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Abstract We consider the problem of generating ei-

ther pairwise-aligned or pose-normalised depth maps
from noisy 3D point clouds in a relatively unrestricted

poses. Our system is deployed in a 3D face alignment
application and consists of the following four stages (i)
data filtering (ii) nose tip identification and sub-vertex
localisation (iii) computation of the (relative) face ori-

entation; (iv) generation of either a pose aligned or a

pose normalised depth map. We generate an implicit

radial basis function (RBF) model of the facial surface

and this is employed within all four stages of the pro-
cess. For example, in stage (ii), construction of novel
invariant features is based on sampling this RBF over a
set of concentric spheres to give a spherically-sampled

RBF (SSR) shape histogram. In stage (iii), a second

novel descriptor, called an isoradius contour curvature

signal, is defined, which allows rotational alignment to

be determined using a simple process of 1D correla-
tion. We test our system on both the University of York
(UoY) 3D face dataset and the Face Recognition Grand

Challenge (FRGC) 3D data. For the more challenging

UoY data, our SSR descriptors significantly outperform

three variants of spin images, successfully identifying

nose vertices at a rate of 99.6%. Nose localisation per-

formance on the higher quality FRGC data, which has
only small pose variations, is 99.9%. Our best system
successfully normalises the pose of 3D faces at rates of

99.1% (UoY data) and 99.6% (FRGC data).
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1 Introduction

This paper focuses on the problems associated with
generating a pair of aligned depth maps for the pur-
pose of matching 3D shapes. The input to our system
consists of noisy 3D point clouds of arbitrary resolu-

tion and in relatively unrestricted poses. We also con-

sider the closely-related problem of generating a pose-

normalised depth map, where the depth map is put into

some canonical pose, such as the frontal pose (front
view mug shot pose) often used in both 2D and 3D face
recognition applications. Such depth maps are useful

when applying a variety of classification techniques to

3D retrieval tasks, which includes methods based on

linear sub-spaces, such as principal components analy-

sis (PCA) and linear discriminant analysis (LDA), and

other methods such as support vector machines (SVM),
boosting methods, and so on. Our method may be ap-
plied to any 3D retrieval task, where there is at least

one distinctive 3D feature on the visible surface, but

here we discuss our methods in the context of 3D face

recognition, with the nose tip selected as the distinc-

tive point, as this is the application in which we have

deployed and evaluated our system.

Recently, there has been a lot of research interest in

both 3D face processing [7], [38], [42], [62], [36], [9], [57],
[31] and 2D/3D face processing [60], [13], [8], [43]. Many

researchers have cited the perceived benefits of using

3D data for face recognition instead of, or in addition

to 2D data; namely an improved robustness to pose and

lighting variations and potentially more reliable mech-

anisms for dealing with expression changes. Such bene-
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fits were perhaps overstated five years ago, in the initial

phase of 3D face recognition activity, when invariance
to pose and lighting conditions was sometimes claimed.

However, even current active sensors that project their

own known light source onto the scene cannot yet gen-

erate scans that are completely immune to the ambient

lighting conditions, such as the level of sunlight stream-

ing through a window. Furthermore, when head pose
changes, a 3D sensor can not produce data that can
be modelled as a simple rigid Euclidean transforma-

tion of the data generated from the original pose. The

main reason is self occlusion when, for different head

poses, different parts of the face are visible. However,

there are other reasons, such as the angle of incidence

of the projected light on the facial surface changing and

different parts of the the face moving into more or less

favourable ambient viewing conditions as the head pose

changes. Despite such problems, which are partly due to

shortcomings in 3D sensor technology, 3D does offer the

possibility of facial recognition in more unconstrained

viewing conditions than is currently available in 2D ap-

proaches. Such ‘3D at a distance’ recognition technol-

ogy is suitable for applications where highly prescribed

subject cooperation is impossible or undesirable.

Much of the 3D face work presented in the literature

uses low noise 3D data in a frontal pose and normalisa-

tion techniques sometimes even require that both eyes

are visible, which is at odds with a main selling point of

3D approaches, namely robustness to pose variations.

In contrast, our method requires us to be able to iden-
tify a single distinctive point within the 3D scan, which
is less restrictive than needing to view several features
simultaneously and, in addition, it manages significant

areas of missing data, such as occurs from self-occlusion,

in robust and natural way. This refers to the nose oc-

cluding part of the cheek or the upper lip, when the

facial pose is allowed to vary up to 45 degrees relative
to frontal, but does not imply reconstruction of missing
data in extreme poses, such as a pure profile, which are
not used in our experimentation.

Appearance based methods have proved competi-

tive in terms of achieving state-of-the-art performance

in 2D face recognition. It is possible to adapt these

methods, such as fisherface [4], to work with 3D data

[29]. The results have been promising, because of the ex-

cellent background segmentation and explicit, discrim-
inating 3D data. A requirement for such methods to
work well is that all the data has a common alignment,

which is usually a frontal view. We have developed a

process for robust frontal 3D face alignment, when that

3D face data is potentially noisy and has missing parts

due to spectacles, beards and self-occlusion. The four

steps of this process are: (i) Filter the data automat-

ically; (ii) Identify the nose tip vertex and interpolate

the nose tip location to sub-vertex resolution; (iii) Com-
pute the (relative) face orientation; (iv) Generate a pose
aligned or pose normalised depth map.

There are two main themes that run through this
process: (i) The use of a radial basis function (RBF)

model of the facial surface. This is employed in all four

stages above. The RBF describes the signed ‘distance
to surface’ (DTS) of any point in 3D space. In terms of
nose tip localisation, for example, the RBF provides a

natural mechanism to generate pose-invariant 3D shape

descriptors, that have high immunity to missing parts,

without having to explicitly reconstruct those missing

parts. In terms of the final stage, which generates an ar-

bitrary resolution depth map, interpolating where the

RBF is zero allows us to find facial surface points to any

desired resolution. (ii) The use of spherically defined

methods and features for pose invariance. This occurs
in three layers: firstly the RBF itself is spherical in na-

ture, in that each component has a fixed value over a

sphere in 3D space. Secondly this RBF is sampled over

a set of concentric spheres, to give novel pose invariant

features called ‘spherically-sampled RBF’ (SSR) shape

histograms. These have been very successful in iden-

tifying the facial nose tip. Thirdly, concentric spheres
centred on the nose tip generate 3D space-curves, called
‘isoradius contours’ by intersecting with the implicit fa-

cial surface (where the RBF is zero). This provides an

effective method for either the alignment of a pair of

faces, or the normalisation of facial pose to a canonical

pose.

In the following section, we overview previous work

in 3D object retrieval and review related work in the

key areas that this paper addresses. The next two sec-

tions describe our two new 3D invariant feature types,

SSR descriptors (section 3) and isoradius contours (sec-

tion 4), and how they are extracted using a globally

supported RBF. The next section describes the im-

plementation of our four stage depth map generation

process. Before our final conclusions section, two sec-

tions detail our evaluations. Here, section 6 evaluates

SSR histograms and their derivatives, when compared

to spin images [35], in the context of facial nose tip iden-

tification. Section 7 evaluates isoradius contours, when
compared to ‘iterative closest points’ (ICP) [6], in the
context of facial pose alignment.

The Face Recognition Grand Challenge (FRGC) 3D
dataset [48] has provided an excellent benchmark to
evaluate various 3D face recognition strategies and com-

pare 3D face recognition performance with 2D perfor-

mance. Despite this, we have elected to augment FRGC

based evaluations by also using the University of York

3D (UoY) face dataset (1736 facial scans, 280 subjects)
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for evaluation, because the FRGC dataset does not con-

tain test conditions for significant pose variations. Fur-

thermore, the UoY dataset contains subjects with head

gear, such as spectacles, in addition to six facial ex-

pression variations, and is lower resolution and poorer

quality data than the FRGC data. The UoY dataset

includes 50% of data in frontal pose and neutral ex-

pression, 38% of data in frontal pose and non-neutral
expression and 12% of data in non-frontal pose and neu-
tral expression.

The work presented here represents the integration

and significant extension of our earlier work [46], [47].

2 Related work

In this section, we first give an overview of shape repre-

sentation in the context of different forms of 3D object

retrieval tasks (section 2.1). We then review previous

work on 3D local surface descriptors for landmark lo-

calisation (section 2.2). Finally, in section 2.3, we re-

view the theory and application of RBF modelling in

3D surface representation and interpolation.

2.1 Shape representation in 3D object retrieval tasks

The 3D object retrieval literature can be considered

in the context of a broad three-dimensional categori-

sation, namely: (i) shape representations that are ei-

ther pose-invariant or pose-aligned, this relates way in

which the retrieval system deals with arbitrary trans-

lations and rotations of the object when representing

shape; (ii) shape representations that are either holistic

or feature-based, this relates to the global/local nature

of the shape representation; (iii) retrieval applications

that are either inter-class or intra-class [56], this relates

to whether the system retrieves fundamentally different

object classes (car, table, vase) or different instances

of the same class, as in 3D face recognition applica-

tions. Of course, this is not the only categorisation and

not all 3D retrieval systems fall neatly into these cate-

gories, but this is a useful initial framework to discuss

the literature. An example of how a small, but broad

cross-section of recent work falls into these categories

is given in table 1, and we use these three categories to

develop our literature discussion in the following three
subsections.

2.1.1 Pose-invariant and pose-aligned descriptors

Typically, pose-invariant, holistic descriptors are posi-

tioned at the centre of mass of the object and are based

on spherical representations encompassing the whole

PI/ HO/ Inter/

Representation PA FB Intra

EGI [32] PA HO Inter

Splash [55] PI FB Inter

Shape Hist. [1] PI HO Inter

Sph. harm. SEF [50] PA HO Inter

Sph. harm. EDT [25] PI HO Inter

Light field [16] PA HO Inter

Fishersurfaces [29] PA HO Intra

CRSP [45] PA HO Inter

Keypoints [44] PI FB Intra

This paper PA HO Intra

Table 1 A comparison of a selection of 3D object retrieval meth-
ods. First column, pose-invariant (PI) or pose-aligned (PA). Sec-
ond column, holistic (HO) or feature-based (FB). Third column,
inter-class or intra-class retrieval tasks.

object shape. An early example is Ankerst et al’s 3D

shape histograms [1], which decompose the shape into a

set of concentric shells centred on the object’s centre of

mass. The object surface area intersected by each shell

is stored in a histogram indexed by shell radius, thus

giving a 1D array of values to represent global shape.

Often 3D shape has been described as a function on
a sphere [32] [50] [25] and this provides the opportunity

to compactly describe shape in the spectral domain, us-
ing spherical harmonics. These are a set of orthogonal
functions that originate from the angular part of the

solution to Laplace’s equation, expressed in polar coor-

dinates. The low order amplitude coefficients of a spher-

ical harmonic shape decomposition capture gross shape,

while higher order coefficients represent the higher spa-

tial frequencies, such as fine surface detail. Typically,
phase information of the spherical harmonic function
is discarded (for pose-invariance) and thus the ampli-

tude information provides a pose-invariant shape de-

scription.

