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Abstract Extracting reliable image edge information is cru-
cial for active contour models as well as vascular segmenta-
tion in magnetic resonance angiography (MRA). However,
conventional edge detection techniques, such as gradient-
based methods and wavelet-based methods, are incapable
of returning reliable detection responses from low contrast
edges in the images. In this paper, we propose a novel edge
detection method by combining B-spline wavelet magnitude
with standard deviation inside local region. It is proved theo-
retically and demonstrated experimentally in this paper that
the new edge detection method, namely BWLSD, is able to
give consistent and reliable strengths for edges with differ-
ent image contrasts. Moreover, the relationship between the
size of local region with non-zero wavelet magnitudes and
the scale of wavelet function is established. This relationship
indicates that if the scale of the adopted wavelet function
is s, then the size of a local region, from which the stan-
dard deviation is estimated, should be 2s − 1. The proposed
edge detection technique is embedded in FLUX, namely,
BWLSD-FLUX, for vascular segmentation in MRA image
volumes. Experimental results on clinical images show that,
as compared with the conventional FLUX, BWLSD-FLUX
can achieve better segmentations of vasculatures in MRA
images under same initial conditions.
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1 Introduction

Vascular diseases, covering diseases from arteries, veins,
capillaries to lymph vessels, are the leading causes of
death in China and Australia (He et al. 2005; AIHW 2004)
and have also become one of the leading killers in the
USA and most European countries (Rinkel et al. 1998;
CDC 2008). Along with Digital Subtraction Angiography
(DSA) and Computed Tomography Angiography (CTA),
Magnetic Resonance Angiography (MRA) is one of the
most widely used medical imaging modalities for visual-
izing three-dimensional (3-D) brain vascular structures in
patients.

Image segmentation of blood vessels in 3-D angiographic
images is capable of providing valuable, patient-specific
information of blood vessels, such as shape, size, geo-
metric relations between vessels, and thus plays a vital
role in diagnosis and prognosis of vascular diseases. For
example, using the degree of a stenosis or the size of
an aneurysm, clinicians can judge the risk of stroke or
aneurysm rupture and then design an appropriate treatment
planning for the patients. Kirbas and Quek (2004) systemat-
ically reviewed vascular segmentation techniques proposed
in the past decades and classified these techniques into the
following categories: multi-scale approaches (Huang and
Stockman 1993; Chwialkowski et al. 1996; Armande et
al. 1999), skeleton-based approaches (Polli and Valli 1997;
Yim et al. 2000; Sorantin et al. 2002), ridge-based ap-
proaches (Guo and Richardson 1998; Bullitt et al. 2001;
Staal et al. 2004), region growing approaches (O’Brien and
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Ezquerra 1994; Higgins et al. 1996; Schmitt et al. 2002),
differential geometry-based approaches (Prinet et al. 1995;
Krissian et al. 1996), matching filters approaches (Chen
et al. 1998; Sato et al. 1998; Hoover et al. 2000), mathe-
matical morphology schemes (Figueiredo and Leitao 1995;
Eiho and Qian 1997; Mendonca and Campilho 2006), ac-
tive contour models (Kass et al. 1988; Malladi et al. 1995;
Sethian 1996; Caselles et al. 1997; Xu and Prince 1998;
Lorigo et al. 2001; Vasilevskiy and Siddiqi 2002), tracking-
based approaches (Quek et al. 1999; Aylward and Bul-
litt 2002; Wong and Chung 2007), artificial intelligence-
based approaches (Smets et al. 1988; Bombardier et al.
1997), neural network-based approaches (Rekovei and Sun
1995; Hunter et al. 1995) and tube-like object detection ap-
proaches (Parvin et al. 1994).

Active contour models are most popular among the above
vascular segmentation techniques. Snakes were first intro-
duced by Kass et al. (1988) for segmenting objects in images
and have been widely used in medical segmentation tasks
(Duncan and Ayache 2000). In Snakes, the initial bound-
ary is deformed iteratively by minimizing an energy func-
tional, which is determined by the image forces (external
forces) as well as the smoothness of the curves (internal
forces). It is well known that its performance depends on
the boundary initialization and input image edge map and
Snakes have difficulties in progressing into boundary con-
cavities. Moreover, the convergence and stability of its de-
formation process may be unpredictable. To overcome these
limitations, extensions of Snakes have been developed. Sev-
eral methods have been developed to address the depen-
dence of Snakes on initial boundary by increasing the cap-
ture range of the external force fields (Cohen and Cohen
1993; Leroy et al. 1996). Xu and Prince (1998) proposed
a new external force, namely, gradient vector flow (GVF),
to move Snakes into boundary concavities. Topologically
adaptable surface (T-surface) is a variant of the classical
Snakes (McInerney and Terzopoulos 2000). It has a bet-
ter topologically adaptable property and is independent of
deformable contour model parameterization. Curve evolu-
tion scheme, implemented by the level set method, is an-
other kind of variants of classical Snakes, which uses partial
differential equations (PDE) to govern boundary evolution
(Caselles et al. 1997). This scheme is called geodesic active
contour. Further, motivated by the discovery of more general
level set equations for curvature-based evolution (Ambrosio
and Soner 1996), CURVES algorithm, an extension of geo-
desic active contour, was proposed for vascular segmenta-
tion in MRA images (Lorigo et al. 2001). To segment nar-
row elongated vessels, FLUX was developed by Vasilevskiy
and Siddiqi (2002). The key idea is to exploit vector direc-
tion along with its magnitude. To detect the boundary of thin
blood vessels, geodesic active contour was mended by incor-
porating capillary effects (Yan and Kassim 2006) or com-
bining a new edge alignment term (Holtzman-Gazit et al.

2006). A level-set-based geometric regularization method,
which can minimize the leakage, was proposed by estimat-
ing the local orientation of the evolving front and then using
it as shape induced information for anisotropic propagation
(Gooya et al. 2008).

In active contour models, image edge information is im-
portant for precisely detecting blood vessel boundaries and
extracting blood vessels. For example, contour evolution
stops at positions where the values of gradient magnitude
are large (Malladi et al. 1995). Geodesic active contour and
T-snake also utilize image gradient magnitude to define the
stopping criteria of contour evolution (Caselles et al. 1997;
McInerney and Terzopoulos 2000). Due to bias fields, mo-
tion artifacts during image acquisition and complex blood
flows inside vessels, intensity within the same tissue type
can vary in MRA images. This causes inhomogeneous in-
tensity pattern within the same tissue type and makes the in-
tensity difference between vessels and background become
small and varying. As such, the conventional methods for
edge detection (e.g., gradient magnitude, Hessian matrix—
Frangi et al. 1998; Sato et al. 1998; wavelet—Mallat 1998)
are difficult to provide a reliable edge map for MRA im-
ages because they are not specifically designed for dealing
with the problem of intensity inhomogeneity. For instance,
the gradient magnitude |∇I | or |∇G ∗ I |, where G is a
Gaussian filter, I is the original image, ∇ is a gradient op-
erator and ∗ stands for convolution, cannot obtain a strong
edge strength at the vessel boundary in a low intensity con-
trast image region. In deformable model, small edge strength
of the real vessel boundary in a low intensity contrast re-
gion hardly generates adequate force to compete with other
boundaries with a large edge strength. As a result, the prop-
agating front/surface would not halt at the vessel boundary
with small edge strength but would be attracted by edges
of other unrelated tissues or even background noise. Con-
sequently, a contour leakage or discontinuity is occurred.
Dealing with intensity inhomogeneity of blood vessels in
MRA images is not only a technological challenge but also
a basic requirement for a robust algorithm on vascular seg-
mentation.

In this paper, we propose a novel method against inten-
sity inhomogeneity and noise for edge detection in MRA
images. The basic idea is to combine B-spline wavelet
magnitudes and their local standard deviations to remove
the effects of intensity inhomogeneity and noise. Thus,
this method is called B-spline wavelet-based local stan-
dard deviation (BWLSD). We prove that, via BWLSD, de-
tected edges in regions with different intensity contrasts
can give the same edge strength. BWLSD is also robust to
noise due to the inherent advantage of wavelet transform
on denoising. Though BWLSD is built on the framework
of wavelet-based edge detection (Mallat and Zhong 1992;
Mallat and Hwang 1992), it overcomes the limitation of
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the conventional wavelet-based edge detection techniques
on smoothing out the intensity inhomogeneity. Certainly, the
advantages of wavelet-based edge detection techniques are
maintained in BWLSD. Although BWLSD is also motivated
by the work of Tang et al. (2000), we do not characterize
Dirac structure edges with wavelet transform. Instead, we
present two lemmas in this paper on the setting of the size
of a local region, from which the standard deviation is es-
timated, according to the scale of wavelet transform. In ad-
dition, Tang et al. handled 2-D images with slight noise and
without intensity inhomogeneity, while we develop BLWSD
for 3-D images, in which there are 3-D symmetric or asym-
metric tube-like objects with noise and intensity inhomo-
geneity. It is noted that we propose criteria to determine the
local region size for estimating the standard deviation of B-
spline wavelet magnitudes. Therefore, in our work, the local
region size is chosen according to our criteria but not exper-
iments or experience. As compared with the gradient-based
method, the most popular edge detector, BWLSD offers a
better performance on edge detection because BWLSD can
smooth out the intensity inhomogeneity while the gradient-
based method cannot. In contrast to Hessian matrix-based
technique, another commonly used approach for edge or
centerline detection, BWLSD is independent of the shape
and structures of edges and thus prior information about
shape and structure is not needed for BWLSD.

The rest of this paper is organized as follows. In Sect. 2.1,
we introduce the wavelet-based edge detection technique
and discuss its limitations on dealing with the problem
of intensity inhomogeneity. BWLSD is then presented in
Sect. 2.2, where we propose and prove a lemma that the
BWLSD values of detected edges in regions with different
contrast levels remain constant. In Sect. 2.3, we theoretically
establish the relationship between the scale of wavelet trans-
form and the size of local region, from which the standard
deviation of B-spline wavelet magnitudes is estimated. In
Sect. 2.4, concepts and details about the FLUX model is
given. Implementation issues are discussed in Sect. 3. Ex-
perimental results on synthetic and clinical data sets are pre-
sented in Sect. 4. The conclusion of this paper is made in
Sect. 5. Finally, the proofs of lemmas proposed in this paper
are given in the appendices.

