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Camera Network Calibration and Synchronization from Silhouettes in

Archived Video

Sudipta N. Sinha · Marc Pollefeys

Abstract In this paper we present an automatic method for calibrating a network of cameras that works

by analyzing only the motion of silhouettes in the multiple video streams. This is particularly useful for

automatic reconstruction of a dynamic event using a camera network in a situation where precalibration

of the cameras is impractical or even impossible. The key contribution of this work is a RANSAC-based

algorithm that simultaneously computes the epipolar geometry and synchronization of a pair of cameras

only from the motion of silhouettes in video.

Our approach involves first independently computing the fundamental matrix and synchronization

for multiple pairs of cameras in the network. In the next stage the calibration and synchronization for

the complete network is recovered from the pairwise information. Finally, a visual-hull algorithm is used

to reconstruct the shape of the dynamic object from its silhouettes in video. For unsynchronized video

streams with sub-frame temporal offsets, we interpolate silhouettes between successive frames to get more

accurate visual hulls. We show the effectiveness of our method by remotely calibrating several different

indoor camera networks from archived video streams.

1 Introduction

For over a decade now, researchers in computer vision have been interested in digitizing in 3D, time-

varying events that have been recorded by video cameras from multiple viewpoints. Often the events

involve performances by human actors. The eventual goal is to allow the viewer to observe the event from

any arbitrary viewpoint. This is called free-viewpoint video and this has promising applications in 3D

tele-immersion, in digitizing rare cultural performances and sports action and in generating content for

3D video-based realistic training and demonstrations for surgery, medicine and other technical fields.

In 1997, Kanade et. al. [16] coined the term virtualized reality and reconstructed real life scenes involving

humans using a large cluster of cameras in an indoor environment. Since then, various systems have been

developed that can digitize human subjects performing various actions [6–8,10,11,21,25] – these systems
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use an indoor room-sized camera setup that typically consists of 8 to 15 synchronized cameras recording

at 15 to 30 frames per second. We will refer to such an arbitrary configuration of cameras as a camera

network.

Currently in all multi-camera systems [6–8,10,11,21,25], calibration and synchronization must be done

during an offline calibration phase before the actual video is captured. Someone must be physically present

in the scene with a specialized calibration object such as a planar calibration grid or a point LED and

special calibration data has to be collected. This makes the process of camera deployment and acquisition

fairly tedious. Multiple calibration sessions are often required over a longer duration, as there is no easy

way to maintain the calibration.

Despite the recent success of structure-from-motion techniques for uncalibrated sequences, they cannot

be used to reliably calibrate camera networks as they rely on automatic feature matching which typically

fails when camera pairs have a very wide baseline and very few interest point correspondences actually

exist between such pairs. Since these cameras observe an event from widely separated viewpoints, the

background views in these cameras often barely overlap. However, silhouettes of the same foreground

object or objects are observed from these viewpoints and can thus provide the required correspondences.

In this paper, we propose a flexible technique which can recover all the necessary information from

silhouettes present in the recorded video streams – thus eliminating the need for an explicit offline cal-

ibration phase before the video capture. This is a great benefit for surveillance systems and makes it

possible to remotely calibrated camera networks deployed in hazardous environments. Since our approach

is based on silhouettes, it is particularly useful for multi-camera shape-from-silhouette systems [17,6,21]

as visual-hulls can now be reconstructed from uncalibrated and unsynchronized video streams.

At the core of our approach, is a robust RANSAC-based algorithm [2] that computes the epipolar

geometry by analyzing the silhouettes of a moving object in a video. The epipole positions are randomly

hypothesized at every RANSAC iteration and a model for the epipolar geometry is generated via the

epipolar line homography parameterization; this is then efficiently verified using all the available data.

Random sampling is used for exploring the 4D space of possible epipole positions as well as for dealing with

outliers in the silhouette data. This algorithm is based on the constraints arising from the correspondence

of frontier points and epipolar tangents [12,22,32] of silhouettes in two views.

We first independently compute the epipolar geometry and temporal offset between various pairs

of cameras in the network. Next, the synchronization of the complete network is robustly recovered. The

network calibration is recovered in a stratified way – a projective reconstruction is incrementally computed

from the epipolar geometry estimates and the two view matches. This is then upgraded to a metric one

using self-calibration. Finally, the camera parameters are refined using a standard bundle adjustment

step [30]. The effectiveness of our approach is demonstrated by remotely calibrating camera networks

from archived multi-view video streams previously acquired by researchers and thereby reconstructing the

recorded events using a shape from silhouette approach. Preliminary versions of the proposed approach

appeared in [26–28].

2 Related Work

The recovery of camera pose from silhouettes was studied in depth by [15,22,31,32] in the past. Recently

there has been some renewed interest in the problem [4,12,14]. However, most of these techniques can be

applied only in specific settings and have requirements that render them impractical for general camera

networks observing an unknown dynamic scene. These include that the observed object be static [15,12],

the use of a specific camera configuration (at least partially circular) [14,32], the use of an orthographic

projection model [12,31], and a good initialization [4,33].

In our method, we take advantage of the fact that a camera network observing a dynamic object records

many different silhouettes, yielding a large number of epipolar constraints that need to be satisfied by every

camera pair. Our algorithm is based on the constraints arising from the correspondence of frontier points

and epipolar tangents for silhouettes in two views. This constraint was also used in previous work [12,22,

24,32] but either for specific camera motion or restricted camera models or in the situation where a good

initialization was already available.
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Fig. 1 (a) Frontier points are the true correspondences on silhouettes in two views. A pair of frontier points x1

and x2 are shown along with the corresponding epipolar tangents l1 and l2 respectively. (b) While many frontier
points may exist on the silhouettes of a human, they are hard to detect unless the epipole locations are known.

When a solid object is seen in two views, the only true point correspondences on the apparent contour

occur at special locations called frontier points. In Figure 1(a), one pair of frontier points is denoted

by x1 and x2 respectively. Note that the viewing rays that correspond to a matching pair of frontier

points such as x1 and x2 must intersect at a true surface point in the tangent plane of the surface. The

contour generators or rims must also intersect at such a surface point. This point, along with the camera

baseline, defines an epipolar plane that must be tangent to the surface. This gives rise to corresponding

epipolar lines such as l1 and l2, which are tangent to the silhouettes at the frontier points. Frontier point

correspondence does not extend to more than two views in general. A convex shape, fully visible in two

views, can have exactly two pairs of frontier points. For a non convex shape such as a human figure, there

can be several potential frontier points, but many of them will be occluded or will not appear on the

silhouette (see Figure 1(b)).