There are several ways of describing shape as a func-

tion on one or more spheres, examples include: the

Extended Gaussian Image (EGI) [32], which describes

shape by accumulating surface area-weighted normal

directions into a histogram on the sphere; Spherical Ex-
tent Functions (SEF) [50], where shape is described by
casting a ray from the object’s centre and computing
the furthest intersection point on the object surface;

and voxel grid binary functions of the object surface,

restricted to a set of concentric spheres [25]. In their

original form, some of these approaches [32][50] have re-

quired an initial PCA based alignment stage (i.e. they

are pose-aligned rather than innately pose-invariant).

However, Kazhdan et al [37] has shown that employ-

ing pose-invariant spherical harmonic representations of

these functions gives either a similar or better retrieval
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performance than the original PCA-aligned descriptors,

depending on the class of object being retrieved.

The main advantage of pose-invariant, holistic rep-

resentations is that they allow fast matching, both be-

cause pose alignment is not necessary, and also because

the descriptors tend to be quick to extract and pro-

vide compact representations for fast shape matching.

Conversely, the main disadvantage of these represen-

tations is that, when discarding pose-dependent data,

some pose-independent information is lost which can

lead to a reduction in the descriptors power to dis-

criminate between different object classes. Indeed, when

such descriptors are designed, the aim is to achieve in-

variance with a minimal compromise in discriminating

power.

In contrast to pose-invariant techniques, whole 3D

objects may be aligned before matching them and this

can be done in two ways: (i) by exhaustive search for an

optimal alignment between each pair of objects (probe

and gallery), which is typical in inter-class retrieval

problems or (ii) by aligning to some common canonical

view of the stored models, which is the case of pose-

normalisation, and is typical in intra-class retrieval prob-
lems.

An example of exhaustive search is the light field de-

scriptor approach [16]. Here silhouette images are gen-
erated from projections down to 2D images over the
full view sphere. These 2D images are characterised by
Zernike moments and Fourier coefficients and matched

over all possible alignments. Although this approach is
computationally expensive, it generates highly descrip-
tive shape representations that have performed well in

inter-class retrieval tasks [54].

The simplest and most efficient way to align to a

canonical view is to use the three principal axes of the

object surface data, computed using some variant of

principal component analysis (PCA). Ankerst et al [1]

used this approach when augmenting their shell-based

shape decomposition with sectors. However, in its raw
form, this can be unreliable when comparing objects
of the same class [25], for example, in arbitrary pose

3D face recognition when some of the shoulder area

is included in the scan. Further problems that many

PCA based approaches need to solve are: a 180 degree

ambiguity in the direction of the principal axes, prin-

cipal axes may switch for shapes that have eigenvalues
similar in value, and a vulnerability to outliers in the
raw shape data. Recently, Papadakis et al [45] have ad-

dressed the pose normalisation problem in inter-class

retrieval by applying PCA on both surface points and

surface normals (separately). For each query/dataset

comparison, both alignments are compared and the dis-

tance metric with the smallest value is selected as the

match score. The representation that they develop is

called a concrete radialized spherical projection (CRSP,
detailed in table 1) and this has given excellent retrieval
performance on the Princeton Shape Benchmark.

An alternative to PCA based alignment is to align

directly to an object template already in canonical pose.
Given a set of point-to-point correspondences on a pair
of 3D objects that we wish to align, several research

groups have shown that we can compute the relative ro-

tation between the two sets of data using least-squares

techniques [23], [2], [28]. Once we have the 3D rota-

tion, the relative 3D translation can be computed using
the means of the two data sets. The question then be-
comes: how do we determine point-to-point correspon-
dences? In the iterative closest points (ICP) approach

of Besl and McKay [6], point-to-point correspondences
are determined by using the minimum Euclidean dis-
tance (closest points) across the two 3D data sets and

these correspondences are iteratively refined, as align-

ing rotations and translations are computed for each set

of new correspondences, until the alignment algorithm

converges. If ICP converges successfully, this generally

occurs in a relatively small number of iterations, but the

algorithm has the disadvantage of converging to local

minima if the initial misalignment is too great. To avoid

this, an initial estimate of the transformation between

the two surfaces is generally achieved with a coarse

correspondence scheme, such as that used by Lu [42],

where heuristics applied to local, curvature based shape

indices are used before application of ICP. Chetverikov

et al [17] have developed a ‘trimmed’ version of ICP

in order to improve robustness. Alignment can also be
achieved by localising three or more landmarks on the
3D surface and transforming these into the canonical
frame [12]. Often this is used as a coarse initial align-

ment method and ICP is used as a refinement.

The main advantage of pose-aligned (view-based)

descriptors is that they can be highly discriminating, as

no information is ‘washed out’ in order to achieve pose-

invariance. The disadvantages include the high com-

putational cost of exhaustive search for alignment, or

the non-trivial problem of localising landmarks for pose

normalisation to a canonical view.

2.1.2 Holistic and feature-based representations

A holistic representation is global in the sense that it
captures the whole shape, which has the advantage of
using all of the available raw shape data for discrim-

ination within the matching process. Classical holistic

approaches in 2D face recognition include the Eigenface

approach [59] and the Fisherface approach [4], both of

which have been adapted to 3D face recognition [30]
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[29]. The disadvantage of such representations is that

they are vulnerable to occlusions and shape deforma-

tions, such as may be encountered in deformable or ar-

ticulated objects. Conversely, feature based approaches

extract local features, typically at distinctive points on

the 3D surface, such as curvature extrema. The global

distribution of such local features can be used in struc-

tural (graph) matching procedures to match between
a probe and gallery graph [44], or the features may be
used in hashing procedures [55]. The advantages of such

feature-based approaches is that they have immunity to

missing parts, such as occurs from self occlusion in 2.5D

shape data.

2.1.3 Inter-class and intra-class applications

The category of approach adopted has been depen-
dent on the form of the 3D object retrieval task. In
general, pose-invariant, holistic descriptors have been

applied to inter-class retrieval problems. For example,

spherical harmonic approaches [37][25] have been ap-

plied to the Princeton Shape Benchmark inter-class re-

trieval problem [54]. This accords with the need for

compact, efficient, whole-shape descriptions for search-
ing large 3D datasets. (A notable exception to this is
Chen et al’s light-field descriptor (LFD) method [16],

which is a large, view-based representation. With this

rich information representation, the LFD system re-

trieval accuracy was reported to be highly competi-

tive with other methods [54].) In contrast, for intra-

class retrieval applications, such as the 3D face recog-

nition applications [36] [31], most researchers have used

pose-aligned or pose-normalised descriptors. This ac-

cords with the notion that the discriminating power of

aligned/normalised descriptors is required to give the

necessary fine-grained classification performance [56].

2.2 Local surface descriptors for landmark localisation

The system presented in this paper uses novel 3D sur-

face descriptors for landmark localisation prior to pose

alignment or pose normalisation. Thus we now look at

previous work related to local 3D surface descriptors

used for 3D alignment in both recognition and retrieval

applications, with particular emphasis on the work ap-

plied to 3D facial surfaces.
Historically, many researchers have sought to ex-

tract pose invariant 3D surface descriptors. For exam-

ple, Besl and Jain [5] used Gaussian curvature and mean

curvature to categorise surface shape into eight distinct

categories. Dorai and Jain [22] developed this to de-

fine two new measures, called the ‘shape index’ and

‘curvedness’. Colbry et al [20] use shape index for what

they term anchor point localisation. Chang et al [14]

use mean curvature and Gaussian curvature to localise
the nose tip, nose bridge and eye cavities in 3D face
data.

Gordon’s work [26] on developing curvature maps

for 3D face data was an early example of a local, invari-
ant 3D facial surface characterisation. This curvature

was generated with a view to generating discriminat-

ing features for recognition rather than localising facial

landmarks. However, extrema of curvature have since

been used to generate regions of interest over which

more discriminating and computationally expensive lo-

cal descriptors can be extracted to determine a reliable

landmark localisation [12].

Three particularly notable local 3D surface descrip-
tors were presented in the 1990s; splash representations

[55], point signatures [19] and spin images [35]. Stein
and Medioni [55] proposed the ‘splash representation’
to encode local 3D surface shape. Here, a local con-
tour is extracted, that is some fixed geodesic distance

from a vertex and surface normals are generated at
fixed angular displacements within the tangent plane
of that vertex. The angle of the surface normals along

the geodesic contour, with respect to the vertex normal,
are computed and used as a mechanism for identifying
a vertex. The representation is used in a hash table 3D
object indexing/retrieval approach, which the authors

call ‘structural indexing’.

Chua and Jarvis [19] present an alternative, which

they call the ‘point signature’ representation. Here, a

sphere is centered on a vertex to provide an intersect-

ing curve, C, with the object surface, that is some Eu-

clidean distance from the vertex. The normal of a least-

squares plane fit of the points in C and the vertex itself

define a reference plane and the heights of the points

on the curve, C, relative to this reference plane gives

a signed distance profile. Comparison of signatures is

made by scanning the signed distance values out from

the maximum distance value. If there are several local

maxima, the comparison is executed at each local max-
imum. Point signatures have been used for 3D facial
feature detection and 3D face recognition [18], [60].

At around the same time as point signatures, John-

son and Hebert presented the ‘spin image’ represen-
tation [35], which cylindrically encodes shape relative

to a local tangent plane. To construct a spin image,

both radius and height of neighbouring vertices rela-

tive to the local tangent plane are measured and the

results are binned into a histogram. Of these methods

reported in the 1990s, spin images have been taken up

most widely by the research community (see, for exam-

ple, [3]), perhaps because they are intuitive and simple

to compute. More recent work has focussed on matching
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multi-resolution pyramids of spin images [21] in order to

speed up the matching process. Other researchers have

used spin images to localise 3D facial features [12].

Some approaches to 3D facial landmark localisation

have adopted rules based on local surface descriptors

and their distribution. For example, Xu et al [62] select

nose candidate vertices as those points that have maxi-

mal height in their local frame. Many of these are elimi-

nated, based on the mean and variance of neighbouring

points projected in the direction of the vertex’s nor-

mal. Final selection of the nose position is based on the

most dense collection of nose tip candidates. Segundo

et al [53] developed a heuristic technique for nose tip

localisation, using empirically derived rules applied to

projections of depth and curvature.

An alternative approach to matching local surface

descriptors in order to localise 3D surface landmarks,

is to use a 3D model, marked up with the relevant

landmarks, and then globally align the manually an-

notated model to the data. The landmarks can then be

mapped directly from the model into the data, for ex-

ample, as closest vertices. This approach was applied to

3D faces by Whitmarsh et al [61]. The key step is the

registration process, which uses ICP for a rigid trans-

formation (translation and rotation) and a scaling step,

to independently match the height width and depth of
the model to that of the data. This approach appears
promising, due to its efficiency in localising multiple

landmarks simultaneously. However, the method relies

on ICP convergence, which is difficult to guarantee in

uncropped, arbitrary pose data.

