich these anchors with a
set @, of sample points (called reference points), whose
number, distribution, and density are controlled by statistical
criteria.

Once the reference points have been computed, we de-
scribe a 3D shape with a set of statistical descriptors, each
associated to a point p € Q, (see Sect. 4). Each descriptor
incorporates an approximation of the geodesic shape distrib-
ution of the surface as seen from the corresponding point p;
i.e., the histogram of the geodesic distances from p to the
others. Then, the histogram is enriched with other geometri-
cal information to constitute a point-based statistical shape
descriptor (PSSD, for short). Instead of considering a global
histogram roughly describing the entire surface (Hamza and
Krim 2003), the 3D shape is abstracted as a set of isometry-
invariant PSSDs. This choice produces a more accurate de-
scription of the intrinsic properties of the surface and leads
to a better retrieval effectiveness.

Similarly to Mémoli (2007), Mémoli and Sapiro (2005),
we compare two 3D shapes by matching sets of refer-
ence sample points. We describe these sets through the
corresponding sets of PSSDs, which are compared with
a bipartite graph matching approach or by evaluating the
L-distance of the reordered PSSDs. To this end, we or-
der the PSSDs with respect to the magnitude of the Fiedler
vector components and form a single feature vector. This
choice resembles spectral techniques for aligning embed-
ding spaces (Mateus et al. 2007). In fact, we consider the

ordering of the components of the feature vector induced by
the firs non-trivial eigenvector of the Laplacian matrices of
weighted proximity graphs having our reference points as
vertices. The matching approach using the Fiedler vector is
faster than the bipartite matching and produces similar re-
trieval effectiveness. Moreover, the alignments via Fiedler
vector can be performed in the preprocessing stage and pro-
vide a single feature vector that can be efficientl com-
pared by using different metrics. Our matching algorithms
are compared with several isometry-invariant methods and
the sampling strategy is also applied to some of these tech-
niques to evaluate its benefit for improving their retrieval
effectiveness (see Sect. 5). Possible extensions of the pro-
posed framework are discussed in Sect. 6.

2 Related Work

In the following, we review previous work on the identi-
ficatio of reference points for shape correspondence and
matching (see Sect. 2.1) and isometry invariant matching
techniques (see Sect. 2.2).

2.1 Reference Points for Shape Correspondence and
Matching

In several applications, which include shape comparison,
cross parameterization, deformation transfer, shape morph-
ing, and statistical shape modeling, an important step is the
detection of sample points, i.e., points of the input surface
with a high information content related to the surface geom-
etry and topology. Several methods (Elad and Kimmel 2003;
Hamza and Krim 2003; Osada et al. 2002; Ruggeri and
Saupe 2008; Tangelder and Veltkamp 2004) approximate a
surface with a triangle mesh that is uniformly sampled as
a preliminary step of a shape feature extraction algorithm.
The sampling strategy basically consists in picking random
triangles with probabilities proportional to their area and
generating random sample points inside them with equal
probability per unit area. Although the uniform sampling
is widely adopted in many methods due to its simple im-
plementation and fast execution, it may generate samples
that are very close to each other. Furthermore, it might miss
meaningful parts of a shape (see Fig. 2(a)) and create arte-
facts in the definitio of high-level or statistical descriptors.
Finally, as shown in Nehab and Shilane (2004), Ruggeri
and Saupe (2008), we note that sampling strategies gener-
ating sample points evenly distributed on the surface (see
Fig. 2(b)) can improve the retrieval performances of sev-
eral algorithms (Hamza and Krim 2003; Osada et al. 2002;
Ruggeri and Saupe 2008). Among these sampling tech-
niques, we mention the farthest (Eldar et al. 1997) and strat-
ifie (Nehab and Shilane 2004) point sampling.



Fig. 2 (a) Uniform sampling versus (b) evenly spaced sampling of
a 3D shape

For shape analysis and matching, the spatial distribution
of points should capture the shape of the object, so that a
descriptor does not miss important geometric structures. To
address these requirements, the feature points are commonly
computed as the extrema of scalar functions that measure
local properties of the input shape. Among them, we recall
the distribution of the curvature values (Katz and Tal 2003;
Mortara et al. 2004; Pauly et al. 2003), which classify the
local shape of 3D surfaces into planar, parabolic, and ellip-
tic regions; saliency maps for 2D images (Itti et al. 1998)
and 3D shapes (Castellani et al. 2008; Lee et al. 2005);
Euclidean- (Baloch et al. 2005; Fomenko and Kunii 1997)
and geodesics-based functions (Gal and Cohen-Or 20006;
Hilaga et al. 2001; Zhang and Liu 2005), which identify sur-
face protrusions (Elad and Kimmel 2003; Gal et al. 2007,
Mortara and Patané 2002). These approaches can also be
combined to take into account several surface properties; for
instance, the work presented in Gal and Cohen-Or (2006)
identifie salient features by measuring geometric properties
at a point over different local views. The methods in Mortara
et al. (2004), Pauly et al. (2003) estimate the local variation
of the curvature values and their persistency over several
scales. To improve the effectiveness of the selected feature
points and reduce the influenc of noise, sampling density,
and surface tessellation on their identification the shape de-
scriptors are evaluated in a multi-scale manner using neigh-
borhoods of increasing size. Alternatives are the Gaussian
filter or the simplificatio of the surface representation with
edge collapse and vertex removal.

Once the feature points have been identified two sur-
faces are matched by establishing correspondences among
feature points or using local statistical shape descriptors at
these points. Automatic feature correspondence is usually
best-suited for rigid shapes. To deal with large shape varia-
tions, the work presented in Zhang et al. (2008) uses a set
of features located on the prominent parts of a shape, which
are the maxima and minima of the average squared geodesic
distance fiel (Hilaga etal.2001; Zhang and Liu 2005). The
local maxima of this function correspond to convex or con-

cave shape extremities and the local minima are located on
a region around the shape barycenter.

2.2 Isometry-Invariant Matching of 3D Shapes

Techniques for comparing 3D objects deformed with iso-
metric deformations were conceived by several authors.
Hilaga et al. (2001) presented a technique to match the
topology of triangulated models by comparing Multireso-
lution Reeb Graphs (MRG, for short) (Biasotti et al. 2008;
Patané et al. 2009). The MRG of a triangle mesh S, which
approximates a smooth surface M, was constructed by
discretizing the function | (v) = fM g(v, p)dp, where the
value g(v,p) is the geodesic distance between the two
points v, p € M. The algorithm for matching two MRGs is
a coarse-to-fin strategy that searches the node pairs provid-
ing the largest value of similarity while maintaining topo-
logical consistency. As discussed in Biasotti et al. (2006),
this high-level structure can also be used to fin sub-parts
correspondences of 3D shapes. Similarly to Hilaga et al.
(2001), Hamza and Krim (2003) considered an approxima-
tion of the squared geodesic distance function, which is de-
fine as pua(v) = [, 1g(v, p)|*dp.