If the location of the epipole in the image plane is known, matching frontier points can be detected

by computing tangents to the silhouettes from the epipoles. However, when the epipole locations are

unknown, it is difficult to directly recover the frontier points. In [32] Wong and Cipolla searched for

outermost epipolar tangents for circular motion. In their case, the existence of fixed entities in the images,

such as the horizon and the image of the rotation axis, simplified the search for epipoles. We too use only

the extremal frontier points and outer-most epipolar tangents because, for fully visible silhouettes, these

are never occluded. Also, extremal frontier points must lie on the convex hull of the silhouette as well

which can be represented more compactly in general.

Furukawa et.al. [12] directly searched for frontier points on a pair of silhouettes to recover the epipolar

geometry. Their approach assumes an orthographic camera model and requires accurate silhouettes. It

does not work unless there are at least four unoccluded frontier point matches in general position. Her-

nandez et.al. [14] generalized the idea of epipolar tangencies to the concept of silhouette coherence, which

numerically measures how well a solid 3D shape corresponds to a given set of its silhouettes in multiple

views. They performed camera calibration from silhouettes by solving an optimization problem where

silhouette coherence is maximized. However they only dealt with circular turntable sequences, which have

fewer unknown parameters, so their optimization technique does not generalize to an arbitrary camera

network. Boyer [4] also proposed a criterion that back-projected silhouette cones must satisfy such that the

true object is enclosed within all of the cones. They used it to refine the calibration of a camera network

but their approach requires good initialization.

We first present the method for recovering epipolar geometry for the case where all the cameras are

synchronized. We then show how to extend the algorithm to simultaneously recover the epipolar geometry

as well as the temporal offset in the unsynchronized case. The use of RANSAC [2] makes our approach

robust to silhouette extraction errors which is important for dealing with real datasets where silhouettes

extracted automatically using background segmentation will typically have some errors.

3 Epipolar Geometry from Dynamic Silhouettes

Given non trivial silhouettes in a pair of video streams, such as that of a person (see Figure 1(b)), if we

can detect matching frontier points in corresponding frames, we can use the 7-point algorithm to estimate
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Fig. 2 (a) The Convex Hull of the silhouette in a video frame. (b) The Tangent Table representation (c) The space
of all tangents to the convex hull parameterized by θ.

the epipolar geometry by computing the fundamental matrix. When the epipolar geometry is known,

pairs of frontier points can be easily detected by computing tangents from the epipoles to the silhouettes.

However, it is difficult to directly find matching frontier points without knowing the epipolar geometry.

This is a typical ”chicken and egg” problem. Since the location of the epipoles is sufficient to determine

the frontier points, our approach will consist of randomly guessing the epipoles, thereby generating a

hypothesis for the epipolar geometry and then testing it for consensus on the bundle of epipolar tangents

to all the silhouettes. This will require an efficient representation for silhouettes that allows fast tangency

computations. Our compact representation, described next requires a few hundred bytes per silhouette

and allows us to work on thousands of frames from video.

Binary foreground silhouettes are computed for every video frame using standard background segmen-

tation techniques. Instead of explicitly storing the complete silhouette S , we compute and store only the

convex hull HS and its dual representation for every frame (see Figure 2). This compact representation

allows us to efficiently compute outer tangents to silhouettes in long sequences containing potentially

thousands of different silhouettes. The convex hull HS is represented by an ordered list of k 2D points in

the image (v1 . . . vk in counter-clockwise order (ccw)). The 2D lines tangent to HS are parameterized by

the angle θ = 0 . . . 2π (in radians) that the line subtends with respect to the horizontal direction in the

image. For each vertex vk , an angular interval [θ1
k,θ2

k] is computed – this set represents all lines that are

tangent to HS at the vertex vk. These tangent lines are directed, i.e. they are consistently oriented with

respect to the convex hull. Thus for a direction θ, there is always a unique directed tangent lθ.

While a fundamental matrix has seven degrees of freedom (dofs), our method randomly samples only

in the 4D space of epipoles, because once the epipoles positions are fixed, potential frontier point matches

can be determined, and from them the remaining three degrees of freedom of the epipolar geometry can be

computed via an epipolar line homography [13]. We propose to use RANSAC not only to handle outliers

(erroneous silhouettes) but also to efficiently explore the 4D space of epipole locations. The algorithm is

described here assuming synchronized video, but will be extended to the unsynchronized case in Section 5.

To generate a hypothesis for the epipolar geometry (the fundamental matrix is denoted by Fij), we

randomly guess the position of epipoles eij and eji in the two views. The pencil of epipolar lines in each

view centered on the epipoles forms a 1D projective space [13]. Three pairs of corresponding epipolar lines

are sufficient to determine a epipolar line homography H−T
ij , that uniquely determines the transfer of

epipolar lines and the fundamental matrix is then given by Fij = [eij]×Hij. These three pairs of epipolar

lines (epipolar tangents in our case) in the two views will be denoted by {lki } and {lkj } in views i and j

respectively where k = 1 . . . 3. These are related as follows: [lkj ]× Hij lki = 0 where k = 1 . . . 3. Solving

for Hij generates a hypothesis for the Fij using the relation above. We now describe the details of how

the epipoles are sampled and how the hypothesis is verified using all the silhouettes.

3.1 Hypothesis Generation

At every RANSAC iteration, we randomly choose a pair of corresponding frames from the two sequences.

In each of the two frames, we randomly sample two directions and obtain outer tangents to the silhouettes

corresponding to these two directions. The first direction θ1 is sampled from the uniform distribution

U(0, 2π), while the second direction θ2 is chosen as θ2 = θ1 − x, where x is drawn from the normal
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(a) (b)

Fig. 3 (a) For corresponding random frames, two random directions are sampled in each image. The intersection
of the corresponding epipolar tangents generates the epipole hypothesis. (b) Another pair of corresponding frames
is randomly selected and the outermost epipolar tangents to the new silhouette are computed (shown in blue). The
three pairs of lines can be used to estimate the epipolar line homography.

distribution N(π, π
2 ). The intuition behind this sampling strategy is that epipoles commonly tend to lie

far away from the principal point in the image plane resulting in epipolar lines that are often close to

parallel.

Note that alternative approaches could also be used for sampling the epipoles. In the calibrated case, a

better strategy would be to sample both the epipole directions randomly on a sphere [19]. However, in the

uncalibrated case (unknown focal length), this is equivalent to random sampling on an arbitrary ellipsoid

and this method would produce results comparable to our approach. Although our epipole sampling is

based on the shape of silhouettes in the data, the random selection of silhouettes from video and the

variability of silhouette shapes in long sequences neutralizes the bias that would occur if we repeatedly

used the same silhouette.