2 Methodology

2.1 Introduction to Edge Detection Using 3-D B-spline
Wavelet Transform

Let f (x) represent the input image and θ(x) a smooth func-
tion satisfying three requirements: (1) θ̂ (0) = 1, (2) θ(x) =
θ(−x), and (3) θ(∞) = 0. Here, θ̂ is the Fourier transform
of θ and this smooth function at scale s is θs(x). Then the ab-
solute local maxima of the first derivative of f ∗θs(x) are the

points with sharp intensity transition within a local region
(Mallat and Zhong 1992; Mallat and Hwang 1992). These
points reflect the edges in one image. Quadratic B-spline
function θ(x) (Wang and Lee 1998) is used as the smooth
function, and is given as,

θ(x) =

⎧
⎪⎨

⎪⎩
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Apparently, θ(x) is a function compactly supported within
[−1,1] and satisfies the three requirements mentioned
above. ψ(x), the first derivative of function θ(x), is given
as,

ψ(x) =
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and ψ(x) satisfies
∫

R

ψ(x)dx = 0. (3)

According to the definitions of wavelet function (Mallat
1998) and (3), ψ(x) is a wavelet function. Therefore, ψ(x)

is called the corresponding wavelet function of the smooth
function θ(x). The reason for choosing quadratic B-spline
function instead of Gaussian function as the smooth func-
tion is that the quadratic B-spline function is both smooth
and compactly supported. As such, the truncation error in
numerical implementation can be minimized. Considering
the 3-D case, namely x = {x1, x2, x3}, the following wavelet
functions are obtained

ψi(x) = ∂

∂xi

θ(x), i = 1,2,3. (4)

By introducing a scale parameter s, the smooth function
θ(x) and the wavelet function ψ(x) at scale s are denoted
as

θs(x) = 1

s3
θ

(x
s

)
, ψs(x) = 1

s3
ψ

(x
s

)
. (5)

Consequently, the corresponding wavelet transforms at
scale s are given as

Wi
s f (x) = (f ∗ ψi

s )(x) = s
∂

∂xi

(f ∗ θs)(x), i = 1,2,3.

(6)

It is easy to see that the gradient is

∇Wsf (x) =
⎛

⎝
W 1

s f (x)

W 2
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W 3
s f (x)

⎞

⎠ = s∇(f ∗ θs)(x). (7)
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The magnitude of gradient ∇Wsf (x) is

|∇Wsf (x)| =
√
√
√
√

3∑

i=1

(|Wi
s f (x)|2). (8)

The local maxima of |∇Wsf (x)| are the locations of the
points with sharp intensity transitions. The direction of gra-
dient ∇Wsf (x) is
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This wavelet-based technique can reliably detect the edges
in an image without intensity inhomogeneity and noise, and
does not require any prior edge shape information. For ex-

ample, Fig. 1(b) gives the detected edges of an image, as
shown in Fig. 1(a), in which there is a white rectangle ly-
ing inside a black background. From Fig. 1(b), all edges
are satisfactorily detected. However, the performance of the
wavelet-based technique can be adversely affected when in-
tensity inhomogeneity exists in the image. For illustration,
Fig. 1(c) is the other image with intensity inhomogeneity,
in which the left region has low contrast while the right re-
gion has high contrast. The edges detected from Fig. 1(c) are
shown in Fig. 1(d), where the edges in the left region have
weaker strength than the edges in the right region. Further, if
one image is contaminated by both intensity inhomogeneity
and noise, the performance of edge detection by using the
wavelet-based technique can become worse and even unac-
ceptable. An image, as shown in Fig. 1(f), is generated by
adding a Gaussian white noise into the image as shown in
Fig. 1(c). The edges detected from Fig. 1(f) by using the

Fig. 1 Comparisons between
the wavelet-based edge
detection technique and
BWLSD. (a) A 2-D binary
image without intensity
inhomogeneity and noise.
(b) Edges detected by using the
wavelet-based technique.
(c) A 2-D image with intensity
inhomogeneity but without
noise. (d) Edges detected by
using the wavelet-based
technique. (e) Edges detected by
using BWLSD. (f) A 2-D image
with both intensity
inhomogeneity and noise.
(g) Edges detected by using the
wavelet-based technique.
(h) Edges detected by using
BWLSD
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wavelet-based technique are shown in Fig. 1(g). From the
figure, it is obvious that the edges in the left region are badly
confused with the background and noise.

In this paper, we propose a new method based on a new
edge measurement function, called B-spline wavelet-based
local standard deviation (BWLSD). BWLSD is derived from
the wavelet-based edge detection technique. This method is
effective to cope with not only images with intensity in-
homogeneity, as illustrated in Fig. 1(e), but also images
with both intensity inhomogeneity and noise, as shown in
Fig. 1(h).

2.2 New Function to Measure Edge Strength

For a 3-D image, based on local homogeneity of voxel in-
tensity, one local image edge region A can be statistically
modeled as,

f (A(·)) ∼ N(μA,σA), (10)

where mean value μA refers to the ideal luminosity value,
and standard deviation σA represents the inevitable luminos-
ity variation introduced by the image acquisition devices.
This is a reasonable assumption for mimicking the lumi-
nosity and contrast bias introduced by the image acquisition
process. Another local image edge region B with different
contrast and luminosity in the same image can then be rep-
resented as

f (B(·)) = Kf (A(·)) + C, K > 0. (11)

Here, the terms K and C are variables reflecting the differ-
ence between the image edge regions A and B on intensity
contrast and luminosity. Both K and C are space-dependent
scale functions. In practice, they can be considered as con-
stants when the size of one local image region d is small
enough. The size parameter d can be treated as a bridge
linking the scale of wavelet transform mentioned above and
a local region of the 3-D image. It is important to select a
proper value for d . If the value of d is too large, several im-
age regions with different contrast and luminosity will be
falsely partitioned into one region and the above-mentioned
statistical model is no longer precise. On the contrary, if the
value of d is too small, the number of voxels inside one local
image edge region is not sufficient to provide stable statis-
tical estimations. We will discuss this problem and present
two related lemmas in the next subsections.

Without loss of generality, this statistical model
N(μA,σA) can be further simplified into N(0,1) by im-
posing μA = 0 and σA = 1. This simplified assumption is
acceptable to characterize any bias or amplification of lumi-
nosity and contrast drifts brought by the acquisition function
(Foracchia et al. 2003). Consequently, the statistical descrip-
tion of the local image edge region B is f (B(·)) ∼ N(C,K).

By combining this statistical model and the wavelet-
based technique mentioned above, we develop a novel func-
tion G to measure edge strengths in image edge regions with
different intensity contrasts. This new measurement function
is named as B-spline wavelet-based local standard deviation
(BWLSD) function. For an edge point x belonging to a local
region R, the BWLSD function is defined as

G(x) = |∇Wsf (x)|
σ(|∇Wsf (R)|) , (12)

where |∇Wsf (R)| is the collection of wavelet magnitudes
of all points within R, namely, |∇Wsf (R)| = {|∇Wsf (x)| |
x ∈ R}, and σ() represents the standard deviation of the
B-spline wavelet magnitudes.

Consequently, for arbitrary points, A and B , their mea-
surements are given as

G(A(·)) = |∇Wsf (A(·))|
σ(|∇Wsf (A)|) , (13)

G(B(·)) = |∇Wsf (B(·))|
σ(|∇Wsf (B)|) . (14)

We mathematically prove that the BWLSD values of two
image edges with different contrast and luminosity are the
same.

Lemma 1 The BWLSD values of two image edges with dif-
ferent contrasts and luminosities are equal.

The proof of Lemma 1 is given in Appendix A. Lemma 1
reveals that the BWLSD value of one edge keeps constant
regardless of its contrast and luminosity. That is, BWLSD
can return a strong strength from the edge with low contrast,
as will be demonstrated in the experimental results section.
This property is also very useful for dealing with the prob-
lem of contour leakage or discontinuity during active con-
tour evolution.

2.3 Relationship Between the Scale of Wavelet Transform
and the Size of Local Region

In the previous subsection, to tackle the problem of image
intensity inhomogeneity, we have proposed a novel mea-
surement function BWLSD based on B-spline wavelet func-
tion and local standard deviation of wavelet magnitudes. We
have also pointed out that the choice of local size d is a cru-
cial issue, which inevitably influences the final measurement
result. As far as we know, though a large number of tech-
niques making use of the local image properties have been
proposed for image segmentation and contrast enhancement,
most of them set the value for local region size empirically.
In this subsection, we mathematically discuss the problem
of choosing a proper value for local region size and illus-
trate the relationship between the scale of B-spline wavelet



240 Int J Comput Vis (2010) 87: 235–265

transform and the size of local region. Two lemmas are fur-
ther proposed and proved in this discussion. It is assumed
that a vessel is approximately regarded as a 3-D symmetric
tube. Hence, we first discuss the case of 3-D symmetric tube.

Lemma 2 For a symmetric 3-D tube with radius r , the size
of local region with non-zero wavelet magnitude is 2s −1 on
each side of the tube regardless of the direction and shape
of the tube. s is the scale of B-spline wavelet transform.

The proof of Lemma 2 is given in Appendix B. On the
basis of Lemma 2, the width of local region with non-zero
wavelet magnitudes only depends on the scale of wavelet
function while the width is independent of the radius of the
3-D tube. In a discrete image, the true edge is described by
the points as close as possible but not exactly located at the
center of the true edge in theory. As such, the wavelet trans-
form not only detects the edge but also shifts the edge into
an edge region around the center of the true edge, which is
determined by the wavelet scale. The region with non-zero
wavelet magnitudes can be viewed as the edge region and
the region with zero wavelet magnitudes can be viewed as
the non-edge region. Since the points within an edge/non-
edge region are of the same local statistical property and in
general the size of an edge region is smaller than that of a
non-edge region, it is therefore reasonable to choose the size
of edge region as the size of local region for estimating the
local deviation of B-spline wavelet magnitudes.

Of course, not all vessels can be considered as 3-D sym-
metric tube. For example, the vessel junction is not symmet-
ric. Therefore, Lemma 2 is extended to the situation of 3-D
asymmetric tube to deal with this case.

Lemma 3 For an asymmetric 3-D tube with radii r , the size
of region with non-zero wavelet magnitude is 2s − 1 on each
side of the tube regardless of the direction and shape of the
tube. s is the scale of B-spline wavelet transform.

