
Volumetric Features for Video Event Detection

Yan Ke1, Rahul Sukthankar2,1, Martial Hebert1
1School of Computer Science, Carnegie Mellon; 2Intel Labs Pittsburgh

{yke,rahuls,hebert}@cs.cmu.edu

Abstract

Real-world actions occur often in crowded, dynamic en-
vironments. This poses a difficult challenge for current
approaches to video event detection because it is difficult
to segment the actor from the background due to distract-
ing motion from other objects in the scene. We propose a
technique for event recognition in crowded videos that re-
liably identifies actions in the presence of partial occlusion
and background clutter. Our approach is based on three
key ideas: (1) we efficiently match the volumetric represen-
tation of an event against oversegmented spatio-temporal
video volumes; (2) we augment our shape-based features
using flow; (3) rather than treating an event template as an
atomic entity, we separately match by parts (both in space
and time), enabling robustness against occlusions and ac-
tor variability. Our experiments on human actions, such
as picking up a dropped object or waving in a crowd show
reliable detection with few false positives.

1. Introduction
Event detection is an important component of automatic

human activity understanding. The goal of event detection
is to identify and localize specified spatio-temporal patterns
in video, such as a person waving his or her hand. As we
and Shechtman & Irani previously observed [33, 54], the
task is similar to object detection in many respects since the
pattern can be located anywhere in the scene (in both space
and time) and requires reliable detection in the presence of
significant background clutter. Event detection is thus dis-
tinct from the problem of human action recognition, where
the primary goal is to classify a short video sequence of
an actor performing an unknown action into one of several
classes [10, 53, 71].

Our goal is to perform event detection in challenging
real-world conditions where the action of interest is masked
by the activity of a dynamic and crowded environment.
Consider the examples shown in Figure 1. In Figure 1(a),
the person waving his hand to flag down a bus is partially
occluded, and his arm motion occurs near pedestrians that

(a) (b)

Figure 1. Examples of successful event detection in crowded set-
tings. (a) The hand wave is detected despite the partial occlusion
and moving objects near the actor’s hand; (b) The person picking
up the dropped object is matched even though the scene is very
cluttered and the dominant motion is that of the crowd in the back-
ground.

generate optical flow in the image. The scene also contains
multiple moving objects and significant clutter that make it
difficult to cleanly segment the actor from the background.
In Figure 1(b), the goal is to detect the person picking up an
object from the floor. In this case, the image flow is dom-
inated by the motion of the crowd surrounding the actor,
and the actor’s clothing blends into the scene given the poor
lighting conditions.

A recent trend in action recognition has been the emer-
gence of techniques based on the volumetric analysis of
video, where a sequence of images is treated as a three-
dimensional space-time volume. Eschewing the building
of explicit models of the actor or environment (e.g., kine-
matic models of humans), these approaches attempt to per-
form recognition directly on the raw video. This paper
focuses primarily on two topics: (1) effective representa-
tions of shape and motion for event detection, and (2) effi-
cient matching of event models to over-segmented spatio-
temporal volumes. The models that we match are derived
from single examples and are manually constructed; auto-
matic generation of event models from weakly-labeled ob-
servations is a related interesting problem and is not covered
in this work.

Since we used a view-based approach to event detection,
the system is sensitive to variations such as camera view-

1

{yke,rahuls,hebert}@cs.cmu.edu


Figure 2. Our goal is to detect specific actions in realisitic videos
with cluttered environments. First, we segment input video into
space-time volumes. Then, we correlate action templates with the
volumes using shape and flow features. We are able to localize
events in space-time without the need for background-subtracted
videos.

point, scale, speed, and differences in how actions are per-
formed across people. Our baseline method is not invari-
ant to these changes; however, we address these issues and
show how various extensions to our baseline algorithm can
cope with these variations. Using a parts-based model and
training from multiple examples, we also demonstrate ex-
perimentally the robustness of our algorithm to these varia-
tions.

This paper is organized as follows. We summarize the
related work in Section 2 and give an overview of our ex-
perimental datasets in Section 3. We first show that spatio-
temporal shapes are useful features for event detection (Sec-
tion 4). Where the previous work is typically limited
to scenes with static backgrounds, we demonstrate shape
matching in cluttered scenes with dynamic backgrounds.
We then combine our shape descriptor with Shechtman and
Irani’s flow descriptor, which is a complementary feature
that can be computed in cluttered environments without fig-
ure/ground separation (Section 4.4). Recognizing the value
of a parts-based representation, which is explicitly modeled
by the human tracking approaches, and implicitly modeled
by the interest-point approaches, we break our action tem-
plates into parts and extend the pictorial structures algo-
rithm [24, 25] to 3D parts for recognition (Section 5). Fi-
nally, we discuss important issues in using view-based vol-
umetric features in Section 6. Figure 2 presents an overview
of the approach.

2. Related Work

Earlier work has identified several promising strategies
that could be employed for event detection. These can be
broadly categorized into approaches based on tracking [49,

57], flow [22,33,54], spatio-temporal shapes [10,11,70,71],
and interest points [21, 47, 53]. A more comprehensive
review of historical work is presented by Aggarwal and
Cai [4]. More recent work is surveyed by Wang et al. [67].
Our work is based on volumetric flow and shape matching
and thus is most related to works by Shechtman, Blank, and
Irani [10, 54]. This paper extends our previously published
work by introducing several methods to increase robust-
ness in real-world scenarios, more in-depth experiments,
and a method for automatically generating part configura-
tions [34]. We now first review the related work in each
of these areas and then we describe in detail the baseline
technique that we use for comparison.