In both cases, the geodesic distance was computed by
considering a set S of centroids or base points, which are
selected through a farthest point-like sampling. The choice
of §’, the local shape noise, and an irregular surface tes-
sellation may generate clustered feature points. To partially
overcome these drawbacks, the resulting functions w or o
are smoothed applying a polynomial kernel and clustered
feature points in S are removed via geodesic Poisson disk
sampling (Zhang et al. 2008). These functions were then as-
sumed as random variables with a common probability den-
sity map, which gives a statistical shape descriptor. The dis-
similarity between two objects was calculated by computing
the Jensen-Shannon divergence between the corresponding
statistical shape descriptors.

Elad and Kimmel (2003) proposed a canonical repre-
sentation for triangulated surfaces, which is invariant with
respect to isometries. A 3D surface was simplifie to a
low number of n vertices (e.g., n := 2000) and then trans-
formed into canonical coordinates in the m-dimensional
Euclidean space by applying a multi-dimensional scaling.
In this canonical representation, the geodesic distances on
the original surface were approximated by the correspond-
ing Euclidean distances. The matching problem of non-rigid
and deformed objects was reduced to the problem of match-
ing rigid objects, which is approached with the iterative
closest point algorithm (Zhang 1994), the moment compar-
ison (Elad et al. 2002), and the method of eigenfaces (Turk
and Pentland 1991).

Mémoli and Sapiro (2005) compared dense point clouds
by computing an approximation of the Gromov-Hausdorff



(GH, for short) distance between two compact metric
spaces. This distance is an extension of the symmetric Haus-
dorff distance and intuitively measures how far two com-
pact subsets of a metric space are from being isometric.
They considered the geodesic distance as a metric on sur-
faces and showed that the computation of the GH distance
leads to a combinatorial problem. They proposed an heuris-
tic that progressively constructs approximations of the GH
distance of subsets of the point clouds by minimizing the
point-wise approximation error. In Mémoli (2007), Mémoli
reformulated the problem of approximating the GH distance
between compact metric spaces as a mass transportation
problem, where the mass of each sample point of the metric
spaces is expressed as a probability measure. This new for-
mulation leads to a quadratic optimization problem with lin-
ear constraints, which is solved with an iterative procedure.
Moreover, the author provided a theoretical framework that
enables to understand the computational complexity of the
GH distance and its relation to other metrics and matching
methods presented in Bronstein et al. (2006), Elad and Kim-
mel (2003), Hamza and Krim (2003), Mémoli and Sapiro
(2005). Finally, Bronstein et al. (2006) approximated the
GH distance between two smooth surfaces using a gener-
alized multi-dimensional scaling to compute the minimum
distortion between those surfaces. They proposed a multi-
resolution algorithm that minimizes an approximation of
the distortion map between two triangulated surfaces. This
approach was also used to compute an approximation of
a non-symmetric partial embedding distance, which intu-
itively measures how similar a patch of the surface is to
another.

Reuter et al. (2006) compared two shapes by comput-
ing the distance between two isometry-invariant feature vec-
tors given by the smallest k, 10 <k < 100, eigenvalues of
the Laplace-Beltrami operator define on the input shape.
In Jain and Zhang (2007), Jain and Zhang compared non-
rigid objects by matching spectral embeddings, which are
derived from the eigenvectors of affinit matrices com-
puted considering geodesic distances. In Rustamov (2007),
the frst k Laplacian eigenvalues and eigenvectors are used
to defin an isometry-invariant shape representation. Then,
these signatures are compared using a modificatio of the
D2-distribution (Osada et al. 2002), which is based on a set
of histograms that capture the variation of distances among
points within a set of spherical cells centered at the origin of
a k-dimensional space.

A similar approach is proposed in Mateus et al. (2007);
here, spectral embeddings, constructed as Local Linear Em-
bedding (LLE, for short) on eigenspaces of affinit matri-
ces, are matched by using the FExpectation-Maximization
(EM, for short) framework. More precisely, a 3D surface
is mapped in a d-dimensional space using a locally linear
embedding, which is pose-invariant and preserves the dis-
tances between each point and its k-nearest neighbors in

a least-squares sense. Then, two shapes are compared by
aligning them through an orthogonal transformation and es-
timating correspondences among the data points. For the
alignment of the embedded spaces, the proposed approach
computes the singular value decomposition of a d x d ma-
trix. The parameters d and k need to be accurately tuned
in order to avoid wrong correspondences between points or
an over-fittin in the embedding. The EM framework serves
to estimate a solution resolving the intrinsic ambiguities in
eigenspace alignment. Among them, we mention the sign re-
versal of eigenfunctions, the eigenvalues switch, and resid-
ual transformation induced by the LLE embeddings, which
preserve only local pairwise distances between data points.
Ohbuchi et al. (2008) compared articulated 3D shapes
by using the bag-of-features approach to match large sets
of multi-scale local visual features. This method consists in
accumulating multiple local features into a single histogram
based on a specifi clustering, and consider the histogram as
a feature vector of the 3D shape. Ruggeri and Saupe (2008)
compared point-sampled surfaces by matching sets of his-
tograms of geodesic distances with bipartite graph match-
ing. These histograms can be efficient] extracted and com-
pared by using various bin-to-bin distance functions (Rub-
ner et al. 2000); e.g., the various L ,-distances, the x2 dis-
tance, the Kullback-Leibler divergence distance, and the
Bhattacharyya distance. The aforementioned methods as-
sume that the domains of the histograms are already aligned,
although in practice histograms approximating the same
probability density function might be misaligned and have
different scales. To overcome this problem, techniques con-
sidering scale invariant cross-bin comparison of histograms
(e.g., the Earth Mover’s distance) were developed in Ling
and Okada (2006), Osada et al. (2002), Rubner et al. (2000).
In practice, when histograms have a small number of bins
a good compromise between matching efficien y and ef-
fectiveness can be obtained by using the Li-distance or
the x? distance define as
B 2
I Z [H; (k) — H ; (k)|

deMiH) =32  H o +i,0

: (M

k=1

where B is the number of bins of the histograms H; and H;;,
and H; (k) is the value of the k-th bin of H;. Bins equal to
zero (i.e., H;j (k) = H; (k) = 0) are discarded. However, the
choice of a good dissimilarity measure depends on the his-
togram space and can be estimated experimentally (Brunelli
and Mich 2001).

3 Selecting Anchor and Feature Points on 3D Shapes

In the following, we present a novel technique for sampling
a 3D shape based on the critical points of isometry-invariant



scalar functions, given by the eigenmaps of the Laplace-
Beltrami operator related to its smaller eigenvalues. To this
end, we discuss the definitio (see Sect. 3.1) and selection
(see Sect. 3.2) of the anchor points. Finally (see Sect. 3.3),
we introduce the statistically controlled sampling used to se-
lect the anchors among the critical points of several Lapla-
cian eigenfunctions.

3.1 Laplacian Eigenfunctions: Definitio and Main
Properties

The choice of the scalar functions for feature detection intro-
duced by previous work (see Sect. 2.1) depends on the appli-
cation and is a delicate task. As discussed in Ni et al. (2004),
an arbitrarily chosen function usually yields a complicated
arrangement of many critical points that is impractical for
several applications. Our intuition is that the critical points
are meaningful for the description of the input surface M if
we select functions that are smooth (Funkhouser and Shilane
2006); intrinsically define by the shape of M; invariant
to isometric transformations. Furthermore, we expect that
the critical points are located on prominent features of M,
which identify semantically meaningful regions (Katz and
Tal 2003; Mortara et al. 2004) (e.g., protrusions, symme-
tries), and are extracted on the base of local shape sig-
natures (Gal and Cohen-Or 2006; Gelfand et al. 2005;
Li and Guskov 2005).