2.3 RBF surface modelling

We use a radial basis function (RBF) model of the 3D
facial surface in all four processing stages presented in
this paper and so we now present an overview of this

3D surface modelling approach. Scattered data inter-

polation using radial basis functions has been studied

from at least the 1980s [24], with notable contributions

by Savchenko et al [51] and Carr et al [11]. Essentially,
a 3D object surface is represented implicitly (where the
RBF has the value zero), which provides a compact rep-

resentation with inherent interpolation abilities, since

the RBF is defined everywhere in ℜ3.

Applications have been widespread and include: au-

tomatic mesh repair in range-scanned graphical models

[11], cranioplastic skull model repair [10], surface re-

construction in ultrasound data [49], 3D shape trans-

formation [58] and animated face modelling [15], where

an RBF is used to transform corresponding 3D fea-

ture points between a template face and a face scan.

However, the use of RBFs specifically for 3D facial fea-

ture descriptors is currently sparse and the only re-
lated RBF-based 3D face feature extraction that we
are aware of is that of Hou and Bai [33], who use RBFs

to detect ridge lines on 3D facial surfaces. This lack

of literature is possibly because of the perception of

RBF fitting and evaluation being computationally ex-

pensive. Indeed, conventional methods for RBF implicit

surface fitting to N points requires O(N3) operations

and O(N2) storage, whereas our implementation em-

ploys the fast multi-pole method (FMM) developed by

Greengard and Rokhlin [27] and used by Carr et al [11]

for interpolating 3D object surfaces. In this method,

approximations are allowed in both the fitting and eval-

uation of the RBF. For example, for RBF evaluation at

a particular point, the centres are clustered into ‘near

field’ and ‘far field’. The contribution of only those cen-

tres ‘near’ to the evaluation point are directly evaluated

and those ‘far’ from the evaluation point are approxi-
mated, allowing a globally supported RBF to evaluated
quickly to some prescribed accuracy. This method re-

quires O(NlogN) operations and O(N) storage for the

fitting process. For evaluation of the RBF at M points,

the algorithm requires O(NlogN) setup operations fol-
lowed by O(M) operations.

In our work, we closely follow the approach and no-

tation of Carr et al [11]. To briefly recap from their

work, a radial function has a value at some point in n-

dimensional space x, which only depends on its 2-norm

relative to another point, called a ‘centre’. Hence, in

our case, the radial function value is constant over a

sphere. A radial basis function uses a weighted sum of

basis functions to implicitly model a surface, where the

basis function may be Gaussian, cubic spline or some

other function, which is radial in form, as shown in

equation 1,

s(x) = p(x) +

Nc
∑

i=1

λiΦ(x − xi) (1)

For our 3D facial surface RBF model, p is a linear poly-

nomial, λi are the RBF coefficients, Φ is a biharmonic

spline basis function such that Φ(r) = r, and xi are

the Nc RBF centres. In fitting a 3D surface, s is cho-

sen such that s(x) = 0 forms a surface that smoothly

interpolates the data points xi. Thus the RBF model
parameters implicitly define the surface as the set of

points where the RBF is zero. This is called the zero

isosurface of the RBF. Note that one can not simply

solve the equation s(xi) = 0 for our N data points, as

this yields a trivial solution of s(x) = 0 everywhere.
Constraints where s(x) is non-zero need to be used.

Since we may readily generate ‘off-surface points’ using
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positive distance to surface (DTS)

negative distance to surface

Fig. 1 Adaptive generation of ‘off surface’ points along the sur-
face normal directions of a nose profile. The point marked in solid

red and circled been adapted and brought nearer to the facial sur-
face.

surface normal data, s can be chosen to approximate a

signed distance to surface (DTS) function.

Figure 1 illustrates the cross-section of a nose, where

surface normals are used to generate off-surface points

with known (signed) DTS values. In this process, care
is essential at regions of high local curvature. In such
cases, the distance to the surface has to be reduced
on the concave side of the surface in order to avoid

generating inconsistent DTS data. Our implementation

employs the simple approach of Carr et al [11], which is

to validate an off-surface sample point by checking that

its nearest surface point is the point, p, from which it
was projected. If this is not the case, then the projection

distance is progressively reduced until the nearest point

is p.

We use the biharmonic spline as the RBF basis func-

tion, as this is known to be the smoothest interpolant in

the sense that it minimises a certain energy functional

associated with the fit, producing an implicit surface

with minimal curvature. Thus it is well suited to repre-

senting 3D object surfaces [11]. We perform a globally
supported RBF fit and when we have performed the fit
once, it can be evaluated anywhere in ℜ3 where we need

to determine a signed distance to the object surface,

through all four stages of the depth map generation

process described in this paper. By convention, points

below the facial surface (inside the head) are negative,

those above the facial surface are positive and those on
the facial surface are zero.

3 Spherically-sampled RBF (SSR) descriptors

In spin images [35], a surface point uses its associated

surface normal to form a basis with which to encode

neighbouring points. Neighbouring point positions are

encoded in cylindrical coordinates, as the radius in the

tangent plane and height above the tangent plane. All

points are binned onto a fixed grid. Corresponding 3D

points across a pair of similar objects can be matched

by a process of correlation of spin images or any other

matching metric. Issues in spin image generation in-

clude (i) noise affecting the computation of the local

surface tangent plane and (ii) problems of appropriate

bin size selection. Due to these issues, we were moti-

vated to make use of an RBF model to generate invari-

ant 3D surface descriptors, which we call spherically-

sampled RBF (SSR) surface descriptors.

3.1 SSR shape histograms (‘balloon images’)

Here we propose a new kind of local surface representa-

tion, which can be derived readily from the RBF model

and we call this an SSR shape histogram. To generate

such an SSR shape histogram, we first distribute a set

a n sample points evenly across a unit sphere, centered

on the origin. To do this, we employ the octahedron

sub division method, which, for K iterations, generates

n = αβK points. The constants are [α, β]T = [8, 4]T

and we use K = 3, which gives n = 512. The sphere

is then scaled by q radii, ri, to give a set of concen-

tric spheres and their common centre is translated such

that it is coincident with a facial surface point. (Note

that this can be a raw vertex, but can also be anywhere

between vertices, on the RBF zero isosurface).

If a sphere of radius ri is placed at some object
surface point, then the maximum distance of any point

on that sphere from the object surface is ri, implying
that typical maximum and minimum evaluated RBF

values for a flat object surface region are +ri and −ri

respectively. Thus a reasonable normalisation of RBF

values is to divide by ri to give a typical range of [-1,

1] for normalised RBF distance-to-surface values. Such

a normalisation allows RBF values distributed over a

wide range of radii to be accumulated into the same

local shape histogram.

The RBF, s, is evaluated at the N = nq sample

points on the concentric spheres, and these values are

normalised by dividing by the appropriate sphere ra-

dius, ri. If this normalised value, sn = s
ri

, is binned

over p bins, then we can construct a (pxq) histogram

of normalised RBF values, which may, for visualisation

purposes, be rendered as a ‘balloon image’. (Note that

the balloon analogy comes from incrementally inflating

a sphere through the 3D domain of the RBF.) Exam-

ples of balloon images for the protruding nose and flat

forehead are given in figure 2. Here we use 8 radii rang-

ing from 10mm to 45mm inclusive and we accumulate

the normalised RBF values into 23 bins from -1.1 to 1.1

in steps of 0.1. We use a slightly larger range than [-1

1] to ensure that all RBF values are accumulated.
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Fig. 2 Spherically sampled RBF (SSR) histograms generated
over 8 radii and 23 normalised SSR bins: nose tip (upper image),
forehead vertex (lower image)

3.2 SSR values

Clearly, the convexity of the local surface shape around

some point is related to the brightness distribution of

the balloon image. This motivates us to consider how

SSR histograms may be processed to give a pose in-

variant convexity value for high resolution, repeatable
landmark localisation. For example, if we wish to lo-
calise the nose tip, we may first define the nose tip as
the point on the facial surface where a sphere of ap-

propriate radius (centered on that point) and the face

have minimum volumetric intersection. We then need

to consider how to calculate the volumetric informa-

tion from the SSR histogram and our approach is il-
lustrated in figure 3. In this figure, the point p is on

the object (face) surface, the upper left part of the

figure is above the object surface (s(x) > 0) and the

lower right part of the figure is below the object sur-

face (s(x) < 0). We have illustrated three concentric
spheres (solid lines) of radius (r1, r2, r3), separated by

∆r over which the RBF is sampled and we consider
three co-radial samples for each of these radii at x1, x2

and x3 respectively, noting that s(x1) > 0, s(x2) < 0

and s(x3) > 0. The dashed circles in the figure indi-

cates the position of (non-sampling) concentric spheres
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Object
surface

r
r

r3
2

1

+

+

+

x3

x2

x1

p

s(x)<0

s( x )>0

Fig. 3 Computation of an SSR value, a measure of the volu-

metric intersection of the object (head) and a sphere, centred on
the object surface. This is an indicator of surface convexity at
a selected scale. The two red shaded sectors have positive RBF
evaluations and the blue shaded sector has a negative evaluation.

that bound volumetric segments, and these have radii,

ρi midway between the sampling spheres, namely at

ρi = (ri+ri+1)
2 . In order to determine an estimate of the

total volumetric intersection within the outer (dashed)

sphere of radius ρ3 = r3 + ∆r
2 , we need to sum all of the

volumetric contributions centred on radial sampling di-

rections with s(x1) < 0, over all sampling radii and all

sampling spheres.

In figure 3, the central blue shaded volumetric seg-

ment contributes to the object/sphere intersection, but

the two outer red shaded volumes do not. Note that the

segments centred on the larger radii have bigger vol-

umes, and thus a weighting vector needs to be applied

to the summation. Thus the volumetric intersection, Vp,
at point p is given by:

Vp =
k

n
vT n− (2)

where k = 4π
3 is a constant related to the volume of

a sphere, n is the total number of sample points on
a sphere, vT is a vector containing the q volumetric

weights (one for each radius), and n− is a vector where

each element is the count of the total number of sample

points on a given sphere in which s(x) < 0.

An equivalent, but more elegant approach, is to de-
fine a metric that is a relative measure of the volume

of the sphere that is above the object surface compared
with the volume of the sphere below the object surface.
With this in mind, we define a SSR based convexity

value for the point, p, as

Cp =
k

n
vT [n+ − n−] (3)
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where n+ is a vector in which each element is the count

of the total number of sample points on a given sphere
where s(x) > 0. With this metric, a highly convex

shape will have a value approaching 1.0, a highly con-

cave shape will have a value approaching -1.0 and a flat

area will have a value close to zero. This can be clearly

seen from equation 3, where the elements in n+ and n−

will be similar, giving a near zero vector on the right of

the equation. In its simplest form, a very approximate

SSR value can be computed using a single sphere, which

makes both the constant k and the volumetric weight-

ing vector v in equation 3 redundant. We use this form

in this paper, which amounts to averaging the signs of
n RBF evaluations over a sphere.

Cp =
1

n

n
∑

i=1

sign(si) (4)

In order to illustrate the potential of this technique,

a single sampling sphere of radius 20mm and 128 sample

points is moved over a facial surface. Figure 4a, illus-

trates the RBF distance-to-surface values of this facial

surface by a colour mapping and the RBF sampling

sphere (yellow) is shown positioned close to the nose

bridge. The resulting SSR value map is shown from dif-

ferent views in figures 4(b),(c),(d). A surface is rendered

over this plot to aid visualisation, where the lighter ar-

eas have a convexity value near to +1 and the darker

areas are close to -1 (i.e. concave). The figure indicates

that, in this case, the nose is the peak convexity value

in the map. Note also that the inner eye corners have

high concavity, suggesting that they are also good land-
marks to localise with this descriptor.

