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Abstract Thi s paper presents a matching method for 3D 
shapes, which comprises a new technique for surface sam­
pling and two algorithms for matching 3D shapes based on 
point-based stat istical shape desc riptors. Our sampling tech­
nique is based on critical points of the eigenfunctions re lated 
to the small er eigenva lues of the Laplace-Beltrami operator. 
These criti ca l points are invariant to isometri es and are used 
as anchor points ofa sampling technique, which ex tends the 
fa rthest point sampling by using statistical criteri a for con­
troll i ng the density and number of reference points. Once a 
set of reference points has been computed, for each of them 
we construct a point-based statistical descriptor (PSSD, for 
short) of the input surface. Thi s descriptor incorporates an 
approx imation of the geodes ic shape di stribution and other 
geometric information describing the surface at that point. 
Then, the dissimilarity between two surfaces is computed by 
comparing the corresponding sets of PSSDs with bipartite 
graph matching or measuring the L I-distance between the 
reordered feature vectors of a proximity graph . Here, the re­
ordering is given by the Fiedler vector of a Laplacian matrix 
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associated to the proximity graph. Our tests have shown that 
both approaches are suitable for online retri eva l of deformed 
objects and our sampling strategy improves the retrieval per­
fonnances of isometry- invari ant matching methods . Finally, 
the approach based on the Fied ler vector is faster than us­
ing the bipartite graph matching and it has a similar retri eval 
effectiveness. 

Keywords Isometry-invari ant matching· 3D model 
retri eval· Feature points· Local statistical shape 
descriptors · Laplace-Beltrami operator 

t Introduction 

Recent developments in 3D modelling and acquisition tech­
niques contributed to the large spread of30 models in many 
fie ld such as CA D/CA M, architecture, computer entertain­
ment, culture heritage, and medicine. In these contexts, 3D 
models represent non-rigid or deformabl e 3D objects with 
different postures or deformati ons. For instance, in compo­
nent inspection for CA D/CA M engineering applications 3D 
models of arti cul ated objects can be scanned, modell ed, and 
stored in different postures. In an arti cul ated obj ect, compo­
nents are attached through joints and can move about. Sim­
il arly, human faces and organs may be subj ect to di fferent 
facia l express ions and deformations, respectively. The de­
formations that transform a shape without stretching or tear­
ing its surface, i.e., preserving the geodes ic di stances among 
points, are ca ll ed isometries . Therefore, isometry-i nvariant 
compari son techniques are useful for shape recognition , 
retri eva l, and classification Figure I shows an isometry­
invari ant deformation applied to an art icul ated object. 

In this paper, which ex tends the work presented in Rug­
geri and Saupe (2008), we consider the problem of sampling 
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Fig. I . An arti cul ated object is shown in two di fferent postures afte r 
applying an isometric deformation. The geodesic distance between the 
selected points as we ll as the geodesic path does not change with the 
deFormation 

3D shapes to achieve an efficien and effective isometry­
invariant matching. Section 2 briefl reviews previous work 
on this and related topics. As 3D shape, we consider a 
surface represented by a triangle mesh; however, the pro­
posed technique is independent of the surface representa­
ti on . The bas ic idea of our approach is to ensure a compar­
ison of the most geometri cally meaningful parts of shapes 
through a novel sampling technique, which uses the cri tical 
points of the eigenfu ncti ons of the Laplace-Beltrami oper­
ator as anchor points (see Sect. 3). Low frequencies of the 
Laplace-Be ltrami spectrum are related to info rmation about 
the global structure and features of the input surface, while 
hi gh frequencies reflec fin changes in its shape. These an­
chor points are located on geometri cally and topologically 
meaningful regions of the shape and are invari ant with re­
spect to isometries . Then, we enrich these anchors with a 
set Q,. of sample points (ca ll ed reference points), whose 
num ber, distribu tion, and density are contro ll ed by stati stical 
cri te ri a. 

Once the reference poin ts have been computed, we de­
scribe a 3D shape with a set of statistical descriptors, each 
assoc iated to a point P E Q,. (see Sect. 4). Each descriptor 
incorporates an approx imation ofthe geodes ic shape distrib­
ution of the surface as seen fro m the corresponding point p; 
i.e., the hi stogram of the geodes ic di stances from p to the 
others. Then, the histogram is enriched with other geometri­
ca l informati on to constitute a point-based statistical shape 
descriptor (PSSD, fo r short). Instead of considering a global 
hi stogram roughly describing the entire surface (Hamza and 
Krim 2003), the 3D shape is abstracted as a set of isometry­
invari ant PSSDs. This choice produces a more accurate de­
scription of the intrinsic properties of the surface and leads 
to a better retr ieva l effectiveness. 

Similarly to Memoli (2007), Memoli and Sapiro (2005), 
we compare two 3D shapes by matching sets of refer­
ence sample points. We descri be these sets through the 
corresponding sets of PSSDs, which are compared with 
a bipartite graph matching approach or by eva luating the 
L I-distance of the reordered PSSDs. To this end, we or­
der the PSSDs with respect to the magnitude of the Fiedler 
vector components and fo rm a single feature vector. This 
choice resembles spectral techniques fo r aligning embed­
ding spaces (Mateus et al. 2007). In fact, we consider the 

ordering of the components of the feature vector induced by 
the firs non-trivial eigenvector of the Lapl ac ian matrices of 
weighted prox imi ty graphs having our reference po ints as 
vertices. The matching approach using the Fiedler vector is 
faste r than the bipart ite matching and produces similar re­
tri eval effectiveness. Moreover, the alignments via Fiedl er 
vector can be performed in the preprocess ing stage and pro­
vide a single feature vector that can be effi cientl com­
pared by using di ffe rent metri cs . Our matching algo rithms 
are compared with several isometry-i nvariant methods and 
the sampl ing strategy is also applied to some of these tech­
niques to eva luate its benefi t for improving their retrieval 
effectiveness (see Sect. 5). Poss ible extensions of the pro­
posed framework are di scussed in Sect. 6. 

2 Related Work 

In the fo ll owing, we review previous work on the identi­
fi cati o of reference points fo r shape correspondence and 
matching (see Sect. 2. 1) and isometry invari ant matching 
techniques (see Sect. 2.2). 

2. 1 Reference Points for Shape Correspondence and 
Matching 

In several appli cati ons, whi ch include shape comparison, 
cross parameterizati on, deformation transfer, shape morph­
ing, and statistical shape modeling, an im portant step is the 
detection of sample points, i.e., points of the input surface 
with a hi gh information content related to the surface geom­
etry and topology. Several methods (E lad and Kimmel 2003; 
Hamza and Krim 2003; Osada et al. 2002; Ruggeri and 
Saupe 2008; Tange lder and Veltkamp 2004) approx imate a 
surface with a tri angle mesh that is unifo rmly sampled as 
a pre liminaIY step of a shape feature extraction algorithm . 
The sampling strategy bas ically consists in picki ng random 
tri angles with probab ilities proportional to their area and 
generating random sample points inside them with equal 
probability per uni t area . Although the un iform sampling 
is widely adopted in many methods due to its simple im­
plementati on and fas t execution, it may generate samples 
that are very close to each other. Furthermore, it might miss 
meani ngful parts of a shape (see Fig. 2(a)) and create arte­
facts in the definitio of hi gh-level or stati stical descri ptors. 
Finally, as shown in Nehab and Shilane (2004), Ruggeri 
and Saupe (2008), we note that sampling strategies gener­
at ing sample points evenly di stributed on the surface (see 
Fig. 2(b)) can improve the retri eval perfo rmances of sev­
eral algorithms (HanlZa and Krim 2003; Osada et al. 2002; 
Ruggeri and Saupe 2008). Among these sampling tech­
niques, we mention the farthest (E ldar et al. 1997) and strat­
ifie (Nehab and Shil ane 2004) point sampling. 