The proof of Lemma 3 is given in Appendix C. Obvi-
ously, Lemmas 2 and 3 are generally applicable for not only
blood vessels but also any objects with tube-like geometrical
structure. For illustration, an example is given to testify the
correctness of these lemmas. Figure 2 shows the influence
of local region size d on the edge map estimated by using
BWLSD from Fig. 1(f), which can be regarded as a cross-
section of a 3-D tube. In Fig. 1, the chosen wavelet scale s

for Fig. 1(f) is 2 and therefore the proper value of d should
be 3. Figure 1(h) is the edge map obtained at d = 3. If the
value of d is reduced to 2, then the shrunken local region
is unable to provide stable statistical estimations. As a con-
sequence, see Fig. 2(b), some edge points are falsely clas-
sified into background since their local standard deviations
become close to the average of that of background points

Fig. 2 This figure shows the edge maps obtained by applying BWLSD
on the image shown in Fig. 1(f) with different values of local size d .
(a) d = 1. (b) d = 2. (c) d = 5. (d) d = 7

and some background points are falsely classified into edges
since their local standard deviations become close to the av-
erage of that of edge points. When the value of d is reduced
to 1 (see Fig. 2(a)), the local standard deviation of each point
is zero. To prevent division by zero, we rewrite (12) as

G(x) = |∇Wsf (x)|
σ(|∇Wsf (R)|) + ε

, (15)

where ε is a small non-zero constant and has the value of
0.01 in this paper. Obviously, when d = 1, the local standard
deviations of all points are the same and consequently the
function BWLSD is reduced to the conventional wavelet-
based function. When the value of d increases, some points
in the smooth region, especially those near the edges, would
be falsely classified as edge points since the enlarged lo-
cal region leads to the increase of their local standard de-
viations. In addition, the number of falsely classified points
augments along the increase of the value of d .

2.4 FLUX for Image Segmentation

After obtaining the reliable edge map by using BWLSD,
we adopt FLUX (Vasilevskiy and Siddiqi 2002) to segment
blood vessels in the angiographic images. The evolution of
a closed active contour C is given as

Ct = div(
−→
V ) · −→N , (16)
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where t parameterizes the curve evolution family,
−→
N is an

unit normal vector and
−→
V is a gradient vector field of an

image I smoothed by a Gaussian filter G, namely,

−→
V = G ∗ I. (17)

The zero level of a level set function (Osher and Sethian
1988) is used to characterize the evolving contour C. Ac-
cordingly, the evolution of the level set function ψ is

ψt = α|∇ψ | + β

(

∇ · ∇ψ

|∇ψ |
)

, (18)

where α is the speed function to control the evolving speed
of contour C along the normal direction and its value is
div(

−→
V ) in (16). Vasilevskiy and Siddiqi (2002) proposed

a multi-scale method to calculate the value of div(
−→
V ).

(∇ · ∇ψ
|∇ψ | ) is the mean curvature and β is the regularization

term to decide the contour smoothness. The sparse field set
method (Whitaker 1998) is utilized to numerically solve (18)
and set relevant parameters. We use the Insight Segmenta-
tion and Registration ToolKit (ITK) (Ibanez et al. 2005) to
implement the level set method.

3 Implementation Issues

In Sect. 2, we have presented our method and the underlying
design principles. In this section, we discuss the implemen-
tation issues of our method. The procedure of our method,
the design of wavelet filters and setting of parameters will
be given in this section.

3.1 The Procedure of Our Method

As a summary, the procedure of our proposed method for
vascular segmentation is described as follows.

The BWLSD-based edge detection method

1. Rescaling the voxel size in the original image volume so
that the voxel dimensions are isotropic.

2. Selecting a proper scale of wavelet transform s accord-
ing to the properties of the image volume, such as the
minimum radius of blood vessels and noise level.

3. Designing the wavelet filters based on the B-spline
smooth, wavelet functions and the selected wavelet
scale s.

4. Calculating the wavelet magnitudes |∇Wsf (x)| and cor-
responding direction vectors (α,β, γ ) by convolving the
input image with the designed wavelet filters.

5. Calculating the local standard deviation of the image vol-
ume. According to the Lemma 2 proposed in Sect. 2.3 the
size of local region is 2s − 1 when the wavelet scale is s.

6. Setting the wavelet magnitude of smooth region to zero
by global thresholding based on local standard deviation.
That is to say, the wavelet magnitude of such a voxel
whose local standard deviation is smaller than the thresh-
old value is set to zero.

7. Normalizing the wavelet magnitude by dividing cor-
responding local standard deviation. The normalized
wavelet magnitude is used as the edge strength.

8. Applying the FLUX to segment the blood vessels based
on the obtained edge map.

A short explanation of this algorithm procedure is given
in the following. The physical sizes along x, y, and z axes
of one voxel in the original image volume are not same, as a
consequence, this leads to distortion. To annihilate this dis-
tortion, a rescaling operation to make those sizes equal is
necessary. A proper wavelet scale s is critical for our algo-
rithm to obtain a good segmentation result. A large scale
s is capable of removing the noise interference at the ex-
pense of deducing the accuracy of edge detection. On the
contrary, a small scale can accurately detect the edge of
thin vessels but at the same time is sensitive to the noise.
In discrete image processing, the wavelet transform is prac-
tically implemented by convolution operation. According
to the separability of B-spline wavelet function, the 3-D
B-spline wavelet transform can be turned into 1-D B-spline
wavelet transform. Consequently, the design of 3-D wavelet
filters is replaced by the design of 1-D wavelet filters, as
it greatly reduces the complexity of our method. We will
discuss the design of B-spline wavelet filters at length in
the next subsection. Regarding Step 6, in spite of the ex-
istence of intensity inhomogeneity, the local standard de-
viation of smooth intensity region (corresponding to back-
ground region) is distinctive from that of sharply transiting
intensity region (corresponding to edge region). By select-
ing a proper threshold value, the thresholding (Step 6) of
local variations can remove most of the background voxels.
The remaining background voxels, if any, are isolated. In ad-
dition, in implementing Step 7, one voxel’s wavelet magni-
tude is normalized by dividing the maximum value of the lo-
cal standard deviations of itself and its neighbors instead of
its local standard deviation. In this way, the measured edge
strength of the background voxels around an edge region is
much lower than that of the edge voxels. Therefore, via these
two steps, the remaining background voxels cannot attract
the FLUX active contour. As such, leakage to background
can be avoided. After the normalization in Step 7, the edge
strengths in regions with different intensity contrasts are the
same and thus the effect of intensity inhomogeneity can be
minimized.
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3.2 Discrete Implementation of 3-D B-spline Wavelet
Transform

So far, the discussion on B-spline wavelet transform is re-
stricted in the continuous domain. In practice, the discrete
wavelet transform is very important since images in the real
world are in discrete form. In this subsection, we will discuss
the discrete wavelet function and the approach to calculate
the corresponding wavelet coefficients.

Since multi-dimensional B-spline smooth function and
wavelet function are separable, we get:

{
θs(x) = θs(x)θs(y)θs(z),

ψs(x) = ψs(x)ψs(y)ψs(z).
(19)

Thus, the multi-dimensional B-spline wavelet functions can
be rewritten as
⎧
⎨

⎩

ψ1
s (x) = ψs(x)θs(y)θs(z),

ψ2
s (x) = θs(x)ψs(y)θs(z),

ψ3
s (x) = θs(x)θs(y)ψs(z).

(20)

The wavelet transforms in (6) can be rewritten as
⎧
⎨

⎩

W 1
s f (x) = f (x) ∗ ψs(x) ∗ θs(y) ∗ θs(z),

W 2
s f (x) = f (x) ∗ θs(x) ∗ ψs(y) ∗ θs(z),

W 3
s f (x) = f (x) ∗ θs(x) ∗ θs(y) ∗ ψs(z).

(21)

It is clear that the 3-D wavelet transforms expressed in (6)
are 3-D convolutions, of which the calculation cost is very
huge. By utilizing (21), the 3-D wavelet transforms can be
turned from 3-D convolutions into 1-D convolutions and
thus the calculation cost can be greatly reduced. As such,
to some extent, (21) can be regarded as the fast calculation
version of (6). 1-D B-spline smooth function θs(x) and 1-D
B-spline wavelet function ψs(x) are graphically displayed in
Figs. 3(a) and 3(b), respectively. The wavelet scale s plays a
very important role on controlling image denoising and the
location accuracy of edge detection. The larger the value of s

is, the more smooth the wavelet function is while the weaker
localization ability the wavelet function has. In practice,
the ideal edges are optimally detected by considering the
trade-off in both localization and smoothness (Canny 1986;
Mallat and Hwang 1992).

The smooth function θ and the wavelet function ψ can
be viewed as the impulse responses of a low-pass filter G

and a high-pass filter H , respectively. Thereby, the corre-
sponding wavelet transforms are able to be implemented by
convolving the image f (x) with filters G and H in certain
orders. That is, in a 3-D square integrable space L2(R3), the
discrete wavelet transform is described below:
⎧
⎨

⎩

W 1
s f (x) = f (x) ∗ Hs ∗ Gs ∗ Gs,

W 2
s f (x) = f (x) ∗ Gs ∗ Hs ∗ Gs,

W 3
s f (x) = f (x) ∗ Gs ∗ Gs ∗ Hs.

(22)

Fig. 3 (a) The 1-D B-spline smooth functions at different scales.
(b) The 1-D B-spline wavelet functions at different scales

From (21) and (22), the 1-D convolution along x axis is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) ∗ θs(x) = ∫
f (u, y, z)θs(x − u)du

= ∑
k f (k, y, z)

∫ k+1
k

θs(x − u)du

= f (x) ∗ Gs(x),

f (x) ∗ ψs(x) = ∫
f (u, y, z)ψs(x − u)du

= ∑
k f (k, y, z)

∫ k+1
k

ψs(x − u)du

= f (x) ∗ Hs(x).

(23)

The 1-D convolutions along y and z axes are similar.
So, if we define the sequences {gk}, {hk} as the coeffi-

cients of Gs and Hs , respectively, then we have
⎧
⎪⎪⎨

⎪⎪⎩

gs,k = ∫ k+1
k

θs(x)dx = ∫ k+1
s

k
s

θ(x)dx,

hs,k = ∫ k+1
k

ψs(x)dx = ∫ k+1
s

k
s

ψ(x)dx.