3.3 SSR descriptors: A comparison with the literature

To our knowledge, the closest work to SSR histograms

in the literature is Johnson and Hebert’s spin images

[35]. Although our method requires a global set of nor-

mals to computed the RBF, unlike the spin image, a

local normal is not required to encode points in a lo-

cal frame. We hypothesise a number of advantages that

SSR histograms may have over spin images: (i) Miss-

ing parts or any residual data spikes may corrupt the

local normal estimate, which can have a big influence

on the spin image; (ii) This is likely to be exacerbated
in areas of high curvature, such as the nose tip, par-
ticularly, when the raw vertex data is of limited res-

olution; (iii) Missing parts can corrupt the content of

spin-images, unless an effective interpolation process is

implemented. For SSR histograms, the interpolation is

implicit in the method, as the RBF is defined every-

where in 3D space; (iv) Issue of correct bin-size selection

is an issue in spin-images, but is not a problem for SSR

histograms, because we choose a set of radii explicitly;
(v) Local density of points is an issue for spin images,
but again this is not a problem for SSR histograms, be-

cause we choose the number of sampling points on the

concentric sampling spheres explicitly. In section 6, we

evaluate SSR histograms and compare them to three

variants of spin-image, of the same size and resolution.

Given that we employ spherical methods, we now
compare our approach with the general application of

spherical harmonics to shape representation. Generally
speaking, spherical harmonic methods have been ap-
plied to global shape representations, rather than local

surface representations and they have been used either

to achieve pose-invariance, or to generate a compact

shape descriptor for efficient matching or both. The

reasons why we did not apply the Spherical Fourier
Transform to our RBF ‘distance-to-surface’ function,
defined on local concentric spheres are: (i) local shape
descriptors need to be computed at potentially many

surface points on the same 3D object, which can be

computationally expensive; (ii) the SSR histogram is

already inherently pose invariant for a sufficiently large

number of samples on the sampling spheres and (iii) we
achieve compactness by projecting the SSR shape his-
togram into a reduced dimension space, using standard
PCA. Nevertheless, we believe that there are several

interesting avenues of research to be explored, by ap-

plying spherical harmonic methods to RBF shape mod-

els evaluated over concentric spheres. For example, the

RBF could be evaluated over a global set of concentric
spheres and spherical harmonic methods could be ap-
plied to encode holistic shape in an inter-class retrieval

application. This is particularly attractive when the raw

3D object data has missing parts, as is the case when

shape data is derived from 3D sensor systems.

Since any arbitrary pose 3D point cloud can be in-

terpolated to give depth values over a regular Cartesian

grid, we can represent 3D shape (or rather 2.5D shape)

as depth maps, also referred to as range images. This
means that we can apply any feature detectors avail-
able that may have initially been developed for stan-

dard 2D intensity images. A seminal example of this is

the scale invariant feature transform (SIFT) algorithm,

developed by Lowe [41], which has proved to be one of

the most successful feature detectors used by the Com-

puter Vision community. It has been widely used on

standard 2D intensity images in a range of applications

including object recognition [40], matching objects in

video sequences [34] and robot navigation [52]. In order

implement a small scale test of the SIFT algorithm on

3D facial depth maps, we have used the publicly avail-

able version 4 of SIFT from David Lowe’s web pages
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(a) (b)

(c) (d)

Fig. 4 (a) Top left shows spherical sampling of the RBF. The blue areas are negative RBF values (below the facial surface), yellow/red
areas are positive RBF values (above the facial surface) and the turquoise areas contain the zero RBF isosurface (facial surface). Plots
(b,c,d) in grey show the SSR values (convexity) of the same face from three different views.

at the University of British Columbia. Figure 3.3 shows
the results of SIFT when applied to 60x90 depth maps
from the UoY dataset. Frontal poses are shown in the
left column and poses looking down are shown in the

right column. All SIFT feature with scale values greater

than 2 are shown and nose and eye features have been

manually colored in red. Since the nose tip lies on the

plane of bilateral symmetry, this often causes SIFT to
generate a pair of dominant orientations for the same
nose tip keypoint. This is because, in the SIFT algo-

rithm, dominant directions for local gradients are de-

tected as peaks in the SIFT orientation histogram. In

the algorithm, the highest peak is detected and any

other peak that is within 80% of this highest peak is also

retained, creating a pair of coincident keypoints with

different orientations. Also, as head pose changes (see

figure 3.3), the dominant orientation of the keypoint

changes, which is dependent on head pose; worse still,

the keypoint descriptor itself must, in general, change

because the changes in the depth map around a fa-

cial landmark over out-of-plane rotations can not be

modelled as similarity transforms, which is the class of

transforms over which the SIFT algorithm is designed

to be invariant. If we compare SSR descriptors to the

SIFT approach, the extrema in the SSR value func-

tion are our interest points (for example maxima at

nose tip, minima at inner eye corners, see fig 4) and are

analagous to SIFT keypoints and SSR histograms are

our descriptors, analagous to SIFT’s orientation his-

togram descriptor. Both our interest point generator
and descriptor are based on spherical representations
in 3D as opposed to being based on a depth signal
defined on an orthogonal, regular grid. This property

provides significantly greater immunity to out-of-plane

pose variations than is afforded by SIFT operating on

single viewpoint depth maps.

4 Isoradius contours

Once the nose tip has been localised using SSR descrip-
tors, as will be described in detail in section 5.2, we
use our second new representation, called the ‘isora-

dius contour’, to align a pair of faces. This can be used

in two ways. Firstly, as a direct alignment method be-
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Fig. 5 SIFT features (scale greater than 2) in 60x90 unaligned
facial depth maps (generated by sampling UoY dataset RBF
models). Frontal pose (left column) and looking down (right col-
umn). Nose and eye corner features are manually colored in red.

tween any pair of faces, both of which are in non-specific

poses. In this case, once the optimal alignment is deter-

mined, depth maps for both faces are generated ready

for feature extraction and matching. Alternatively, if a

particular face (such as an average face) is known to be

in canonical pose (frontal), it can act as a reference face
to align all other faces in a dataset to the same canon-
ical pose. This is useful when we wish to build statisti-

cal models of depth map variation, which requires the

depth maps to be pose-normalised.

An isoradius contour is a space-curve defined by the

locus on a 3D surface that is a known fixed distance

relative to some predefined reference point. Thus an

isoradius contour (IRAD) can be thought of as the in-

tersection of a sphere, centered on that reference point,

with the object surface. (We note that this is the same
space-curve definition that is used in the point signature
method [19], although highly sampled contours using

RBF models are not used in this point signature work.

In addition, we encode shape information around the

contour differently, and we use the space-curve for pose

alignment, rather than identification of a 3D point.)

In the case of faces, an obvious choice for the refer-

ence point (sphere centre) is the tip of the nose. Clearly

the shape of the intersection of the sphere with the

face is independent of the 3 DOF head orientation, due
to the infinite rotational symmetry of the sphere. This
pose invariance is a major benefit of the representa-
tion. To encode the shape of the contour, we compute

its local curvature tangential to the sphere and we call
this an IRAD curvature signal. If IRAD curvature sig-
nals are scanned out in a consistent manner, that is in

an anticlockwise direction around the nose tip normal,

then these signals are pose invariant, modulo a rota-

tional phase shift. This suggests that we can align a

pair of faces by a process of 1D curvature signal corre-

lation, applied across a pair of IRAD curvature signals

(one on each face) derived using the same sphere radius.

Thus, we can generate an IRAD curvature correlation
signal by sliding the smaller curvature signal exhaus-
tively over the larger curvature signal. This correlation

signal constrains the possible rotational alignments to a

set of n, where n is the number of points on the larger of

the two contours, typically around 150 using 1mm con-

tour steps over a 30mm sphere radius. We hypothesize

that the best rotational alignment occurs within this set
of n alignments, where the IRAD curvature correlation

signal is a maximum.

4.1 Extracting Isoradius Contours

In order to extract an isoradius contour, we need to in-

tersect a sphere of specific, known radius, with the fa-

cial surface, when that sphere is centred on the localised

nose tip. In order to generate an IRAD of radius R, we

make extensive use of the the RBF model that we have

generated within an IRAD ‘point chaining’ procedure,

which consists of the following steps:

1. Find a starting point, p1, on the facial surface. Here

‘facial surface’ is defined by the zero isosurface of

RBF model. In order to do this, we generate a cir-

cle, radius R, centered on the nose tip. This circle

resides in a plane defined by the two eigenvectors of
the point cloud around the nose tip that have the

two smallest eigenvalues. This guarantees that, for
a sufficiently small radius, the circle will intersect
the facial surface and we simply have to interpolate
any zero-crossing of the RBF (distance to surface)

function evaluated on the circle, to find a starting

point for the contour.
2. Localise an appropriate second point, p2 on the fa-

cial surface. We now generate a small circle of ra-

dius r, centered on the starting point p1 (described

above), which sits on the surface of the IRAD sphere

(shown in red in figure 6). Note that r is the step

length over which we chain the IRAD contour and

we use r = 1mm. Again the RBF model can be used

to find where this circle intersects the facial surface,

by computing the RBF values over sampling points

on the circle and interpolating the locations where

the RBF value is zero. We obtain a pair of zero-

crossings and, in contrast to step 1, here we need

to choose the correct zero crossing (facial surface

point), such that the isoradius contour starts to cir-

cle the nose tip in a consistent, anticlockwise (right

handed) sense. This is done by checking the direc-

tion of the cross product between two vectors, the

first of which is from the nose tip to p1 on the con-

tour and the second of which is from p1 to p2.
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Fig. 6 The IRAD chaining process generates a high density of

points at the intersection of a sphere and the facial surface.

3. Chain IRAD points around the nose tip. Once we
have found p2, a small circle centered on p2, radius

r, and on the IRAD sphere surface can be generated.

Again the RBF evaluations on this circle will have a

pair of zero-crossings. This time, however, the cross

product direction check is not required, because one

zero crossing is very close to p1 and so can be ruled

out. In this way, we chain around the intersection of

the IRAD sphere and the facial surface by selecting

the pi+1 RBF zero-crossing as the one most distant

from pi−1.

4. Terminate chaining process. When the chain comes

within a threshold distance ( r
2 ) of the start position,

then the chaining process is halted.

The IRAD chain, consisting of intersecting circles

on the surface of the IRAD sphere, at the junction of
the IRAD sphere and facial surface is illustrated with
real data in figure 6. The ouput of this process is a set

of points in 3D space that are a distance R from the

nose tip and a distance r from their two neighbouring

points (with the exception of the first and last point).

A set of contours over a range of radii, for the purpose

of illustration, are shown in figure 8. The question now

is how to encode this contour and this is dealt with in

the following subsection.