In the following, we will verify that the Laplace-Beltrami
eigenmaps and the corresponding critical points satisfy
all the aforementioned properties. Furthermore, using the
Laplacian eigenmaps avoids to select a specifi function or
choose the base points for its discretization, as it happens
for the geodesic maps.

Definitio of the Laplacian Eigenfunctions. The Laplacian
eigenfunctions on M are define as the solutions of the fol-
lowing eigenvalue problem

fin f:M—R suchthat Af =1f, reR. (2)

In the discrete setting, let us consider a triangulated sur-
face S with vertices {p1, ..., pn}; as shown in Reuter et al.
(2006), Vallet and Levy (2008), (2) is equivalent to the gen-
eralized eigenvalue problem

fi=(f(P1), ..., fpa)),

where the n x n matrices Lo and B are define as

Lcmf= ABf,

COlai";CO[ﬁij ) _] € N(l),
Leaili, J) =1 = Xkenwtiy LeonGs b, i =,
0, else,

|U|T’21’r|, ] e N@),
B(, j):= Zk;lg(i)“kly -
0, else,

N(@):={j: (i, J) edge} is the 1-star of i; |t;| is the area
of the triangle #;; #; and #, are the triangles that share
the edge (i, j); t, k € N(i), are the triangles sharing i;
and «;;j, fi; are the angles opposite to the edge (¢, j). In the
following, we assume that the generalized eigenvalues Ay of
the couple (Lcot, B) and the corresponding eigenvectors f},
are reordered as follows

O0=A) <.+ 2 Ay, Leotfk =M Bfy, k=1,...,n,

where the firs eigenfunction f; is the constant vector 1 and
its eigenvalue is null. Finally, we mention that this approx-
imation can be improved by using higher degree finit ele-
ments; for more details on the cubic case and the properties
of the discrete Laplace-Beltrami operators for shape analy-
sis, we refer the reader to Reuter et al. (2009), Vallet and
Levy (2008).

Extraction of the Critical Points. To defin the function
f S — R on the triangulated surface S, the f-values are
given at the mesh vertices and linearly interpolated along
the edges and the faces of S by using barycentric coordi-
nates. We assume that f is general (i.e., f(p;) # f(p;). for
each edge (i, j)); this hypothesis guarantees that the crit-
ical points of f (i.e., maxima, minima, and saddles) oc-
cur only at the mesh vertices and the Euler formula applies
(cf., (3)). These points correspond to the maxima, minima,
and saddles of f and are computed by analyzing for each
vertex p; the distribution of the f-values on the neighbor-
hoods of p; (Banchoff 1967). Formally, if we let

LkG) = (j1, ..., jx € N(Q) : (s, Js+1)*_, edges of S}

be the /ink of i then the upper link is define as

Lk* () :={js € LkG) : f(pj,) > f(p)),

and the mixed link as

LK* () = (s € LKG) : f (o) > F ) > f (D)) or
F®j) < i) < fpj)},

where jx+1 = ji. The lower link Lk~ (i), is define by sub-
stituting the inequality “>" with “<” in the definitio of the
upper link. If Lk* (i) or Lk~ (i)) is empty, then p; is a max-
imum or a minimum, respectively. If the cardinality of the
set Lk® (i) is 2 4+ 2m;, m; > 1, then pi is classifie as a sad-
dle of multiplicity m;. A vertex that does not fall in the pre-
vious classificatio is called regular. Once the vertex-vertex
relation has been extracted, the classificatio procedure re-
quires O (n)-time. Finally, we mention that in the previous
definition we can use a threshold in order to diminish the
influenc of the noise on the critical point classificatio (see
Fig. 3). For more details on this part, we refer the reader to
Sect. 3.2.
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Fig. 3 (Color online) Simplificatio of the critical points with respect
to a given threshold e. The big pictures show the evolution of the num-
ber of critical points (y-axis) with respect to a different € (x-axis): the
red, blue, and black curves represent the number of maxima, minima,

Main Properties of the Anchor Points. The Laplacian
eigenfunctions (Reuter et al. 2006, 2009; Vallet and Levy
2008), and therefore their critical points, are intrinsically de-
fine by the input shape and are invariant to isometric defor-
mations. In fact, the eigenmaps related to the smallest eigen-
values are smooth and slowly varying functions with non-
clustered critical points, which locate surface features and
concisely characterize the whole surface. The eigenmaps re-
lated to the largest eigenvalues show rapid oscillations and a
higher number of critical points. Therefore, the whole set of
eigenmaps naturally provides a set of scalar functions orga-
nized in a corse-to-fin hierarchy; the larger k, the fine the
geometric variations captured by the critical points of the
Laplacian eigenmap fi. The aforementioned properties mo-
tivate our choice to consider the eigenmaps as an effective
alternative to curvature-based, geodesic and saliency maps.
Furthermore, the Laplacian critical points identify anchors
useful in a wide class of matching algorithms that build on
surface sampling such as Hamza and Krim (2003), Mémoli
and Sapiro (2005), Osada et al. (2002), Ruggeri and Saupe
(2008).

Considering a closed surface S and a Morse Laplacian
eigenfunction (i.e., its critical points are not degenerate), the
relation between the number of its critical points and the
genus of S is given by the Euler formula (Banchoff 1967,
Milnor 1963)

2(1 — g) = minima — saddles + maxima, (3)

where each saddle is counted with its multiplicity m;, that
is, Zpi saddle M- 1t follows that neglecting a generally low
number of non-Morse eigenfunctions and the constant term
given by 2(1 — g), the sum of the number of maxima and

and saddle points at each step. In the upper part of each picture, the
left image depicts the input critical points and the other two images
show the critical points preserved by the simplificatio

minima is of the same order as the number of saddle points.
Finally, our tests (see Fig. 4 and Fig. 5) have shown that the
maxima and minima of the Laplacian eigenfunctions iden-
tify protrusions of the input shape and are stable to noise and
non-intrinsic deformations.

3.2 Selecting and Clustering Anchor Points

In the following paragraph, we describe a classificatio of
the critical points that is robust to noisy scalar functions and
allows us to remove redundant and close critical points.

Robust Classificatio and Simplificatio  of the Critical
Points of an Arbitrary Scalar Function. Our tests have
shown that the eigenfunctions related to the eigenvalues of
high magnitude have a large number of critical points, which
appear close to each other. Furthermore, triangle meshes
with an irregular sampling density, connectivity, and small
angles might make the computation of the spectrum unstable
and provide a set of functions with degenerate critical points
(e.g., plateaux regions, monkey saddles). To overcome these
drawbacks, we introduce a simplificatio procedure of the
critical points of an arbitrary function f : § — R. The idea is
to check the changes of the sign of f along the edges of the
1-star of each vertex with respect to a threshold €. If ¢ =0,
then we will get the definitio introduced in Sect. 3.1 and
increasing e will remove undesired critical points.