2.1. Shape Matching

Shape-based methods treat the spatio-temporal volume
of a video sequence as a 3D object. Different events in
videos generate distinctive shapes, and the goal of such
methods is to recognize an event by recognizing its shape.
Shape-based methods employ a variety of techniques to
characterize the shape of an event, such as shape invari-
ants [10, 71]. For computational efficiency and greater ro-
bustness to action variations, Bobick and Davis [11] project
the spatio-temporal volume down to motion-history im-
ages, which Weinland et al. extend to motion-history vol-
umes [70]. These techniques work best when the action of
interest is performed in a setting that enables reliable seg-
mentation [63, 69]. In particular, for static scenes, tech-
niques such as background subtraction can generate high-
quality spatio-temporal volumes that are amenable to this
analysis. Unfortunately, these conditions do not hold in
typical real-world videos due to the presence of multiple
moving objects and scene clutter. Similarly, the extensive
research on generalizing shape matching (2D [27, 41] and
3D [5, 5, 18, 26, 32]) requires reliable figure/ground separa-
tion, which is infeasible in crowded scenes using current
segmentation techniques. We will show how ideas from
shape-based event detection can be extended to operate on
over-segmented spatio-temporal volumes and work in chal-
lenging conditions.

2.2. Flow Matching

Flow-based methods for event detection operate directly
on the spatio-temporal sequence, attempting to recognize
the specified pattern by brute-force correlation without seg-
mentation. Efros et al. correlate flow templates with videos
to recognize actions at a distance [22]. Shechtman and
Irani propose an algorithm for correlating spatio-temporal
event templates against videos without explicitly comput-
ing the optical flow, which can be noisy on object bound-
aries [54]. More recently, Zhu et al. uses an SVM classifier
trained on histograms of optical flow to recognize tennis
actions [72, 73]. Jhuang et al. uses biologically-inspired



features, which includes optical flow, for action recogni-
tion [30]. We observe that flow has been successfully used
in many settings, and we extend the previous work by build-
ing a real-time system for event detection based on Viola
and Jones’ framework [64]. Our work has recently been
extended by Laptev and Perez [38].

2.3. Space-time Interest Points

Recently, space-time interest points [36] have become
popular in the action recognition community [21, 47, 53],
with many parallels to how traditional interest points [42]
have been applied for object recognition. While the spar-
sity of interest points and their resulting computational ef-
ficiency are appealing, space-time interest points suffer the
same drawbacks as their 2D analogues, such as failure to
capture smooth motions and tendency to generate spuri-
ous detections at object boundaries. They rely on express-
ing the local region around an area of interest using rep-
resentations that are robust to geometric perturbations and
noise, yet distinctive enough to reliably identify the local
region. However, these techniques rely on the assumption
that one can reliably detect a sufficient number of stable in-
terest points in the video sequence. For space-time interest
points this means that the video sequence must contain sev-
eral instances of motion critical events — regions where an
object rapidly changes its direction of motion — such as
the reciprocating path traced by a walking person’s shoe.
Unfortunately, these techniques fail to detect useful interest
points in many common situations where the motions con-
tain no sharp extrema, such as those illustrated in Figure 3.
Space-time interest points are also frequently triggered by
the appearance of shadows and highlights in the video se-
quence, as shown in Figure 4. These unstable “events” are
sensitive to lighting conditions and can reduce recognition
accuracy for the action of interest.

2.4. Pose Tracking

Methods based on tracking process the video frame-by-
frame and segment an object of interest from background
clutter, typically by matching the current frame against a
model. By following the object’s motion through time, a
trace of model parameters is generated; this trace can be
compared with that of the target spatio-temporal pattern to
determine whether the observed event is of interest. We use
a view-based approach that does not explicitly track these
model parameters. Therefore, we are able to generalize to
human, animal, or mechanical actions without prior models
of these objects. Tracking-based approaches can incorpo-
rate existing domain knowledge about the target event in the
model (e.g., joint angle limits in human kinematic models)
and the system can support online queries since the video
is processed a single frame at a time. However, initializ-
ing tracking models can be difficult, particularly when the

circular motion figure eight motion
Figure 3. Two examples of smooth motions where no stable space-
time interest points are detected. The 3D plots of motion through
time were generated using software from [36]. The highlighted
ellipsoids show the detected interest points. All of these detections
are non-informative, caused by boundary interactions between the
arm and the edge of the frame. By contrast, our volumetric features
are scanned over the video sequence through space and time, and
can accurately recognize such motions.

Figure 4. Space-time interest points are often found on highlights
and shadows. These points are sensitive to lighting conditions and
reduce recognition accuracy. This observation motivates our deci-
sion to apply volumetric features to the motion vectors rather than
to the raw pixels.

scene contains distracting objects. And while recent work
has demonstrated significant progress in cluttered environ-
ments [51], tracking remains challenging in such environ-
ments, and the tracker output tends to be noisy. An alter-
nate approach to tracking-based event detection focuses on
multi-agent activities, where each actor is tracked as a blob
and activities are classified based on observed locations and
spatial interactions between blobs [6, 28, 29, 39, 62]. These
models are well-suited for expressing activities such as loi-
tering, meeting, arrival and departure; the focus of our work
is on finer-grained events where the body pose of the actor
is critical to recognition.



Figure 5. Independently segmenting each frame in the video yields
varying and inconsistent segmentations across frames (middle).
Jointly segmenting several frames across space-time yields con-
sistent segmentations across adjacent frames (bottom).

2.5. Volumetric Features vs. 2D Features

Traditional methods for processing video have focused
on analyzing individual frames independently, or possibly
adjacent frames such as optical flow [43]. Features are typi-
cally extracted for each frame independently, and then sub-
sequently linked together temporally, e.g., [59]. The main
limitation of these type of approaches is that spatial and
temporal analyses are done separately. It is difficult to find
stable regions that are consistent in both dimensions, as
shown in Figure 5. Doing analysis jointly in space-time
offers three advantages. First, the region boundaries are
stable. Second, the regions are connected across frames.
In other words, we know that a region in one frame corre-
sponds to a specific region in the next frame, and no further
region matching needs to be done. Third, region growth and
death are accounted for automatically. This would be par-
ticularly difficult to analyze if the segmentation were to be
done independently.