(a) (b)

Fig. 4 The epipolar transfer error distribution is computed for the hypothesized epipolar geometry model using
all the silhouettes in video. Here only a single pair of frames are shown. The original outer tangents are shown in
red while the transferred epipolar lines are shown in blue. (a) For a good hypothesis, the epipolar transfer error is
small. (b) The situation is shown for a bad hypothesis.

The convex hull of the silhouette contains a unique directed tangent for each direction that is sampled.

The two tangent lines in the first view are denoted by l1i and l2i , while those in the second view are denoted

by l1j and l2j respectively (these are shown in red in Figure 3(a)). 1 The intersections of the pair of epipolar

tangents produce the hypothesized epipoles eij and eji in the two views. We next randomly select another

pair of frames and compute outer tangents from the epipoles eij and eji to the silhouettes (actually to their

convex hulls) in both views. If there are two pairs of outer tangents, we randomly select one. This third

1 If silhouettes are clipped, the second pair of tangents is chosen from another frame.
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(a) (b)

Fig. 5 (a) The error distribution is shown for a good hypothesis. Note that the Kth–quantile eK is much smaller
than τo. (b) For a bad hypothesis, the error distribution is much more spread out and the Kth–quantile eK is
greater than τo.

pair of lines is denoted by l3i and l3j respectively (these are shown in blue in Figure 3(b)). Now Hij, the

epipolar line homography, is computed from the three corresponding lines 2 {lki ↔ lkj } where k = 1 . . . 3.

The quantities (eij, eji, Hij) form the model hypothesis in each iteration of our algorithm.

3.2 Model Verification

Each randomly generated hypothesis for the epipolar geometry is evaluated using all the data available.

This is done by computing outer tangents from the hypothesized epipoles to the whole sequence of sil-

houettes in each of the two views. For unclipped silhouettes, we obtain two tangents per frame, whereas

for clipped silhouettes there may be one or even zero tangents. Every epipolar tangent in the first view is

transferred through Hij to the second view (see Figure 4), and the reprojected epipolar transfer error e is

computed based on the shortest distance from the original point of tangency to the transferred line.

e = d(xi, l
t
i ) + d(xj, l

t
j) (1)

where d(x, l) represents the shortest distance from a 2D point x to a 2D line l, and xi and xj represent

the point of tangencies in the two images which when transferred to the other view, gives rise to epipolar

lines ltj and lti respectively.

Figure 5 shows the typical symmetric epipolar transfer error distributions. We use an outlier threshold

denoted by τo to classify a certain hypothesis as good or bad. The value of τo is automatically computed

(described next) and is typically in the range of 0.005–0.02 % of the image width. The Kth quantile of the

error distribution denoted by eK is computed (in all our experiments, K = 0.75, or 75%). If eK ≤ τo,

then the epipolar geometry model is considered a promising candidate and is recorded.

The points of tangency can remain stationary over successive frames of video. This gives rise to

duplicate matches, which must be removed in order to compute a meaningful error distribution. While

computing epipolar tangents one frame at a time for the whole sequence, we check the potential frontier

point matches for duplicates using spatial hashing for local search in the 2D images.

The RANSAC-based algorithm looks for nS promising candidates. These candidates are then ranked

based on the inlier count and the best ones are further refined. A stricter threshold τin of 1 pixel is used

to determine the tangents which are inliers. While evaluating a hypothesis, we maintain a count of the

tangents that exceed the outlier threshold τo and reject a hypothesis early, when a partial outlier count

indicates that the total expected outlier count is likely to be exceeded (i.e. with high probability). This

2 There are two ways to pair {l1i , l2i } with {l1j , l2j}, and we generate and check both hypotheses.
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allows us to abort early whenever the model hypothesis is completely inaccurate, avoiding the redundancy

of computing outer tangents from epipoles to all the silhouettes for many completely wrong hypotheses.

The best 25% of the promising candidates are then refined using multiple iterations of nonlinear

(Levenberg Marquardt) minimization and guided matching. During each nonlinear minimization step, the

total symmetric epipolar distance in both images for the set of inlier point correspondences is minimized.

During each guided matching step, the epipole positions are recovered from the current estimate of the

fundamental matrix. Next, tangents are again recomputed from these epipoles to all the silhouettes. The

inlier count steadily increases, since more epipolar tangents are included as the estimate of the fundamental

matrix becomes more accurate. The final solution is obtained when the inlier count stabilizes.

In practice, many of the promising candidate solutions for the epipolar geometry from the RANSAC

step, when iteratively refined converge to the same solution. Therefore we stop when three promising

candidates converge to the same solution. The refined solution with the highest number of inliers is the

final one. Comparing the Frobenius norm of the difference of two normalized fundamental matrices is not

a suitable measure for comparing two fundamental matrices, so we use the statistical measure proposed

by [34]. The complete method for computing the epipolar geometry is summarized in Algorithm 1.

Input: Pair of Sequences {Si} and {Sj} of silhouettes
Output: Fundamental Matrix Fij

{HS i} ← Compute Convex Hull And Tangent-Tables({Si});
{HSj} ← Compute Convex Hull And Tangent-Tables({Sj});
τo ← Compute Outlier Threshold (Section 3.3);
nS ← max(2τo, 10);
candidates← { } ;

repeat

(F, model)← Make Hypothesis (Section 3.1) ;
Evaluate (F) (Section 3.2) ;
if Promising Solution ;

candidates ← candidates ∪ (F,model) ;
until ( |candidates| == nS || maximum iterations exceeded)

Ck ← Rank And Find Best (k, candidates) using inlier count ;

NonLinear Minimization And Iterative Refinement({Ck});

return Rank And Find Best (1, Ck) using inlier count ;

Algorithm 1: An overview of the algorithm for computing the epipolar geometry from silhouettes

in a pair of synchronized videos. The hypothesis generation and verification steps are described in

Section 3.1 and Section 3.2 respectively. The automatic approach for tuning relevant parameters are

described in Section 3.3.

3.3 Automatic Parameter Tuning:

Our algorithm has a few critical parameters, the total number of RANSAC iterations N, the number of

promising candidates nS, and the outlier threshold τo. We automatically determine these parameters from

the data, making our approach completely automatic and convenient to use. The number of iterations N

depends on the desired promising candidate count denoted by nS.

In our implementation, N is chosen as min (n, NI) where n is the number of iterations required to

find nS candidates (NI is set to 106 in all our experiments). nS is determined by the outlier threshold τo.