The e-sensitive sign of f along the oriented edge (p;, p;)
is define as positive if f(p;) — f(pi) > €; in this case, we
write f(p;) >¢ f(pi). In an analogous way, the e-sensitive
sign of f along the previous edge is considered as negative if



Fig. 4 (Color online)

(a) Location of the critical
points of a set of representative
Laplacian eigenfunctions fy,
k=2,3,4,6,11,31,51: red,
blue, and black dots locate the
maxima, minima, and saddle
points, respectively. (b) Critical
points of the previous
eigenmaps after a deformation
of the surface shown in (a). The

example highlights that the
maxima and minima can switch
their classificatio but remain
more stable than saddle points,
which are affected by local
non-isometric changes of the
surface. (¢), (d) Evolution of the
number of critical points. See
also Fig. §
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fpj) — f(pi) < —€; hence, we write f(p;) <c f(p;). For-
mally, if we let

Lk@) == (j1, -+, jk € NG) 2 (s jig1)hy edges of M)

be the /ink of i, then the (e-sensitive) upper link is define
as

Lk* (i) == {j; € Lk(): f(pj) >e £ (P}
and the (e-sensitive) mixed link as

LK*(i) i= (ji € LkG) : f(Pji,)) >e f(i) > f(pj) or
SWjy) <e f(pi) <e f(pj,)), where jii1=ji.

For the definitio of the lower link, we replace the inequal-
ity “>¢” with “<.” in the definitio of the upper link. If
Lkt (i) =% or Lk™(i) =, then p; is a e-sensitive max-
imum or minimum, respectively. If the cardinality of the
set Lkt (i) is 2 + 2m;, then p; is classifie as a saddle
of multiplicity m; > 1. In our implementation, the para-
meter € is proportional to the maximum variation of the

f-values along the edges of S, i.e.,

€:=02 max {|f(p)—SfPp)l.

(pi,pj) edge
Ekamples are shown in Fig. 6; for more details on this ap-
proach, we refer the reader to Patane et al. (2009). Other
simplificatio techniques are described in Bremer et al.
(2004), Liu et al. (2007).

Geodesic Simplificatio of the Anchor Points of Sets of
Laplacian Eigenfunctions. Let us now suppose that we
consider as anchors the critical points of a large number
of Laplacian eigenfunctions. In this case, it might hap-
pen that the critical points related to different eigenfunc-
tions are closely located and cannot be simplifie using the
scheme previously introduced. In fact, these critical points
are uncorrelated and correspond to different scalar func-
tions. Therefore, we introduce a simplificatio scheme of
the anchors which ensures that two anchors are sufficientl

separated on the surface unless they have different geometric
meanings. If a set of anchors has geodesic diameter smaller
than a threshold g, then we keep its geodesic median point



Fig. 5 In this examples, we
added a Gaussian noise to the
surfaces in Fig. 4 and tested the
stability of (a), (b) the location
and (¢), (d) the number of the
critical points of the
corresponding Laplacian
eigenfunctions. The example
shows that the critical points,
and especially the maxima and
minima, are not affected by
noise perturbation of medium
level

Fig. 6 Simplificatio of the
critical points with respect to a
different threshold, which
increases fiom left to right; the
initial set of critical points is
shown on the left image of the
i st row
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and discard the other points from the set. The geodesic me-
dian point is the point minimizing the sum of its squared
geodesic distances to the other points of the set. The sets
of anchors are iteratively computed by using a hierarchical
clustering algorithm (Press et al. 2007) considering the geo-
desic distance as metric. The choice of g, affects the retrieval
performance of a matching method. If g, is too small, we
might have anchor points that are very close to each other,
identify the same geometric feature, and degrade the effec-
tiveness of a shape descriptor (Nehab and Shilane 2004;
Ruggeri and Saupe 2008). To choose g;, we firs apply the
FPS algorithm for selecting a number of points that is large
enough to statistically describe the surface (see Sect. 3.3).
Then, we set g; as the minimal geodesic distance among the
selected points.

We evaluate the geodesic distance between two points
of the surface S as the length of the shortest path between
the corresponding nodes of an extended sphere-of-influenc
graph (eSIG, for short) (Darom et al. 2006). For the evalua-
tion of the shortest path, we use Dijkstra’s algorithm. The
eSIG is the graph constructed from a dense set of points
sampled from the triangular surface S. The sphere centered
at p; € S with radius given by its distance to the k-nearest
neighbor is called the sphere of influenc of p;. Two distinct
points p; and p; are connected by an edge ¢;; if the corre-
sponding spheres of influenc intersect. Too long edges are
discarded as outliers as well as edges, which do not lie on the
triangular surface. Each edge e;; is weighted by the Euclid-
ean distance between the connected vertices. Although this
approach is not as accurate as those presented in Kimmel
and Sethian (1998), Surazhsky et al. (2005), it is fast, re-
duces the approximation error with respect to considering
only the mesh vertices, and can be directly applied to sets of
points sampled from any surface representation.

3.3 Statistically Controlled Sampling of Additional Points

Our sampling method adds a set of additional points to
the set Q of (filtered anchor points previously computed
for the triangulated surface S. These new sample points
of S are generated through an extension of the farthest
point sampling (FPS, for short) algorithm (Eldar et al. 1997,
Moenning and Dodgson 2003), which produces sample
points evenly distributed on a surface with respect to the
anchor points. This distribution ensures a good covering
of the surface (Mémoli and Sapiro 2005) and is beneficia
for increasing the retrieval performance of several match-
ing methods (Nehab and Shilane 2004; Ruggeri and Saupe
2008). The farthest point sampling is a fast iterative algo-
rithm, which at each iteration selects the point of the surface
that is the farthest from all the currently selected points. In-
dicating with m the number of selected points, the corre-
sponding cost of the farthest points sampling is O (m logm).

Once the eSIG of S has been computed, we extract the
geodesic Voronoi cell of each point q of Q, i.e., the set

GVC(q, Q) ={pi €S :gMi, ) = gPi> q),
qx # q, qk € O},

which contains the points p; € § whose geodesic distance to
the point q € Q is not greater than to any other point qx € Q.
Finally, the (overlapping) partition

GVD(S, Q) :={GVC(qi, 9), q € Q)

of the surface S into m geodesic Voronoi cells is called geo-
desic Voronoi diagram of the set Q on S and a point of S,
which belongs to more than two GVCs, is called geodesic
Voronoi vertex (GVYV, for short). We note that the partition
in GVD(S, Q) can be efficientl computed by simultane-
ously propagating the fronts of the geodesic distance func-
tions from the points of Q to the other points of S till their
GVCs completely cover S (Moenning and Dodgson 2003).
Moreover, if a new point p of S is added to the set Q then
the GVD can be updated by recomputing only the GVCs in
the neighborhood of p. In Moenning and Dodgson (2003),
showed that at each iteration of the FPS the farthest point
on § can be efficient] computed as the GVV with maximal
geodesic distance to the closest selected point. We extend
this algorithm by selecting the farthest GVV q only if its
statistical contribution (define in the next paragraph) suffi
ciently differs from those of its neighboring selected points,
i.e., those points whose GVCs contain q. At each iteration,
if q is selected then we proceed further in the FPS fashion.
Conversely, if q is discarded then we consider all the GVVs
starting from the second farthest GVV till the nearest GV'V,
as long as we fin a good candidate point. If no good candi-
dates are found, then we stop the iterations and consider the
current set of selected points as final