We argue that video should be thought of as three-
dimensional volumes, and thus the fundamental processing
unit should be 3D blocks consisting of many frames, instead
of on a frame by frame basis, as shown in Figure 2. Only
recently have researchers begun to simultaneously process
blocks of frames of video [20, 54, 66]. Just as researchers
have decomposed images into their constituent shapes and
used 2D shape descriptors for analysis [9,27,58], video can
be thought as a group of 3D volumes. There are several
advantages to jointly analyzing a video’s space and time di-
mensions. First, spatial and temporal consistency can be
easily maintained. Second, instead of analyzing pixels over
many frames, higher-level algorithms can focus on large,
sparse regions for improved efficiency. Finally, the appear-
ance and motion of objects in the scene can be jointly mod-

eled, which can potentially lead to better recognition results.

2.6. Parts-Based Matching

Parts-based object and action recognition has been stud-
ied extensively in the past. The fundamental idea is to
break an object into parts to increase the model’s general-
ization power while keeping the computational efficiency
tractable. Notable examples in object recognition include
Weber et al.’s unsupervised object recognition [68], Lowe’s
keypoints [42], Sali and Ullman’s fragments [52], and Fei-
fei et al.’s one shot object category recognition [23]. This
work is closely related and could be thought of as an spatio-
temporal extension to the image segmentation and bottom-
up recognition work by Cour and Shi [17] a Srinivasan and
Shi [60]. Recognition in video include Ramanan et al.’s
models of animals [50] and Boiman, Shechtman, and Irani’s
work [12, 55]. We follow the same principles and apply the
pictorial structures framework [24, 25] to our task of event
detection.

2.7. Flow Consistency Matching

We use Shechtman and Irani’s flow-based method for
matching actions in videos [56] as a baseline method for
comparison. Instead of explicitly computing the optical
flow of a pixel, they showed a way to calculate the flow cor-
relation between two video volumes. Given a single video
template, they can find actions such as spinning, diving, or
clapping in real-world videos. By scanning the template
across all locations in space and time and thresholding on
the correlation distance, we can detect all instances of the
action in the video. Using a similar notation as Shechtman
and Irani, we review the details of their algorithm. Let P be
a small, e.g., 7 × 7 × 3 space-time patch in the video. We
define the space-time gradient as ∆Pi = (Pxi , Pyi , Pti) for
each point in P (i = 1 . . . n). We define the space-time Har-
ris matrix M as follows (see Shechtman and Irani [56] for
further details):

M =

 ∑
P 2

x

∑
PxPy

∑
PxPt∑

PyPx

∑
P 2

y

∑
PyPt∑

PtPx

∑
PtPy

∑
P 2

t

 . (1)

We further define M♦ to be the upper left minor on M :

M♦ =
[ ∑

P 2
x

∑
PxPy∑

PyPx

∑
P 2

y

]
. (2)

A space-time patch P contains multiple motions if there
is a rank increase between M♦ and M , or a single motion
if there is no rank increase. Because the local space-time
patches are small, we can assume that most patches have
only one motion. Suppose there are two space-time patches
P1 and P2 where M1 and M2 are the space-time Harris ma-
trices of the two patches, respectively. Determining whether



the two patches have inconsistent motion is equivalent to
determining whether the concatenated patch P12 has multi-
ple motions. This is straightforward since M12 = M1+M2.
Ideally, one would like to calculate the rank-increase mea-
sure ∆r, where

∆r = rank(M)− rank(M♦), (3)

which one can do by calculating the number of non-zero
eigenvalues of the matrices. Due to noise, the eigenvalues
are never exactly zero, and therefore Shechtman and Irani
defined a continuous rank-increase measure ∆r̃, where

∆r̃ =
λ2 · λ3

λ♦1 · λ♦2
=

det(M)
det(M♦) · λ1

(4)

and λi is the ith largest eigenvalue of M . Since finding
the eigenvalues of a matrix is time consuming, Shechtman
and Irani approximated λ1 by the Frobenius norm of M .
The approximate continuous rank-increase measure ∆r̂ is
therefore

∆r̂ =
det(M)

det(M♦) · ‖M‖F
, (5)

where ‖M‖F =
√∑

M(i, j)2. The local inconsistency
measure is defined as

m12 =
∆r12

min(∆r1,∆r2) + ε
. (6)

To calculate the matching distance between the template T
and a video V at a particular location l = (x, y, t) , we
sum m12 at all locations where the template and the video
overlap. We define the flow matching distance as

dF (T, V ; l) =

∑
i∈T,j∈(T∩V ) mij

|T |
. (7)

Because we must sum over the entire template volume at ev-
ery location, this is a very time-consuming process. Shecht-
man and Irani optimized the running time by doing a hier-
archical search and using other techniques to avoid compu-
tation. As an optimization, we use quarter-sized templates
on quarter-sized videos, leading to a sixteen-times speedup.
Our baseline implementation does not do any other opti-
mizations and searches over all pixels. While this is slow to
run in practice, it gives us the highest possible accuracy for
this algorithm.

3. Datasets
The datasets used in our experiments cover a wide range

of actions and vary in difficulty. Some of the publicly avail-
able datasets such as the KTH dataset [53] and the Weiz-
mann dataset [10] were initially collected for action classi-
fication, where the entire video clip is classified as one of n

Figure 6. Example actions from the KTH [53] dataset.

Figure 7. Example actions from the Weizmann [10] dataset.

actions. Most of them have static backgrounds and contain
only one actor. Therefore, we collected more challenging
datasets with dynamic backgrounds and multiple actors in
the field of view. We apply our method to published videos
such as tennis matches, aerobics training videos, and videos
uploaded by users on YouTube. The YouTube videos are
typically very low quality with lots of camera movement,
as shown in Figure 9. We also apply our method to stan-
dard action classification datasets for comparison purposes
even though our algorithm is designed for event detection.
Table 1 lists all of the datasets we used and Figures 6, 7, 8
illustrates some of the actions in the various datasets. Ad-
ditional figures of the other datasets are included with the
results.

4. Volumetric Region Matching
4.1. Introduction

We first introduce our approach for event detection by
matching volumetric shapes. The target events that we wish
to recognize are typically one second long, and represent
actions such as picking up an object from the ground, or
a hand-wave. We first extract spatio-temporal shape con-
tours in the video using an unsupervised clustering tech-
nique. Next, we match the event templates to the extracted
shapes to detect the events. The templates are manually
generated using interactive segmentation and labeling (see
Figure 24). Denoting the template as T and the video vol-
ume as V , detecting the event involves sliding the template
across all possible locations l in V and measuring the shape
matching distance between T and V . An event is detected
when the distance falls below a specified threshold. Similar
to other sliding-window detection techniques, this is a rare-
event detection task and therefore keeping the false-positive
rate low is extremely important.