A tighter (i.e. lower) outlier threshold can be used to select very promising candidates but such occurences

are rare. If the threshold is set higher, promising candidates are obtained more frequently but at the cost

of finding a few ambiguous ones as well. When this happens, a larger set of promising candidates must be

analyzed. Thus, nS is set to max (2τo, 10) in our implementation.
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Fig. 6 Overview of Camera Network Calibration from Epipolar Geometries.

We also compute τo automatically from the data during a set of preliminary RANSAC iterations.

During this stage, the hypothesis and verification iterations proceed as described earlier, but these are

only used to compute τo, and the promising candidates found at this stage are not used later. We start

with a large value of τo (= 50 pixels in our implementation) and iteratively lower it as follows. We compare

eK, the Kth–quantile (K = 75) with the current value of τo. If eK < τo, we simply reset τo to the smaller

value eK. If τo ≤ eK ≤ (τo + 1), then we increment a counter Cτo . If eK > (τo + 1), then the value of τo

is not changed. We reset Cτo to zero whenever the threshold is lowered. If either τo falls below 0.005% of

the image width or Cτo becomes equal to 0.005% of the image width, we accept the current estimate of

τo as final.

4 Camera Network Calibration

We next consider the problem of recovering full camera calibration from pairwise epipolar geometries.

Given a sufficient number of edges in a view graph where each edge represents an estimate of the respective

fundamental matrix, our goal is to recover the Euclidean camera matrices for all the cameras in the network.

An overview of our approach is described in Figure 6.

An important step in this approach is to compute an accurate projective reconstruction of the camera

network from epipolar geometries and two view matches. We start by first recovering a triplet of projective

cameras from the fundamental matrices between the three views. Using an incremental approach, we add

a new camera to the calibrated network by resolving a different triplet of cameras each time. Each time

a new camera is added, all the parameters corresponding to the cameras and 3D points are refined using

projective bundle adjustment. Finally when a full projective reconstruction is available, standard techniques

for self-calibration and Euclidean (metric) bundle adjustment is used to compute the final metric camera

calibration.

In our silhouette-based calibration work, frontier point correspondences do not generalize to more than

two views. In a three-view case, the frontier points in the first two views do not correspond to those in

the last two views. Although three-view correspondences, called triple points, do exist on the silhouette

as reported by [10,18], they are hard to extract from uncalibrated images. Thus, we are restricted to

only two-view correspondences over different pairs in our camera network and so cannot directly adopt an

approach like that of [23].

Instead, we incrementally compute a full projective reconstruction of a camera network from these

two-view correspondences and the corresponding fundamental matrices. Levi and Werman [20] studied

the following problem. Given only a subset of all possible fundamental matrices in a camera network,

when is it possible to recover all the missing fundamental matrices? They were mainly concerned with

theoretical analysis, and their algorithm is not suited for the practical implementation of computing

projective reconstructions from sets of two-view matches in the presence of noise.

4.1 Resolving Camera Triplets

Given any two fundamental matrices between three views, it is not possible to compute three consistent

projective cameras. The two fundamental matrices can be used to generate canonical projective camera

pairs {P1,P2} and {P1,P3}, respectively. However these do not correspond to the same projective frame.

P3 must be chosen in the same projective frame as P2, and the third fundamental matrix is required

to enforce this. These independently estimated fundamental matrices are denoted by F12, F13, and F23,
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(a) (b) (c)

Fig. 7 (a) Three nondegenerate views for which the fundamental matrices have been estimated independently.

(b) Family of solutions for the third fundamental matrix (F23), compatible with the other two (F12 and F13). We
look for a compatible solution closest to the measured F23. (c) New camera k incrementally linked to a calibrated
network by resolving a triplet involving two other cameras in Gk−1.

while the unknown projective cameras will be denoted by P1, P2, and P3, respectively (see Figure 7).

The three fundamental matrices are said to be compatible when they satisfy the following constraint.

e
T
23 F12 e13 = e

T
31 F13 e21 = e

T
32 F23 e12 = 0 (2)

The three fundamental matrices available in our case are not compatible because they were independently

estimated from two-view correspondences. A linear approach for computing P1, P2, and P3 from three

compatible fundamental matrices is described in [13]. However, it is not suitable when the fundamental

matrices are not compatible, as in our case. We now describe our linear approach to compute a consistent

triplet of projective cameras. As described in [13], given F12, canonical projective cameras, P1 and P2 as

well as P3 can be chosen as follows:

P1 = [I|0] P2 = [[e21]×F12|e21]

P3 = [[e31]×F13|0] + e31v
T (3)

P3 has been defined up to an unknown 4-vector v (Eq. 3). By expressing F23 as a function of P2 and P3

we obtain the following.

F23 = [[e32]×P3P
+
2 (4)

The expression for F23 is linear in v. Hence, all possible solutions for F23 span a 4D subspace of

P
8 [20]. We solve for v, which produces the solution closest to the measured F23 in the 4D subspace. P3

can now be computed by substituting this value of v into Equation 3. The resulting P1, P2, and P3 are

fully consistent with F12, F13, and the matrix F23 computed above.

In order to choose F12, F13, and F23 for this approach, we must rank the three fundamental matrices

based on an accuracy measure, the least accurate one is assigned to be F23 while the choice of the other

two does not matter. To rank the fundamental matrices based on the accuracy of their estimates, their

inlier spread score sij is computed as follows:

sij =
∑

(u,v)∈Pi

|u − v|2 +
∑

(u,v)∈Pj

|u − v|2

Here Pi and Pj represent the set of 2D point correspondences in views i and j that forms the set of inliers

for the corresponding fundamental matrix Fij . A higher inlier spread score indicates that Fij is stable

and accurate. The score is proportional to the inlier count, but also captures the spatial distribution of

the 2D inliers.

Our method works only when the camera centers for the three cameras are not collinear. This degen-

erate configuration can be detected by analyzing the location of the six epipoles (when all three camera

centers are collinear, eij = eik for various permutations of the three views). In our method, when a de-

generate triplet is detected, we reject it and look for the next best possibility. For most camera networks

(all the datasets used in our experiments), cameras were deployed around the subject and collinearity of

camera centers was never a problem.
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Fig. 8 The final metric reconstruction of the camera network and the 3D point cloud corresponding to all the
frontier points recovered from the four view video streams [1].

4.2 Incremental Construction

Our incremental approach to projective reconstruction starts by greedily choosing a set of three views for

which the fundamental matrices are, relatively the most accurate. As described in the previous section,

this triplet is resolved, resulting in a partial projective reconstruction of three cameras. Next, cameras are

added one at a time using the approach described next. The process stops when either all cameras have

been added or no more cameras can be added to the network because of insufficient links (fundamental

matrices).