(a) (b) 

F ig. 2 (a) Uni form sampling ver SI/S (b) evenl y spaced sampling of 
a 3D shape 

For shape analys is and matching, the spati al di stribution 
of poin ts should capture the shape of the object, so that a 
desc riptor does not miss important geometric structures. To 
address these requirements, thefeature points are commonly 
computed as the extrema of scalar fu nctions that measure 
loca l properties of the input shape. Among them, we reca ll 
the di stribution of the curvature va lues (Katz and Tal 2003; 
Mortara et al. 2004; Pauly et al. 2003), which class ity the 
local shape of 3D surfaces into planar, parabolic, and ellip­
ti c reg ions; sali ency maps for 2D images (Itti et al. 1998) 
and 3D shapes (Castell ani et al. 2008; Lee et al. 2005); 
Eucl idean- (Baloch et al. 2005 ; Fomenko and Kunii 1997) 
and geodes ics-based functi ons (Gal and Cohen-Or 2006; 
Hilaga et al. 200 I; Zhang and Li u 2005), which identi ty sur­
face protrusions (Elad and Kimmel 2003 ; Gal et al. 2007; 
Mortara and Patane 2002). These approaches can also be 
combined to take into account several surface properti es; for 
instance, the work presented in Ga l and Cohen-Or (2006) 
identifi e sa li ent features by measuring geometri c properti es 
at a point over di fferent loca l vi ews. The methods in Mortara 
et al. (2004), Pauly et al. (2003 ) estimate the loca l vari ati on 
of the curvature values and their persistency over several 
sca les . To improve the effectiveness of the se lected feature 
points and reduce the influenc of noise, sampling density, 
and surface tesse llat ion on their identifi cation the shape de­
scriptors are evaluated in a mul ti-sca le manner using neigh­
borh oods of increas ing size . Alternatives are the Gaussian 
fil ter or the simplificatio of the surf"aCe representation with 
edge co ll apse and vertex removal. 

Once the feature points have been identifi ed two sur­
faces are matched by establishing correspondences among 
feature points or using loca l stat isti cal shape descri ptors at 
these points . Automatic featu re correspondence is usually 
best-sui ted fo r rigid shapes. To deal with large shape vari a­
ti ons, the work presented in Zhang et al. (2008) uses a set 
of features located on the prominent parts of a shape, which 
are the max ima and minima of the average squared geodes ic 
di stance fi el (H i laga et al. 200 I ; Zhang and Liu 2005). The 
loca l max ima of thi s fun ction correspond to convex or con-

cave shape extremities and the local minima are located on 
a region around the shape barycente r. 

2.2 Isometry-Invariant Matching oOD Shapes 

Techniques for comparing 3D objects deformed with iso­
metri c deformati ons were conceived by several authors. 
Hil aga et al. (200 1) presented a technique to match the 
topology of tri angul ated models by comparing Multireso­
lution Reeb Graphs (M RG, for short) (B iasott i et al. 2008; 
Patane et al. 2009). The MRG of a triangle mesh S, which 
approximates a smooth surface M , was constructed by 
di scretizing the function P, I (v) = 1M g(v, p)dp, where the 
value g(v, p) is the geodes ic di stance between the two 
points v, p EM . The algorithm for matching two MRGs is 
a coarse-to-fin strategy that searches the node pairs prov id­
ing the largest value of similari ty while maintaining topo­
logica l consistency. As di scussed in Biasotti et al. (2006), 
this hi gh-level structure can also be used to fi n sub-parts 
correspondences of 3D shapes. Similarly to Hilaga et al. 
(200 1), Hamza and Krim (2003) considered an approx ima­
ti on of the squared geodes ic distance function, which is de­
fi ne as P,2 (V) = 1M Ig(v, p) 12dp. 

In both cases, the geodes ic di stance was computed by 
considering a set S' of centroids or base poin ts, which are 
selected through a farthest point- like sampling. The choice 
of S', the loca l shape noise, and an irregul ar surface tes­
sell ati on may generate clustered feature points. To parti ally 
overcome these drawbacks, the resul ting functions P,I or P,2 

are smoothed apply ing a polynomi al kernel and clustered 
feature points in S' are removed via geodes ic Poisson di sk 
sampling (Zhang et al. 2008). These functions were then as­
sumed as random variables with a common probabili ty den­
sity map, which gives a stati sti cal shape descriptor. The di s­
similari ty between two objects was calcul ated by computing 
the Jensen-Shannon divergence between the corresponding 
statistica l shape descriptors. 

Elad and Kimmel (2003 ) proposed a canonical repre­
sentation fo r tri angul ated surfaces, which is invari ant with 
respect to isometri es. A 3D surface was simpli fie to a 
low number of n vertices (e.g., n := 2000) and then trans­
formed in to canonica l coordinates in the In-dimensional 
Euclidean space by applying a mul ti-dimensional scaling. 
In thi s canonical representation, the geodes ic di stances on 
the original surface were approx imated by th e correspond­
ing Euclidean distances. The matching problem of non-ri gid 
and deformed obj ects was reduced to the problem of match­
ing rigid objects, which is approached with the iterative 
closest point algorithm (Zhang 1994), the moment compar­
ison (Elad et al. 2002), and the method of eigenfaces (Turk 
and Pentland 199 1). 

Memoli and Sapiro (2005) compared dense point clouds 
by computing an approx imati on of the Gl'Omov- HallsdOiff 



(GH, for short) distance between two compact metric 
spaces. This di stance is an extension of the symmetric Haus­
dorff distance and intuitively measures how far two com­
pact subsets of a metri c space are from being isometric. 
They considered the geodesic di stance as a metric on sur­
faces and showed that the computation of the GH distance 
leads to a combinatorial problem. They proposed an heuris­
tic that progressively constructs approximations of the GH 
di stance of subsets of the point clouds by minimizing the 
point-wise approximation error. In Memoli (2007), Memoli 
r'eformulated the problem of approximating the GH di stance 
between compact metric spaces as a mass transportation 
problem, where the mass of each sample point of the metric 
spaces is expressed as a probability measure. This new for­
mulation leads to a quadrati c optimization problem with lin­
ear constraints, which is solved with an iterative procedure. 
Moreover, the author provided a theoretical framework that 
enables to understand the computational complex ity of the 
GH distance and its relation to other metrics and matching 
methods presented in Bronstein et al. (2006), Elad and Kim­
mel (2003), Hamza and Krim (2003), Memoli and Sapiro 
(2005). Finally, Bronstein et al. (2006) approximated the 
GH distance between two smooth surfaces using a gener­
alized multi-dimensional scaling to compute the minimum 
distortion between those surfaces. They proposed a multi­
reso lution algorithm that minimizes an approximation of 
the distortion map between two tri angul ated surfaces. This 
approach was also used to compute an approximation of 
a non-symmetric partial embedding di stance, which intu­
itively measures how similar a patch of the surface is to 
another. 

Reuter et al. (2006) compared two shapes by comput­
ing the distance between two isometry-invariant feature vec­
tors given by the smallest k, 10 ::: k ::: 100, eigenvalues of 
the Laplace-Beltrami operator define on the input shape. 
In Jain and Zhang (2007), Jai n and Zhang compared non­
ri gid objects by matching spectral embeddings, which are 
derived from the eigenvectors of affinit matri ces com­
puted considering geodes ic di stances. In Rustamov (2007), 
the frst k Laplacian eigenvalues and eigenvectors are used 
to defin an isometry-invariant shape representation. Then, 
these signatures are compared using a modificatio of the 
D2-distribution (Osada et al. 2002), which is based on a set 
of histograms that capture the variation of distances among 
points within a set of spherical ce lls centered at the origin of 
a k-dimensional space. 

A similar approach is proposed in Mateus et al. (2007); 
here, spectral embeddings, constructed as Local Linea,. Em­
bedding (LLE, for short) on eigenspaces of affinit matri­
ces, are matched by usi ng the Expeclation-Maximi:.ation 
(EM, for short) fram ework. More prec isely, a 3D surface 
is mapped in a d -dimensional space using a loca lly linear 
embedding, which is pose-invariant and preserves the dis­
tances between each point and its k-nearest neighbors in 

a least-squares sense. Then, two shapes are compared by 
aligning them through an orthogonal transformation and es­
timating correspondences among the data points. For the 
alignment of the embedded spaces, the proposed approach 
computes the singular value decomposition of a d x d ma­
trix. The parameters d and k need to be accurately tuned 
in order to avoid wrong correspondences between points or 
an over-fittin in the embedding. The EM fram ework serves 
to estimate a solution reso lving the intrinsic ambiguities in 
eigenspace alignment. Among them, we mention the sign re­
versal of eigenfunctions, the eigenvalues switch, and res id­
ual transformation induced by the LLE embeddings, which 
preserve only local pairwise di stances between data points. 