Statistical Contribution of an Additional Point. To de-
fin the statistical contribution of the additional point p, €
Q for describing the surface S, we consider the outcome
of g(pa, P), p € S, as a random variable X. We then defin
the geodesic shape distribution of S at the point p, as the
probability density function F(X) describing the outcome
of X. Thus, F(X) describes the distribution of all the geo-
desic distances to the point p, on the surface S and intu-
itively gives a statistical description of S as seen from p,.
We approximate F'(X) with a histogram H(p,, Q) of B bins
constructed by taking only into account the geodesic dis-
tances between p, and the points of Q, i.e.,

— — b .
{‘l(p(la Q)'_(blv'~-7b3)v bk_z;{'j:[];k’ ’
be=1{pi € Q: g(Pa, Pi) € ((k — DEF= kS T)|, (g
| <k <B;
gmax = maxp, p.co{g(Pi, pj)}-
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Fig. 7 Histograms of 16 bins approximating the geodesic shape dis-
tributions of two surfaces at their anchor points. The surface (b) is the
isometrically deformed version of the surface (a), obtained by bending

To make the histogram invariant with respect to scaling, the
bins of H(p,, Q) are normalized to gmax. Histograms of 16
bins approximating the geodesic shape distributions of two
deformed surfaces at their anchor points are shown in Fig. 7.

Sampling Algorithm Details.  Our sampling algorithm aims
at enriching the initial set of anchor points with those
additional points, which contribute improving the statis-
tical description of the surface S through their geodesic
shape distributions. The algorithm is summarized as fol-
lows.

Require: The set Q of filtere anchor points of the input
surface S.
Ensure: The fina set of sample points.

I. For each q € Q, compute the geodesic Voronoi cell

GVC(q, Q) ={pe S:gp, @) =g, q),
qx # 9, gk € Q}.

2. Compute the geodesic Voronoi diagram GVD(S, Q)
generated from the set Q on S, i.e.,

GVD(S, Q) :={GVC(q, @), q € Q}.

3. Construct the set GI'1(Q) of the geodesic Voronoi ver-
tices of GVD(S, Q).

4. Select the Voronoi vertex q € GV1°(Q) with the maxi-
mum geodesic distance to the points of Q.

5. Compute H(q, Q), i.e., the histogram of the geodesic
distances between q and the points of Q (see (4)).
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(b)

the hand f ngers. Despite the isometric deformation, the anchor points
of (a) are approximately located in the same regions of those of (b) and
the corresponding histograms are similar

6. Compute the set of points whose GVCs contain q, i.e.,
NN(@) ={p € Q:qeGVC(Q,p)

and compute H(p, Q), p € NN(Qq).
7. Using (1), evaluate

max ;=\ __ 5 —
da (@ = pg\l&)((mdx-(H(q, 0), H(p, ).

8. If a’)’(“za" > d;z, then add q to Q and go to step 2; other-
wise, go to step 9.

9. Remove q from GI'V'(Q).

10. If GVV(Q) is empty, then go to step 11; otherwise, go
to step 4.

11. Consider Q as the fina set of sample points.

The number of selected points depends on the surface
geometry and on the threshold d’ ,. The choice of d;z de-
termines the precision at which the histograms H(q, Q)
approximate the actual geodesic shape distribution at the
selected points q € Q. On our databases, we have set
d;z = 1077, Using the maxima and minima of the firs four
non-trivial Laplacian eigenmaps leads to an average of 400
points per object. Figure 8 shows the results of our sampling
method applied on two isometrically deformed versions of
a hand. For the models shown in Figs. 8(c), (f), the fina sets
of sample points have cardinality 346 and 360, respectively.

Our sampling method ensures that at each iteration the
generated sample points are evenly distributed on the sur-
face with respect to the anchor points and give statistically
meaningful contributions. Thus, it implicitly define levels
of detail in the sampled point set, which are refine at each



Fig. 8 (a) The model of the hand is sampled starting from a set of 8
anchor points; (b) shows an iteration of our sampling strategy, which
adds the farthest and statistically meaningful geodesic Voronoi vertex
(darkest point) to the currently selected points. Geodesic Voronoi cells
are shown with different colors. From the f nal set of 346 sample points
(¢), we select a set of 100 reference points (d), which are considered

iteration. Figures 8(d), (g) shows the firs 100 sample points,
including the anchors, generated by our sampling method
applied on two deformed surfaces. These points are consid-
ered as reference points for matching those surfaces, as de-
scribed in Sect. 4.

4 Matching Point-Based Statistical Shape Descriptors

Using the set of sample points Q, we compute a set of point-
based statistical shape descriptors that describe the surface
through histograms of geodesic distances (see Sect. 4.1). To
compactly describe the surface, we only consider a set of
shape descriptors associated to the set of reference points Q,
in Q. Then (see Sect. 4.2), the dissimilarity between two 3D
shapes is computed by comparing the corresponding sets of
descriptors with a bipartite graph matching or a reordering
of their components.

4.1 Point-Based Statistical Shape Descriptor

Similarly to Ruggeri and Saupe (2008), given a set of feature
points

O={q,i=1,.... M} C S,

we aim at compactly describing S with a set of sta-
tistical shape descriptors (SSDs, for short) constructed

by our matching algorithms. The hand (a) is isometrically deformed
into the hand (e). The 8 anchor points, the 360 additional points, and
the 100 reference points are shown in (e), (f), and (g), respectively.
Despite the isometric deformation, the anchor points of (e) are located
in the same regions of those of (a)

from a set of r reference points belonging to the set
0r=1{qi, € Q,k=1,...,r} € Q. Theset Q, is constructed
to include all the anchor points and the additional points
of Q (in sampling order) that are necessary to reach a
fi ed cardinality r := |Q,|. To defin the descriptor of a
point q;, € Q,, we consider the histogram of B bins approx-
imating the geodesic shape distribution of S at the point q;, ,
as define in (4). Furthermore, we compute other informa-
tion, which improves the matching of the histograms. Thus,
to each point q;, in Q, we associate a point-based statistical
shape descriptor (PSSD, for short), i.e., a vector

v(gip) = (br, ..
containing the following information:

— (b1,...,bp) =H(q;, Q), i.e., the histogram of bins ap-
proximating the geodesic shape distribution of § at q;,
(see (4)). It statistically describes the intrinsic properties
of § as seen from ¢, .

— V41 1= bmax With byax :=max|<j<p b;. vp4| improves
the matching effectiveness of H(q;,, Q). In fact, large val-
ues of b,y indicate that the geodesic distances are mostly
concentrated in one range, which is typical of external
points (i.e., points with high protrusions) that are far from
the geodesic barycenter of the surface.