Table 1. Datasets used in our experiments.
Dataset # actions # actors Length Description
KTH [53] 6 25 2̃ hours Periodic motion on static background. Standard dataset.
Weizmann [10] 4 9 5 min. Standard dataset. Actions on static background. Subset of actions

used.
Wimbledon [2] 1 1 30 min. Broadcast sports videos.
Cluttered 5 6 20 min. Actions in cluttered environment and dynamic background.
Multiview 3 3 30 min. Four cameras at different viewpoints capturing events simultane-

ously. Used to test robustness to viewpoint changes.
Moving Camera 4 2 6 min. Videos captured using shaky and panning cameras. Used to test ro-

bustness.
YouTube [3] 4 20+ Var. Unscripted real world videos. Low quality videos with lots of camera

movement.
Aerobics [1] 1 3 1 min. Three people performing actions simultaneously. Used to test multi-

instance event detection.
TV Gestures 4 1 2 min. A person demonstrating TV remote control using gestures. Used to

test multi-instance event detection.

0 degrees 15 degrees 30 degrees 45 degrees

Pick-up

Wave

Jumping Jacks

Figure 8. Multiview Dataset. Camera viewpoint change of up to 45 degrees.

4.2. Spatio-Temporal Region Extraction

Using an unsupervised clustering technique, we extract
spatio-temporal shape contours in the video. This enables
us to ignore highly variable and potentially irrelevant fea-
tures of the video such as color and texture, while preserv-
ing the object boundaries needed for shape classification.
As a preprocessing step, the video is automatically seg-
mented into regions in space-time using mean shift, with
color and location as the input features [15, 16, 19, 40, 66].
This is the spatio-temporal equivalent of the concept of su-
perpixels [46]. Figure 5 shows an example video sequence
and the resulting segmentation. Note that there is no explicit
figure/ground separation in the segmentation and that the
objects are over-segmented. The degree to which the video

is over-segmented can be adjusted by changing the kernel
bandwidth. However, since finding an “optimal” bandwidth
is difficult and not very meaningful, we use a single value of
the bandwidth in all of our experiments, which errs on the
side of over- rather than under-segmentation. Processing the
video as a spatio-temporal volume (rather than frame-by-
frame) results in better segmentations by preserving tempo-
ral continuity. We have found mean shift to work well in
our task, but in general, any segmentation algorithm could
be used as long as it produces an over-segmentation that
tends to preserve object boundaries.



Figure 9. YouTube dataset. Notice the poor quality of the videos. They have low frame rate, low resolution, motion blur, poor lighting, and
blockiness due to compression artifacts.

Figure 10. Example detections from the TV Gestures dataset. Mul-
tiple gestures are are detected in a sequence to control the TV.

4.3. Volumetric Shape Matching

We now present a novel method for matching action
templates to over-segmented video that accomplishes three
goals. First, the algorithm matches on the shape of the
spatio-temporal volume, rather than the pixels in the vol-
ume. This is motivated by the fact that the spatio-temporal
“shape” of an action is robust to variations in an object’s ap-
pearance (e.g., an actor’s clothing). Second, the algorithm
robustly matches over-segmented spatio-temporal volumes.
In other words, it identifies the set of supervoxel regions
that, when aggregated, best match the given template. Fi-
nally, the method must be computationally-efficient because
video data is extremely large. Because our action represen-
tation is composed of three-dimensional shapes, it would
seem straightforward to directly apply algorithms from the
3D shape matching literature to this task. Unfortunately,
most of the existing algorithms cannot efficiently cope with
over-segmented regions.

4.3.1 Proposed Algorithm

Our shape matching metric is based on the region intersec-
tion distance between the template volume and the set of
over-segmented volumes in the video. Given two binary
shapes, A and B, a natural distance metric between them
is the symmetric difference between the two regions, i.e.,
|A ∪ B \ A ∩ B|.1 We adapt this distance metric to work
with over-segmented regions as follows. Given a template
T , we slide the template along the x, y, and t dimensions
of the video. Consider a candidate volume V with the tem-
plate at some location l = (x, y, t). Because the video is

1The distance metric D = |A ∪ B \ A ∩ B| is related to the Jaccard
similarity coefficient S =

|A∩B|
|A∪B| with D = (1 − S) · |A ∪ B|.

Figure 11. Example showing how a template is matched to an over-
segmented volume using the Region Intersection method. The
template is drawn in bold, and the distance (mismatch) is the area
of the shaded region.

over segmented, V could be composed of k regions Vi such
that V = ∪k

i=1Vi. Consider how one might calculate the
voxel intersection distance between the template T and a
subset of regions of V . Since every region Vi is either se-
lected or not selected, a naive approach would enumerate
all possible 2k subsets of V , calculate the voxel intersec-
tion between the template T and each subset, and choose
the minimum. We propose a fast method for both identi-
fying the subset of V that minimizes the distance and for
calculating this distance.