Ohbuchi et al. (2008) compared articulated 3D shapes 
by using the bag-of-features approach to match large sets 
of multi-scale local vi sual features. This method consists in 
accumulating multiple local features into a single histogram 
based on a specifi clustering, and consider the hi stogram as 
a feature vector of the 3D shape. Ruggeri and Saupe (2008) 
compared point-sampled surfaces by matching sets of his­
tograms of geodesic distances with bipartite graph match­
ing. These histograms can be efficientl extracted and com­
pared by using various bin-to-bin di stance functions (Rub­
ner et al. 2000); e.g., the various L p-distances, the x 2 dis­
tance, the Kullback-Leibler divergence di stance, and the 
Bhattacharyya distance. The aforementioned methods as­
sume that the domains of the histograms are already aligned, 
although in practice histograms approximating the same 
probability density function might be misaligned and have 
different scales. To overcome this problem, techniques con­
sidering scale invariant cross-bin comparison of hi stograms 
(e.g., the Earth Mover's distance) were developed in Ling 
and Okada (2006), Osada et al. (2002), Rubner et al. (2000). 
In practice, when histograms have a small number of bins 
a good compromise between matching effic ien y and ef­
fectiveness can be obtained by using the L I-distance or 
the X 2 di stance define as 

(I) 

where B is the number of bins ofthe hi stograms Hi and Hj , 

and Hi (k) is the value of the k-th bin of Hi. Bins equal to 
zero (i. e., Hi(k) = Hj(k) = 0) are di scarded. However, the 
choice of a good di ssimilarity measure depends on the hi s­
togram space and can be estimated experimentally (B runelli 
and Mich 200 1). 

3 Selecting Anchor and Feature Points on 3D Shapes 

In the following, we present a novel technique for sampling 
a 3D shape based on the critical points of isometry-invariant 



sca lar functions, given by the eigenmaps of the Lap lace­
Beltrami operator related to its small er eigenvalues. To this 
end, we discuss the definitio (see Sect. 3. 1) and se lection 
(see Sect. 3.2) of the anchor points. Finally (see Sect. 3.3 ), 
we introduce the statistically controll ed sampling used to se­
lect the anchors among the critical points of several Lapla­
cian eigenfunctions. 

3. 1 Lap lacian Eigenfunctions: Definitio and Main 
Properties 

The choice ofthe scalar functions fo r feature detection intro­
duced by previous work (see Sect. 2 . 1) depends on the appli­
cation and is a delicate task. As discussed in Ni et al. (2004), 
an arbitrari Iy chosen function usually yields a compl icated 
arrangement of many critical points that is impractica l for 
several app li cations. Our intuition is that the critical points 
are meaningful for the description of the input surface M if 
we se lect functions that are smooth (Funkhouser and Shil ane 
2006); intrinsically define by the shape of M; invariant 
to isometric transformations. Furtherm ore, we expect that 
the criti ca l points are located on prominent features of M, 
which identify semantically meaningful regions (Katz and 
Tal 2003 ; Mortara et al. 2004) (e.g., protrusions, symme­
tries), and are extracted on the base of loca l shape sig­
natures (Gal and Cohen-Or 2006; Gelfand et al. 2005; 
Li and Guskov 2005). 

In the following, we will verify that the Laplace-Beltrami 
eigenmaps and the correspond ing criti cal points satisty 
all the aforementioned properties. Furthermore, using the 
Laplacian eigenmaps avoids to select a spec ifi function or 
choose the base points for its discretization, as it happens 
for the geodesic maps. 

Dejinitio o.j'the Laplacian Eigenjill1ctions. The Laplacian 
eigenfunctions on M are defi ne as the so lutions of the fol­
lowing eigenvalue problem 

fin f: M :-+ IR such that ~I = Af, A E R (2) 

In the discrete setting, let us consider a triangulated sur­
face S with vertices (PI , . . . , p,,); as shown in Reuter et al. 
(2006), Vallet and Levy (2008), (2) is equivalent to the gen­
erali:.ed eigem'alue problem 

T f:= (f(PI), ... , f(p,,» , 

where the n x n matrices LCOl and B are define as 

1 

CO!aij+colfJij 
2 ' 

Lcol(i , j):= - LkEN(i) Lcol(i, k), 
0, 

1
1'11+1',1 
- 1-2 -' 

B(i,j):= L h N(i ) llkl 

6 ' 
0, 

i E N(i), 

i = i , 
else, 

i E N(i), 

i =i, 
else, 

N (i) := {j : (i, j) edge} is the I-star of i ; It;l is the area 
of the triangle ti; t/ and t,. are the triangles that share 
the edge (i, i) ; tk, k E N(i) , are the triangles sharing i; 
and aij, f3ij are the angles opposite to the edge (i, j). I n the 
following, we assume that the generalized eigenva lues Ak of 
the couple (L co(, B) and the corresponding eigenvectors fk 

are reordered as follows 

O=AI :::: ... :::: A", 

where the firs eigenfunction fl is the constant vector 1 and 
its eigenvalue is null. Finally, we mention that this approx­
imation can be improved by using higher degree finit ele­
ments; for more details on the cubic case and the properties 
of the di screte Laplace-Beltrami operators for shape analy­
sis, we refer the reader to Reuter et al. (2009), Vallet and 
Levy (2008). 

Extraction of the Critical Points. To defin the function 
f : S :-+ IR on the triangulated surface S, the f -values are 
given at the mesh vertices and linearly interpolated along 
the edges and the faces of S by using barycentric coordi­
nates. We assume that f is general (i.e., f (Pi) # f (p j), for 
each edge (i, i» ; thi s hypothes is guarantees that the crit­
ica l points of f (i.e. , max ima, minima, and saddles) oc­
cur only at the mesh vertices and the Euler formula applies 
(cr. , (3» . These points correspond to the maxima, minima, 
and saddles of f and are computed by analyzing for each 
vertex Pi the distribution of the f -values on the neighbor­
hoods of Pi (Banchoff 1967). Formally, if we let 

Lk(i) := (jl , .. . , ik E N(i) : (j" i ,+1 )~=I edges of S) 

be the link of i then the upper link is define as 

Le(i) := (j, E Lk(i) : f(p),) > f(Pi»), 

and the mixed link as 

Lk±(i):= (j, E Lk(i): f(Pj, +I) > f(Pi) > f(p)') or 

f(PjHI) < f(Pi) < f( p),»), 

where ik+1 = il. The 10lVer link Lk-(i) , is define by sub­
stituting the inequali ty " >" with " <" in the definitio of the 
upper link. If Lk+(i) or Lk- (i)) is empty, then Pi is a max­

imum or a minimum, respectively. If the card inality of the 
set Lk± (i) is 2 + 2mi, mi 2: I, then Pi is class ifi e as a sad­
dle of multiplicity mi. A vertex that does not fall in the pre­
vious class ifi cat io is ca ll ed regular. Once the vertex-vertex 
relation has been extracted, the classificatio procedure re­
quires O(n)-time. Finally, we mention that in the previous 
definition we can use a threshold in order to dimini sh the 
influenc of the noise on the cr iti ca l point class ificatio (see 
Fig. 3). For more details on this part, we refer the reader to 
Sect. 3.2. 
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Fig. 3 (Color online) Simpli fica tio of the criti cal points with respect 
to a given th reshold E . The big pictures show the evolution of the Illlll1 -

ber of criti cal points (y-ax is) with respect to a di ffe rent E (x -ax is): the 
red, blue, and black curves represent the number of max ima, minima, 

Main Properties of the Anchor Points. The Laplacian 
eigenfuncti ons (Reuter et al. 2006, 2009; Vall et and Levy 
2008), and therefore their criti cal points, are intrinsically de­
fin e by the input shape and are invari ant to isometri c defor­
mations. I n fact, the eigenmaps related to the smallest eigen­
va lues are smooth and slowly varying functions wi th non­
clustered criti cal points, which locate surface features and 
concisely characteri ze the whole surface. The eigenmaps re­
lated to the largest eigenvalues show rapid oscillations and a 
higher number of critical points. Therefore, the whole set of 
eigenmaps naturally provides a set of scalar fun cti ons orga­
ni zed in a corse-to-fin hi erarchy; the larger k, the fine the 
geometri c variations captured by the critical points of the 
Laplacian eigenmap fk . The aforementioned properti es mo­
tivate our choice to consider the eigenmaps as an effective 
alternati ve to curvature-based, geodes ic and sali ency maps. 
Furthermore, the Laplac ian criti ca l points identi fy anchors 
useful in a wide class of matching algorithms that build on 
surface sampling such as Hamza and Krim (2003 ), Memoli 
and Sapiro (2005), Osada et al. (2002), Ruggeri and Saupe 
(2008). 