(24)
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Table 1 High-pass filter coefficients {hs,k}
K S = 1 S = 2 S = 4 S = 8

−8 / / / 0.0064

−7 / / / 0.0452

−6 / / / 0.1225

−5 / / / 0.2384

−4 / / 0.0375 0.3674

−3 / / 0.2623 0.4060

−2 / 0.2236 0.5622 0.3286

−1 0.7071 0.6708 0.3373 0.1354

0 −0.7071 −0.6708 −0.3373 −0.1354

1 / −0.2236 −0.5622 −0.3286

2 / / −0.2623 −0.4060

3 / / −0.0375 −0.3674

4 / / / −0.2384

5 / / / −0.1225

6 / / / −0.0452

7 / / / −0.0064

Table 2 Low-pass filter coefficients {gs,k}

K S = 1 S = 2 S = 4 S = 8

−8 / / / 0.0004

−7 / / / 0.0007

−6 / / / 0.0307

−5 / / / 0.0827

−4 / / 0.0054 0.1723

−3 / / 0.0810 0.2883

−2 / 0.0064 0.3292 0.3988

−1 0.7071 0.7042 0.6205 0.4695

0 0.7071 0.7042 0.6205 0.4695

1 / 0.0064 0.3292 0.3988

2 / / 0.0810 0.2883

3 / / 0.0054 0.1723

4 / / / 0.0827

5 / / / 0.0307

6 / / / 0.0007

7 / / / 0.0004

These two sequences can be further normalized into

{∑
k g2

s,k ≈ 1,
∑

k h2
s,k ≈ 1.

(25)

We calculate all filter coefficients {gs,k} and {hs,k} numeri-
cally and list them in Tables 1 and 2.

3.3 Setting Parameters of the Proposed Method

As for the parameters of FLUX, we closely follow the con-
figuration described in Law and Chung (2007). Two crite-
ria are utilized to find the initial seeds. One criterion is that
seeds must have intensity values larger than the presetting
threshold. The other criterion is that all neighbors around se-
lected seeds within radius r also have intensity values larger
than the presetting threshold (r = 1 in this paper). The sec-
ond step is capable of removing the disturbance caused by
isolated noise. The presetting threshold value T , in practice,
is calculated via the following formula,

T = prctile(I,p), (26)

where I is the input image, p is a percentage, prctile is a
function which returns an intensity value according to the
intensity distribution of image I and the percentage p. In
other words, T is such an intensity value that is larger than
the intensity of p% voxel of image I . The value of smooth-
ness regularization term β , as stated in (18), is set empiri-
cally. A large value of β makes the FLUX evolution surface
become very smooth while a small value of β may stop the
evolution surface at an unexpected position. In other words,
although more vessels can be segmented by FLUX with a
smaller value of β , the smoothness of the vessel surface si-
multaneously reduces and the possibility of occurrence of
leakages simultaneously increases. Therefore, the value of
β should be set carefully. In our work, we empirically set
β = 0.05.

4 Experimental Results

In this section, we first validate our proposed edge detec-
tion method, BWLSD, on synthetic images ranging from
2-D images to 3-D images, from test objects with corners
(viz. rectangles) to objects without corners (viz. circle), from
images with intensity inhomogeneity alone to images with
both intensity inhomogeneity and noise. These tests are de-
signed to demonstrate that BWLSD is an effective edge de-
tection framework for images under different conditions,
e.g. intensity inhomogeneity and noise. FLUX embedded
with BWLSD, namely BWLSD-FLUX, is then applied to
synthetic images containing intensity inhomogeneity as well
as white Gaussian noise, and six clinical MRA image vol-
umes including three PC-MRA image volumes and three
TOF-MRA image volumes to evaluate its performance on
segmentation. As will be shown in this section, the promis-
ing segmentation results of clinical experiments reveal that
BWLSD-FLUX is able to achieve quality segmentation of
vasculatures in MRA images.
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Fig. 4 Comparisons on a 2-D
image with intensity
inhomogeneity but without
noise. (a) The original 2-D
image containing several
rectangles with same length but
different widths. (b) The edges
detected by using GRADIENT.
(c) The edges detected by using
BWLSD

4.1 Synthetic Images

In this subsection, BWLSD is tested on different types of
2-D and 3-D synthetic images and its performances on edge
detection are demonstrated and analyzed. First, a 2-D syn-
thetic image of size 180 × 100 pixels, as shown in Fig. 4(a),
is used for experiments. This image contains five bright rec-
tangles with same length but different widths. The widths,
from top to bottom, are 13, 11, 9, 7, and 5 pixels, respec-
tively. These rectangles can be regarded as 2-D cross sec-
tions of 3-D tubes with different radii. The intensity values
of pixels inside these rectangles are consistent along the y-
axis while varying along the x-axis. The intensity I (x, y)

along the x-axis varies and is defined as

I (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (x − 31) × 0.025, x ∈ [31,50] & y ∈ Ỹ ,
0.5, x ∈ [51,60] & y ∈ Ỹ ,
1 − (80 − x) × 0.025, x ∈ [61,80] & y ∈ Ỹ ,
0, otherwise.

(27)

Here, the set Ỹ refers to a collection of y coordinates inside
the tubes. The intensity range of this 2-D image is [0,1], and
the background intensity is zero. In this section, BWLSD is
compared with the gradient-based method. Hereinafter, the
gradient-based method is referred to GRADIENT for easy
reference. For BWLSD, the edge strength is estimated ac-
cording to (12). Edge strength estimated by using GRADI-
ENT is computed according to the following equation:

M =
√

(I ∗ Gx)2 + (I ∗ Gy)2 + (I ∗ Gz)2, (28)

where Gx , Gy and Gz represent the first derivatives of
a Gaussian function along x, y and z axes, respectively.
The edges detected by using GRADIENT and BWLSD are
shown in Figs. 4(b) and 4(c), respectively.

For Fig. 4, the intensity profiles along the top horizontal
boundaries of the rectangles with different widths are plot-
ted in Fig. 5. Without loss of generality, Fig. 5 only considers

the x coordinates within [31,80], where the rectangles lie.
Figure 5(a) displays the intensity profiles of five rectangles
from top to bottom. From this figure, it can be observed that
the intensity fluctuates radically in the original image along
the x-axis. Figure 5(b) indicates that GRADIENT cannot
deal with the problem of intensity inhomogeneity and the
intensity variation profile of GRADIENT nearly duplicates
the intensity profile of original image. However, as plot-
ted in Fig. 5(c), the intensity variation profiles of BWLSD
with s = 2 are very close to a straight line although there
are two slight turning points at x = 50 and x = 60. These
slight turning points are caused by two singularities of in-
tensity changing function, as stated in (27), at x = 50 and
x = 60, where the intensity changes sharply. In addition,
to make a quantitative comparison, we measure the stan-
dard deviations of all the intensity profiles along the hor-
izontal boundaries of the rectangles in the original image
(Fig. 4(a)), GRADIENT edge map (Fig. 4(b)) and BWLSD
edge map (Fig. 4(c)). Note that there are 10 horizontal in-
tensity profiles for each image/map. The average standard
deviations of the horizontal intensity profiles of the origi-
nal image, GRADIENT edge map and BWLSD edge map
are 0.1644, 0.1640 and 0.0232, respectively. It is revealed
that, for BWLSD, even with the effect of intensity inhomo-
geneity, the estimated edge strengths are relatively consis-
tent along the rectangle boundaries and independent of the
widths of rectangles.

Next, we consider a 2-D image with intensity inhomo-
geneity as well as noise. Such an image is created by in-
troducing random noise into the image used in the previous
experiment (see Fig. 4(a)). That is,

I1(x, y) = I (x, y) + 0.03 ∗ randn(), (29)

where I1 is the image with intensity inhomogeneity and
noise, I is the original input image, as shown in Fig. 4(a),
0.03 is the standard deviation of the white Gaussian func-
tion, randn(·) is a random function to generate normally
distributed random numbers with zero mean and σ = 1. The
image with the white Gaussian noise is shown in Fig. 6(a), in



Int J Comput Vis (2010) 87: 235–265 245

Fig. 5 Intensity profiles along the top horizontal boundaries of rectangles with different widths. (a) Original image. (b) GRADIENT. (c) BWLSD

which both GRADIENT and BWLSD are tested. The edges
are detected by using GRADIENT and BWLSD with s = 2
according to (28) and (12), respectively. The detected edges
are shown in Figs. 6(b) and 6(c). From Fig. 6(c), as com-
pared with Fig. 6(b), it is observed that BWLSD not only
gives consistent edge strengths under intensity inhomogene-
ity but also reduces the noise level in the image.

The intensity inhomogeneity caused by bias field, a defi-
ciency of MRA acquisition systems, is one major and inher-
ent problem for MRA image segmentation and can lead to
serious misclassification for intensity-based segmentation
techniques. Therefore, a basic requirement for one robust
MRA segmentation technique is the ability to correct the
bias field in the MR images. In the next set of experiments,
we illustrate the ability of BWLSD against varying bias
fields. The bias fields (bias fields A, B , C) we used are
obtained from BrainWeb (http://www.bic.mni.mcgill.ca//

Fig. 6 Comparisons on a 2-D image with both intensity inhomogene-
ity and white Gaussian noise. (a) The original 2-D image. (b) The
edges detected by using GRADIENT. (c) The edges detected by us-
ing BWLSD

http://www.bic.mni.mcgill.ca///brainweb/
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Fig. 7 A 3-D image containing 25 tubes with same lengths but different radii

/brainweb/), a public simulated brain database. These bias
fields are realistic since they were estimated from real MRA
scans.

A 3-D image is created for testing. It consists of 25 tubes
with different radii ranging from 2 to 10 pixels, as shown
in Fig. 7. In fact, the previously used 2-D image can be re-
garded as a slice of this 3-D image along y-axis. In this ex-
periment set, these bias fields and white Gaussian noise with
σ = 0.03 are added to the 3-D image. This model can be de-
scribed by the following equation:

I1(x, y) = I (x, y) ∗ F(x, y) + 0.03 ∗ randn(), (30)

where I1 is the 3-D image after being added the bias field
and noise, I is the original 3-D image and F is the applied
bias field. In this experiment, F is selected from bias fields
A, B and C. All of these three bias fields have 20% intensity
non-uniformity (INU). 20% level means the multiplicative
INU field, which can be linearly scaled, has a range of values
of 0.90, . . . ,1.10 over the brain image. For simplicity, we
denote the 3-D image affected by noise with σ = 0.03 and
bias field A as IA, by bias field B as IB , and by bias field C
as IC .

Figure 8(a) shows a slice of the original image I in
the x–z plane at y = 35. At the corresponding locations,
Figs. 8(b), 8(c) and 8(d) are the image slices of IA, IB and
IC , respectively. The edges detected by using GRADIENT
and BWLSD with s = 2 are shown in Figs. 8(e)–(g), and
Figs. 8(h)–(j). In order to further illustrate the performances
of GRADIENT and BWLSD, Figs. 9(a), 9(b) and 9(c) show
the slices in the x–y plane at z = 85 of IA, IB and IC , re-
spectively. Figures 9(d)–(f) are the edges detected by using
GRADIENT, and Figs. 9(g)–(i) are their edges detected by
using BWLSD. From these figures, we can see that BWLSD
is not adversely affected by the intensity inhomogeneity
caused by the bias fields and white Gaussian noise.