There are four cases that we must consider when decid-
ing whether a region Vi belongs in the minimum set, where
the minimum set Ŝ is defined as

Ŝ =
⋃
i∈S

Vi, (8)

and S is defined by

argmin
S⊂{1,...,k}

|((∪i∈SVi) ∪ T ) \ ((∪i∈SVi) ∩ T )|. (9)

In Figure 11, we have drawn the template T in bold and
overlaid onto the candidate volume V , which is segmented
into 11 regions V1 . . . V11. The set of regions that minimizes
the distance to the template is {V4, V5, V7, V8}, and the ac-
tual distance is the area occupied by the shaded regions. By
inspection, it is obvious that removing any region from the



minimal set or adding any region not already in the mini-
mal set, will increase the distance. The four cases of region
intersections that we must consider are as follows. If a re-
gion Vi is completely enclosed by the template, such as V5,
then it is always contained in the minimal set. Similarly,
if a region Vi does not intersect with the template, such as
V11, then it is never contained in the minimal set. The two
interesting cases are when Vi intersects the template, such
as V2 and V4. Let us consider V2; it is obvious that exclud-
ing V2 minimizes the distance between the template and the
minimal set. Similarly, including V4 in the minimal set min-
imizes the distance. Intuitively, we should include a region
if there is a large overlap between the region and the tem-
plate. More formally, the distance between the template T
and the volume V at location l is defined as

d(T, V ; l) =
k∑

i=1

d(T, Vi; l), (10)

where

d(T, Vi; l) =
{

|T (l) ∩ Vi| if |T (l) ∩ Vi| < |Vi|/2
|Vi − T (l) ∩ Vi| otherwise, ,

(11)
and T (l) denotes the template T placed at location l. This
distance metric is equivalent to choosing the optimal set of
over-segmented regions and computing the region intersec-
tion distance. It is important to note that once the relative
positions of the template T and the candidate volume V are
specified, each of the regions Vi can be considered inde-
pendently. In other words, whether Vi is in the minimal set
is independent of any of the other regions V{1...k}\i. The
implementation details of the shape matching algorithm are
summarized in Algorithm 1.

As we slide the window across the video, we mark all
locations with a distance less than some threshold θ as a
match. We show next that the distance computations at ad-
jacent locations can be updated with only a small update
cost.

4.3.2 Speed Optimizations

Because we slide the template over the video volume in
small increments, there is significant overlap and redundant
computation in successive calculations of the distance func-
tion. A naive implementation would require O(|T |) time
to calculate the distance function. Figure 12 illustrates the
template at two adjacent horizontal positions. Once we have
computed the distance at one location, we only need to ex-
amine the shaded region to update the distance at the next
location. The number of voxels that need to be updated is
proportional to the surface area of the template, rather than
the volume of the template. In practice, this optimization
results in approximately an order of magnitude speedup for
the matching algorithm.

Input: C: 3D array of region labels for each voxel.
S: Array containing the size of each region.
N: Number of regions.
L: Location to calculate matching distance.
T: Array of points corresponding to the
template shape.

Output: Matching distance

// overlap[i]: amount of overlap between T and region
Vi.
overlap = {0}N ;

foreach p in T do
increment(overlap[C[~L + ~p]]) ;

end

dist = 0 ;

for i = 1 . . . N do
dist += min(overlap[i], S[i] - overlap[i]) ;

end

return dist ;
Algorithm 1: Shape matching algorithm.

Figure 12. When we shift the template to a nearby location, only
the shaded area changes. Therefore, we only need to update an
area that is proportional to the surface area of the template, rather
than the volume of the template. This dramatically decreases the
running time during retrieval.

4.3.3 Modeling Segmentation Granularity

A potential problem with our method is that highly-textured
regions of the video can generate many false positives. Fig-
ure 13 shows an example false positive of a tennis serve
in a crowded region of a video. This is because such vol-
umes consist of many tiny supervoxels that can be appro-
priately aggregated to match the given template. More for-
mally, recall that the maximum error that a region Vi can
contribute to the distance between the template and the vol-
ume is |Vi|/2. Therefore, as V is segmented into more re-
gions, the smaller the size of each region, and therefore the
more likely that some portion of V will match any tem-
plate. In the limiting case, when V is segmented into |V |



Figure 13. False positive in cluttered video regions. Because of the
extreme over-segmentation of these regions, the tiny regions can
be arbitrarily grouped to match any template.

unit-sized supervoxels, then the distance between V and
any template is 0, since any volume can be trivially con-
structed from 1× 1× 1 voxels. This motivates the need for
a normalization term that balances the template match by
the target volume’s inherent flexibility. This is illustrated
in Figure 14, where we match an arbitrary template (a) to
two video volumes with a normal segmentation (b) and an
extreme over-segmentation (c). The expected distance be-
tween the template and the extreme over-segmented video is
much smaller than the distance to the typically-segmented
video, as illustrated in (d) and (e). While the shape match-
ing would fail in extreme over-segmentations, we propose a
normalization model to compensate for a moderate amount
of over-segmentation as follows.

We divide the distance metric d(T, V ) by a normaliza-
tion term so that it becomes

dN (T, V ; l) =
d(T, V ; l)

ET [d(·, V ; l)]
, (12)

where the denominator is the expected distance of a tem-
plate to volume V , averaged over T , the set of all possible
templates that fit within V . Essentially, the normalization
term ET [d(·, V ; l)] is measure of of the match confidence.
Enumerating through all possible templates to compute the
expected value may seem intractable at first, but we show
that it is possible to compute this efficiently. Writing out
the definition of the expectation, we have

ET [d(·, V )] =
1
|T |

∑
τ∈T

d(τ, V ) (13)

=
1
|T |

∑
τ∈T

k∑
i=1

d(τ, Vi), by Eqn. 10 (14)

=
1
|T |

k∑
i=1

∑
τ∈T

d(τ, Vi), by indep. (15)

Since practical templates represent one solid object (e.g., a
person) or a small set of solid objects (e.g., a few people

(a) Template

(b) Normal segmentation (c) Extreme over-seg.

(d) Dist. on normal seg. (e) Dist. on extreme over-seg.
Figure 14. Illustration of how the expected distance between an
arbitrary template (a) to a typically-segmented video (b) is much
larger than the distance to an extreme over-segmented video (c).
This motivates the need for a regulization term in the distance met-
ric.

interacting), the set of templates T should include only 3D
templates composed of a small number of connected pieces.
However, constraining the enumeration of T to the con-
nected templates is combinatorially hard to compute. As an
approximation, we estimate the sum by considering all tem-
plates that fit within the volume V whether or not they are
connected. For each region Vi, we enumerate all possible
templates that have j pixels intersecting the region, which
is 2|V |−|Vi|

(|Vi|
j

)
. Then, we calculate the distance between

the region and the template which is either the area of the in-
tersecting region or the non-intersecting region, whichever
is smaller. Therefore, the expected distance is equal to

=
1

2|V |

k∑
i=1

|Vi|−1∑
j=1

2|V |−|Vi|
(
|Vi|
j

)
min(j, |Vi| − j)

=
k∑

i=1

1
2|Vi|

|Vi|−1∑
j=1

(
|Vi|
j

)
min(j, |Vi| − j). (16)

This can be simplified to:

=
k∑

i=1

f(|Vi|), where (17)



100 101 102 103

100

101

102

103

Size of volume |V|

 

 

|V|/2
Expected error

Figure 15. Illustration of Equation 18 on the size of the volume
|V | in a log-log plot. The expected error contribution, f(n), ap-
proaches n/2 as n increases.

f(n) =

{
n
2 − 1

2n

(
n

n/2

)
(n/2), n even,

n
2 − 1

2n

(
n−1

(n−1)/2

)
n, n odd.