— V42 = bmax — bmin, Where byjn = minj<;<p bj. Simi-
larly to vp41, V42 serves to improve the matching effec-
tiveness of H(q;,, 0).

DB, VB, VB42, UB+3, UB44),



— VB3 = 75 Yqie0 1£(qi,, a;)1>. where §(q;, q;) is the
geodesic distance between q;, and q; normalized with re-
spect to the maximal geodesic distance gpmax. Intuitively,
it indicates the protrusion of S at q;,, i.e., how far from
the geodesic barycenter of S the point q, is.

— Vg4 =0(q;) = ﬁﬁ where A| < Ay < A3 are the
eigenvalues corresponding to the principal components of
the geodesic Voronoi cell of q;, generated by the set Q
on S. The value o(q;,) € [0, 1] is called surface varia-
tion (Pauly et al. 2002) and estimates how much the sur-
face locally deviates from the tangent plane within the
geodesic Voronoi cell of q;,. Values of o (q;,) close to
zero indicate that the portion of S is almost planar in the
geodesic Voronoi cell of q;, .

The choice of r influence the efficien y of the match-
ing algorithm and depends on the database. The value r
should be sufficien to describe all the objects of the database
and to ensure good retrieval performances. Starting from
the maximum number of anchor points detected in the data-
base, we iteratively increase r till a good tradeoff between
the retrieval effectiveness and execution time of the match-
ing algorithm is achieved. For details on this part, we refer
the reader to Sect. 4.2, By considering the reference points
in sampling order, at each value of r the even distribution
of the points is ensured without redundancies in their sta-
tistical contributions. Figures 8(d), (g) show 100 reference
points selected on two isometrically deformed models of a
hand. Since the computed PSSD depends on the accuracy of
the calculated geodesic distances, the presence of geomet-
ric and topological noise may diminish its quality. To alle-
viate this problem, various techniques for computing geo-
desics directly on point clouds (Mémoli and Sapiro 2005;
Ruggeri et al. 2006) can be used. The aforementioned meth-
ods are robust to both noise and outliers.

4.2 Matching Statistical Shape Descriptors

Let Q4 = Q,(Sa) =1{q1,...,q,} € S, be the set of r refer-
ence points sampled on a surface S,; then, we compute a set
of r PSSDs

Vo=V (Qa) ={v(q1),...,v(q,):
q; € Qu, j=1,...,rh

Given a new surface Sp, the dissimilarity between S,
and Sj, is estimated by comparing their corresponding sets of
PSSDs V, and Vp, := V(Qp) with Qp := Q,(Sp). Since the
anchor points of Q, and Qj have an arbitrary order, to cor-
rectly match V, with V}, we firstl need to fin a good align-
ment between their elements. This problem implies search-
ing among all the permutations of r indices the one that
minimizes the dissimilarity between V, and Vj,. Formally,
letm:{l,...,r} — {1,...,r} be a permutation of the set of

indices {1, ..., r}. The problem of comparing V,, and V}, can
be stated as findin the permutation 7, which minimizes the
distance function

,
b
dn(Va, Vo) =Y IV =v& 1,

i=1

where vf“) is the ith PSSD of V,, and vab(),.) is the PSSD of V,
related to 7 (i). Thus, the permutation 7 establishes the cor-
respondence between the elements of V,, and V}. Then, the
dissimilarity value between V, and V}, is given by

8(Va, Vp) = min dr (Vq, Vi), (5)
nell,

where T1, is the set of all permutations of {I,...,r}. This
approach implies a combinatorial search over all permuta-
tions IT,.. The computation of §(V,, V}) is time-consuming
because the size of IT, is r!. For this reason, the parame-
ter r is fundamental to bound the computational complexity
of the problem as well as the search of the permutation that
solves (5). In the following paragraphs, to make the problem
of matching two sets of PSSDs tractable we propose two
simplifications bipartite graph matching (Korte and Vygen
2000) and comparing reorderings of PSSDs based on Fiedler
vectors (Chung 1997).

Bipartite Graph Matching. A complete undirected bipartite
graph G = (Vgp, E) is constructed by taking as set of ver-
tices Vyp := V,UV,,. Each element via) of V, is connected to

every element v of Vi through an edge ¢;;, which is added
Yy j J

to the set of edges E of G (see Fig. 9). Each edge ¢;; € E is

@ and v®,

then weighted with the L-distance between v; ;

Vo

J_m v,

Fig. 9 Bipartite graph matching for comparing sets of PSSDs. Let V,
and V,, be two sets of PSSDs of cardinality ». Each PSSD of the
set Vy is connected via r edges with all the PSSDs of V,,. An edge ¢;;
is weighted with the Lj-distance between v,f“) €V, and v e Vp.
A matching between V,, and Vj, is that set of edges (thickened edges)

minimizing the sum of the edge weights




A matching in G is the set of edges Ey C E, in which
no two edges share a common vertex of V,,. We aim at
findin the minimum weight perfect matching, which is the
minimum weight matching with cardinality |Ep| = |Vap|/2
(e.g., the set of thickened edges in Fig. 9). This problem can
be solved in O(|Vp|? log|V,p|) time with Edmonds® blos-
som algorithm as in Cook and Rohe (1999). For our tests,
we used the implementation presented in Cook and Rohe
(1999). Recently, Schwartz et al. (2005) presented an algo-
rithm achieving a running time of O(|Vap|?) under the as-
sumption that the edge weights are integers and uniformly
distributed. The set E s induces a bijection 7* of {1,...,r}
between the sets V, and Vj,. Therefore, the dissimilarity be-
tween V, and Vj, is estimated with the function

"
Ve, Vi)=Y w(eu)=Z“Vf"’—V§f3«>

e,'jéEM

i,

i=l

which sums the weights of the edges in E ;. Even though the
histograms could be compared with several different met-
rics, our experimental comparisons on different databases
of isometric objects have shown that the L;-distance is the
most effective metric for our PSSDs.

Fiedler Vector Based Matching.  The Fiedler vector is the
eigenvector corresponding to the firs non-null eigenvalue of
the Laplacian matrix of a weighted graph (Fiedler 1975). In-
tuitively, the components of the Fiedler vector give rise to
an embedding of the nodes of a graph on a straight line such
that the sum of the weighted and squared edge lengths is
minimal. In practice, the Fiedler vector can be used for or-
dering a set of entities, which can be related in form of a
graph. Its usefulness has been demonstrated in several ap-
plications such as spectral graph partitioning (Qiu and Han-
cock 2003) and drawing (Koren et al. 2002), mesh stream-
ing (Isenburg and Lindstrom 2005) and processing (Zhang
et al. 2007).