Considering a closed surface S and a Morse Laplac ian 
eigenfunction (i .e. , its cri tical points are not degenerate), the 
relation between the number of its criti ca l points and the 
genus of S is given by the Euler formula (Banchoff 1967; 
Milnor 1963 ) 

2( 1 - g) = minima - saddl es + max ima, (3) 

where each saddle is counted with its multiplicity Ini , that 
is, L II; saddle In i· It follows that neglecting a generally low 
number of non-Morse eigenfunctions and the constant term 
given by 2( I - g ) , the sum of the number of max ima and 
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and saddle points at each step. In the upper pari of each picture, the 
I~ft image de picts the input criti cal points and the other two images 
show the criti cal po in ts preserved by the simplificat io 

minima is of the same order as the number of saddle points. 
Finally, our tests (see Fig. 4 and Fig. 5) have shown that the 
max ima and minima of the Laplacian eigenfuncti ons iden­
ti fy protrusions ofthe input shape and are stable to noise and 
non-intrinsic deformations. 

3.2 Selecting and Clustering Anchor Points 

In the foll owing paragraph, we describe a class ifi catio of 
the criti cal points that is robust to noisy scalar functions and 
allows us to remove redundant and close criti cal points. 

RobuSI Classificalio and Simplificatia of the Critical 
Points of an Arbitrmy Scalar Function. Our tests have 
shown that the eigenfuncti ons related to the eigenvalues of 
high magnitUde have a large number of criti cal points, which 
appear close to each other. Furthermore, tri angle meshes 
with an irregular sampling density, connectivi ty, and small 
angles might make the computati on ofthe spectrum unstabl e 
and provide a set of functi ons with degenerate cri tica l points 
(e.g. , pl ateaux regions, monkey saddles). To overcome these 
drawbacks, we introduce a simplifi catio procedure of the 
critical points of an arbitrary fun cti on f : S -+ R The idea is 
to check the changes of the sign of f along the edges of the 
I-star of each vertex with respect to a threshold E. If E = 0, 
then we will get the defi ni tio introduced in Sect. 3. 1 and 
increas ing 10 will remove undes ired criti cal points. 

The E-sensitive sign of f along the ori ented edge (Pi , P j ) 

is defin e as pos itive if f (pj) - f (Pi ) > 10; in thi s case, we 
wri te .f(Pj) >E f( Pi). In an analogous way, the E-sensitive 
sign of f along the previous edge is considered as negative if 



Hg.4 (Color online) 
(a) Location of the cri tical 
points of a set of representative 
Laplacian eigenfunctions fk, 
k = 2, 3, 4,6, 11 ,3 1,5 1: red, 
blue, and black dols locate the 
max ima, minima, and saddle 
points, respectively. (b) Critical 
points of the prev ious 
eigemnaps after a deformation 
of the sur face shown in (a) The (a) 
exam pie hi ghl ights that the r----:lr--u----;r-,lr----;.-..... r---;a:--,lJ---:r-.r---;;:-Lr---;;--, 
max ima and minim a can switch 
their ciass ifi catio but remain 
more stable than saddle points, 
which arc affected by local 
non-isometric changes of the 
sur face . (e) , (d) Evolution of the 
number of cr itical points. See 
al so Fig. 5 

(b) 
~r===~====~====~ 

(e) 

f( p) - f(Pi) < -E; hence, we write f(p) <f f(Pi) . For­
mally, if we let 

Lk(i) := (jl , .. . , jk E N(i): (j/ , jl+ I)~= 1 edges of M) 

be the link of i , then the (E-sensitive) upper link is define 
as 

and the (E-sensitive) mixed link as 

Lk±(i) := (j/ E Lk(i): f(p)/_I_I) >, f(Pi) >f .((P)/) or 

f(p)\+ I) <, f(Pi) <, f(p),»)' wherejk+ 1 =j(. 

For the defi nitio of the lower/ink, we replace the inequal­
ity ">/' with "</' in the definitio of the upper link. If 
Lk+ (i) = 0 or Lk- (i) = 0, then Pi is a E-sensitive max­
imum or minimum, respectively. If the cardinality of the 
set Lk± (i) is 2 + 2mi , then Pi is classifie as a saddle 
of mll/tip/icity mi :::: I. In our implementation, the para­
meter E is proportional to the maximum variation of the 

(d) 

f-values along the edges of S, i.e., 

E:= 0.2 max Uf(Pi) - f(p)I} . 
(p; ,Pj) edge 

Examples are shown in Fig. 6; for more deta ils on this ap­
proach, we refer the reader to Patane et al. (2009). Other 
simplificatio techniques are described in Bremer et al. 
(2004), Liu et al. (2007). 

Geodesic Simplijicatio of the Anchor Points of Sets of 
Lap/acian Eigenjill1ctions. Let us . now suppose that we 
consider as anchors the critical points of a large number 
of Laplac ian eigenfunctions. In this case, it might hap­
pen that the cri tical points related to different eigenfunc­
tions are close ly located and cannot be simplifie using the 
scheme previously introduced. In fact, these criti ca l points 
are uncorrelated and correspond to different scalar func­
tions. Therefore, we introduce a simplificatio scheme of 
the anchors which ensures that two anchors are sufficient! 
separated on the surface unless they have different geometric 
meanings. If a set of anchors has geodes ic diameter smaller 
than a threshold g{, then we keep its geodesic median poi nt 



Fig.5 In this examples, we 
added a Gauss ian noise to the 
surfaces in Fig. 4 and tested the 
stabili ty of (a), (b) the location 
and (e), (tI) the num ber of the 
criti cal points of the 
corresponding Lapl acian 
eigenfunctions. The example 
shows that the critical poi nts, 
and especiall y the max ima and 
minima, are not affected by (a) 
noise perturbat ion of medium 
level 

Fig.6 Sill1 pli ficat io of the 
criti cal poin ts with respect to a 
different th reshold, which 
increases./i"olll left to right: the 
initial set of cri tical points is 
shown on the left image of the 
fi sl 1'0111 

(b) 

(c) (d) 



and di scard the other points from the set. The geodes ic me­
dian point is the point minimizing the sum of its squared 
geodes ic distances to the other points of the set. The sets 
of anchors are iteratively computed by using a hi erarchica l 
clustering algorithm (Press et al. 2007) considering the geo­
desic distance as metric. The choice of gt affects the retri eval 
performance of a matching method. If gt is too small , we 
might have anchor points that are velY close to each other, 
identify the same geometri c feature, and degrade the effec­
tiveness of a shape descriptor (Nehab and Shil ane 2004; 
Ruggeri and Saupe 2008). To choose gt , we fi rs apply the 
FPS algori thm fo r selecting a number of points that is large 
enough to statistica lly descri be the surface (see Sect. 3.3). 
Then, we set gt as the minimal geodes ic di stance among the 
selected points. 

We evaluate the geodesic distance between two points 
of the surface S as the length of the shortest path between 
the corresponding nodes of an extended sphere-oj:injluenc 
graph (eSIG, for short) (Darom et al. 2006). For the evalua­
tion of the shortest path , we use Dij kstra's algorithm . The 
eS IG is the graph constructed from a dense set of points 
sampled from the tri angul ar surface S. The sphere centered 
at Pi E S with radius given by its distance to the k-nearest 
neighbor is ca ll ed the sphere of infiuenc of Pi . Two di stinct 
points Pi and P j are connected by an edge e ij if the corre­
sponding spheres of infiuenc intersect. Too long edges are 
di scarded as outl iers as well as edges, which do not lie on the 
tri angul ar surface. Each edge eij is we ighted by the Euclid­
ean distance between the connected verti ces. A Ithough thi s 
approach is not as accurate as those presented in Kimmel 
and Sethian ( 1998), Surazhsky et al. (2005), it is fast, re­
duces the approx imation error with respect to considering 
only the mesh vertices, and can be directly applied to sets of 
poin ts sampled from any slll'face representation. 