Fig. 8 An illustrating example at one slice in the x–z plane. (a) One
slice of the original 3-D image I at y = 35. (b, c, d) are the slices
of IA, IB and IC , respectively, also at y = 35. (e, f, g) and (h, i, j)
are the edges of (b, c, d) detected by using GRADIENT and BWLSD,
respectively

http://www.bic.mni.mcgill.ca///brainweb/
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Fig. 9 Another illustrating example at one slice in the x–y plane.
(a, b, c) are slices at z = 85 of IA, IB and IC , respectively. (d, e, f)
and (g, h, i) are edges of (a, b, c) detected by using GRADIENT and
BWLSD, respectively

Statistical distributions of edge strengths are employed
in order to quantify the performance of GRADIENT and
BWLSD. Figures 10(a), 10(b) and 10(c) are the statistical
distributions of the edge strengths of all edge voxels detected
by using GRADIENT in IA, IB and IC , respectively. As a
comparison, the statistical distributions of the edge strengths
of all edge voxels of IA, IB , IC corrected by BWLSD are
shown in Figs. 10(d), 10(e) and 10(f). Obviously, the inten-
sity distributions of edges corrected by BWLSD are more
concentrating in a narrower range than GRADIENT. This
phenomenon implies that the strength values of edge vox-
els disturbed by the bias field are successfully narrowed
down into a comparatively shorter range. Therefore, the in-
tensity values of edge voxels, no matter where it locates in
the 3-D image, are less fluctuating. As such, it is suggested
that the intensity inhomogeneity caused by bias fields are
well smoothed out. In addition, we also measure the stan-
dard deviations of these statistical intensity distributions to
have a quantitative comparison. The standard deviations of
Figs. 10(a), 10(b), 10(c), 10(d), 10(e) and 10(f) are 0.1686,
0.1603, 0.1633, 0.1175, 0.1176 and 0.1186, respectively.
These numerical results also indicate that BWLSD, as com-
pared with GRADIENT, are more robust to intensity inho-
mogeneity and noise.

Fig. 10 Statistical distributions of edge strength. (a, b, c) are distributions of edge strength obtained by using GRADIENT. (d, e, f) are distributions
of edge strength obtained by using BWLSD
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Fig. 11 Performances on a 2-D
image composed by three nested
hollow circles. (a) The original
image. (b) One hollow circle is
determined by two parameters:
R and r . (c) The image
contaminated by intensity
inhomogeneity alone. (d, e) are
edges of (c) detected by using
GRADIENT and BWLSD,
respectively. (f) The image
contaminated by both intensity
inhomogeneity and white
Gaussian noise. (g, h) are edges
of (f) detected by using
GRADIENT and BWLSD,
respectively

In the previous experiments, we compare BWLSD with
GRADIENT on 2-D images, in which the rectangular ob-
jects are composed based on straight lines. We now compare
these two methods on image, in which the objects are com-
posed based on curves. One representative of such objects is
hollow circle. We denote one hollow circle as {R, r} since a
hollow circle can be represented by two parameters: R (the
radius of outer circle) and r (the radius of inner circle), as
shown in Fig. 11(b). Figure 11(a) shows three nested hollow
bright circles: {56,44}, {34,26} and {16,12} in a dark back-
ground. We create intensity inhomogeneity by assigning one
pixel’s intensity inversely proportional to the distance be-
tween this pixel and the central point, as shown in Fig. 11(c).
The edges of Fig. 11(c) detected by using GRADIENT are
shown in Fig. 11(d). The figure illustrates that GRADIENT
can accurately detect the edges but still sensitive to the inten-
sity inhomogeneity because the edge strengths vary between
the outer ring and inner ring. On the contrary, BWLSD is

capable of accurately detecting edges as well as smoothing
out the effect of intensity inhomogeneity simultaneously, as
demonstrated in Fig. 11(e). Similar to the previous experi-
ments, in this experiment, we also tested GRADIENT and
BWLSD on the image contaminated by both intensity inho-
mogeneity and white Gaussian noise, as shown in Fig. 11(f).
The edges detected by using GRADIENT and BWLSD with
s = 2 are displayed in Figs. 11(g) and 11(h), respectively. It
is very clear that the noise and intensity inhomogeneity do
not adversely affect the quality of the edge map generated
by using BWLSD while, in contrast, still affect the quality
of the edge map generated by using GRADIENT.

Torus is a natural 3-D extension of hollow circle. We cre-
ate a 3-D image consisting of 12 tori with varied parameters.
The tori can be divided into 4 groups. From top to bottom,
from outside to inside, using the convention {R, r}, these
tori are denoted as {46,34}, {24,16}, {72,48}, {36,24},
{14,10}, {48,32}, {24,16}, {46,34}, {56,44}, {34,26} and



Int J Comput Vis (2010) 87: 235–265 249

Fig. 12 A 3-D image
containing 12 tori with different
parameters

Fig. 13 An illustrating example using one slice at z = 30. (a, b, c)
are slices at z = 30 of IA, IB and IC , respectively. (d, e, f) and (g, h,
i) are edges of (a, b, c) detected by using GRADIENT and BWLSD,
respectively

{16,12}, as shown in Fig. 12. Figure 13(a) is just one slice
of this image at z = 30. Similarity, the bias fields A, B , C

and white Gaussian noise with σ = 0.03 are applied to this
image and the corresponding contaminated images are de-
noted as IA, IB and IC . Using the slices at z = 150, a direct
illustrative example is given in Fig. 13. Figures 13(a), 13(b)
and 13(c) are the corresponding slices of IA, IB and IC ,
respectively. Figures 13(e)–(g) are edges detected by using
GRADIENT and Figs. 13(h)–(j) are edges detected by using

BWLSD with s = 2. It is clear that the edges detected by us-
ing BWLSD are more resistant to intensity inhomogeneity
and noise. Similar to the previous experiments, Figs. 14(a),
14(b) and 14(c) show the statistical distributions of edge
strengths of all selected edge voxels obtained by using GRA-
DIENT from IA, IB and IC , of which the standard devia-
tions are 0.1892, 0.1949, 0.1894, respectively. For BWLSD,
Figs. 14(d), 14(e) and 14(f) show the statistical distributions
of edge strengths and the standard deviations are 0.1340,
0.1153, 0.1410, respectively. All of these experiments illus-
trate that BWLSD is a reliable edge detection technique for
images with intensity inhomogeneity and noise, and inde-
pendent of the geometrical structure of image objects.

In the next set of experiments, we use two kinds of syn-
thetic images to test the segmentation ability of BWLSD-
FLUX. The first synthetic image for testing is a tube with
radius r = 5 voxels and length l = 50 voxels, as shown in
Fig. 15. The second image for testing is a torus {22,14},
as shown in Fig. 18. These images are binary images in
which the intensity of background voxels is zero and the
intensity of tube or torus voxels is one. To illustrate the
ability of BWLSD-FLUX against intensity inhomogeneity
and noise, these images are contaminated by different kinds
of bias field (bias fields A, B and C) and different levels
of white Gaussian noise with σ = 0.01,0.03,0.05, respec-
tively. The scale of the B-spline wavelet filters used here
is 2. As the examples to display the quality of contaminated
images, Figs. 16 and 19 show the middle slices of the conta-
minated tube and torus images, respectively.

Dice similarity coefficient (Zijdenbos et al. 1994; Gooya
et al. 2008) is adopted here to measure the segmentation er-
rors. The segmentation errors of BWLSD-FLUX and FLUX
on contaminated tube and torus images are listed in Tables 3
and 4, respectively. Obviously, BWLSD-FLUX has a bet-
ter performance than FLUX because BWLSD can provide
a better edge map for FLUX, as illustrated in the above ex-
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Fig. 14 Statistical distributions of edge strength. (a, b, c) are distributions of edge strength obtained by using GRADIENT. (d, e, f) are distributions
of edge strength obtained by using BWLSD

Fig. 15 A testing image with a
tube inside, radius r = 5 voxels
and length l = 50 voxels

periments. It should be noted that there is no significant dif-
ference between the segmentation results of BWLSD-FLUX
and that of FLUX on these synthetic images. The reason is
that the contrast variation introduced by the bias fields A, B

and C are not large. While the contrast variation becomes
much larger in clinical MRA images, it is observed that
some low contrast vessels can be segmented by BWLSD-
FLUX while cannot by FLUX.

4.2 Clinical Images

In the previous subsection, we have tested BWLSD-FLUX’s
ability against intensity inhomogeneity and noise on syn-

Fig. 16 The middle slices of the tube images contaminated by white
Gaussian noise σ = 0.05 and different bias fields. (a) Bias field A.
(b) Bias field B . (c) Bias field C

Fig. 17 BWLSD-FLUX segmentation results of the tube images con-
taminated by white Gaussian noise σ = 0.05 and different bias fields,
respectively. (a) Bias field A. (b) Bias field B . (c) Bias field C
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thetic images. In this subsection, we test BWLSD-FLUX
for vascular segmentation in 3-D clinical MRA images and
compare BWLSD-FLUX with FLUX. These MRA images
were scanned by a Philips 3T ACS Gyroscaln MR scanner

Fig. 18 The tested torus image

Fig. 19 The middle slice of the torus images contaminated by white
Gaussian noise σ = 0.05 and different bias fields. (a) Bias field A.
(b) Bias field B . (c) Bias field C

Fig. 20 BWLSD-FLUX segmentation results of the torus images con-
taminated by white Gaussian noise σ = 0.05 and different bias fields,
respectively. (a) Bias field A. (b) Bias field B . (c) Bias field C

at the University Hospital of Zurich, Switzerland. The im-
age sizes and voxel dimensions are listed in Table 5. In this
table, X, Y , Z refer to the numbers of voxels of each image
volume along x, y, z axes, respectively, and x, y, z mean
voxel dimensions along x, y, z axes respectively.