Given Gk−1, a calibrated camera network with (k − 1) cameras, we first need to choose the camera

that will be added next to this calibrated network. To do this, we inspect the links (epipolar geometries)

between cameras that belong to Gk−1 and those that have not been reconstructed yet. The camera chosen

for reconstruction, is denoted by k, and the two cameras within Gk−1 corresponding to the two links

are denoted by p and q, respectively. Thus for cameras p and q in Gk−1 and k, the new view, we now

reconstruct a triplet of consistent projective cameras from Fpk, Fqk, and Fpq (here Pk plays the role of

P3). Since the fundamental matrix corresponding to any pair within Gk−1 can be computed, the choice of

p and q are irrelevant, because all projective cameras are known. Finally, the computed projective camera

Pk is transformed into the projective frame of Gk−1. This produces a complete projective reconstruction

of Gk, the camera network with the added new camera.

For a network with N cameras in general position, this method will work if a sufficient number of

links are present in the camera network graph. The various solvable cases are discussed in [20]. In our

case, resolving the initial triplet requires three links, and every subsequent view that is added requires

at least two links. Thus, the minimum number of unique links that must be present in the graph is

3 + 2(N − 3) = 2N − 3. When more links are available in the graph, our ranking procedure chooses the

best ones and the less accurate links may never be used.

4.3 Computing the Metric Reconstruction

Every time a new camera is added, a projective bundle adjustment is done to refine the calibration of

all cameras in the partial network. This prevents error accumulation during the incremental construction.

Camera networks are typically small, containsing 4 to 12 cameras, therefore, performing the projective

bundle adjustment after adding each camera is not a computational burden. Once a full projective re-

construction of the camera network has been computed, a linear self-calibration algorithm [23] is used to

upgrade from a projective reconstruction to a metric reconstruction.

Finally, a Euclidean bundle adjustment minimizes the overall reprojection error of a point cloud

corresponding to the frontier points matched in two views while parameterizing the cameras in terms
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of the intrinsic and extrinsic parameters (see Figure 8). In all cases, we constrain the camera skew to

be zero but impose no other parameter constraints. Depending on the exact scenario, other constraints

could be enforced at this step for higher accuracy, for example enforcing a fixed aspect ratio of pixels and

enforcing the principal point to be at the center of the image. For higher accuracy, radial distortion in the

images should also be modeled in the Euclidean bundle adjustment which typically further reduces the

final reprojection error. However, estimation of radial distortion was not done in our current work and

this will be addressed in the future.

5 Dealing with unsynchronized video streams

When the recorded video sequences are unsynchronized, the epipolar tangent constraints which form the

basis of the proposed approach still exist – but up to an unknown parameter, the temporal offset. We

assume that the video frame rate is constant and known a priori, which is a reasonable assumption for

most camera networks.

5.1 Pairwise Synchronization and Epipolar Geometry Estimation

We now describe how the algorithm proposed earlier can be extended to simultaneously recover both the

temporal offset as well as the epipolar geometry from a pair of video streams. The main idea is to modify

the hypothesis step by sampling an extra dimension – a possible range of temporal offsets, in addition to

the 4D space of epipoles. This algorithm typically requires more hypotheses than the synchronized case

before a stable solution can be found, but a multi-resolution approach for computing the temporal offset

speeds it up considerably. The details are now described.

Directly finding the true temporal offset within a large search range will require many hypotheses

because the probability of randomly selecting the correct temporal offset is quite low. We therefore adopt

a coarse-to-fine strategy for this search. In video containing human subjects, the frontier points and

epipolar tangents tend to remain stationary over a range of successive frames. Although such frames are

not suitable for accurate synchronization, they could be used for an initial coarse alignment of the two

sequences. We will refer to these as slow frames.

Without knowing the position of the epipoles, it is impossible to select the slow keyframes accurately.

Therefore the list of keyframes are computed heuristically using hypothetical epipoles at the corners of

the image. Based on such hypothetical epipoles, we analyze the potential motion of frontier points in each

sequence independently. This is used to build up list of slow keyframes from the original sequences. As

the RANSAC-based algorithm searches for promising epipole locations, this information could be used in

a feedback loop to choose the hypothetical epipoles and generate better keyframes but at the cost of an

extra prior step for the algorithm.

The algorithm proceeds in multiple stages. In the first stage, only the slow keyframes are used. A 5D

random hypothesis is generated. The epipoles are sampled in the way described earlier. For the random

guess for the temporal offset, a large search range is coarsely sampled at this stage. The model verification

step analyzes the error distribution in the same way as described in Section 3.2. See Figure 9(a) for a

distribution of the candidate solutions for the temporal offsets. The uncertainty of the estimate is also

computed from such a distribution.

It is possible that this stage estimates the epipolar geometry quite poorly however it helps to narrow

down the search for the temporal offset. For every 40 promising candidates, a 99% confidence interval

for the sample mean of the temporal offset is computed and this becomes the new search interval for the

temporal offset. The process is continued until the search range becomes smaller than 20 frames.

In the second stage, all the frames are used and the RANSAC-based algorithm samples the temporal

offset from the smaller search range recovered from the previous stage. During this stage, all the frames

are used to estimate the synchronization and epipolar geometry simultaneously. The offset is now sampled

from a small interval of +/- 10 frames around the estimated offset from the previous stage. The distribution

of promising epipoles obtained from the previous stage is used to bias the random sampling in the 4D

space of epipoles. This allows us to find an accurate solution much more quickly. Although this version
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(a) (b)

Fig. 9 (a) The distribution of candidate solutions for the temporal offset for a camera pair in the MIT sequence.
A strong peak was observed at the true solution while some periodicity in the sequence gave rise to some secondary
solutions. (b) The camera network graph where the edges represents pairwise offset measurements.

of the algorithm requires many more RANSAC iterations, the first stage is considerably faster as only a

smaller set of keyframes are used. The stratified approach also allows us to sample epipoles from a more

accurate prior distribution which helps us find promising candidates more quickly in the final stage.

5.2 Camera Network Synchronization

The camera network synchronization problem is an instance of the general sensor synchronization problem

in a network. In our case, every camera can be thought to have an independent timer and the time

differences can be measured in frame alignment offsets, since we assume that all cameras are operating at

a constant, known frame rate.

We represent the sensor network by a directed graph G(V, E), as shown in Figure 9(b). There are

N sensors and each node vi ∈ V has a timer denoted by xi. A directed edge in this network, eij ∈
E represents an independent measurement of the time difference xj − xi between the two timers. Each

estimate tij has an associated uncertainty represented by the standard deviation σij which is inversely

proportional to the uncertainty.