3.3 Statisti cally Controlled Sampling of Additional Points 

Our sampli ng method adds a set of additional points to 
the set Q of (filtered anchor points previously computed 
fo r the tri angulated surface S. These new sample points 
of S are generated through an extension of the farthest 
point sampling (F PS, fo r short) algorithm (E ldar et al. 1997; 
Moenning and Dodgson 2003), which produces sample 
poin ts evenly di stributed on a surface with respect to the 
anchor points. Thi s di stribution ensures a good covering 
of the surface (Memoli and Sapiro 2005) and is benefi cia 
for increas ing the retrieval performance of several match­
ing methods (Nehab and Shil ane 2004; Ruggeri and Saupe 
2008). The farthest point sampling is a fas t iterative algo­
rithm, which at each iteration selects the point of the surface 
that is the farthest from all the currently selected points. In­
di cating with m the number of se lected points, the co rre­
sponding cost of the fa rthest poin ts sampling is O em logm) . 

Once the eSIG of S has been computed, we extract the 
geodesic Voronoi cell of each point q of Q, i.e., the set 

GVC(q, Q) = (Pi E S: g(Pi , q) ::s g(Pi, qk ), 

qk # q , qk E Q }, 

which contains the points Pi E S whose geodesic di stance to 
the point q E Q is not greater than to any other poi nt qk E Q. 
Finally, the (overl apping) partition 

GVD(S, Q):= (GVC(qi , Q), q E Q ) 

ofthe surface S into m geodes ic Voronoi cells is call ed geo­
desic Vorono i diagram of the set Q on S and a point of S, 
which belongs to more than two GVCs, is call ed geodesic 
Voronoi vertex (GVV, for short). We note that the partition 
in GVD(S, Q) can be efficientl computed by simultane­
ously propagating the fronts of the geodesic distance func­
tions from the points of Q to the other points of S till their 
GVCs complete ly cover S (Moenning and Dodgson 2003). 
Moreover, if a new point P of S is added to the set Q then 
the GVD can be updated by recomputing only the GVCs in 
the neighborhood of p. In Moenning and Dodgson (2003), 
showed that at each iterati on of the FPS the farthest point 
on S can be efficientl computed as the GVV with maximal 
geodes ic di stance to the closest selected point. We extend 
this algori thm by selecting the farthest GVV q only if its 
statistical contribution (defin e in the next paragraph) suffi 
ciently di ffe rs fro m those of its neighboring se lected points, 
i.e., those points whose GVCs contain q. At each iteration, 
if q is se lected then we proceed furth er in the FPS fashion. 
Conversely, if q is discarded then we consider all the GVVs 
starting from the second farthest GVV till the nearest GVV, 
as long as we fi n a good candidate point. If no good candi ­
dates are found, then we stop the iterations and consider the 
current set of se lected points as fin al 

Statistical Contribution of an Additional Point. To de­
fin the statistical contribution of the addi tional point Pa E 
Q for describing the surface S, we consider the outcome 
of g(Pa, p), P E S, as a random vari able X . We then defin 
the geodesic shape distribution of S at the point Pa as the 
probability density jitnction F (X ) describing the outcome 
of X. Thus, F(X) describes the di stribution of all the geo­
desic distances to the point Pa on the surface S and intu­
itively gives a stati stica l description of S as seen from Pa . 
We approx imate F(X) with a histogram H(Pa, Q) of B bins 
constructed by taking only into account the geodes ic di s­
tances between Pa and the points of Q, i.e., 

I 
H(Pa, Q) = (b l , .. . , bE), bk = "t k 

- ; 
L...,k = l bk 

bk = I{Pi E Q: g(Pa, Pi) E « k - l )g'li", k~l)l , 
I ::s k ::s B; 

gmax = maXpi ,pj EQ{g(Pi , pj) ). 

(4) 



(a) 

Fig.7 Histograms of 16 bins approximating the geodesic shape dis­
tributions of two surfaces at their anchor points. The surface (b) is the 
isometrically deformed version of the surface (a) , obtai ned by bending 

To make the histogram invariant with respect to scaling, the 
bins ofH(Pa, Q) are normalized to glllax. Histograms of 16 
bins approximating the geodesic shape distributions of two 
deformed surfaces at their anchor points are shown in Fig. 7. 

Sampling Algorithm Details. Our sampling algorithm aims 
at enri ching the initial set of anchor points with those 
additional points, which contribute improving the statis­
tical description of the surface S through their geodesic 
shape distributions. The algorithm is summarized as fol ­
lows. 

Require: The set Q of filtere anchor points of the input 
surface S. 

Ensul'e: The fina set of sample points . 

I. For each q E Q, compute the geodesic Voronoi ce ll 

GVC(q, Q) = (p E S: g(p, q) ::: g(p, qk), 

qk # q, qk E Q}. 

2. Compute the geodesic Voronoi diagram G VD(S, Q) 
generated from the set Q on S, i.e., 

GVD(S, Q):= (GVC(q, Q), q E Q}. 

3. Construct the set GVV(Q) of the geodes ic Voronoi ver­
tices of GVD(S, Q). 

4 . Se lect the Voronoi vertex q E GVV(Q) with the maxi­
mum geodesic distance to the points of Q. 

5. Compute H(q, Q) , i.e ., the hi stogram of the geodes ic 
distances between q and the points of Q (see (4)). 

(b) 

the hand f ngers . Despite the isometric deformation, the anchor points 
orCa) are approximately located in the same regions of those of(b) and 
the corresponding histograms are sim ilar 

6. Compute the set of points whose GVCs contain q, i.e ., 

NNCQ) = (p E Q: q E GVC(Q, p)), 

and compute H(p, Q), p E NN(q) . 
7. Using ( I), eva luate 

8. If dlll;IX > df 
2 ' then add q to Q and go to step 2; other-x x 

wise, go to step 9. 
9. Remove q from GVV(Q). 

10. If GVV(Q) is empty, then go to step II ; otherwise, go 
to step 4. 

II . Consider Q as the fina se't of sample points. 

The number of selected points depends on the surface 
geometry and on the threshold d~ 2 ' The choice of d~ 2 de­
termines the precision at which the hi stograms H(q, Q) 
approximate the actual geodesic shape distribution at the 
selected points q E Q. On our databases, we have set 
d f 

2 = 10- 5 . Using the maxima and minima of the firs four 
x 

non-trivial Laplacian eigenmaps leads to an average of 400 
points per object. Figure 8 shows the results of our sampling 
method app li ed on two isometri cally deformed versions of 
a hand . For the models shown in Figs. 8(c), (f) , the fina sets 
of sample points have cardinality 346 and 360, respectively. 

Our sampling method ensures that at each iteration the 
generated sam ple points are evenly distributed on the sur­
face with respect to the anchor points and give statistica lly 
meaningful contributions. Thus, it implicitly define leve ls 
of detail in the sampled point set, which are refine at each 



(a) (b) 

(e) 

Fig. 8 (a) The model of the 'hand is sampl ed starting from a set of 8 
anchor points; (b) shows an iteration of our sampling strategy, which 
adds the farthest and statistically meaningful geodes ic Voronoi vertex 
(darkest point) to the currently selected points. Geodesic Voronoi ce ll s 
are shown with dilTerent colors. From the fnal set 01'346 sampl e points 
(e) , we select a set of 100 reference points (d) , which are cons idered 

iteration . Figures 8( d), (g) shows the firs 100 sample points, 
including the anchors, generated by our sampling method 
appli ed on two deformed surfaces . These points are consid­
ered as reference points for matching those surfaces, as de­
scribed in Sect. 4. 

4 Matching Point- Based Statistical Shape Descriptors 

Us ing the set of sample points Q, we compute a set of point­
based statistical shape descriptors that describe the surface 
through hi stograms of geodes ic di stances (see Sect. 4.1). To 
compactly describe the surface, we on ly consider a set of 
shape descriptors assoc iated to the set of reference points Q,. 
in Q. Then (see Sect. 4.2), the dissimilarity between two 3D 
shapes is computed by compari ng the corresponding sets of 
descriptors with a bipartite graph matching or a reordering 
of their components. 