Figure 21 illustrates and compares the performances of
BWLSD-FLUX (s = 2) and FLUX on a 104 × 252 × 64
PC-MRA image volume, which is named Image1 in this pa-
per. Maximum intensity projections (MIPs) of this PC-MRA
image volume are shown in Fig. 21(a) and the first row of
Fig. 22. The initial seed image is shown in Fig. 21(b), in
which the seeds are found by setting p = 99.9% in (26).
The segmentation result of FLUX is shown in Fig. 21(c).
The contour halts at several low contrast boundaries labeled
by the red dotted circles from 1 to 8 in the MIP image and
as a result misses a large portion of the brain vasculature.
These 8 labeled boundaries do not represent all low con-

Table 3 Segmentation errors of FLUX and BWLSD-FLUX on a tube
image contaminated by white Gaussian noise and bias field

Method Bias field σ = 0.01 σ = 0.03 σ = 0.05

BWLSD-FLUX A 11.45% 13.30% 14.41%

B 11.24% 12.46% 13.45%

C 11.37% 12.54% 13.71%

FLUX A 12.05% 16.07% 18.16%

B 11.74% 14.74% 17.49%

C 11.87% 15.23% 17.85%

Table 4 Segmentation errors of FLUX and BWLSD-FLUX on a torus
image contaminated by white Gaussian noise and bias field

Method Bias field σ = 0.01 σ = 0.03 σ = 0.05

BWLSD-FLUX A 12.98% 13.28% 13.77%

B 12.43% 12.94% 13.42%

C 12.56% 13.14% 13.60%

FLUX A 13.64% 14.27% 14.51%

B 13.20% 13.80% 14.16%

C 13.52% 13.95% 14.32%

Table 5 Image sizes and voxel
dimensions of MRA images
used in the experiments

Name Scanning X Y Z x y z

sequences

Image1 PC-MRA 104 voxels 252 voxels 64 voxels 0.40 mm 0.40 mm 1.00 mm

Image2 PC-MRA 130 voxels 286 voxels 52 voxels 0.40 mm 0.40 mm 1.00 mm

Image3 TOF-MRA 239 voxels 209 voxels 60 voxels 0.41 mm 0.41 mm 0.95 mm

Image4 PC-MRA 120 voxels 256 voxels 58 voxels 0.39 mm 0.39 mm 0.90 mm

Image5 TOF-MRA 115 voxels 256 voxels 60 voxels 0.39 mm 0.39 mm 0.95 mm

Image6 TOF-MRA 110 voxels 260 voxels 64 voxels 0.39 mm 0.39 mm 0.85 mm
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Fig. 21 An illustration of
BWLSD-FLUX on
segmentation of a
104 × 252 × 64 brain PC-MRA
image. (a) The maximum
intensity projection (MIP) of
PC-MRA image. (b) The seed
image. (c) The segmentation
result obtained by using FLUX.
(d) An evolution step of
BWLSD-FLUX, of which the
evolution front has just passed
the low contrast boundaries
labeled as 5, 6, 8. (d) An
evolution step of
BWLSD-FLUX, of which the
evolution front has passed the
low contrast boundaries 1, 3, 4,
5, 6, 7, 8. (e) An evolution step
of BWLSD-FLUX, of which the
evolution front has passed the
low contrast boundaries 1, 2, 3,
4, 5, 6, 7, 8. (g) The final
segmentation result obtained by
using BWLSD-FLUX

trast boundaries in this image but only indicate the bound-
aries where FLUX wrongly halts when it starts from the ini-
tial seeds. Figures 21(d)–(f) are several evolution steps of

BWLSD-FLUX. These results demonstrate how BWLSD-
FLUX propagates through the low contrast boundaries. Fig-
ure 21(g) is the final segmentation result of BWLSD-FLUX.
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Fig. 22 Two distinct views of
maximum intensity projection
(the first row) and the
segmentation result obtained by
using BWLSD-FLUX (the
second row)

Fig. 23 Two distinct views of
seeds of p = 99.5% (the first
row) and the segmentation result
obtained by using FLUX started
from these seeds (the second
row)

Apparently, BWLSD-FLUX successfully segments all ves-
sels from the PC-MRA image and the segmented vascu-
lature does not have any incorrect discontinuity. To com-
prehensively show the effectiveness of BWLSD-FLUX, the
two distinct views of the MIP and the segmentation result of
BWLSD-FLUX are shown in Fig. 22. Regarding the regu-
larization parameters β , we have mentioned in Sect. 3.3, its
value is selected as 0.05.

This experiment testing BWLSD-FLUX and FLUX is
based on a tough initial condition, which helps to exhibit the
ability of BWLSD-FLUX to solve the problems induced by
low contrast boundaries. It is worth mentioning that the poor
performance of FLUX in this experiment does not imply

FLUX is a not good algorithm for vascular segmentation.
In fact, FLUX can well overcome low contrast and achieve
a satisfiable segmentation result under a good initial condi-
tion. To prove this, we also present two experiments. In the
first one, we change the value of p in (26) from 99.9% to
99.5%. This means the number of seeds is increased by 5
times. Different views of seeds of p = 99.5% are shown in
the first row of Fig. 23. In this case, the segmentation result
of FLUX becomes much better, as shown in the second row
of Fig. 23. In the second one, we further relax the restric-
tion on seed selection by uniformly sampling enough seeds
in approximately all vessels according to the MIPs, in which
case, the segmentation result of FLUX is further improved.
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Fig. 24 Two distinct views of
the uniformly sampled seeds
(the first row) and the
segmentation result obtained by
using FLUX (the second row)

Two distinct views of the uniformly sampled seeds and the
segmentation result of FLUX in this experiment are shown
in Fig. 24.

In the second experiment, we test BWLSD-FLUX and
compare it with FLUX on another 130 × 286 × 52 brain
PC-MRA image, which is named Image2 in this paper. Be-
cause some low contrast boundaries are covered by other
vessels in the top view, we also provide the rear view. Fig-
ures 25(a) and 25(b) respectively show the top and bottom
views of the MIP of this PC-MRA image. These seeds are
selected according to automatic intensity thresholding by
setting p = 99.9% in (26). The top and bottom views of
the seeds are displayed in Figs. 25(c) and 25(d), respec-
tively. The top and bottom views of the segmentation result
of FLUX are shown in Figs. 25(e) and 25(f), from which
we can see that FLUX cannot propagate through several
low contrast boundaries labeled from 1 to 7 in the MIPs
when it starts evolution from these initial seeds as shown
in Figs. 25(c) and 25(d). As a comparison, the segmenta-
tion result obtained by using BWLSD-FLUX is satisfactory,
as shown in Fig. 25(i). Figures 25(e) and 25(f) are top and
bottom views of one of the intermediate steps of BWLSD-
FLUX when the propagation contour has passed through the
seven labeled low contrast regions. Similarly, we also pro-
vide two distinct views of MIP and the segmentation result
of BWLSD-FLUX in Fig. 26.

Similar to the experiments on Image1, FLUX started
from uniformly located seeds is also applied to Image2. Two
distinct views of uniformly located seeds and the segmenta-
tion result of FLUX are shown in Fig. 27. Although worse
than BWLSD-FLUX, FLUX in this case still achieves better
results than FLUX started from the tough initial condition of
p = 99.9%. The segmentation result of FLUX can be further
improved by increasing the number of seeds.

To further test our proposed method BWLSD-FLUX, a
TOF-MRA image, which is named as Image3, is used in
the third experiment. The top and bottom views of MIP
of this image are displayed in Figs. 28(a) and 28(b), re-
spectively. Started from seeds selected based on (26) with
p = 99.9%, as shown in Figs. 28(c) and 28(d), FLUX fails to
pass through low contrast boundaries labeled by red dotted
circles and consequently generates poor results, as shown
in Figs. 28(e) and 28(f). In comparison with FLUX, two
views of the segmentation result obtained by using BWLSD-
FLUX are exhibited in Figs. 28(g) and 28(h). The result
shows that the low contrast boundaries labeled by red dotted
circles are successfully passed through. Since the red dot-
ted circles may cover a part of the vessels in Figs. 28(g) and
28(h), a more clear view of Figs. 28(g) and 28(h) with the
removal of the red dotted circles are presented in the first
row of Fig. 29. the corresponding views of MIP are shown
in the second row of Fig. 29. The segmentation result of
FLUX started from uniformly located seeds is displayed in
Fig. 30. The uniformly located seeds are shown in this figure
as well.

Image4 is a PC-MRA image with size 120 × 256 × 58
voxels. The MIPs of image4 are shown in the first row of
Fig. 31. The corresponding views of the segmentation re-
sult of BWLSD-FLUX are shown in the second row of
the figure. The seeds are selected automatically by setting
p = 99.5%, as shown in the first row of Fig. 32. Two
different views of the segmentation result of FLUX with
β = 0.05 is shown in the second row of Fig. 32. Although
more low contrast vessels can be segmented by FLUX with
a smaller value of β , meanwhile the surface smoothness
of the vessels reduces and the possibility of occurrence of
leakages increases. As such, we should make a balance be-
tween accuracy and smoothness. Based on a large number
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Fig. 25 An illustration of BWLSD-FLUX on segmentation of a
130 × 286 × 52 brain PC-MRA image. (a) Top maximum intensity
projection (MIP) view of the image. (b) Bottom MIP view of the im-
age. (c) Top view of the initial seed image. (d) Bottom view of the
initial seed image. (e) Top view of the segmentation result obtained
by using FLUX. (f) Bottom view of the segmentation result obtained
by using FLUX. (g) Top view of an evolution step of BWLSD-FLUX,
where BWLSD-FLUX has propagated through the labeled low con-
trast boundaries. (h) Bottom view of this BWLSD-FLUX evolution
step. (i) Segmentation result obtained by using BWLSD-FLUX

of experiments, we find that 0.05 is a proper value for β .
Too large β or too small β will harm the segmentation re-
sult. The segmentation results of FLUX with β = 0 and
β = 0.01 are shown in Figs. 33(a) and 33(b), respectively.
From Fig. 33(b), it can be seen that the vessel surface ob-
tained by FLUX with β = 0.01 is much coarser and some
low contrast vessels are not segmented. From Fig. 33(a), it

can be observed that many leakages on the vessel surfaces
obtained by FLUX with β = 0 although more vessels are
segmented.