When G represents a tree i.e. it is fully connected and has N − 1 edges, it is possible to synchronize

the whole network. When additional edges are available, each of those edges provides a further constraint,

which leads to an overdetermined system of linear equations. Each edge contributes a linear constraint of

the form xi −xj = tij . Stacking these equations produces a |E| ×N system of linear equations. Assuming

that each measurement is corrupted by independent Gaussian noise, the maximum likelihood estimate

of the N timers is obtained by computing the weighted least squares solution of the linear system (each

equation is multiplied by the factor 1
σij

). The timer estimates (the first camera is fixed at zero) are optimal

provided no outliers are present in the edges being considered.

It is fairly easy to detect outlier edges in the network. A consistent network should satisfy the constraint

(
∑

e ∈ C e) = 0 ∀ cycles C ∈ G. For every edge e ∈ E, we check the sum of edges for cycles of length 3

that also contain the edge e. An outlier edge will have a significantly large number of non-zero sums and

could be easily detected and removed. This method will produce very robust estimates for complete graphs

because
N(N−1)

2 linear constraints are available for N unknowns. In the minimal case, a fully connected

graph with at least N-1 edges is still sufficient to synchronize the whole network although the estimates

in this case will be less reliable.

5.3 Silhouette Interpolation for Visual Hull Reconstruction

Typically visual hull methods treat the temporal offset between the multiple video streams as an integer

and ignore sub-frame synchronization. Given a specific frame from one video stream, the closest frame in

other 30Hz video streams could be as far of as 1
60 seconds away in time. While this might seems small
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at first, it can be significant for a fast moving person. This problem is illustrated later in Figure 15(d)

where the visual hull was reconstructed from the closest original frames in the sequence. The gray area

in the figure represents what is inside the visual hull reconstruction, and the white area corresponds to

the reprojection error (points inside the silhouette in one view carved away from other views). Subframe

offsets need to be considered to perfectly synchronize the motion of the arms and the legs.

To deal with this problem, we propose temporal silhouette interpolation. Given two adjacent frames i

and i+1 from a video stream, we compute the signed distance map in each image such that the boundary

of the silhouette represents the zero level set in each case. Let us denote these distance maps by di(x)

and di+1(x), respectively. Then, for a subframe temporal offset ∆ ∈ [0, 1], we compute an interpolated

distance map denoted by S(x) = (1−∆)di(x)−∆di+1(x). Computing the zero level set of S(x) produces

the interpolated silhouette. This simple scheme, motivated by [9] robustly implements linear interpolation

between two silhouettes without explicit point-to-point correspondence. However it is approximate and

does not preserve shape. Thus, it can be applied only when the inter-frame motion in the video streams

is small.

6 Experimental Results

Table 1 summarizes information about the various camera network datasets that we have collected and

processed. These multi-view video streams were acquired by various researchers in different indoor scenes.

The camera calibration was originally recovered by them using traditional offline calibration grid based

techniques [3]. Most of the subjects were humans as these multi-camera networks were designed for cap-

turing virtual models of actors using vision-based markerless motion capture [1,7].

Silhouettes had been extracted for all these sequences using state of the art methods. Although silhou-

ette extraction in the general case is a hard problem, fairly robust and accurate methods are now known

for dealing with static backgrounds. For all the datasets described in Table 1 it was possible to extract

reasonably good silhouettes which were then used for modeling dynamic scenes using a variant of shape

from silhouette and model-based techniques. Using our method, these same silhouettes were used to also

recover the camera calibration and synchronization.

6.1 Epipolar Geometry Estimation

We now show results from the silhouette-based estimation of epipolar geometry for a few camera pairs for

some of the datasets. In the next section, we present detailed results on the calibration of the full camera

network which is derived from the pairwise epipolar geometry estimates.

We tested our method on a 25-view synthetic Kung-fu dataset created by the researchers at MPI–

Saarbrucken [7]. The results for a particular camera pair is shown in Figure 10(a). The top row shows the

corresponding epipolar lines based on the estimated fundamental matrix while in the bottom half of the

image, all the frontier point matches are displayed. The pairwise epipolar geometry for all images with

respect to the first view is shown in Figure 10(b) and out of all the 300 pairs, the epipolar geometry for

268 pairs was estimated accurately. Our method cannot handle cameras facing each other which results

in epipoles lying somewhere close to the center of the image. In this case, the epipoles often fall inside the

silhouette’s convex hull and epipolar tangent constraints do not exist.

Figure 11(a) shows results on the four view MIT dataset used originally for capturing deformable

3D human shapes from silhouettes [25]. Originally a co-located motion capture system was used for the

calibration and synchronization. The video streams are approximately 4 minutes long and captured at

30 frames per second. The human subject is moving around in the scene; occasionally his silhouette gets

clipped in the camera’s field of view, esp. his feet. However this is handled robustly in our implementation.

Using the proposed approach, we computed the epipolar geometry for all pairs. The results from two

pairs are shown in Figure 11(a). The epipolar geometry for one of the six pairs was unstable because in

both the views, the feet of the person was consistently clipped in most of the video. Since the person walks

around the frontier points near the head of the person are almost planar which is a degenerate configuration

for epipolar geometry estimation. Instead of using all 7000 frames that were available we chose every 5th
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(a) (b)

Fig. 10 (a) The estimated epipolar geometry for one of the pairs in the synthetic 25-view Kung-fu sequence.
The extracted frontier points and the epipolar tangents are also shown here (b) The estimated epipolar geometry
between the first camera and all other 24 cameras are shown.

frame and worked with about 1400 frames from video. Estimating the epipolar geometry took about three

minutes on an average for the six pairs. On an average, the RANSAC-based algorithm produced a good

solution in about 25000 iterations but for higher reliability, multiple solutions were recovered and checked

for consensus.

The results from the CMU 3D room sequence is shown in Figure 11(b). Note that the epipoles for some

of the pairs coincide with the image of the camera in the respective views. This indicates the accuracy of

the epipole estimates for these pairs.

6.1.1 Evaluation

The mean residual error given by 1
N

∑ e
2 where e is defined in Equation 1 is reported for all estimates

of the fundamental matrix. The synthetic Kung-fu sequence reported a residual error of 0.12 pixels on

average while estimates for real datasets had a residual error of 0.25 pixels on an average with a range of

0.2 – 0.31 pixels. Our algorithm for epipolar geometry estimation was evaluated in two cases. First, one of

the camera pair from the Boxer dataset was tested. Figure 12 (a–b) shows the estimated epipolar geometry

using about 1000 frames of video. Subsequently, a checkerboard image pair (not used in our estimation

process) was used for evaluation (shown in Figure 12 (c–d)). The user manually clicked 50 corresponding

points and the mean symmetric residual error for these points was calculated. Our fundamental matrix

estimate had an rms error of 1.21 pixels while the error for the ground truth (derived from the checkerboard

based calibration [3]) was 0.78 pixels. The relatively high residuals seem to be due to the error introduced

by the user while clicking points. The evaluation was done for another sequence (see Figure 12 (e–f)).