(18)

There exists a simple recurrence for computing f(n)
(Eqn. 18) exactly. Let f(n) = n/2 − T (n). If n is even,
then T (n) is defined as

T (n) =
1
2n

(
n

n/2

)
(n/2). (19)

The recurrence can be calculated as

T (n + 2) =
n + 1

n
T (n) (20)

T (2) = 1/2. (21)

If n is odd, then T (n) is defined as

T (n) =
1
2n

(
n− 1

(n− 1)/2

)
n. (22)

The recurrence can be calculated as

T (n + 2) =
n + 2
n + 1

T (n) (23)

T (1) = 1/2. (24)

To get an intuition of how this normalization function
behaves, f(n) is illustrated in Figure 15 as a log-log plot.
As n increases, f(n) approaches n/2 as expected. Note
that Equation 17 depends only on the size of the regions Vi

and therefore can be pre-computed. At run-time, we only
need to perform one table look-up for each supervoxel in
the volume.

4.4. Complementary Nature of Shape and Flow

We now highlight some fundamental limitations of
shape- and flow-based features and how these can be over-
come when the two feature types are combined. Previous

work that employs shape features, whether in images or
video, typically extracts the outline or silhouette of the ob-
ject. This raw shape is then frequently represented as a bi-
nary image. Since silhouettes are robust to appearance vari-
ations due to internal texture and illumination, they are un-
able to represent the internal motion of an object. For exam-
ple, a textured rolling ball is indistinguishable from a static
ball based on shape alone — yet could easily be recognized
based on flow. Figure 16 shows a portion of a hand-clap ac-
tion sequence. When viewed from the front, the silhouette
changes very little, although there is a distinctive change of
flow at the hands. Therefore, one would expect the addition
of flow features to help particularly in cases where an action
cannot be distinguished from its silhouette alone.

Conversely, some actions cannot be distinguished using
flow-based features alone. While such features explicitly
model the motion of an object, they only implicitly model
the object shape; more importantly, the shape of stationary
parts of the object are ignored. For example, as we have
previous observed in the KTH action recognition database,
the flow of the boxing action looks very similar to that of
the hand-clap (see Figure 17) [33]. This is because the hor-
izontal trajectories of the arms is similar and the (station-
ary) body of the actor is invisible; thus the outward mo-
tion of the punch matches the inward motion of the clap.
However, a shape-based feature could trivially distinguish
between the person and the grassy background and disam-
biguate these actions. Therefore, we argue that shape- and
flow-based features are complementary and should be used
in conjunction for action recognition. We believe that we
are the first to propose a volumetric approach that combines
these two feature types and show their effectiveness on non-
background subtracted videos. While the idea of combining
shape and flow is well known, we show how they comple-
ment each other well in our application.

Despite the normalization, our shape-based correlation
algorithm can sometimes generate false positives on highly-
textured regions, which are finely segmented (Figure 18a).
However, we can obtain accurate flow measurements on
these regions and a flow-based algorithm such as Shecht-
man and Irani’s flow consistency [54] can filter out these
false positives. Similarly, uniform regions pose an analo-
gous problem for flow-based algorithms because these re-
gions have indeterminate flow, and therefore can match all
possible templates. Consequently, we add a pre-filtering
step to Shechtman and Irani’s technique to discard uni-
form regions by thresholding on the Harris score of the
region. Even with this filtering, we observe that the ma-
jority of false-positives occur in low-textured regions (Fig-
ure 18b). Fortunately, our shape-based correlation works
well on those regions and can be used to filter out the false
positives. We quantify the benefits of combining shape and
flow in Section 4.6.



Figure 16. Notice how the silhouette stays constant during this part of the hand-clapping event. More generally, a fundamental limitation
of such shape features is that they cannot represent motion inside the silhouette.

Figure 17. Although clapping (top) and boxing (bottom) are distinct actions, they are very similar in terms of local flow alone. This is
because the motion in the right half of the white window (generated by the inward movement of the clap) is similar to the flow caused by
the outward extension of the punching arm. However, the shape feature can easily determine that the center of the white window contains
background in the former and a person in the latter, and thus eliminate this false positive.

(a) shape fp (b) flow fp
Figure 18. False positives found using a) shape correlation and b)
flow consistency correlation. The false positives using shape fea-
tures occur on highly textured regions, whereas the false positives
using flow features occur on uniform regions. Using both features
filters out each other’s false positives.

4.5. Baseline Detection Algorithm

This section describes a baseline technique for detect-
ing events using spatio-temporal shape and flow correla-
tion. This technique is not scale invariant; standard tech-
niques such as scanning a pyramid of scales can be applied.
A more powerful parts-based method for detection is de-
scribed in Section 5. Suppose first (for now) that we have
a template of a single instance of an action of interest. To
find other instances of this action in a video clip, we can
slide the template over the entire video and measure the cor-
relation distance at all locations in space and time. We use
Shechtman and Irani’s flow correlation method (described
in Section 2.7) to measure the flow matching distance [56].
More formally, for each location l = (x, y, t) in the video,
we position the template T at l and measure the shape and

flow correlation between T and the video. We use a linear
combination of the shape and flow correlation distance as
follows:

d(T, V ; l) = dN (T, V ; l)+αdF (T, V ; l) from Eqns. 12, 7,
(25)

where α is the relative weight between the flow and shape
distances. We use α = 0.2 for all experiments. Threshold-
ing the correlation distance and finding the peaks give us
locations of potential matches. Figure 19 shows the mini-
mum correlation distance of a hand-wave action projected
on a time axis. Note that the cyclic nature of the action and
the distance is minimized when the phases of the template
and the action match. Although the action in the video is pe-
riodic, our algorithm does not assume periodic motion and
thus we can detect all instances of the event and localize
them in both space and time. The advantage of using single
templates for matching is that minimal human effort is re-
quired to bootstrap the system. This works well in scenarios
where we have not trained the system on a large collection
of template actions or where a human operator is interac-
tively searching for novel events in large video databases.
In such scenarios, the user can manually adjust the thresh-
old to balance the detection and the false positive rates. We
will show in Section 6 on how to generalize to multiple tem-
plates.