A TOF-MRA image with size 115 × 256 × 60 voxels,
which is named Image5 in this paper, is utilized in the fifth
experiment. Two different MIP views of Image5 are shown
in the first row of Fig. 34. Corresponding views of the seg-
mentation results obtained by BWLSD-FLUX are shown in
the second row of Fig. 34. Two views of the segmentation
results obtained by FLUX are shown in the second row of
Fig. 35. Both BWLSD-FLUX and FLUX start their evo-
lutions from the same seeds, as selected automatically by
setting p = 99.9%, with β = 0.05. Two views of the seeds
are shown in the first row of Fig. 35. Obviously, BWLSD-
FLUX obtains a better segmentation result than FLUX in
the low contrast vessels because of the ability of BWLSD-
FLUX against low contrast. The last experiment is carried
out on a TOF-MRA image with size 110 × 260 × 64 voxels,
which is named Image6 in this paper. The MIP, initial seeds
as well as the segmentation result of BWLSD-FLUX and
FLUX are shown in Fig. 36. In this experiment, the seeds are
selected automatically by setting p = 99.9%, and the value
of β for BWLSD-FLUX and FLUX is 0.05. The results of
this experiment also illustrate BWLSD-FLUX is better than
FLUX in segmenting low contrast vessels from the same ini-
tial seeds.

5 Conclusions

Our main contributions in this paper are two-fold. First,
we design a new function (BWLSD) for measuring edge
strength, which is capable of making the measured strengths
of edges in regions with different contrasts and intensities
more consistent. Second, we propose the criteria on deter-
mining the size of one local region by establishing the re-
lationship between the local region size and the scale of
wavelet transform. As far as we are concerned, though many
algorithms using local image properties for image process-
ing, including segmentation, enhancement, etc., have been
proposed, most of them select the size of the local region
empirically. Our attempt opens one door to solve this prob-
lem.

In the experiments on synthetic images, BWLSD illus-
trates its robustness against noise, inconsistent intensity and
contrast by extracting high-quality edge maps from different
types of images contaminated by both noise and intensity in-
homogeneity. Based on BWLSD, we integrate it with FLUX
to form a new segmentation algorithm, namely, BWLSD-
FLUX. Tested on three MRA image volumes, including
PC-MRA and TOF-MRA, it is experimentally proved that
BWLSD-FLUX is insensitive to intensity inhomogeneity,
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Fig. 26 Two distinct views of
maximum intensity projection
(the first row) and the
segmentation result obtained by
using BWLSD-FLUX (the
second row)

Fig. 27 Two distinct views of
the uniformly sampled seeds
(the first row) and the
segmentation result obtained by
using FLUX (the second row)

noise and other disturbances introduced by image acquisi-
tion system, and can supply satisfactory vascular segmenta-
tion results from MRA image volumes. In comparison with
FLUX, BWLSD-FLUX reduces the requirement on initial
condition and for this reason can be regarded as a remark-
able improvement of FLUX.
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Appendix A: Proof of Lemma 1

Lemma 1 The BWLSD values of two image edges with dif-
ferent contrasts and luminosities are equal.

Proof

G(B(·)) = |∇Wsf (B(·))|
σ(|∇Wsf (B)|)

=
√

∑3
i=1 |Wi

s f (B(·))|2

σ(

√
∑3

i=1 |Wi
s f (B)|2)

=
√∑3

i=1 |s ∂
∂xi

(f (B(·)) ∗ θs)|2

σ(

√∑3
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=
K

√∑3
i=1 |s ∂

∂xi
(f (A(·)) ∗ θs)|2

σ(K

√
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i=1 |s ∂
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Fig. 28 An illustration of
BWLSD-FLUX on
segmentation of a
239 × 209 × 60 brain
TOF-MRA image. (a) Top
maximum intensity projection
(MIP) view of the image.
(b) Bottom MIP view of the
image. (c) Top view of the
initial seed image. (d) Bottom
view of the initial seed image.
(e) Top view of the
segmentation result obtained by
using FLUX. (f) Bottom view of
the segmentation result obtained
by using FLUX. (g) Top view of
the segmentation result obtained
by using BWLSD-FLUX.
(h) Bottom view of the
segmentation result obtained by
using BWLSD-FLUX

= K(

√
∑3

i=1 |Wi
s f (A(·)|2)

Kσ(

√
∑3

i=1 |Wi
s f (A)|2)

= |∇Wsf (A(·))|
σ(|∇Wsf (A)|)

= G(A(·)).

The lemma is proved. �

Appendix B: Proof of Lemma 2

Lemma 2 For a symmetric 3-D tube with radius r , the size
of region with non-zero wavelet magnitude is 2s − 1 on each
side of the tube regardless of the direction and shape of the
tube. s is the scale of B-spline wavelet transform.

Proof A 3-D symmetric tube can be regarded as a set of
points located within the circles around the center curve C
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Fig. 29 The top and bottom
views of the maximum intensity
projection (the first row) and the
corresponding views of the
segmentation result obtained by
using BWLSD-FLUX (the
second row)

Fig. 30 The top and bottom
views of uniformly sampled
seeds (the first row) and the
corresponding views of
segmentation result obtained by
using FLUX started from these
seeds (the second row)

Fig. 31 Two distinct views of
MIP (the first row) and the
segmentation result obtained by
using BWLSD-FLUX (the
second row)

with radius r (r can be a constant or variable), as seen in

Fig. 37. We only consider a local section of this curve, of

which the start point, midpoint and end point are denoted as

cs , c0 and ce respectively (cs < c0 < ce). The coordinates of

midpoint c0 are x0, y0 and z0. Accordingly, the coordinates

of an arbitrary point c (c ∈ [cs, ce]) of the center curve C is
represented by

⎧
⎨

⎩

xc = x0 + (c − c0) cosα1,

yc = y0 + (c − c0) cosβ1,

zc = z0 + (c − c0) cosγ1,

(31)
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Fig. 32 Two distinct views of
seeds of p = 99.5% (the first
row) and the segmentation result
obtained by using FLUX started
from these seeds (the second
row)

Fig. 33 Segmentation results
obtained by using FLUX with a
small β . (a) β = 0. (b) β = 0.01

Fig. 34 Two distinct views of
MIP (the first row) and the
segmentation result obtained by
using BWLSD-FLUX (the
second row)

where cosα1, cosβ1, cosγ1 are the direction parameters of
the line −→cc0. The parameter equation of the point p located
in the circle around the center point c with radius d can be
written in form of

⎧
⎨

⎩

xp = xd(c) = xc + d cosα2,

yp = yd(c) = yc + d cosβ2,

zp = zd(c) = zc + d cosγ2,

(32)

where cosα2, cosβ2, cosγ2 are the direction parameters of
the line −→pc and d is the distance of the line −→pc. If the length
of local section being taken into account is short enough,

the line −→cc0 should be perpendicular to the radial line −→pc.
Thereafter, we obtain such a formula,

−→cc0 · −→pc = cosα1 cosα2 + cosβ1 cosβ2 + cosγ1 cosγ2 = 0.

(33)

For simplicity, we use α1, β1, γ1 and α2, β2, γ2 to repre-
sent cosα1, cosβ1, cosγ1 and cosα2, cosβ2, cosγ2. In this
way, (33) can be simplified as follows:

α1α2 + β1β2 + γ1γ2 = 0. (34)
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Fig. 35 Two distinct views of
seeds of p = 99.9% (the first
row) and the segmentation result
obtained by using FLUX started
from these seeds (the second
row)

Fig. 36 Another example by
using a Tof-MRA image.
(a) MIP. (b) Seeds.
(c) Segmentation result obtained
by BWLSD-FLUX.
(d) Segmentation result
obtained by FLUX

Fig. 37 Illustrative figures for
the proof of Lemma 2. (a) A
3-D symmetric tube.
(b) Wavelet magnitude of the
tube. The inner hollow tube
(dotted pattern) is region with
zero magnitude and the outer
tube is the region with non-zero
magnitude. (c) Cross section of
the 3-D tube in (a). (d) Cross
section of wavelet magnitude
tube. The dotted region on both
sides is the region with non-zero
wavelet magnitude. The inner
solid region is the region with
zero wavelet magnitude

Note that, α1, β1, γ1 and α2, β2, γ2 also satisfy
{

α2
1 + β2

1 + γ 2
1 = 1,

α2
2 + β2

2 + γ 2
2 = 1.

(35)

We use the sign fC,r to denote a 3-D image which only

contains one local tube segment whose center line is −−→csce

and radius is r . Without loss of generality, we define the in-

tensity value of the points inside this tube as 1 and the points

outside as 0. Thus, for a point p(xd(c), yd(c), zd(c)) belong-

ing to the image fC,r , for i = 1,2,3, the wavelet transform

at scale s can be expressed by
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Wi
s fC,r ((xd(c), yd(c), zd(c))

=
∫ ∫ ∫

R

fC,r (x, y, z)ψs(xd(c) − x, yd(c) − y,

zd(c) − z)dxdydz (36)

=
∫ ce

cs

dc

∫ r

−r

ψs(α2(d − ρ) − α1(c − c0), β2(d − ρ)

− β1(c − c0), γ2(d − ρ) − γ1(c − c0))dρ.

The smooth function θ defined by (1) can be extended to
such a trivariate function

θ(x, y, z) = φ
(√

x2 + y2 + z2
)
, (37)

where

θ(r) =
⎧
⎨

⎩

8r2(r − 1) + 4/3, r ∈ [0, 1
2 );

−8/3(r − 1)3, r ∈ [ 1
2 ,1),

0, r ∈ [1,+∞).

(38)

By recalling the relationship between the wavelet func-
tion ψ and the smooth function θ defined in (4), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ1(x, y, z) = φ′(√x2 + y2 + z2
)

x√
x2+y2+z2

,

ψ2(x, y, z) = φ′(√x2 + y2 + z2
) y√

x2+y2+z2
,

ψ3(x, y, z) = φ′(√x2 + y2 + z2
)

z√
x2+y2+z2

.

(39)

Consequently, the wavelet transform using the wavelet func-
tion ψ1 is

W 1
s fC,r ((xd(c), yd(c), zd(c))

=
∫ ce

cs

dc

∫ r

−r

ψs(α2(d − ρ) − α1(c − c0), β2(d − ρ)

− β1(c − c0), γ2(d − ρ) − γ1(c − c0))dρ

=
∫ ce

cs

dc

∫ r

−r

φ′
s

(√

(d − ρ)2 + (c − c0)2

× α2(d − ρ) − α1(c − c0)
√

(d − ρ)2 + (c − c0)2

)

dρ

=
∫ (c0−cs )/s

(c0−ce)/s

dc

∫ (d+r)/s

(d−r)/s

φ′(
√

c2 + ρ2
)α2ρ − α1c

√
ρ2 + c2

dρ.