4.2 Encoding the contour

To encode the IRAD contour, we measure the IRAD
space-curve curvature that is due to the face shape,

rather than the curvature that is simply due to the fact
that the IRAD is distributed across the surface of a
sphere. Put simply, over a step r, the space-curve can

turn to the left on the IRAD sphere surface or turn to

the right, both by varying degrees, or continue straight

on.

The process is illustrated at the centre of figure 7.

Given that curvature, κ = ∆θ
∆s

, and if we maintain a con-

stant step length, ∆s, along the isoradius contour, then

the angular changes, ∆θ, encode the contour shape.

sphere
IRAD

IRAD

1
∆θ

2

i−1

Facial
surface

Sphere
centrei i+1

contourp p
3p

1
2

O
p p

p

n
n

Fig. 7 Extraction of an IRAD and encoding of its tangential
curvature

How do we actually compute ∆θ along the contour?

Consider three consecutive points (p1,p2,p3) on the

contour, separated by a fixed, but small ∆s, as shown

in figure 7. A normal to the contour, n̂1, is approxi-
mated as the cross product of the two vectors Op1 and

Op2, where O is the centre of the IRAD sphere. This

vector can be recomputed for points p2 and p3 using

the cross product of Op2 and Op3 to give the vector

n̂2. The change in angle of these normal vectors, ∆θ, is

the angle that we use to encode shape in a pose invari-

ant way. Given that, for sufficiently small r, we approxi-

mately move along the IRAD space-curve in even steps,

this change of angle approximates a curvature, which is

in a plane tangential to the IRAD sphere at the given

point on the space-curve. Examples of 30mm IRAD cur-

vature signals for different head poses is shown in figure

9. Note that these are approximately the same shape

and differ by small phase shifts. The phase shifts are

less than one might expect due to the adaptive way of
generating the starting point of the contour. The fig-
ure also shows how the use of a 10th order low-pass
Butterworth filter can reduce noise in these curvature

signals.

4.3 The effect of facial expression on IRADs

We have observed that isoradius contours can slide across

non-rigid parts of the facial surface and deform under

varying facial expression, particularly in the lower hemi-

sphere of the face, which includes the jaw area. In or-

der to illustrate this, we extract a set of four isoradius

contours (r=30mm, 38mm, 46mm, 54mm) on the fa-

cial surface of the same subject, under two conditions:
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Fig. 8 Isoradius contours extracted over eleven different radii

for illustration purposes. For 3D face alignment, we use a single
30mm isoradius contour, which traverses the central nose bridge

area and upper lip area.

mouth open and mouth closed. The extracted contours
are shown in figure 10, where the color red is used to
mark ‘mouth closed’ isoradius contours and blue is used

to mark ‘mouth open’ isoradius contours.

We have noted that the isoradius contours vary very
little across the nose bridge and upper part of the face,

whereas they do vary in the lower half of the face, the

degree being dependent whether the contour falls on an

area of significant surface deformation.

We are able to significantly reduce the influence of

facial expression on our facial alignment process in the

case when we match to a reference face in a known

canonical pose. Here, we match the full isoradius con-

tour of a face to be aligned (in this case, the ‘mouth

open’ face), to a smaller isoradius contour that only

contains the rigid nose bridge area of the reference face

(in this case, the ‘mouth closed’ face). This nose bridge

region provides a very strong feature for the isoradius

curvature correlation to lock onto. When seeking the

maximum correlation, we exhaustively shift the smaller

reference contour curvature signal relative to the larger,

full contour signal of the face to be aligned.

Figure 10 c, shows the isoradius contours after this
alignment process (the full contours of the reference

are shown in red for comparative purposes). Clearly,
the upper parts of the contours are closely matched
over the nose bridge area, whereas the contours in the
lower part of the face are quite different. The largest

two ‘open mouth’ contours marked in blue fall down

into the mouth region, giving a radically different shape

to the contours in the lower part of the face. Since only

the upper part of the face is used in alignment, the
process is successful and the result is shown in figure 10
d. Examination of this figure shows that the alignment

is clearly better in the upper part of the face than the

lower part. Finally, we note that the smallest IRAD

Fig. 9 IRAD curvature signals for the different head poses shown
at the top of the figure. Raw curvature data is shown in blue and
low-pass filtered data is shown in red. The upper graph shows
the signal associated with ‘looking up’ pose and the lower graph
shows signal associated with ‘looking down’ pose. The blue cross

shows the manually marked position of the nose bridge in each

case.

shown (radius 30mm) may be more desirable in terms
of avoiding ‘open mouth’ face regions for typical nose

sizes, if we were to perform alignments using a pair of
full contours both of which fully encircle the nose.



14

a)

b)

c)

d)

Fig. 10 The influence of mouth closed(red)/open(blue) on isora-
dius contours (radii=30,38,46,54mm). a) Mouth closed. b) Mouth
open. Note that isoradius contours fall under the texture map
in the mouth area. c) Isoradius contours after alignment: front
view and profile view (associated with d, right). d) Aligned point
clouds

4.4 IRADs: A comparison with the literature

The closest related works to our concept of isoradius
curvature signals are Stein and Medioni’s splash repre-
sentations [55] and Chua and Jarvis’ point signatures

[19]. Firstly, the splash representation generates geodesic

contours around the surface, which are more difficult

contours to compute than isoradius contours. Secondly,

we do not attempt to extract a set of piecewise linear

structural features from the data around the contour.
Breaking a softly curved organic structure such as a hu-
man face into a piecewise linear segments can be unsta-

ble. In contrast, we extract signals that can be matched

by a straightforward process of one-dimensional signal

correlation. Note that, unlike ‘point signatures’ [19], we

have not used a local plane normal estimate to encode

our signal, as this plane (defined as the least squares fit

of the contour) will be affected both by facial expression

changes and missing parts. Any deviations in this plane

have a global impact on the descriptor, as is the case

with spin images. In contrast, our method maintains a

consistent signal for all rigid sections of the surface, re-

gardless of any structural changes in other regions. For

example, the curvature signal associated with the part

of the contour passing through the rigid nose bridge is

not affected by the same contour passing through the

malleable mouth area. The tradeoff made is that the

difference operators that we use to compute curvature

tend to amplify surface noise, which is detrimental to

performance if the facial surface defined by the RBF

model is not smooth. However, we mitigate this effect

with the use of a 10th order low-pass Butterworth filter

applied to the curvature signals before they are corre-

lated.

5 Algorithm for depth map generation

We now describe each of the four stages of generat-

ing pose-normalised depth maps from noisy 3D point-
clouds using our RBF model. These steps are (1) filter
the data automatically (section 5.1), (2) localise the

nose tip (section 5.2), (3) compute the face orientation

(section 5.3) and (4) generate a pose-normalised depth

map (section 5.4). Section 5.5 gives typical computation

times for our system.

5.1 Automatic noise filtering

All non-synthetic 3D point cloud data, collected from

3D imaging systems, is noisy in the sense that it con-

tains both spurious data, such as spikes and pits (in-

ward pointing spikes), which are not associated with
the surface of interest, and missing parts where no sur-
face data is available. Spikes and pits generally occur
due to incorrect correspondences in a stereo matching

process or due to clutter in the scene. Missing parts

can occur when the surface reflectance is undesirable,

such as the specular surfaces on spectacles and oily skin

patches, or the poor reflectance of eyebrows, facial hair

and head hair. They also occur due to self-occlusion, for

example, when the nose occludes the cheek in a partial

side-view of the face. Many researchers have dealt with

noise using very simple filtering masks on ordered data.

We have designed a more sophisticated approach that

does not require data ordered on a grid and establishes

a self-consistent set of surface normals.

We use an aggressive filtering policy, in the sense
that we would rather remove some valid points from

the face surface data than leave in spurious points, such

as small data spikes. This is because we can always

interpolate, using our RBF model, over regions in which

there is missing data, whereas residual noise after the

filtering process corrupts the RBF model on which both
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surface interpolation and our new invariant 3D feature

descriptors are based. Our method of filtering the data

is premised on (i) the nose being the most locally convex

point that we are interested in and (ii) the inner eye

corners being the most locally concave point that we

are interested in within our depth map outputs. The

method consists of the following steps.

1. Remove long arcs and isolated meshes. The UoY

dataset contains mesh data, in addition to 3D point-

cloud data and texture mapping data. We use this

to remove long arcs of above 12mm and then we

identify how many submeshes we have. Each of these
is checked for vertex count and those below 10% of
the total vertex count are removed.

2. Compute normals and DLP values. The surface nor-

mal around a spherical neighbourhood (radius =
10mm) is computed by finding the eigenvectors of
this localised point cloud, xi, computed using sin-

gular value decomposition (SVD). The eigenvector
with the smallest eigenvalue describes the surface
normal, n. We check the z-component of the normal

to ensure that it is pointing away from the centre of
the head towards the camera. The distance to local
plane (DLP) di = n.(xi − x̄) is also computed as
a computationally cheap means of measuring local

convexity/concavity.
3. Remove noisy and isolated vertices. The DLP value

is compared to the mean DLP value for a set of nose

vertices from 100 training images. If the vertex DLP

value is greater than four standard deviations above

the mean value for a nose, then the vertex is flagged

as a spike. Similarly, if the DLP value is less than

four standard deviations below the mean value for

an inner eye corner, then the point is flagged as a pit

(negative spike). If there are insufficient neighbours

(less than 3) to compute a DLP value, then the point

is flagged as ‘isolated’. All such vertices (spikes, pits

and isolated points) are removed from the data.

4. Repeat steps 2 and 3 until there are no corrupted

normals. If there are any spikes, pits or isolated
points in the neighbourhood of some vertex, then

the normal of that vertex is considered corrupted.

Thus both normal and DLP value for that vertex are

recomputed after the corrupting points have been

removed. Clearly this could generate new spikes and

pits when the normal vectors adjust their orienta-
tion, and so iteration of steps 2 and 3 is required un-
til all normals are considered to be free from noisy

data. Note that there is no data-replacement policy

at this stage, which could cause some vertices to be

repeatedly culled an then re-introduced.
5. Generate RBF model from valid point-set. Given a

filtered set of data points, with a set of normals that

are self-consistent, it is now appropriate to generate

an RBF model of the face.
6. Compute distance to surface values for noisy ver-

tices and reinstate some vertices. We have a list

of points that have been filtered from the original

dataset. It is straightforward to compute the RBF

‘distance to surface’ values for this list of points with

a single function call. Those vertices with a distance

to surface value of close to zero can be reintroduced

into the valid vertex list. This re-instatement can

occur when, for example, an isolated vertex lies on

the facial surface.