4.6. Evaluation of Baseline Method

We now illustrate how our baseline algorithm performs
on an event detection task, where we try to detect and lo-



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

C
or

re
la

tio
n 

D
is

ta
nc

e

Frame Number (25fps)

Handwaving Action

Boxing Template
Handwaving Template

Figure 19. The minimum correlation distance of two templates on
a hand-waving action. Notice the cycles in the action, where the
distance is minimized when the phase of the template matches that
of the action.

calize an event in space-time. For our first experiment, we
used a real life video — a Wimbledon 2000 match between
Agassi and Rafter [2]. This experiment is difficult because
the video contains a lot of clutter (e.g., Figure 18a) and
only a few instances of the actions are present in the video.
We manually selected an example of Rafter serving (Fig-
ure 21a) and used it as a template to find all other instances
of him serving in the first 30 minutes of the video. The tem-
plate was scanned over all spatio-temporal locations and we
kept the best match for each frame, assuming the action only
occurs at most once per frame. There were 28 instances
of the serve and we considered a detection to be a positive
match if there was at least 75% overlap between the detec-
tion bounding volume and the manually-labeled event vol-
ume. Figure 20 shows the results of using various matching
methods, where we varied the matching distance threshold
to generate the precision-recall curve. “Shape Baseline”
is the performance of our shape-based region intersection
algorithm without normalizing for segmentation granular-
ity. “Shape (normalized)” normalizes for the segmentation
granularity and performs markedly better. “Flow” repre-
sents the results from our implementation of Shechtman and
Irani’s algorithm. In this experiment, flow-based correlation
performs better than shape-based correlation. This is partly
due to false positives matching on finely-segmented crowd
scenes, despite the normalization. Combining both features
using a weighted sum of the detection scores, we achieve
the best results with 80% recall at 80% precision. The two
features remove each other’s false positives and results in
a much higher precision. The dataset and results are illus-
trated in Figure 21.

5. Parts Based Recognition
The previous section describes a method for match-

ing volumetric shape features on automatically-segmented
video. The main strength of the baseline algorithm is that it

Figure 20. Comparison of detection performance using various
features on 30 minutes of a tennis video.

Figure 21. Illustration of detected events in the tennis sequence.
Top: template; Bottom row: example detections.

can perform shape matching without precise object masks
in the input video [10, 11, 71]. Therefore, we can use shape
information extracted from automatic volumetric segmen-
tation instead of relying on background subtracted fore-
ground masks. Further, using template-based matching en-
ables search with only one training example. However, like
all template-based matching techniques [11, 54], it suffers
from limited generalization power due to the variability in
how different people perform the same action. A standard
approach to improve generalization is to break the model
into parts, allowing the parts to move independently, and to
measure the joint appearance and geometric matching score
of the parts. Allowing the parts to move makes the tem-
plate more robust to the spatial and temporal variability of
actions. A parts-based model allows us to improve gener-
alization even with a single training template. While we
do not have a fully and arbitrarily deformable model, the
parts-based model is one step in making the model more de-
formable. This idea has been studied extensively in recog-
nition in both images [68] and video [12, 55]. Therefore,
we extend our baseline matching algorithm by introducing
a parts-based volumetric shape-matching model. Specifi-
cally, we extend the pictorial structures framework [24, 25]
to video volumes to model the geometric configuration of



(a) Whole (b) Parts
Figure 22. To generalize the model and allow for more variability
in the action, we break the action template (a) into parts (b). The
model can be split in both space or time to generate the parts.

the parts and to find the optimal match in both appearance
and configuration in the video.

5.1. Parts Based Shape Descriptor

A key feature of our baseline algorithm is that it can per-
form shape matching with over-segmented regions. How-
ever, it assumes that the template consists of a single re-
gion, and that only the video is over-segmented. Given a
single template, one must use prior knowledge to break the
template into parts. For events that consist of human ac-
tions, these parts typically correspond to the rigid sections
of the human body, and therefore the process is straight-
forward. We illustrate how one might manually break the
handwave template into parts, as shown in Figure 22. We
note that, for this action, only the upper body moves while
the legs remain stationary. Therefore, a natural break should
be at the actor’s waist. Such a break would allow the tem-
plate parts to match people with different heights. Another
natural break would be to split the top half of the action
temporally, thus producing two parts that correspond to the
upward and downward swing of the handwave action. This
allows for some variation in the speed with which people
swing their arms. It is important to note that, just like the
whole template, the parts are also spatio-temporal volumes
and could represent a body part in motion.

We now generalize our baseline algorithm (in Sec-
tion 4) and describe how we match template parts to over-
segmented regions. Consider the oval template that has
been split into two parts in the toy example illustrated in
Figure 23. Although the whole template matches the oval
(V1 ∪ V2 ∪ V3) in the candidate volume, the parts would
match poorly because the over-segmentation is inconsistent
with the boundaries between the two parts. For example,
our baseline algorithm would not match Part 1 to V1, nor
Part 2 to V3. In general, there is no reason to believe that
they should match because some of the part boundaries are
artificially created (as shown by the dashed lines) and do not
necessarily correspond to any real object boundaries. Our
solution is to introduce additional cuts using a virtual plane

Figure 23. Illustration of how we artificially cut the candidate vol-
ume to match how the whole template is split into its constituent
parts. The candidate volume is dynamically cut as we slide the
template parts along it. The cutting process is very efficient.

that is aligned to and moves with the template part. For
example, as we slide Part 1 across the video, we subdivide
all the regions that intersect with the cutting plane placed
on the right edge of the Part 1. V2 is divided correctly, and
Part 1 now matches the union of V1 and the shaded region
of V2. For convenience, we only use cutting planes that
are aligned with the principal axes, but in general the plane
can be oriented in any direction. By pre-computing the cuts
and with judicious bookkeeping, the parts-based matching
can be performed with the same computational efficiency as
our baseline shape-based matching algorithm.