Given the set of PSSDs V,, we consider the complete
graph having the PSSDs vf") € V, as nodes, which are con-

nected to all the other PSSDs v&") € Vu, i # j through edges

weighted with ¢;; = exp(—g(vf"),vg.“))). Here, the expo-

nential function is used to smooth out the effect of large
geodesic distances between reference points. For the com-
putation of the Fiedler vector, we defin the Laplacian ma-
trix associated to the proximity graph as the r x r symmetric
matrix whose entries are —e;;, if i # j, and d;; := Z;zl eij
if i = j. Then, the decreasing reordering of the components
of the Fiedler vector are used to permute the elements of V.
The reordered set of PSSDs is stored as a single feature vec-
tor

(a)
Vo, (r))

(a)

fp= (vn,,(l)’ _—

of r-(B +4) entries, where 7, : {1, ..., r}—{1,...,r}isthe
bijection induced by the ordering of the Fiedler vector com-
ponents. The dissimilarity between V, and Vj, is then com-
puted as the L -distance between the reordered feature vec-
tors f, and f},, i.e.,

(Sz(Va; Vb) = ”fa . fb”l-

This approach is faster than the bipartite matching and leads
to approximately similar effectiveness values. The Fiedler
vector of a r x r matrix can be computed in time O (r logr).
This computation can be performed off-line during the pro-
duction of the feature vectors, which makes this approach
suitable for online retrieval applications. Indeed, the on-line
comparison of two feature vectors can be efficientl per-
formed by using the Lj-distance or other suitable metrics.

5 Results

We evaluate our matching methods and our sampling strat-
egy on a database containing a collection of 90 3D models,
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3 FINGERS 4 DOGS 4 HUMANS 5 JOKER HATS 5 HUMANS 4 CROCODILES 5 LAMPS 8 GIRAFFES
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WITH VOLUME

Fig. 10 Reference objects of our database. Each reference object represents a class of objects of the database. Each class contains a set of nearly

isometrically deformed versions of its reference object



Table 1 Comparison of the retrieval effectiveness of different shape
matching methods by using two different classifications the stan-
dard one shown in Fig., 10 and the fines one, in which the class
of 8 hands of two different humans is split in two different classes

of 4 hands. The following retrieval effectiveness measures are re-
ported in percentages: Pso and Pigo = average precision over re-
call range 50% and 100%, respectively; RP = R-precision (firs tier);
BEP = Bull’s Eye Performance (second tier); NN = nearest neighbor

Matching method Standard classificatio

Finest classificatio

Pso Pioo BEP RP NN Ps Pioo BEP RP NN
OurBGM 100 99.0 92.1 91.9 872 100 99.4 95.8 952 933 100
Reuter06 98.2 90.7 89.1 87.8 98.9 98.7 95.7 95.2 94.0 98.9
OurFV 100 98.1 89.0 90.0 81.9 98.9 98.7 93.9 96.2 88.1 98.9
RuSa08 256 972 91.5 94.0 85.5 96.7 97.5 943 95.6 90.0 96.7
RuSa08 100 93.7 87.4 92.1 77.1 92.2 94.1 90.2 943 81.2 92.2
Osada02 G2 FPS 91.2 83.7 84.3 74.9 91.1 91.9 87.4 89.8 79.7 91.1
Hamza03 FPS 90.7 82.5 83.3 743 88.9 91.2 87.1 88.6 80.5 88.9
Memoli05 56.5 50.3 63.8 342 47.8 573 52.7 64.5 36.7 47.8

some of them kindly provided by Ron Kimmel (Technion-
Israel), and some taken from the online database of Sum-
ner and Popovi¢ (2004). These 3D models are subdivided in
17 classes of nearly isometric objects (see Fig. 10). Indeed,
each class contains a set of nearly isometrically deformed
versions of one reference object.

We perform a query for each object of this database. The
dissimilarity values of the query objects with respect to all
the other objects of the database are computed by using both
the bipartite graph matching algorithm (OurBGM) and the
approach based on the Fielder vector (OurF'V). Both meth-
ods match 100 PSSDs of 20 components per object, which
correspond to the value of r and B in Sect. 4. We compared
our two methods with the following techniques:

— Reuter06 (Reuter et al. 2006). In the comparison, we used
only the firs 10 eigenvalues of the Laplace-Beltrami op-
erator, computed with the finit element method described
in Sect. 3.1;

— RuSa08 (Ruggeri and Saupe 2008). Aside we report the
number of sample points (local descriptors) considered by
the method;

— Hamza03 FPS (Hamza and Krim 2003). In this case, the
descriptor is extended by using the FPS to select 1024
reference points;

— Osada02 G2 FPS is an extension of the method of Osada
et al. (2002), which compares single global histograms of
the geodesic distances between 1024 points sampled with
the FPS;

— Memoli05 (Mémoli and Sapiro 2005) has been described
in Sect. 2.2.

Table | reports a comparison of some well known mea-
sures of retrieval effectiveness (Bustos et al. 2005; Tangelder
and Veltkamp 2004) of these methods. Psg and Pygg are
the average precision over recall range 50% and 100%, re-
spectively. RP indicates the R-precision (firs tier), BEP is

the Bull’s Eye Performance (second tier), NN is the near-
est neighbor which indicates the recognition ability, i.e., the
ratio of the query objects that are successfully recognized.
Indeed, the query object is judged as recognized if its class
matches the class of the nearest neighbor. For the meth-
ods QurBGM(FV) and RuSa08, we also report the number
of SSDs considered in the matching. A similar comparison
is performed by calculating the precision versus recall dia-
gram shown in Fig. 11. The rows in Table | and the plots
in Fig. 11 are ordered with respect to Psg. The compari-
son is performed considering two different classifications
the standard one shown in Fig. 10 and the fines one, in
which the class of 8 hands of two different humans is split
in two different classes of 4 hands, each per human being.
The fines classificatio is intended to show the sensitivity
of the matching methods to small changes in the geome-
try like those present in the hands of different human be-
ings. The value of NN = 100% in Table | shows that our
method OurBGM is able to recognize all the objects of the
databases. Furthermore, it performs better than the other
tested methods. The performance gap with respect to the
methods Reuter06 and OurFV is small and depends on the
classificatio of our database. Indeed, considering the fines
classificatio the method Reuter(6 has a slightly better value
of RP than OurBGM. The contribution of our methods in
terms of retrieval effectiveness is particularly evident with
respect to RuSa08 100, where the use of our sampling tech-
nique approximately improves the effectiveness of 10% by
considering the same number of SSDs in the comparison.
We evaluate the benefit of our sampling strategy pre-
sented in Sect. 3 by applying it on the methods RuSa08 100,
Osada02 G2 and Hamza03. Table 2 reports the retrieval
evaluation measures of these methods applied on sets of
sample points generated by using our sampling method
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Fig. 11 Comparison of the retrieval effectiveness of different match-
ing methods executed on the database of deformed objects shown in
Fig. 10. Two classification are considered: (a) the standard classifica

Table 2 Comparison of the retrieval effectiveness of different shape
matching methods applied on sets of sample points obtained with dif-
ferent sampling strategies, such as: our sampling method explained
Sect. 3 (OURS), the FPS, and the uniform sampling (UNIF). The
following retrieval effectiveness measures are reported in percent-
ages: Pso and Pyoo = average precision over recall range 50%

tion shown in Fig. 10 and (b) the fines classification in which the class
of 8 hands of two different humans is split in two different classes of 4
hands

and 100%, respectively; RP = R-precision (firs tier); BEP = Bull's
Eye Performance (second tier); NN = nearest neighbor. These mea-
surements are computed by considering two different classification of
our database: the standard one shown in Fig. 10, and the fnest one,
in which the class of 8 hands of two different humans is split in two
classes of 4 hands