The left column of figure 11 shows typical raw data

in the UoY 3D face dataset. This 3D data is shown

from two views: a frontal view and a view from under

the chin to show depth variations in the data. The cor-

responding 2D image for which the 3D scan was taken
is shown on the bottom left of the figure. The output
of our filtering process for this data is shown in the
right column of figure 11. The spurious data has been

cleaned away successfully, but there are large gaps in

the data around the brow area, for example, where we

can see specular reflection in the texture image. Also in

figure 11, we show a new facial mesh that has been de-
rived from the zero-isosurface of the RBF, fitted to the
filtered raw data. Note that this zero-isosurface mesh,
generated from a standard ‘marching cubes’ algorithm

[39], is used here simply to illustrate the interpolation

power of RBF model fitting. Note that, in the algo-

rithm described in this paper, we never need to gen-

erate a global zero-isosurface, other than for the final
regular grid depth map interpolation (stage 4). How-
ever, a small, localised, high density zero-isosurface is

generated around the identified raw nose tip vertex (in

stage 3), in order to localise the nose tip to sub-vertex

resolution. This is particularly useful if the nose tip area

itself has missing data, either in the raw scan or due to

vertex removal in the noise filtering process.

5.2 Nose tip identification and localisation

Generating and matching SSR histograms over all ver-

tices is computationally expensive, thus we identify the

raw nose tip vertex via a cascaded filtering process, as

illustrated in figure 12 from left to right. We then apply

a localisation refinement by maximising the SSR value,
in the local vicinity of the identified raw vertex, using a

local high density RBF-derived zero isosurface (see top

to bottom path on the right of figure 12). The concept

here is to use progressively more expensive operations

to eliminate vertices. The constraints (thresholds) em-

ployed at each filtering stage are designed to be weak,
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Fig. 11 The filtering process. Left column shows raw UoY data

(top and middle left are 3D, bottom left is 2D ). Right column
shows filtered 3D data and an RBF interpolated face (bottom-

right), generated from a ‘marching cubes’ style algorithm. This

is for illustration purposes: we do not need to compute this inter-
polated surface in order to generate our SSR descriptors, which
are highly immune to missing parts in the raw data.

by examining trained nose feature value distributions,
so that the nose tip itself is never eliminated. Concep-
tually, this amounts to considering every vertex as a

candidate nose position, where all but one vertex are

‘false positives’. Then, at each stage, we apply a filter

to reduce the number of false positives, until we have a

small number of candidates at the final stage, at which
point our most expensive and discriminating test is used
to find the correct vertex.

The feature that we use in filter 1 is a distance to lo-

cal plane (DLP), which has already been used to remove

data spikes. The filter uses a weak threshold, which is
four standard deviations around the average DLP value

for nose tips in the training set.

In filter 2, we compute SSR values using a single
sphere of radius 20mm with 128 sample points and,

again, we set a weak threshold based on the Mahalnobis

distance to the mean SSR value in the training data.

At this stage, we have multiple local maxima in SSR

value (see figure 4d) and so we find these and eliminate

all vertices that are not local maxima. Finally, we use

SSR shape histograms to select the correct nose vertex

by finding the minimum Mahalanobis distance to the

average nose-tip in a reduced dimensional space defined

by the training dataset. This nose position is refined to

sub-vertex resolution by selecting the maximum SSR

value over a small, local, high density zero isosurface of

the RBF.

Figure 13 shows the nose candidates for each stage

in the filtering process. 3D vertices are mapped into the

registered texture image for clearer visualisation.

5.3 Pose computation

In section 4 we defined an isoradius contour (IRAD)

and showed how to extract an IRAD curvature signal.

Since head pose changes shift this signal in a rotational

sense, we use a process of 1D correlation to align IRAD
signals, by searching for the maximum correlation value
over all possible rotational phases shifts. Of course, in

the correlation process, we need to deal with IRAD sig-

nals of different sizes. For now, lets suppose that the

two signals are the same size. We express these signals

as discrete data sets: x = [x1...xn]T and y = [y1...yn]T .

The normalised cross correlation C is given as:

C =
xTy

√

xTx + yTy
, where xTx + yTy > t2 (5)

for some threshold t. For n-1 rotational shifts of the x

vector, we obtain n values of C, which yields a nor-
malised cross correlation signal over n values.

The maximum value of the correlation signal sug-
gests the correct alignment of the IRAD contour pair

and we can generate a list of 3D correspondences along

the matched pair of IRAD contours, as:

xq(i) → xd(j) , i = 1...n, j = i + k, modulo(n) (6)

where xq = (x, y, z)T
q is a 3D point on the query surface,

xd = (x, y, z)T
d is a 3D point on the dataset surface, n

is the number of points on the IRAD signal pair, and
k is the rotational shift (in contour steps) required to

achieve the peak in correlation.

We compute these rotations using least squares [2][28].

First compute the cross covariance matrix, K given by:

K = Σn
i=1(xq(i) − xq)(xd(j) − xd)T (7)

we then compute the singular value decomposition of
K as

K = USV′ (8)

where S is the diagonal matrix of singular values and

V and U are orthogonal matrices. The rotation matrix,

R, is then given by

R = VU′ (9)
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Fig. 12 The cascade filter for nose tip identification (left to right). Also shown is the sub-vertex refinement process (top right to
bottom right).

(a) Filter 1 output (b) Filter 2 output (c) Filter 3 output (d) Raw (dot), refined (cross)

Fig. 13 Vertex outputs of the cascade filter and refine process for nose tip identification and localisation. 3D vertices have been
mapped into the associated registered 2D image for the purpose of visualisation.

In this procedure, the two signals are generally not

exactly of the same length and the shorter signal is

shifted and correlated across the full length of the longer

signal.

5.3.1 Pose checking and refinement

When we are doing one-to-one alignments of 3D face

pairs with neutral expressions, we use a pair of com-
plete isoradius contours that fully encircle the nose and
we find that the rotation matrix computed in 9 gives

good results, which are given in sections 7.1 and 7.2.

However, when we use the method to normalise to a

canonical pose over large datasets containing facial ex-

pressions (see section 7.3). we only use the nose bridge

area of an averaged isoradius contour (using 100 3D

scans) to reduce the influence of large changes in the

lower facial area, such as occurs during movements of

the mouth. In this case, we find that it is necessary

to do checking and refinement of the rotation matrix.

Both of these processes can be implemented by using

an average upper face template in conjunction with the

RBF model. The average upper face template is a set

of 3D points, with a width that spans the outer eye cor-

ners an a height that spans from the upper lip area to

the eyebrows. The idea is to position this template over
the face using the nose tip location and rotation ma-
trix, R, from equation 9, and evaluate the RBF at each

point on the template. In general, the set of evaluations
will contain both positive and negative values, and we
can compute an RMS value representing how well the
template fits to the face at that particular rotation (low

values mean a good fit). Now, the curvature correlation

signal, containing n values (typically 150) of C (equa-

tion 5) typically contains 4-6 significant peaks, each of

which has an associated rotation matrix. If we compute

each of these rotation matrices (instead of just the one

with the maximum correlation value), we can select the

minimum RMS value as being the best alignment. Fi-
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nally, we can refine the rotation matrix using the RBF

model, such that it gives a minimum RMS error. This

can be achieved by directly computing a point corre-

spondence on the RBF zero-isosurface for each point

on the average face template using the following equa-

tion:

xs0 = xt − s(xt)
∇s(xt)

||∇s(xt)||
(10)

where xt is a 3D face template point, xs0 is its cor-
responding point on the RBF zero isosurface, where

s(x) = 0. The set of point correspondences yields a
rotation matrix, as previously described, to rotate the

average face template and the process can be iterated to

yield a refined rotation matrix. This process is a variant

of ICP, but there is no requirement to search for cor-

respondences. Rather, they can be computed directly

from the RBF, even in areas where the raw face data

has missing parts. We find that we only need 3-4 itera-

tions before rotational adjustments fall below 1 degrees,

4-7 iterations to fall below 0.5 degrees and 7-11 itera-

tions to fall below 0.1 degrees. Evaluations of these pose

checking and refinement processes are given in section

7.3.

5.4 Pose-normalised depth map generation

Generation of an RBF model has provided mechanisms
to localise the nose tip and determine facial orienta-

tion. It also provides a futher step, namely a flexible
way of generating arbitrary resolution depth maps. The
method we use is a gridded coarse-to-fine search for the
RBF zero-isosurface. To extract an n × m depth map,

with 8 bit depth resolution, we execute the following
procedure.

1. Generate a 3D grid of size (n × m × 17), which is

sufficiently large to encase all 2.5D head data.
2. Translate the grid so that the nose tip is localised

at the centre of (nxm) in the X-Y plane and on the
16th row of the Z plane. (Using the 16th row rather
than the 17th gives room for a sign change in the

RBF at the nose tip).

3. Rotate the 3D grid about the nose tip using the

rotation matrix generated by the IRAD alignment

process and any RBF based pose refinements.

4. Use the RBF model to determine (nxm) sign changes
in RBF evaluations along the z-dimension (local depth

dimension) of the rotated grid.

5. Populate each sign change with another (evenly spaced)

15 RBF evaluations to execute a fine-scale search

for the RBF sign change. This gives an equivalent

eight-bit resolution i.e. 256 depth possible values.

5.5 Average timing of our processes

We have avoided algorithms with high computational

complexity in order to allow a 3D face to be processed

in reasonable time. However, our prototype system is

implemented in MATLAB and we have emphasized cor-

rectness rather than speed optimizations that would be

used in a live application. The time to process a face is

dependent on the raw data size, the complexity of the

surface (for example clothing in the chest and shoul-

der areas), and parameter settings, such as the size of

the size of spherical neighborhoods and the density of

spherical sampling in SSR descriptors. In the Univer-
sity of York 3D face dataset, we typically have 5000-
10000 useful vertices after the automatic filtering pro-

cess, which is a similar order of magnitude to FRGC

data when downsampled by a factor of 4 (in two direc-

tions). To give an idea of the speed of our system, we

averaged the processing times over 100 facial scans. The

results are as follows: (i) Normals and DLP descriptors
(10mm radius neighbourhood): 4.8s; (ii) RBF model
fitting: 12.1s; (iii) SSR values 40.7s (128 spherical sam-

ples); (iv) SSR value local maxima 0.0003s; (v) SSR

histogram generatation (4096 spherical samples) and

comparison 6.5s (vi) 30mm isoradius contour extraction

(1mm step length) 32.5s (vii) depth map generation

(60x90 pixels, 8 bit depth) 9.9s. This gives an average

processing time of around 107s per facial scan for our

basic one-to-one face alignment process. These times

were obtained from a PC with the following specifica-

tion: AMD Athlon 64x2 Dual core 4200+ 2.20 Ghz, 4Gb

RAM, running Windows XP and MATLAB R2006a.

There are two time consuming stages in our process:

computatation of SSR values and generation of isora-

dius contours. The time to compute SSR values is large

because there are many nose tip candidates in the DLP

filter output, generated from clothing in the chest and

shoulder area of the scan. Typically we have to compute

around 400 SSR values, but if the face is framed well,

this falls to around 100 values, reducing the processing

time by 30s.

6 Evaluation of nose tip identification

We have evaluated our RBF derived shape descriptors

on both the UoY 3D face dataset and the FRGC 3D

dataset. The UoY dataset has 1736 3D faces of 280

different people (subjects) and contains facial expres-

sion variations (38% of scans), pose variations (12% of

scans) predominantly in the up/down tilt direction, and

missing parts, due facial hair, shiny skin and spectacles.