4.1 Point-Based Statistical Shape Descriptor 

Similarly to Ruggeri and Saupe (2008), given a set offeatu re 
points 

Q = {qi , i = I, ... , M} r:; S, 

we aim at compactly describing S with a set of sta­
tistical shape descriptors (SSDs, for short) constructed 

(f) 

(c) (d) 

(g) 

by our matching algor ithms. The hand (a) is isometrically deformed 
into the hand (e) . The 8 anchor points, the 360 add itional points , and 
the 100 reference points are shown in (e), (I) , and (g), respect ive ly. 
Despite the isometric deformation, the anchor points of (e) are located 
in the same regions of those of (a) 

from a set of r reference points belonging to the set 
Q,. = {q ik E Q, k = 1, . .. , r} r:; Q. The set Q,: is constru cted 
to include all the anchor points and the additional points 
of Q (in sampling order) that are necessaty to reach a 
fi ed cardinal ity r := 1 Q,. I. To defin the descriptor of a 
point qik E Q,., we consider the hi stogram of B bins approx­
imating the geodesic shape distribution of S at the poi nt % , 
as define in (4). Furthermore, we compute other informa­
tion, which improves the matching of the hi stograms. Thus, 
to each point qik in Q,. we assoc iate a point-based statistical 
shape descriptor (PSSD, for short), i.e., a vector 

containing the following information: 

(bl, ... , bn) = H (qik ' Q) , i.e., the hi stogram of bins ap­
prox imating the geodes ic shape di stribution of S at qik 

(see (4». It statistically describes the intrinsic properties 
of S as seen from qik' 

VB+ I := b max with bmo, := max I ::: j ::: B b j. VB+ I improves 
the matching effectiveness ofH(qik' Q) . In fact, large val­
ues of b illa, indicate that the geodesic distances are mostly 
concentrated in one range, which is typical of external 
points (i.e ., points with hi gh protrusions) that are far from 
the geodes ic barycenter of the surface . 
VB+ 2 = b lllax - bmin , where blllin = minl ::: j ::: B bj . Simi­
larly to VB+ l , VB+2 serves to improve the matching effec­
tiveness ofH(qik' Q). 



- VB+3 = -tr Lqj EQ Ig(qik' qj)12, where g(qik' qj) is the 
geodesic distance between qik and qj normalized with re­
spect to the maximal geodesic distance gmax. Intuitively, 
it indicates the protrusion of S at qik ' i.e., how far from 
the geodesic barycenter of S the point qik is. 
VB+4 = O'(qik) = Ad3A~I+A 3 ' where AI :::: A2 :::: A3 are the 
eigenvalues corresponding to the principal components of 
the geodesic Voronoi cell of % generated by the set Q 
on S. The value O'(qik) E [0, IJ is called sUliace varia­
tion (Pauly et at. 2002) and estimates how much the sur­
face locally deviates from the tangent plane within the 
geodesic Voronoi cell of qik ' Values of 0' (qik) close to 
zero indicate that the portion of S is almost planar in the 
geodesic Voronoi cell of qik' 

The choice of r influence the efficien y of the match­
ing algorithm and depends on the database. The value r 
should be sufficien to describe all the objects ofthe database 
and to ensure good retrieval performances. Starting from 
the maximum number of anchor points detected in the data­
base, we iteratively increase r till a good tradeoff between 
the retrieval effectiveness and execution time of the match­
ing algorithm is achieved . For details on cthis part, we refer 
the reader to Sect. 4.2. By considering the reference points 
in sampling order, at each value of r the even distribution 
of the points is ensured without redundanc ies in their sta­
tistical contributions. Figures 8( d), (g) show 100 reference 
points selected on two isometrically deformed models of a 
hand. Since the computed PSSD depends on the accuracy of 
the ca lculated geodesic distances, the presence of geomet­
ric and topological noise may diminish its quality. To all e­
viate this problem, various techniques for computing geo­
desics directly on point clouds (Memoli and Sapiro 2005; 
Ruggeri et at. 2006) can be used. The aforementioned meth­
ods are robust to both noise and outliers. 

4.2 Matching Statistical Shape Descriptors 

Let Qa = Qr(Sa) = {ql, ... , qr} ~ Sa be the set of r refer­
ence points sampled on a surface Sa; then, we compute a set 
ofr PSSDs 

Va = V(Qa) = (V(ql) , ... , v(qr): 

qj EQa, j=I , ... ,r}. 

Given a new surface Sb , the dissimilarity between Sa 
and Sb is estimated by comparing their corresponding sets of 
PSSDs Va and Vb:= V(Qb) with Qb:= Qr(Sb). Since the 
anchor points of Qa and Qb have an arbitrary order, to cor­
rectly match Va with Vb we firstl need to fin a good al ign­
ment between their elements. This problem implies search­
ing among all the permutations of r indices the one that 
minimizes the dissimilarity between Va and Vb. Formally, 
leUr: (I , ... , r) --* (I, ... , r) be a permutation of the set of 

indices (I , ... , r). The problem of comparing Va and Vb can 
be stated as findin the permutation Tr, which minimizes the 
distance function 

where v~a) is the ith PSSD of Va and v~li) is the PSSD of Vb 
related to Tr (i) . Thus, the permutation Tr establ ishes the cor­
respondence between the elements of Va and Vb. Then, the 
dissimilarity va lue between Va and Vb is given by 

(5) 

where nr is the set of all permutations of (I, . .. , r). This 
approach implies a combinatorial search over all permuta­
tions nr . The computation of 8 (Va, Vb) is time-consuming 
because the size of nr is r! . For this reason, the parame­
ter r is fundamental to bound the computational complexity 
of the problem as well as the search of the permutation that 
solves (5). In the following paragraphs, to make the problem 
of matching two sets of PSSDs tractable we propose two 
simplifications bipartite graph matching (Korte and Vygen 
2000) and comparing reorderings ofPSSDs based on Fiedler 
vectors (Chung 1997). 

Bipartite Graph Matching. A complete undirected bipartite 
graph G = (Vab, E) is constructed by taking as set of ver­
tices Vab := Va U Vb. Each element v~a) of Va is connected to 

evelY element vjb) of Vb through an edge eij , which is added 
to the set of edges E of G (see Fig. 9). Each edge eij E E is 

then weighted with the LI-distance between v~a) and vjb). 
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Fig.9 Bipartite graph matching for com paring se ts of PSSDs. Let Va 
and Vb be two se ts of PSSDs of cardinality r . Each PSSD of the 
set Va is connected via r edges with all the PSSDs of Va . An edge eij 

is weighted with the LI-distance between vja) E Va and v(b) E Vb . 
A matching between Va ancl Vb is that set of edges (thickene'd edges) 
minimizing the Slim of tile edge weights 



A matching in G is the set of edges EM ~ E, in which 
no two edges share a common vertex of Vab. We aim at 
findin the minimum weight perfect matching, which is the 
minimum weight matching with cardinality I EM I = I Vab l/2 
(e.g., the set ofthickened edges in Fig. 9). This problem can 
be so lved in 0(Wab1 2 10g Wabl) time with Edmonds' blos­
som algorithm as in Cook and Rohe (1999). For our tests, 
we used the implementation presented in Cook and Rohe 
( J 999). Recently, Schwartz et al. (2005) presented an algo­
rithm achi eving a running time of 0(1 Vabl 2 ) under the as­
sumption that the edge weights are integers and uniformly 
di stributed. The set EM induces a bijection n * of {I , ... , r} 
between the sets Va and Vb. Therefore, the dissimilarity be­
tween Va and Vb is estimated with the function 

r 

8*(Va , Vb) = L w(eij) = Lllv~a) -v~!(i) III ' 
eij EEM ;= 1 

which sums the weights of the edges in EM. Even though the 
histograms could be compared with several different met­
ri cs, our experimental compari sons on different databases 
of isometri c objects have shown that the L I-distance is the 
most effective metri c for our PSSDs. 

Fiedler Vector Based Matching. The Fiedler vector is the 
eigenvector corresponding to the firs non-null eigenvalue of 
the Laplacian matrix ofa weighted graph (Fiedler 1975). In­
tuitively, the components of the Fiedler vector give rise to 
an embedding of the nodes ofa graph on a straight line such 
that the sum of the weighted and squared edge lengths is 
minimal. In practi ce, the Fiedler vector can be used for or­
dering a set of entiti es, which can be related in form of a 
graph. Its usefulness has been demonstrated in several ap­
plications such as spectral graph partitioning (Qiu and Han­
cock 2003 ) and drawing (Koren et al. 2002), mesh stream­
ing (Isenburg and Lindstrom 2005) and processing (Zhang 
et al. 2007). 

Given the set of PSSDs Va , we consider the complete 
graph hav ing the PSSDs v~a) E Va as nodes, which are con­

nected to all the other PSSDs V)a) E Va, i i= j through edges 

weighted with eij := ex p( - g (v~a) , V)a»)). Here, the expo­
nential function is used to smooth out the effect of large 
geodes ic di stances between reference points. For the com­
putation of the Fied ler vector, we defi n the Lap lac ian ma­
tri x assoc iated to the proximity graph as the r x r symmetric 
matrix whose entri es are - eij , if i i= j , and d;; := 'LJ= I eij 
if i = j . Then, the decreasing reordering of the components 
of the Fiedler vector are used to permute the elements of Va . 