This time the mean symmetric residual error was 1.38 pixels. A distribution of the error is shown for the

manually specified points (corresponding corner features on both the foreground as well as the background

were manually specified).

6.1.2 Discussion

Our proposed algorithm applies RANSAC [2] in an unconventional way. Rather than using it only for

robust estimation and handling outliers, we use it to also explore a low dimensional bounded parameters

space - the 4D space of epipoles parameterized by the tangent envelope of the silhouettes. RANSAC

automatically adjusts its budget of how many iterations to devote to detecting outliers and how many to

exploring the parameter space. An alternative approach would involve performing a deterministic, multi-

resolution search in the space of epipoles but to use RANSAC only to sample the video frames (in the

traditional sense to only deal with outliers). However this has two disadvantages –
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(a) (b)

(c) (d)

Fig. 11 (a) The estimated epipolar geometry for 2 of the 6 pairs in the 4-view MIT dataset. Estimated epipolar
geometries for the (b) CMU 3D room dataset (c) Finger sequence [5] and (d) Dancer1 sequence.

– this would require prior knowledge of the size of the attraction basin (i.e. convergence region) especially

when the search is performed at a coarse level. This is not needed in our approach. For synthetic

uncorrupted data (Kung-fu sequence), we found a promising candidate in 1 in 6000 trials on an average.

This seems to indicate that selecting the first direction in each image in approximately
√

6000 = 77

random directions allows us to sample within the attraction basin of the true solution at least once.

For higher reliability, we recover multiple solutions and then look for consensus amongst at least three.

This approach was used for all the datasets in our experiments.

– The number of iterations needed in the deterministic strategy would be orders of magnitude higher.

Suppose w % of the frames have corrupt silhouettes. For a correct choice of epipoles, a good model can
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(a) (b) (c) (d)

(e) (f)

Fig. 12 (a–b) The epipolar geometry recovered for a particular camera pair in the Boxer dataset. (c–d) The
checkerboard image pair used for evaluation. Ground truth epipolar lines are shown in black. Epipolar lines for
our fundamental matrix estimate are shown in red and yellow. The image resolution is 1000× 800 pixels. (e–f) For
another camera pair, the symmetric epipolar transfer error is computed. (g–h) more results.

be computed if two pairs of good silhouettes are chosen. This has a probability of w4. Thus the number

of trials required to ensure that a good model was generated with p % confidence, is k =
log(1−p)

log(1−w4)
. For

choices of p = 0.95 and w = 0.75 (75% good silhouettes), 8 trials would be required. If epipoles were

sampled 4o apart, the number of trials would be 904 × 8 = 108. Our RANSAC scheme automatically

decides how many trials to allocate for handling outliers and how much for exploring the parameter

space and requires fewer iterations in practice.

6.2 Camera Network Calibration

Figure 13 shows the camera network reconstructions from various real datasets. Corresponding input video

frames are shown along with the visual hull computed using the recovered calibration. The 3D geometry of

the camera network is also shown. By reconstructing the visual hull, we show the accuracy of the recovered

camera calibration and illusstrate that such dynamic scenes can now be reconstructed from uncalibrated

footage. Our calibration approach is particularly well suited for reconstructing visual hulls, as the method

is designed to reduce the overall reprojection errors of silhouettes (or frontier points to be more specific).

This tends to preserve sharp extremities on the visual hull causing them to be less eroded than what

could be expected with an offline calibration method that does not utilize silhouette information. The

calibration recovered by our technique could potentially be further refined using the approach proposed

in [4].

We evaluated our method for camera network calibration on the Kung-fu sequence as ground truth

calibration is known (see Figure 14). Since the metric reconstruction of the camera network obtained

by our method is in an arbitrary coordinate system, it first needs to be scaled and robustly aligned to

the ground truth coordinate frame. Our method, after the final bundle adjustment produced an overall

average reprojection error in the 25 images of 0.11 pixels and the reconstructed visual hull of the Kung-fu

character is visually as accurate as that computed from ground truth.
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Name Cameras Frames Pairs Reprojection Error
(final)

Kung-Fu [7] 25 200 268 / 300 pairs 0.11 pixels

Ballet [7] 8 468 24 / 28 pairs 0.19 pixels

MIT [25] 4 7000 5 / 6 pairs 0.26 pixels

Dancer1 (IN-
RIA) 8 200 20 / 28 pairs 0.25 pixels

Man (IN-
RIA) 5 1000 10 / 10 pairs 0.22 pixels

Dancer2 [29] 6 250 11 / 15 pairs 0.23 pixels

Boxer [1] 4 1000 6 / 6 pairs 0.22 pixels

Table 1 These datasets were previously acquired by various researchers in computer vision. These were calibrated
using our proposed approach. The second-last column shows the number of camera pairs for which the epipolar
geometry was correctly estimated. The reprojection error after the Euclidean bundle adjustment is listed in the
final column.

6.3 Camera Network Synchronization

Figure 15(a) shows the metric 3D reconstruction for the four view MIT sequence. To test the accuracy of

the recovered calibration and synchronization, we projected the visual hull back into the images. Inaccurate

calibration, poor segmentation or lack of perfect synchronization could give rise to empty regions (white

pixels) in the silhouettes. We found that the silhouettes were mostly filled, except for fast-moving parts

where the reprojected visual hull was sometimes a few pixels smaller (see Figure 15(a)). This arises mostly

when sub-frame synchronization offsets are ignored or due to motion blur or shadows.

For higher accuracy, we computed visual hulls from interpolated silhouettes as described in Section 5.3

The silhouette interpolation was performed using the sub-frame synchronization offsets computed earlier

for this sequence. An example is shown in Figure 15(b). Given three consecutive frames, we generated the
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Metric 3D reconstructions from six different datasets – (a) Kung-fu, (b) Boxer, (c) Dancer2, (d) Dancer1,
(e) Man and (f) Ballet. The recovered camera network is visualized along with a visual hull reconstruction (computed
using the approach of [10]) of the subject in each case.

middle one by interpolating between the first and the third and compared it to the actual second frame.

Our interpolation approach works reasonably for small motion, as would be expected in video captured

at 30 frames per second. In Figure 15(c), the visual hull reprojection error is shown with and without

sub-frame silhouette interpolation. In the two cases, the reprojection error decreased from 10.5% to 3.4%

and from 2.9% to 1.3% of the pixels inside the silhouettes in the four views.