(40)

Similarly, the wavelet transforms using the wavelet func-
tions ψ2, ψ3 are

W 2
s fC,r ((xd(c), yd(c), zd(c))

=
∫ (c0−cs )/s

(c0−ce)/s

dc

∫ (d+r)/s

(d−r)/s

φ′(
√

c2 + ρ2
)β2ρ − β1c

√
ρ2 + c2

dρ,

and

W 3
s fC,r ((xd(c), yd(c), zd(c))

=
∫ (c0−cs )/s

(c0−ce)/s

dc

∫ (d+r)/s

(d−r)/s

φ′(
√

c2 + ρ2
)γ2ρ − γ1c

√
ρ2 + c2

dρ.

For the sake of simplicity, we define two temporary vari-
ables

T1 =
∫ (c0−cs )/s

(c0−ce)/s

dc

∫ (d+r)/s

(d−r)/s

φ′(
√

c2 + ρ2
) c
√

ρ2 + c2
dρ,

(41)

and

T2 =
∫ (c0−cs )/s

(c0−ce)/s

dc

∫ (d+r)/S

(d−r)/s

φ′(
√

c2 + ρ2
) ρ
√

ρ2 + c2
dρ.

(42)

Then it is easy to represent Wi
s fCr(xd(c), yd(c), zd(c)) in

terms of T1 and T2,
⎧
⎨

⎩

W 1
s fC,r ((xd(c), yd(c), zd(c)) = α2T2 − α1T1,

W 2
s fC,r ((xd(c), yd(c), zd(c)) = β2T2 − β1T1,

W 3
s fC,r ((xd(c), yd(c), zd(c)) = γ2T2 − γ1T1.

(43)

It follows that the square of the magnitude of the wavelet
transform at point p(xd(c), yd(c), zd(c)) is

|∇WsfCr(xd(c), yd(c), zd(c))|2

=
3∑

i=1

(Wi
s fC,r (xd(c), yd(c), zd(c)))2

= (α2T2 − α1T1)
2 + (β2T2 − β1T1)

2 + (γ2T2 − γ1T1)
2

= (α2
2 + β2

2 + γ 2
2 )T 2

2 − (2α1α2 + 2β1β2 + 2γ1γ2)T1T2

+ (α2
1 + β2

1 + γ 2
1 )T 2

1

= T 2
1 + T 2

2 . (44)

As we can see from (44), the direction parameters α1, β1,
γ1 and α2, β2, γ2 disappear in the final result. This means the
magnitude of the wavelet transform is direction-free. The re-
sult in (44) is also shape-free since it is based on the analysis
on a local shape section.

Next, we continue to mathematically analyze the magni-
tude of the wavelet transform based on (44). We can rewrite
the definition function of T1 in (41) as

T1 =
∫ (d+r)/s

(d−r)/s

dρ

∫ (c0−cs)/s

(c0−ce)/s

φ′(
√

ρ2 + c2
) c
√

ρ2 + c2
dc.

(45)

Since the second integral function φ′(
√

ρ2 + c2) c√
ρ2+c2

is

an odd function in terms of variable c and the integral field
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[(c0 − ce)/s, (c0 − cs)/s] is symmetric on the original point,
it is apparent that the result of (45) is 0. Hence, the magni-
tude of wavelet transform becomes:

|∇WsfC,r (xd(c), yd(c), zd(c))|
= |T2|

=
∫ (c0−cs )/s

(c0−ce)/s

dc

∫ (d+r)/s

(d−r)/s

φ′(
√

c2 + ρ2
) ρ
√

ρ2 + c2
dρ.

(46)

If we define g is the distance between the midpoint c0 to
the start point cs and the end point ce, that is, g = c0 − cs =
ce − c0, (46) can be rewritten as

|∇WsfC,r (xd(c), yd(c), zd(c))|

=
∣
∣
∣
∣
∣

∫ g/s

−g/s

dc

∫ (d+r)/s

(d−r)/S

φ′(
√

ρ2 + c2
) ρ
√

ρ2 + c2
dρ

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ g/S

−g/S

dc

∫ √
c2+((d+r)/s)2

√
c2+((d−r)/s)2

φ′(ρ)dρ

∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣

∫ g/s

0

(
φ
(√

c2 + ((d + r)/s)2
)

− φ
(√

c2 + ((d − r)/s)2
))

dc

∣
∣
∣
∣
∣
. (47)

From the definition of φ(r) given in (38), we easily see
that φ(r) = 0 when r ≥ 1. Thus, to guarantee the value of
the magnitude of wavelet transform |∇WsfC,r (xd(c), yd(c),

zd(c))| is non-zero, d , the distance between the point
p(xd(c), yd(c), zd(c)) to the corresponding center point c,
should satisfy

r − s < d < r + s,

or

−r − s < d < −r + s.

The (+) and (−) signs of r refer to different sides of the
center line. For a discrete image, the discrete value of d

should lie within such intervals [r − s + 1, r + s − 1] and
[−r − s + 1,−r + s − 1]. Therefore, for a symmetric 3-D
tube with radius r , the width of region with non-zero wavelet
magnitude is 2s − 1 on all sides of the tube regardless of the
direction and shape of the tube. �

Appendix C: Proof of Lemma 3

Lemma 3 For an asymmetric 3-D tube with radii r , the size
of region with non-zero wavelet magnitude is 2s − 1 on each

side of the tube regardless of the direction and shape of the
tube. s is the scale of B-spline wavelet transform.

Proof The differences between asymmetric and symmet-
ric 3-D tubes are that all sides of the symmetric 3-D tube
have the same radius while different sides of the asym-
metric 3-D tube have dissimilar radii which are denoted as
{r1, r2, . . . , rn}. If the radius along the direction of −→pc is
rk, k ∈ {1, . . . , n}, then (36) is changed as

Wi
s fC,r ((xd(c), yd(c), zd(c))

=
∫ ∫ ∫

R

fC,r (x, y, z)ψs(xd(c) − x, yd(c) − y,

zd(c) − z)dxdydz

=
∫ ce

cs

dc

∫ rk

0
ψs(α2(d − ρ)β2(d − ρ) − β1(c − c0),

−α1(c − c0), γ2(d − ρ) − γ1(c − c0))dρ. (48)

Equation (47) is changed accordingly as

|∇WsfC,r (xd(c), yd(c), zd(c))|

= 2

∣
∣
∣
∣

∫ g/s

0
φ
(√

c2 + ((d − rk)/s)2
)
dc

∣
∣
∣
∣. (49)

Other parts of the prove procedure are similar as that of
Lemma 2.

At last, to ensure the wavelet magnitude |∇WsfC,r (xd(c),

yd(c), zd(c))| is not zero, d should satisfy

rk − s < d < rk + s.

Therefore, as a conclusion, for an asymmetric 3-D tube, the
width of region with non-zero wavelet magnitude is also
2s − 1 on all sides of the tube regardless of the direction
and shape of the tube. �

Appendix D: Comparison with WLV

Recently, Law and Chung proposed a weighted local vari-
ance-based (WLV) edge detection method to address the
problem of changes of intensity contrast of edges (Law and
Chung 2007). Although WLV is capable of providing high
detection responses on low contrast edges, it suffers from
three drawbacks.

First, in WLV, the 2-D or 3-D directional DOG filter
fn̂(x) is firstly split into two symmetrical halves, f1,n̂(x)

and f2,n̂(x). Here, n̂ refers to the direction of the direc-
tional DOG filter. Then the two halves fi,n̂(x), i = {1,2}
are normalized into gi,n̂(x) to let the sum of their coeffi-
cients be one. Afterward, WLVs are calculated by convolv-
ing the image I (x) with the filters gi,n̂(x), WLV i,n̂(x) =
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∫

gi,n̂(I (x + y) − μi,n̂(x))2dy. The measurement func-
tion for edge strength, Rn̂(x), is then defined as, Rn̂(x) =

μ1,n̂(x)−μ2,n̂(x)√
min(WLV1,n̂,WLV2,n̂)+ε

. Here, μi,n̂ are the weighted intensity

averages of their corresponding filters gi,n̂, and ε is a small
positive number to avoid division by zero. Therefore, to cor-
rectly measure the edge strength of one point x, an edge
across x is required to split the DOG filter fn̂(x) into two
symmetrical halves. Unfortunately, for points at one edge
with a high curvature, such as corner points, there does not
exist such an edge across them to symmetrically split the
DOG filter. As such, the edge strength of corner points can-
not be correctly measured in WLV. In BWLSD, the BWLSD
function (see (12)) to measure the edge strength of one point
is based on 1-D convolution and does not exist the problem
of splitting one 2-D or 3-D filter. Therefore, the BWLSD
function has a better performance than WLV on measuring
the edge strength of corner points.

Second, WLV is based on one directional DOG filter
fn̂(x) and the WLV value of one point varies along the di-
rection of the DOG filter. As such, a drawback in WLV
is to find the direction of the DOG filter, along which the
WLV confidence value can represent the edge strength of
one point. This direction is also the edge normal direction.
To estimate this direction, an image should be convolved
with the DOG filter many times along a set of discretized
directions. Typically, convolutions along 24 discretized di-
rections should be made for one 2-D image and convolu-
tions along 282 discretized directions should be made for
one 3-D image. After obtaining the WLV confidence values
in different discretized directions, an eigen-decomposition
on one matrix associated with these WLV confidence val-
ues is performed to find the eigenvalues and eigenvectors of
this matrix. The direction of the eigenvector associated with
the largest eigenvalue is used as the edge normal direction.
While in BWLSD, considering multi-dimensional B-spline
smooth function and wavelet function are separable, the 2-D
or 3-D wavelet transforms are turned into 1-D convolutions
using 1-D B-spline smooth function and wavelet function.
After obtaining the results of the wavelet transform along
x, y directions by convoluting the image with the wavelet
filters four times (for one 2-D image) or x, y, z directions
by convoluting the image with the wavelet filters nine times
(for one 3-D image), the edge strength measured by BWLSD
function as well as the edge normal direction can be easily
computed. Hence, BWLSD is implemented much faster than
WLV.

Third, in WLV, the size of a local region to provide the es-
timation of local variance is selected empirically. This selec-
tion is lack of the theoretical support. While in BWLSD, we
establish the theoretical relationship between the scale of the
wavelet function and the size of the local region with non-
zero wavelet magnitudes. Based on this relationship, we find
that, if the scale of the wavelet function is s, then the size of

one local region to provide the estimation of local standard
derivation should be 2s − 1. This relationship between the
wavelet scale and the size of a local region is well testified
by the our experiments on synthetic images and clinical im-
ages. This relationship is also accord with our experience.
That is, if the image quality is poor, a large wavelet scale
is used. Accordingly, a large image region is needed to pro-
vide a reliable estimation of the standard deviation, and vice
verse.

In summary, BWLSD is obviously different from WLV
and overcomes several drawbacks of WLV.
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