The reordered set ofPSSDs is stored as a single feature vec­
tor 

f ( a) (a) ) 
a = V lTo( I )' ... , V lTo(r) 

of r·(B + 4) entries, where no: {I, ... , r} -+ {I , ... , r} is the 
bijection induced by the ordering of the Fied ler vector com­
ponents. The di ssimilari ty between Va and Vb is then com­
puted as the L I-di stance between the reordered feature vec­
tors fa and fb , i.e., 

This approach is faster than the bipartite matching and leads 
to approximately similar effectiveness values. The Fiedler 
vector of a r x r matrix can be computed in time 0 (r log r). 
This computation can be performed off-line during the pro­
duction of the feature vectors, which makes thi s approach 
suitable for online retri eva l applications. Indeed, the on-line 
comparison of two feature vectors can be effic ientl per­
formed by using the L I-distance or other suitable metri cs. 

5 Results 

We evaluate our matching methods and our sampling strat­
egy on a database containing a co llection of 90 3D models, 

[]][j][1Jwrn[l]~[lJ 
4 

3 FINGERS 4 DOGS 4 HUMANS 5 JOKER HATS 5 HUMANS 4 CROCODILES 5 LAMPS 8 GIRAFFES 
WITHOUT HEADS 

4 

~[I][1J[l]~[QJ~~ 
6 CAMELS 6 FACES 6 FLAMINGOS 6 HUMAN HEADS 6 HORSES 5 PAPERS 5 PAPER SHEETS 4 SPIDERS .... ~~~ ... 

WITH VOLUME 

Fig. 10 Reference objects of our database . Each refe rence object represents a class of objects of the database . Each class conta ins a set of nearly 
isometr ically deformed versions of its reference object 



Table I Comparison of the retrieval effectiveness of diffe rent shape 
matching methods by using two diffe rent cl assitications the stan-
dard one shown in Fig. 10 and the tines one, in which the class 
of 8 hands of two different humans is spl it in two di ffe rent classes 

Matching method Standard class ificatio 

Pso P I OO BEP RP 

Ow-BGM 100 99.0 92. 1 9 1.9 87.2 

Rcuter06 98.2 90.7 89.1 87 .8 

OurFV 100 98. 1 89.0 90.0 81. 9 

RuSa08256 97.2 9 1. 5 94 .0 85.5 

RuSa08 100 93.7 87.4 92 .1 77. 1 

Osada02 G2 FPS 91.2 83.7 84.3 74.9 

Hamza03 FPS 90.7 82.5 83.3 74.3 

Mcmoli05 56.5 50J 63.8 34.2 

some of them kindly provided by Ron Kimmel (Techni on­
Israel), and some taken from the online database of Sum­
ner and Popovi c (2004). These 3D models are subdivided in 
17 classes of nearly isometric objects (see F ig. 10). Indeed, 
each class contains a set of nearly isometri ca lly deformed 
vers ions of one refe rence object. 

We perform a query for each obj ect of th is database. The 
di ss imilarity values of the query objects wi th respect to all 
the other obj ects of the database are computed by using both 
th e bipartite graph matching algorithm (OurBGA;f) and the 

approach based on th e Fielder vector (OurFV). Both meth­
ods match 100 PSSDs of 20 components per obj ect, which 
correspond to th e value of r and B in Sect. 4 . We compared 
our two methods w ith the fo ll owing techniques: 

- Reuter06 (Reuter et al. 2006). [n the comparison, we used 

only the fi rs 10 e igenvalues of the Laplace-Beltrami op­
erator, computed wi th the finit element meth od described 

in Sect. 3. 1; 
- RlISa08 (Ruggeri and Saupe 2008). As ide we report th e 

number of samp le po ints (l oca l descriptors) co ns idered by 

th e meth od; 
Ham::a03 FPS (HanlZa and Krim 2003). [n this case, the 

descriptor is extended by using the FPS to select J 024 
reference po ints; 

- Osada02 G2 FPS is an extension ofthe method of Os ada 
et al. (2002), whi ch compares sing le g lobal histograms of 
th e geodes ic distances between 1024 points samp led with 
the FPS; 
Me mo/i05 (Memoli and Sapiro 2005) has been described 

in Sect. 2.2 . 

Table I reports a compariso n of some well kn own mea­
sures of retri eval effectiveness (Bustos et al. 2005; Tangelder 

and Veltkamp 2004) of these meth ods. Pso and PIOO are 
the average prec ision over recall range 50% and J 00%, re­
spectively. RP indicates the R-precision (fi rs tier), BEP is 

of 4 hands. The fo llowing retr ieval effectiveness measures are re-
ported in percentages: Pso and PIOO = average prec is ion over re-
call range 50% and 100%, respect ive ly; RP = R -precis ion (fi rs tier); 
BEP = B1I1I 's Eye Peljormance (second tier); NN = nearest neighbor 

Finest cl ass ifi cat io 

NN PSO PlOD BEP RP NN 

100 99.4 95 .8 95. 2 93.3 100 

98 .9 98.7 95 .7 95.2 94.0 98.9 

98.9 98.7 93 .9 96.2 88 .1 98.9 

96.7 97.5 94 .3 95 .6 90.0 96.7 

92 .2 94.1 90.2 94.3 8 1.2 92.2 

9 1.1 9 1.9 87.4 89.8 79.7 91. 1 

88.9 91.2 87.1 88.6 80.5 88.9 

47.8 57.3 52 .7 64.5 36.7 47 .8 

the Bull 's Eye Peljormance (second ti er), NN is th e near­

est neighbor which indicates the recogniti on ability, i.e., the 

ratio of the query obj ects that are successfully recognized. 

Indeed, the query object is judged as recogni zed if its class 

matches th e class of the nearest neighbor. For th e meth­

ods OurBGM(FV) and RuSa08, we also report the number 

of SSDs considered in the matching. A simi lar comparison 

is perform ed by calcul ating the prec ision verslls recall di a­

g ram shown in Fig. II . The rows in Table I and th e plots 

in F ig. 11 are ordered with respect to Pso. The compari ­

son is perform ed cons id ering two different class ificati ons 

th e standard one shown in Fig. 10 and the fin es one, in 

which the class of 8 hands of two different hum ans is split 

in two diffe rent classes of 4 hands, each per human being. 

The fin es classifi cati o is intended to show th e sensitivity 

of the matching meth ods to sma ll changes in th e geome­

try like those present in the hands of d ifferent human be­

ings. The value of NN = J 00% in Table I show s that our 

meth od OW'BGM is able to recognize a ll the objects of the 

databases. Furtherm ore, it perform s better th an the other 

tested methods. The perfo rmance gap with respect to the 

meth ods Rellter06 and OurFV is small and depends on the 

c1 ass ifi cati o of our database. Indeed, considering the fin es 

c1 ass ifi cati o the method Reliter06 has a s lightly better value 

of RP th an OU/ BGM. The contributi on of our methods in 

terms of retrieval effectiveness is parti cularly evident with 

respect to /?uSa08 100, where the use of our sampl ing tech­

nique approx imately improves the effectiveness of 10% by 

considering the same number of SSDs in the comparison. 