7 Conclusions

To conclude, in this paper we have presented a complete approach to recover the full metric calibration

of an unsynchronized camera network by analyzing silhouettes in video. At the core of the proposed
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(a) (b) (c) (d)

Fig. 14 (Best seen in color) For the Kung-fu sequence, ground truth is available. Models computed using (a)
ground truth calibration and (b) the calibration recovered by our method. (c) The registered 3d models. (d) The
camera network registered to the coordinate frame of the ground truth data.

(a)

Pair tij σij tij True (t̂ij )
e01 -8.7 0.80 -8.50 -8.32
e02 -8.1 1.96 -8.98 -8.60
e03 -7.7 1.57 -7.89 -7.85
e12 -0.93 1.65 -0.48 -0.28
e13 0.54 0.72 0.61 0.47
e23 1.20 1.27 1.09 0.75

(b)

(c) (d) (e)

Fig. 15 (a) The camera network graph for the MIT sequence. (b) Table of pairwise offsets and uncertainties (tij

and σij) and final estimates (tij). These are within 1

3
of a frame (i.e. 1

100

th
of a second within the ground truth

(t̂ij )). (c) Metric 3D reconstructions of the MIT sequences. The visual hull is reprojected into the images to verify
the accuracy. (d)(e) Silhouette interpolation using the sub-frame synchronization reduces such reprojection errors.

method, is a RANSAC-based algorithm to efficiently compute the synchronization and epipolar geometry

of a pair of cameras. The proposed method will allow more flexibility in camera network calibration and

synchronization and will make it possible to digitize events in 3D even from archived video streams.

Our approach begins by independently computing the epipolar geometry and temporal offset for various

pairs of cameras in the network. In the next stage, the calibration and synchronization of the complete

network is recovered. The effectiveness of our approach is demonstrated by remotely calibrating many
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archived multi-view video streams previously acquired by researchers in the community. It can easily

deal with widely separated views, textureless scenes and is robust to noisy silhouettes caused by poor

background segmentation or motion blur and does not require radiometric calibration between the cameras.

In future, we will try to solve the relative pose estimation problem using only silhouettes. This will be

useful for the specific case when the camera intrinsics are known in advance. We would also like to explore

the possibility of using silhouettes in a similar way as proposed here, to calibrate heterogenous networks

comprising of conventional cameras, depth cameras and IR sensors.
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11. Jean-Sébastien Franco, Marc Lapierre, and Edmond Boyer. Visual shapes of silhouette sets. In Proceedings of
the 3rd International Symposium on 3D Data Processing, Visualization and Transmission, Chapel Hill (USA),
2006.

12. Yasutaka Furukawa, Amit Sethi, Jean Ponce, and David Kriegman. Robust structure and motion from outlines
of smooth curved surfaces. PAMI, 28(2):302–315, February 2006.

13. Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision, volume 23. Cambridge
University Press, New York, NY, USA, 2005.

14. Carlos Hernández, Francis Schmitt, and Roberto Cipolla. Silhouette coherence for camera calibration under
circular motion. PAMI, 29(2):343–349, February 2007.

15. Tanuja Joshi, Narendra Ahuja, and Jean Ponce. Structure and motion estimation from dynamic silhouettes
under perspective projection. In ICCV, pages 290–295, 1995.

16. Takeo Kanade, Peter Rander, and P. J. Narayanan. Virtualized reality: Constructing virtual worlds from real
scenes. IEEE MultiMedia, 4(1):34–47, – 1997.

17. A. Laurentini. The visual hull concept for silhouette-based image understanding. PAMI, 16(2):150–162, Febru-
ary 1994.

18. Svetlana Lazebnik, Edmund Boyer, and Jean Ponce. On computing exact visual hulls of solids bounded by
smooth surfaces. In CVPR, pages I:156–161, 2001.

19. Svetlana Lazebnik, Amit Sethi, Cordelia Schmid, David J. Kriegman, Jean Ponce, and Martial Hebert. On
pencils of tangent planes and the recognition of smooth 3d shapes from silhouettes. In ECCV (3), pages
651–665, 2002.

20. Noam Levi and Michael Werman. The viewing graph. CVPR, 01:518–522, 2003.



21

21. Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and Leonard McMillan. Image-based
visual hulls. In Kurt Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, pages 369–374. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

22. Paulo R. S. Mendonça, Kwan-Yee K. Wong, and Roberto Cipolla. Epipolar geometry from profiles under
circular motion. IEEE Trans. Pattern Anal. Mach. Intell., 23(6):604–616, 2001.

23. Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt Cornelis, Jan Tops, and Reinhard
Koch. Visual modeling with a hand-held camera. Int. J. Comput. Vision, 59(3):207–232, 2004.

24. John Porrill and Stephen Pollard. Curve matching and stereo calibration. Image Vision Comput., 9(1):45–50,
1991.

25. Peter Sand, Leonard McMillan, and Jovan Popović. Continuous capture of skin deformation. In SIGGRAPH
’03: ACM SIGGRAPH 2003 Papers, pages 578–586, New York, NY, USA, 2003. ACM Press.

26. Sudipta N. Sinha and Marc Pollefeys. Synchronization and calibration of camera networks from silhouettes.
In ICPR ’04: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04) Volume 1,
pages 116–119, Washington, DC, USA, 2004. IEEE Computer Society.

27. Sudipta N. Sinha and Marc Pollefeys. Visual-hull reconstruction from uncalibrated and unsynchronized video
streams. 3dpvt, 0:349–356, 2004.

28. Sudipta N. Sinha, Marc Pollefeys, and Leonard McMillan. Camera network calibration from dynamic silhou-
ettes. cvpr, 01:195–202, 2004.

29. Jonathan Starck and Adrian Hilton. Surface capture for performance-based animation. IEEE Computer
Graphics and Applications, 27(3):21–31, 2007.

30. Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle adjustment – A modern
synthesis. In W. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory and Practice,
LNCS, pages 298–375. Springer Verlag, 2000.

31. B. Vijayakumar, D. J. Kriegman, and J. Ponce. Structure and motion of curved 3d objects from monocular
silhouettes. In CVPR ’96: Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition
(CVPR ’96), page 327, Washington, DC, USA, 1996. IEEE Computer Society.

32. K.Y.K. Wong and R. Cipolla. Structure and motion from silhouettes. In ICCV, pages II: 217–222, 2001.
33. Anthony J. Yezzi and Stefano Soatto. Structure from motion for scenes without features. In CVPR (1), pages

525–532, 2003.
34. Zhengyou Zhang. Determining the epipolar geometry and its uncertainty: A review. International Journal of

Computer Vision, 27(2):161–195, March 1998.