The modal mesh resolution in the dataset is around

4mm.
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We have found it convenient to split our evaluation

into two categories of performance metric, namely: (i) A
feature identification metric, measured as the percent-

age of correctly identified nose tip features. This metric

measures the performance of SSR shape histograms in

a simple classification scheme, when compared to three

variants of spin images (see section 6.1 for UoY data,

section 6.2 for FRGC data evaluations); (ii) A feature
localisation metric, measured as the RMS repeatability

of the localisation of the nose tip. This metric mea-

sures the performance of the SSR value in providing

a repeatable nose localisation (see section 6.3 for UoY

evaluations only).

6.1 Nose tip vertex identification: UoY data

Examining the filtering stages in figure 12, one might

reasonably ask: why not just take the nose candidate

outputs from filter 3 (the local maxima of SSR value),

compute the Mahalanobis distance to the training set

of SSR values and select the minimum distance as the

identified nose vertex? This is a good question, because

if we can not improve on this nose identification per-

formance, then filter 4 (using balloon images or spin

images) is, at best, a waste of processing time and may

even be detrimental to the overall identification perfor-

mance. Therefore, we apply this metric in place of filter
4 as a baseline test (control).

Overall, we have applied five nose identification meth-

ods, each of which uses the minimum Mahalanobis dis-
tance as the nose identification metric. The training

and testing data, however, is different in each case,

and is as follows: (1) Baseline test using SSR values.

(2) Standard spin images (spin-image type 1), where

cylindrical polar coordinates, (r, h), of local vertices are

binned. (3) Our own variant of spin image (spin-image

type 2), which bins a radius and angle above/below

the local tangent plane (r, tan−1(h
r
)). (4) A spin image

which bins (log(r), h) (spin-image type 3). This is often

used to give higher weight to closer vertices. (5) SSR
shape histograms (balloon images). Our experimental

methodology was:

1. A registered bitmap for each of the 1736 images was

displayed and a human operator was asked to click

their best estimate of the nose tip position using a

mouse, and the 2D mouse clicks were stored on disk.

2. Our nose vertex identification process, described by

the filters in figure 12, was applied to the dataset,

such that we found a set of candidate nose posi-

tions (filter 3 outputs), which were locally maximal

values of SSR values. Our process uses weak thresh-

olding and hence always finds the nose tip vertex

(this was manually verified), but there are typically

up to 10 other false positives, which occur on the

chin, Adam’s apple, shirt collars, quiffs of hair and

spectacle frames.

3. We mapped each of these 3D nose candidates into

their associated, registered 2D bitmap images and

the bitmap position closest to the manual nose click

(in step 1), was stored on disk as the correct nose
vertex. This allowed us to collect training data for
nose features and allowed us to establish a ground
truth for the testing phase of nose identification.

4. We randomly selected 100 subjects (of the 280) and

for each of these persons, we randomly selected a
capture condition to give 100 training 3D images.

5. For each of these 100 training 3D images, we con-

structed a SSR shape histogram, using 8 radii of
10mm to 45mm in steps of 5mm and 23 bins for

normalised RBF values. This gave SSR shape his-

tograms (or balloon images) of dimension 8x23. We

also constructed three variants of spin images, as de-

scribed above. These were constructed to the same

resolution as the balloon images, namely 8x23 res-

olution, using a maximum radius of 45mm and a

height of ± 45mm.

6. We applied principal components analysis (PCA)

to all four sets of training data, reducing the shape

descriptor dimensionality from 184 to 64.

7. For all nose candidates (filter 3 outputs) on all test

images, we calculated the Mahalanobis distance to

the trained data for all five methods above. For

each test image, the vertex with the minimum Ma-

halanobis distance was identified as the nose and

stored.
8. We then counted, for each of the five methods, what

percentage of noses were correctly identified.

In our dataset of 1736 3D images, we used 100 im-

ages of 100 individuals as training data, leaving a test

set A, of 515 3D images, which contains the remaining

images of these 100 individuals, not used in the training

set, and test set B, which contains 1121 3D images of
individuals who never appear in the 3D training set.

The results of nose identification are given in ta-

ble 2. Note that we obtained a 91.7% rate of success-

ful nose identification by using the SSR values. Using

SSR histograms improved this figure to 99.6%, whereas

use of spin images degraded the system performance to
around 70% and hence should be considered unsuitable
for the UoY dataset.

There are several reasons why SSR histograms out-

performed spin images on the UoY dataset. (i) Spin
images require a local normal estimate and this normal
varies greatly close to the nose tip, due to the high sur-

face curvature. Any significant error in the local normal
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SSR values Spin image 1 Spin image 2 Spin image 3 SSR histograms

Test set Fails % Pass Fails % Pass Fails % Pass Fails % Pass Fails % Pass

test A (515 images) 48 90.7% 185 64% 153 70.3% 152 70.5% 3 99.4%
test B (1121 images) 93 91.7% 400 64% 316 70.8% 339 70% 4 99.6%

Table 2 Nose identification results using five different methods applied to the UoY dataset

estimate, for example due to sparse data, causes the

whole spin image to be corrupted, because the whole

spin image is computed relative to this normal. In con-

trast, the RBF is a global fit significantly influenced by

a whole group of normals in the vicinity of the sparse

data region. Thus, although a single noisy local normal

can locally distort the RBF, we do not encode our de-

scriptor in a local frame relative to this, and so the effect
of the noisy normal is contained within a limited region
of the SSR descriptor. (ii) The data in our data set

has missing parts, particularly around the eyes, when

the subject is wearing spectacles. These missing parts

corrupt spin images, but have little effect on SSR his-

tograms, because the RBF is defined everywhere in 3D

space; (iii) Spin images, in the form used here, use raw

vertices and so the data density is a function of the raw

mesh resolution. In contrast a SSR histogram can sam-

ple the RBF to any required density. (Here we used 512

samples on each of 8 spheres, giving 4096 data elements

in each SSR histogram). In order to use spin images ef-

fectively on this dataset, we would need to generate a

global zero isosurface of the RBF at a sufficiently high

resolution. To do this we would evaluate the RBF ev-

erywhere on a voxel grid enclosing the full head and

then use a ‘marching cubes’ [39] style of algorithm to

find the zero isosurface, alternatively we could use some

form of surface following approach. However, global iso-

surfacing introduces significant additional complexity

and processing time.

6.2 Nose tip identification: FRGC data

In order to test our nose tip identification method on a

significantly larger dataset, we used the FRGC dataset

[48] which contains registered 3D shape and 2D inten-

sity (texture) information. Approximate ground truth

locations for the nose tip were collected by very care-

fully manually clicking on enlarged 2D intensity images
and then computing the corresponding 3D point using
the registered 3D shape information. A dual 2D/3D

view was used to verify 2D-3D landmark correspon-

dences and only those with an accurate visual corre-

spondence were retained. This gave us a total of 3780

scans from the 4950 in the dataset and we used 100 of

these for training and 3680 for testing. Identical param-

Fig. 14 Nose tip identification performance in the FRGC data
for varying thresholds. The performance of SSR histograms and

spin images is almost identical

eters were used in the UoY dataset experimentation, in

both training and testing stages.

We gathered results by computing the root mean

square (RMS) error of the automatically localised 3D

landmarks with respect to the 3D landmarks manually

labelled in our ground truth. Remember that localisa-

tion is done at the 3D vertex level and we are using a

down-sample factor of four on the FRGC dataset, which

gives a typical distance between vertices of around 3-

5mm. This has implications on the achievable localisa-

tion accuracy. We set a distance threshold (specified in
millimetres) and if the RMS error is below this thresh-
old, then we label our result as a successful localisa-
tion. This allows us to present a performance curve in-

dicating the percentage of successful feature localisa-

tions against the RMS distance metric threshold used

to indicate a successful location. These results have the

nice property that they are not dependent on a sin-
gle threshold and, in general, these performance curves
show two distinct phases: (i) a rising phase where an
increased RMS distance threshold masks small local-

isation errors, and (ii) a plateau in the success rate,

where an increased RMS threshold does not give a sig-

nificant increase in the success rate of localisation. If

the plateau is not at 100% success rate, this indicates
the presence of some gross errors in landmark localisa-
tion. This performance curve is presented in figure 14

and indicates that our system performance is excellent,

using either SSR histograms or spin images.
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Of course, it is useful to choose some RMS thresh-

old value to quote performance figures. A sensible place
to choose the threshold is close to where the graph
switches from the rising region to the plateau region,

which is around 12mm, indicating that the nose is lo-

calised within 3 vertices of the ground truth. This thresh-

old gives a SSR histogram system performance of 99.92%

(3 errors) amd a spin image performance of 99.7% (11
errors). We visually observed the three failed cases for
the system using the SSR histograms and found that

the first fail contained a facial scan with a missing nose,

the second selected a vertex within the subject’s hair

that was nose shaped and the third selected a vertex on

the subject’s lips due to a non-neutral facial expression.

A valid question to ask is why should we extract an

RBF surface model and use RBF based descriptors, if

spin images can perform just as well as SSR histograms

when the surface data is high quality with no significant

areas of missing data due to specular reflections or self
occlusions. The answer to this is that the avantages of
SSR histograms over spin images is certainly reduced,

but the performance of both systems is high as a re-

sult of the SSR value descriptor selecting only a small

number of candidate vertices for each of these shape his-

tograms to test. For example, if we apply spin images

directly to the much larger number of candidates ex-
tracted from the ‘distance to local plane’ (DLP) filter,
nose tip identification performance falls below 70%.

6.3 Nose tip localisation refinement: UoY data

To make a preliminary evaluation of our nose localisa-
tion refinement (inter-vertex interpolation) approach,

we used 80 UoY 3D facial scans in arbitrary poses, each
of which had a registered 2D image. We compared our
approach both with a simple automatic method and a
manual method, in which a user was asked to select a

raw 3D coordinate for each of the 80 images, by viewing

the surface and rotating it in 3D. In the simple auto-

matic method, the face is rotated through a raster scan

of pan and tilt angles within a 45 degree cone and the
nearest point to the camera acquires a vote. The vertex

with the highest number of votes is chosen as the nose

coordinate. This is called the NPH (nearest point his-

togram) method. Our experimental procedure was as

follows:

1. Manually locate (by cursor click) three 2D features

in the 2D bitmap image: we use the outer corner

(exocanthion) of the left and right eyes and the mid-

point of the upper vermillion line, which is the upper

lip’s junction with the face (labiale superius).

Fig. 15 Nose localisation repeatability RMS(mm) in the three

face frame dimensions for the UoY dataset

2. Interpolate to determine the corresponding 3D coor-

dinates, using texture coordinates in the raw 3D file,
and use these 3D locations to define a face frame (i.e

object centred rather than camera centred frame).
3. Transform the computed nose position from the cam-

era frame to the face frame.

4. Examine the within-class (single subject) repeata-

bility of nose localisation in the face frame, using

an RMS metric.
5. Use the average within-class RMS value to compare

with the manual method and NPH methods.

The repeatability results of the three methods are

given in figure 15. We can clearly see that the NPH

method is poor and that our SSR method slightly out-

performs the manual method. In part, that is to be ex-

pected, since the manual method operates on raw ver-
tices at the original mesh resolution (3-4mm), whereas
the nose refinement method interpolates a higher den-
sity (2mm resolution) zero isosurface using the RBF

model. The results do, however, inspire confidence in

the method, and give repeatable results in the presence

of noise. Finally, one has to remember that errors in

manually locating face frame features and in 2D-to-3D
registration appear across all of these results.