We evaluate th e benefi t of our sampli ng strategy pre­

sented in Sect. 3 by apply ing it on the methods /?uSa08 100, 

Osada02 G2 and Ham::a03. Tabl e 2 reports the retri eval 

evaluati on measures of th ese methods app lied on sets of 

sample points generated by using our sampling meth od 
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Fig. II Compari son of the retrieval effectiveness of different match­
ing methods executed on the database of deformed objects shown in 
Fig. 10. Two classification are considered : (a) the standard class il1ca 

Table 2 Comparison of the retrieval eflectiveness of diftCrent shape 
matching methods app lied on sets of sample points obtained with dif~ 
fe rent sampling strategies, such as: our sampling method explained 
Sect. 3 (OURS), the FPS, and the IIni/orll/ sampling (UN fF) . The 
following retrieval effectiveness measures are reported in percen t­
ages: Pso and Pl OD = average precisioll over recall range 50% 

Matching method 

OurBGM 100 

OurFV 100 

RuSa08 256 FpS 

RuSa08 100 OURS 

RuSa08 100 FpS 

RuSa08 100 UNIF 

Osada02 G2 OURS 

Osada02 G2 FPS 

Osada02 G2 UN IF 

Hamza03 OURS 

Halllza03 FpS 

Hamza03 UN IF 

Standard classificat io 

PSO 

99.0 

98 .1 

97.2 

95 .7 

93.7 

77.2 

91.4 

91.2 

84.6 

91.4 

90.7 

90.4 

92. 1 

89.0 

9 1.5 

9 1.2 

87.4 

65. 1 

82.3 

83 .7 

75.9 

81.3 

82 .5 

79.4 

BEl' 

91.9 

90.0 

94.0 

95.0 

92. 1 

69.2 

83 .1 

84.3 

80.5 

81.3 

83 .3 

8 1.8 

Rp 

87.2 

81.9 

85 .5 

85.8 

77. 1 

53.5 

73.4 

74.9 

65.7 

70.7 

74.3 

67.8 

(OURS) , the FPS, and th e uniform samp ling (UN!F). The 
use of our sampling method improves the retrieval effective­
ness of these meth,ods, in parti cular their recognition abil­
ity. I ndeed, for the method of RIISa08 it allows achievi ng 
with 100 point samples the same NN value as consider­
ing 256 of them. This fact considerably increases the effi 
ciency of the RuSa08 method, since its time complex ity is 
O(N2 10gN), where N is the number of hi stograms to be 
matched with the X 2 distance. 
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ti on shown in Fig. 10 and (b) the fines class ification in which the class 
01'8 hands of two different humans is split in two different classes 01'4 
hands 

and 100%, respective ly; RP = R-precision (firs ti er); BEl' = Bul/ 's 
Eye Peljorll/ance (second tier) ; NN = nearest neighbor. These mea­
surements are computed by considering two different classification of 
our database: the standard one shown in Fig. 10, and the f nest one, 
in which the class of 8 hands of two different humans is split in two 
classes 01' 4 hands 

NN 

100 

98.9 

96.7 

96.7 

92.2 

75.6 

92.2 

9 1.1 

83 .3 

92.2 

88.9 

88.9 

Finest class ificatio 

Pso 

99.4 

98.7 

97.5 

97.2 

94. 1 

78.8 

92.2 

9 1. 9 

85.6 

92.0 

91.2 

90.9 

95 .8 

93 .9 

943 
93.8 

90.2 

66.8 

86.4 

87.4 

79.4 

85 .8 

87.1 

83 .9 

BEl' 

95 .2 

96.2 

95 .6 

95.6 

94.3 

68.9 

89.0 

89.8 

85.0 

86.9 

88.6 

87.1 

Rp 

93.3 

88.1 

90.0 

89.8 

81.2 

55.5 

78.5 

79.7 

69.3 

76.6 

80.5 

74.0 

NN 

100 

98.9 

96.7 

96.7 

92.2 

75.6 

92.2 

9 1.1 

83.3 

92.2 

88.9 

88.9 

The retr ieval tests are run on a Windows XP Profes­
siona l system running on an Intel Pentium 4 2.80 OHz with 
2 OB of RAM. The average executi on time per matching 
of the method RuSa08 JOO OURS is 0.015 s, almost 27 
times less than RIISa08 256, i. e., 0.41 s. Our method us­
ing the BOM on 100 PSSDs (OuI'BGM 100, for short) per­
forms sli ghtly better than the method RuSa08 100 OURS, 

because the PSSDs are compared with the L I-distance in­
stead of X 2 distance . Indeed, its average running time per 
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Fig. 12 Retrieval effectiveness mt:asures of our method lIsing BGM 
consider ing ditTerent number of reference points. This test is performed 
with the standard classificatio shown in Fig. to 

match ing is about 0.0106 s. S in ce the alignment using the 
Fied ler vector is run off- line, our method OllrFV 100 is 
much faste r than OurBGlv! 100. The on- line matching with 
the algorithm OurFV J 00 consists in comparing feature vec­

tors of2000 real numbers with the L I-distance, i.e. , 20 x 100 
PSSOs at once. 

However, our method performs well already when con­
sidering few reference points. Figure 12 shows different re­

trieval effectiveness measures of our method using BGM 

with respect to the number of reference points considered 
in the matching. The retrieval performances of our method 

stabi li ze already at 20 reference points, although the peak 
is reached at 100 points. This allows us to signifi cantl de­

crease the execution time of our method BGM without sacri­
ficin its effectiveness. While in Mateus et al. (2007) the in­

put parameters need to be accu rate ly tuned in order to avoid 
wrong correspondences between points or an over-fittin in 

the embedding, our approach reorders the nodes ofthe graph 
assoc iated to each point-based statistical shape descriptor 

according to the Fiedler vector of a sy mmetri c matrix . Fur­

thermore, computing only one eigenvector is much faster 
than ca lcul ating the si ngular value decomposition as done 

in Mateus et al. (2007). 
The contribution of the additiona l intrinsic quantities 

used for augmenting the histogram of geodes ics in Sect. 4 .1 
is approximate ly 1.6% and 3.8% RP, for the standard 

and the fines class ifi catio respectively. Of these im­
provements, 50% can be rough ly attributed to the val­

ues VB+I, VB+ 2, 20% to VB+3, and 30% to VB+4 . However, 
on some co ll ections of30 shapes with topological and geo­
metrical noise, our methods might mi smatch local descrip­
tors. This problem can be all eviated either by improving our 
local descriptors with further intrinsic geometry measures 
or by cons idering geometrical constraints between local de­
scriptors. These constraints can also serve fo r improving the 

search of the optimal so lution of our matching problem by 
apply ing algorithms like branch-and-bound heuristics (Br­

usco and Stahl 2005) used in combinatorial optimizat ion 
or the bag-of-features approach (Bronstein et al. 2009; 
Ohbuchi et al. 2008) used in computer vision . 

6 Conclusions and Future Work 

We presented a matching method for 3D shapes, which is in­
variant with respect to isometric deformations. This method 

comprises a new technique for sampling 3D shapes and two 
matching algor ithms using point-based statistical shape de­
scriptors . Our sampl ing strategy generates a set of geomet­

rically meaningful sample points by us ing the crit ical points 
of the Laplacian e igen maps as anchor points and combin­

ing the farthest point sampling with statistica l criteri a. We 
on ly consider signifi can points that are not statistica lly re­

dundant for describing the surface. However, this approach 
can be en hanced by consideri ng database-dependent cr ite­
rions like the tf-idf weighting used in text mining (Bron­

stein et al. 2009). A set ofPSSOs is constructed from the set 

of sampl e points. Usi ng augmented hi stograms of geodesic 
distances, the PSSDs describe the surface as seen from their 
corresponding sample points . The dissimilarity between two 

3D shapes is computed by match ing the corresponding sets 
of PSSDs either with bipartite graph matching or by com­

paring reorderings of the PSSOs according to the Fied ler 

vector of the Laplacian matrix ofthe correspond ing proxim­

ity graphs . 
Both variants of the proposed spectral-driven isometry­

invariant matching showed good retrieval effect iveness on 

a test database of 90 objects stored in different postures; 

in fact, it was able to recognize all or almost all objects in 
the database. Thus, it is an effective method for classifYing 
and recognizing objects deformed with isometric transfor­

mations, e.g. , non-rigid and articu lated objects in different 

postures. T he retrieval effectiveness of our methods were 
compared against other isometry-invariant matching tech­

niqu es . Our firs matching technique based on a bipartite 
graph matching performed better than the other tested meth­

ods and recognized 100% of the objects of the database. The 
second approach based on the Fied ler vector is s lightly less 

effective than the firs one; however, it is more effic ien and 
more suitab le for online retrieval app li cations. 

Our framework can be extended to address the problem 
of partial matching oftwo 3D shapes (Bronstein et al. 2009) 
by using e ither subgraph matching approaches or geometric 
hashing methods for findin simi lar surface reg ions identi­

fie by sa li ent reference points (Gal and Cohen-Or 2006). 
Another interesting future app li cation of our method is de­
tecting intrinsic symmetries of non-rigid 3D shapes (Ovs­

janikov et al. 2008 ; Raviv et al. 2007), where simil ar loca l 



shape descriptors are used (Raviv et al. 2007). Other future 
work includes extending the proposed technique to point­
sampled surfaces. [n fact, most of its building blocks have 
already been treated in the context of point-based graphics. 
Actua lly, the main open problem is the stable computation 
of the critical points of a scalar function define 0 11 a point 
set. 
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