Matching method Standard classificatio

Finest classificatio

Pso Pioo BEP RP NN Psq Pioo BEP RP NN
OurBGM 100 99.0 92.1 91.9 87.2 100 99.4 95.8 95.2 933 100
OurFV 100 98.1 89.0 90.0 81.9 98.9 98.7 93.9 96.2 88.1 98.9
RuSa08 256 FPS 97.2 91.5 94.0 85.5 96.7 975 943 95.6 90.0 96.7
RuSa08 100 OURS 95.7 91.2 95.0 85.8 96.7 97.2 93.8 95.6 89.8 96.7
RuSa08 100 FPS 93.7 87.4 92.1 77.1 92.2 94.1 90.2 94.3 81.2 92.2
RuSa08 100 UNIF 772 65.1 69.2 535 75.6 78.8 66.8 68.9 55.5 75.6
Osada02 G2 OURS 91.4 82.3 83.1 73.4 92.2 92.2 86.4 89.0 78.5 92.2
Osada02 G2 FPS 91.2 83.7 84.3 74.9 91.1 91.9 87.4 89.8 79.7 91.1
Osada02 G2 UNIF 84.6 75.9 80.5 65.7 83.3 85.6 79.4 85.0 69.3 83.3
Hamza03 OURS 91.4 813 81.3 70.7 92.2 92.0 85.8 86.9 76.6 92.2
Hamza03 FPS 90.7 82.5 83.3 743 88.9 91.2 87.1 88.6 80.5 88.9
Hamza03 UNIF 90.4 79.4 81.8 67.8 88.9 90.9 83.9 87.1 74.0 88.9

(OURS), the FPS, and the uniform sampling (UNIF). The
use of our sampling method improves the retrieval effective-
ness of these methods, in particular their recognition abil-
ity. Indeed, for the method of RuSa08 it allows achieving
with 100 point samples the same NN value as consider-
ing 256 of them. This fact considerably increases the effi
ciency of the RuSa08 method, since its time complexity is
O(N? log N), where N is the number of histograms to be
matched with the x2 distance.

The retrieval tests are run on a Windows XP Profes-
sional system running on an Intel Pentium 4 2.80 GHz with
2 GB of RAM. The average execution time per matching
of the method RuSa08 100 OURS is 0.015 s, almost 27
times less than RuSa08 256, i.e., 0.41 s. Our method us-
ing the BGM on 100 PSSDs (OurBGM 100, for short) per-
forms slightly better than the method RuSa08 100 OURS,
because the PSSDs are compared with the L-distance in-
stead of x? distance. Indeed, its average running time per
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Fig. 12 Retrieval effectiveness measures of our method using BGM
considering different number of reference points. This test is performed
with the standard classificatio shown in Fig. 10

matching is about 0.0106 s. Since the alignment using the
Fiedler vector is run off-line, our method QuriV 100 is
much faster than OQurBGM 100. The on-line matching with
the algorithm QurFV 100 consists in comparing feature vec-
tors of 2000 real numbers with the L;-distance, i.e., 20x 100
PSSDs at once.

However, our method performs well already when con-
sidering few reference points. Figure 12 shows different re-
trieval effectiveness measures of our method using BGM
with respect to the number of reference points considered
in the matching. The retrieval performances of our method
stabilize already at 20 reference points, although the peak
is reached at 100 points. This allows us to significantl de-
crease the execution time of our method BGM without sacri-
ficin its effectiveness. While in Mateus et al. (2007) the in-
put parameters need to be accurately tuned in order to avoid
wrong correspondences between points or an over-fittin in
the embedding, our approach reorders the nodes of the graph
associated to each point-based statistical shape descriptor
according to the Fiedler vector of a symmetric matrix. Fur-
thermore, computing only one eigenvector is much faster
than calculating the singular value decomposition as done
in Mateus et al. (2007).

The contribution of the additional intrinsic quantities
used for augmenting the histogram of geodesics in Sect. 4.1
is approximately 1.6% and 3.8% RP, for the standard
and the fines classificatio respectively. Of these im-
provements, 50% can be roughly attributed to the val-
ues Vp+1, Vp+2, 20% to vpy3, and 30% to vp44. However,
on some collections of 3D shapes with topological and geo-
metrical noise, our methods might mismatch local descrip-
tors. This problem can be alleviated either by improving our
local descriptors with further intrinsic geometry measures
or by considering geometrical constraints between local de-
scriptors. These constraints can also serve for improving the

search of the optimal solution of our matching problem by
applying algorithms like branch-and-bound heuristics (Br-
usco and Stahl 2005) used in combinatorial optimization
or the bag-of-features approach (Bronstein et al. 2009;
Ohbuchi et al. 2008) used in computer vision.

6 Conclusions and Future Work

We presented a matching method for 3D shapes, which is in-
variant with respect to isometric deformations. This method
comprises a new technique for sampling 3D shapes and two
matching algorithms using point-based statistical shape de-
scriptors. Our sampling strategy generates a set of geomet-
rically meaningful sample points by using the critical points
of the Laplacian eigenmaps as anchor points and combin-
ing the farthest point sampling with statistical criteria. We
only consider significan points that are not statistically re-
dundant for describing the surface. However, this approach
can be enhanced by considering database-dependent crite-
rions like the tf-idf weighting used in text mining (Bron-
stein et al. 2009). A set of PSSDs is constructed from the set
of sample points. Using augmented histograms of geodesic
distances, the PSSDs describe the surface as seen from their
corresponding sample points. The dissimilarity between two
3D shapes is computed by matching the corresponding sets
of PSSDs either with bipartite graph matching or by com-
paring reorderings of the PSSDs according to the Fiedler
vector of the Laplacian matrix of the corresponding proxim-
ity graphs.

Both variants of the proposed spectral-driven isometry-
invariant matching showed good retrieval effectiveness on
a test database of 90 objects stored in different postures;
in fact, it was able to recognize all or almost all objects in
the database. Thus, it is an effective method for classifying
and recognizing objects deformed with isometric transfor-
mations, e.g., non-rigid and articulated objects in different
postures. The retrieval effectiveness of our methods were
compared against other isometry-invariant matching tech-
niques. Our firs matching technique based on a bipartite
graph matching performed better than the other tested meth-
ods and recognized 100% of the objects of the database. The
second approach based on the Fiedler vector is slightly less
effective than the firs one; however, it is more efficien and
more suitable for online retrieval applications.

Our framework can be extended to address the problem
of partial matching of two 3D shapes (Bronstein et al. 2009)
by using either subgraph matching approaches or geometric
hashing methods for findin similar surface regions identi-
fie by salient reference points (Gal and Cohen-Or 2006).
Another interesting future application of our method is de-
tecting intrinsic symmetries of non-rigid 3D shapes (Ovs-
janikov et al. 2008; Raviv et al. 2007), where similar local



shape descriptors are used (Raviv et al. 2007). Other future
work includes extending the proposed technique to point-
sampled surfaces. In fact, most of its building blocks have
already been treated in the context of point-based graphics.
Actually, the main open problem is the stable computation
of the critical points of a scalar function define on a point
set.
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