7 Evaluation of pose alignment

The evaluation of the isoradius contour (IRAD) method

of rotational alignment, in the context of a comparison

with ICP, consists of three experiments: (i) How reli-

ably can IRAD/ICP reorientate a facial scan, when that

scan is rotationally displaced (synthetically) through a

range of angles (0-100 degrees) in the pan, tilt and roll

directions. This is a medium scale test using 11 sub-

jects and a total of 660 alignments; (ii) How accurate

is IRAD/ICP alignment under real head pose varia-

tions of up to 60 degrees? This is a small scale test of
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28 alignments and uses manual mark up of eight head

poses; (iii) How reliable is IRAD as an alignment mech-

anism when using a single face template to align a set

of faces to a common alignment? This is a large scale

test, using both UoY and FRGC data. These three ex-

periments are described and the results are presented

in the following three sub-sections.

7.1 IRAD/ICP robustness on synthetic alignment

We have conducted a partly synthetic experiment to il-

lustrate the use of IRAD and ICP in 3D face alignment.
The experiment is relatively small-scale (660 alignment
experiments) and does not represent a definitive per-

formance of these approaches for face scans, but it does

hint at some interesting properties of the algorithms

when used in this context. The basic idea is to take a

3D face scan in a frontal pose, rotate it by some an-

gle (0-100 degrees) in some direction (pan, tilt or roll)
about the nose tip and then see if IRAD/ICP can re-
align the 3D face with the rotated version of itself. This

is done for 11 3D images in 5 degree steps across pan,

tilt and roll. For each experiment, we determine how

many faces are correctly re-aligned, by measuring the

RMS error between a set of three reference points.

Firstly, we applied the IRAD method, using a single
IRAD of 30mm and we found that the method found

the correct alignment in each of the 660 experiments,

due to point correspondences being computed explic-

itly. For ICP we observed, for each experiment, how

many faces fail to converge and the number of steps

for convergence for those that do. Data points within a

spherical neighbourhood (r=54mm) of the nose tip are

used to exclude areas of hair, collar and so on.

We apply ICP, such that the nose tips of the two

data sets are always locked together, with no transla-

tion component allowed (we found that this performed

better than standard ICP, where the data means are

initially aligned). In this case, ICP computes the rota-

tion matrix (only) that successively minimizes the least

squares distance between correspondences. The results

are shown in figure 16. Using the overall shape of the

graphs in 16, we conclude that ICP performs best in

the roll dimension, followed by the tilt dimension and

finally, it performs worst in the pan direction. The aver-

age number of iterations to reach convergence for the 11
subjects is shown in figure 17. Here we notice that the
reverse order in terms of performance, in that the most

stable results (roll) take longest to reach convergence,

wheras the most unstable are quicker to converge (when

successful). It is likely that these results provide an up-

per initial estimate of the range of angles over which

an ICP based facial alignment system could perform,
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Fig. 16 ICP rotational alignment: Number of faces converging
against angle (degrees). Blue=pan, Red=roll, Green=tilt.
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Fig. 17 ICP rotational alignment: Average number of iterations

for convergence against angle (degrees). Blue=pan, Red=roll,
Green=tilt

because real head pose variations cause changes in the

3D image that are more complex than rigid Euclidean

transformations (due to self-occlusion, for example).

7.2 Accuracy test for IRAD/ICP alignment

We now experiment with real head pose variations, rather
than synthetic ones, and so the data is subject to self

occlusion, such as the nose ocluding the cheek area. In

this test, a single subject adopted eight different poses,

as indicated in figure 18. Three markers were applied

to rigid parts of the face and the centre of these mark-

ers was manually clicked, allowing us to localise three
3D coordinates using the known 2D-to-3D registration.
This allowed us to compute the rotational (and trans-

lational) displacement using three 3D correspondences

across any pair of 3D images.

We conducted 28 alignment experiments, one align-

ment for every pair of 3D images. Firstly the 3D point

clouds were aligned by translation, such that both ex-

tracted nose tips were coincident. We then rotationally

aligned the faces, using the following methods: (i) ICP
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Fig. 18 Data used in the pose alignment accuracy test

Fig. 19 ICP rotational alignment: residual RMS error (mm) af-
ter 20 iterations against initial angular face separation (degrees).
Convergence failures are shown in red and occur above 35 degrees

with 20 iterations on a point cloud within a spherical

neighbourhood (radius 54mm) of the nose tip; (ii) Iso-

radius contours using a single extracted 30mm IRAD

contour. At the end of each alignment process, we com-

pute the residual RMS error in the alignment of the

three 3D marker locations.

Figure 19 shows the results of ICP performance.

RMS error is plotted against the angular separation

in pose (degrees in an axis-angle formulation), between

two 3D images, as measured by the three known 3D cor-

respondences. Clearly, in four of the 28 experiments,

ICP has failed, and it appears that, for this subject,

convergence to the incorrect solution can occur for an-

gular separations of over 35 degrees.

Figure 20 shows the RMS error of IRAD based align-

ment (blue trace) with ICP based alignment (red trace).

In the instances where ICP fails, IRAD succeeds, as it

has determined accurate 3D correspondences over the

pair of 3D images, whereas ICP has not. In the case

where ICP is successful, it can be seen that the accu-

racy performance is very similar.

Fig. 20 A comparison of IRAD (blue) and ICP (red) residual
RMS alignment error

7.3 Pose normalization: Large scale robustness tests.

Of course, a pair of IRAD signals is going to have a
sharp, high correlation peak if they are generated from
the same subject. In this sense, we can see that our basic

method is highly useful for one-to-one pose alignment

and matching, particularly when IRADs in a large 3D

face dataset can be computed and stored in an off-line

batch process, since only the IRAD from live probe data

needs to be extracted on-line. However, other recogni-

tion approaches do not align data on a one-to-one ba-

sis, but require a common alignment, derived from a

pose-normalization process, for all data. Such methods

include the popular sub-space based methods, such as

PCA and LDA. To test if the IRAD method was capa-

ble of pose normalization to a common alignment for a

large 3D face dataset, we conducted large scale robust-

ness tests using both UoY and FRGC data.

For every 3D scan in both UoY and FRGC datasets,

a single isoradius contour was generated, using an inter-

secting sphere of R = 30mm from the localised (RBF

interpolated) nose tip. One hundred of these were se-

lected from the UoY dataset and one hundred from the

FRGC dataset. These contours and associated curva-

ture signals were cropped to ±16mm of a manually
marked nose bridge location, allowing average contours

and signals to be created for the nose bridge area, one

for the UoY dataset and one for the FRGC dataset. The

nose bridge area is a rigid part of the face, which, intu-

itively, should be useful for locking IRAD curvature sig-

nals into the correct rotational phase when maximising

cross-correlation. In addition, the sets of 100 face scans
were used to generate upper face templates, comprising
a grid of 3D points for fine alignment, as described in

section 5.3.1. Both sets of 100 scans were excluded from

the testing phase.
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Dataset Method PN1 Method PN2 Method PN3

UoY 98.3% 96.8% 99.1%

FRGC 94.5% 98.7% 99.6%

Table 3 Pose normalisation success rates. Method PN1 is our
standard method using the maximum peak in IRAD correla-

tion signal. Method PN2 selects the best of all IRAD correlation
peaks. Method PN3 is the similar to PN2, but additionally allows

RBF based pose refinement using an upper face template.

We implemented three variants of pose-normalisation

system: in the first, our standard method (PN1), we

normalise pose using the largest peak in the IRAD cur-

vature correlation signal. In the second method (PN2),

we check the rotations associated with all significant

correlation peaks (those which are more than 50% of the

maximum local peak, typically 4-6) and select the one

that has the minimum RMS of RBF evaluations, where

these evaluations are at the 3D points that make up

the average upper face template. In the third method

(PN3), we allow 10 cycles of RBF based pose refine-

ment, as described in section 5.3.1, and again, we se-
lected the pose with the minimum RMS of RBF eval-
uations over the points comprising the average upper

face template. To evaluate our three methods, we man-

ually marked up the intersection of the IRAD contour

with the nose bridge on each 3D scan in both UoY and

FRGC datasets and measured the rotational shift error

(in millimeters) along the IRAD contour for the correla-
tion peak used to determine the head pose. A threshold
of 6mm was used to define a successful pose normali-

sation (success rates reach a plateau at this threshold

level), and our results are given in table 3, showing that

method PN3 clearly performs best for pose normalisa-

tion.

After pose alignment, 60x90 depth maps with 8 bit

resolution were generated, as described in section 5.4.

Figure 21 shows a sample of the results from the UoY

dataset, for those 3D scans that have a significant initial

pose variation from frontal. The top row shows depth
maps generated without pose normalisation, the middle
row shows depth maps from the 3D scans after IRAD

based alignment (methods PN1 and PN2, which pro-

duce the same result when both are successful) and the

third row shows depth maps from the same 3D scans

when additional pose refinement using an upper face

template is employed (method PN3). Qualitatively, we
feel that our system works best when correcting roll an-
gles, where there is no self-occlusion, then tilt angles,

and pan angles are the most difficult, due to the signif-

icant self occlusion caused by the nose. In figure 21, we

can see that, for the last two scans, the part of the face

pointing away from the 3D camera is poorly defined in

the aligned depth map. To deal with this, further de-

Fig. 21 Sample of UoY depth maps, when the subject is asked to
move head 45 degrees relative to frontal pose. The top row shows
depth maps in the original pose. The middle row shows pose
normalised depth maps without the refinement process (methods
PN1 and PN2). The bottom row shows pose normalised depth
maps after the refinement process (method PN3)

velopments to our system are required, such as PCA

based reconstruction of the large areas of missing data,

which occur due to self occlusion.

8 Conclusions

We have presented an RBF-based system to map noisy

3D point clouds to pose aligned or pose normalised

depth maps. In doing so, we have developed a system

with light viewing constraints that can handle missing

parts in a robust way. Several novel 3D pose invari-

ant features have been presented. The first of these is

the spherically-sampled RBF (SSR) histogram, which is
based on sampling RBFs on concentric spheres, at ar-
bitrary resolutions in 3D space. These representations

are pose invariant and they are relatively immune to

missing parts, as the RBF is defined everywhere in 3D

space. Our experiments on nose vertex identification in-

dicate that these factors appear to be important when

characterising high curvature surfaces in the presence
of noise and missing parts. We have shown that it is
possible to derive an SSR value, which describes the

volumetric intersection between a sphere and the ob-

ject of interest (face), thus providing a useful measure

of convexity. A notable issue here is that this feature,

in essence, is derived as a summation, which has the

effect of suppressing (averaging) noise, where many 3D

surface features are based on differencing, whose effect

is to amplify noise. The second novel 3D pose invari-

ant feature is the isoradius contour curvature signal,

which has been demonstrated to be effective in 3D face

alignment. Our future work will focus on developing

our methods to deal with extreme poses, such as pure

profile facial views.
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