5.2. 3D Pictorial Structures

We now describe how the framework of pictorial struc-
tures [24,25] can be extended to parts-based event detection
in video. Intuitively, each part in the template should match
the video well, and the relative locations of parts should be
in a valid geometric configuration. More formally, consider
a set of n parts that form a tree in a graph. Adopting a
notation based on Felzenszwalb and Huttenlocher [24], let
the part model be specified by a graph G = (P,E). Tem-
plate part Ti is represented as a vertex pi ∈ P and the con-
nection between parts pi and pj is represented as an edge
(pi, pj) ∈ E. The configuration of the parts is specified by
L = (l1, . . . , ln), where li = (xi, yi, ti) is the location of
part Ti in the candidate volume V . Let ai(li) be the corre-
lation distance between the template part Ti and the video
at location li. Let dij(li, lj) be the distance in configuration
between parts Ti and Tj when they are placed at locations
li and lj , respectively. We want to find the optimal location
of all of the parts, L∗, by minimizing the energy function:

L∗ = argmin
L

 n∑
i=1

ai(li) +
∑

(vi,vj)∈E

dij(li, lj)

 . (26)



The correlation distance a() is a linear combination of our
normalized distance metric (Equation 12) and Shechtman
and Irani’s flow-based correlation distance (Equation 7):

ai(li) = dN (Ti, V ; li) + αdF (Ti, V ; li), (27)

where α = 0.2 and we use the same weight for all exper-
iments. For matching efficiency, our parts model is orga-
nized in a tree structure and we model the relative position
of each part as a Gaussian with a diagonal covariance ma-
trix. Therefore,

dij(li, lj) = βN (li − lj , sij ,Σij), (28)

where li − lj represents the offset in (x, y, t) between part
Ti and Tj , sij is the mean offset, and Σij is the diagonal
covariance. β adjusts the relative weight of the configura-
tion vs. appearance terms and for all of our experiments we
use β = 0.02. The mean offset is taken from the location
where we cut the parts, and the covariance is set manually,
typically around 10% of the template size. As described by
Felzenszwalb and Huttenlocher [24], the minimization can
be efficiently solved using distance transforms and dynamic
programming. Because we use a sliding window approach
to event detection, we also record the actual distance solved
in the minimization and threshold on the distance. Only
those below a specified threshold are considered as detec-
tions. As we pointed out earlier, the key feature of the al-
gorithm is that it requires a segmented event template as a
model, but it does not require an exact segmentation of the
input video, thus making detection possible in cases, such
as crowded scenes, in which reliable segmentation would
be difficult.

5.3. Evaluation of Parts-Based Matching

To evaluate the effectiveness of our parts-based matching
algorithm, we selected events that represent real world ac-
tions such as picking up an object from the ground, waving
for a bus, or pushing an elevator button (Figure 25). We ac-
quired videos by using a hand-held camera in cluttered en-
vironments with moving people or cars in the background.
This data set is designed to evaluate the performance of the
algorithm in crowded scenes. We study the effects of using
different combinations of shape and flow descriptors, and
parts-based versus whole shape models. One subject per-
formed one instance of each action for training.2 Between
three to six other subjects performed multiple instances of
the actions for testing. We collected approximately twenty
minutes of video containing 110 events of interest. The
videos were down-scaled to 160×120 in resolution. There
is high variability in both how the subjects performed the

2The two-handed wave action template was taken from the KTH
videos.

Figure 24. Illustration of how we generate model templates us-
ing an interactive video segmentation process similar to Wang et
al. [65]. Given the training video (left), we draw a few strokes to
label the foreground and background regions (middle), and graph-
cut generates the complete segmentation mask (right).

actions and in the background clutter. There are also signif-
icant spatial and temporal scale differences in the actions as
well.

For each event, we create the model from a single in-
stance by interactively segmenting the spatio-temporal vol-
ume using a graph-cut tool similar to [65]. Note that we do
not require the entire person to be observed and segmented
to detect an event. For example, in the hand-wave event
in Figure 25, only the upper torso is labeled and used for
training. The templates are typically 60 × 80 × 30 in size
and range from 20,000–80,000 voxels. The whole template
is then manually broken into parts, as shown in Figure 25.
The video is automatically segmented using mean shift; the
average segment size is approximately 100 voxels. We scan
the event template over the videos using the shape and flow
distance metrics described earlier, and combine them using
pictorial structures. There are approximately 120,000 pos-
sible locations to be scanned per second of video for a typ-
ical template. In these experiments, to evaluate the robust-
ness of our matching algorithm to variations in observed
scale, we match only at a single fixed scale; in practice, one
could match over multiple scales. The algorithm returns a
three-dimensional distance map representing the matching
distance between the model and the video at every loca-
tion in the video. For efficiency, we project the map to a
one-dimensional vector of scores, keeping only the best de-
tection for each frame, as shown in Figure 26(a). Since it is
rare for two instances of an action to start and end at exactly
the same time instant, this is a reasonable simplification. An
event is detected when the matching distance falls below a
specified threshold. We vary this threshold and count the
number of true positives and false positives to generate the
Precision-Recall graphs. A detected event is considered a
true positive if it has greater than 50% overlap (in space-
time) with the labeled event.

We now analyze the performance of our algorithm and
compare it to baseline methods. Figure 25 shows example
detections using our algorithm with the parts-based shape
and flow descriptor in crowded scenes. Note the amount
of clutter and movement from other people near the event.
The precision-recall graphs for all of the actions are shown
in Figures 26(b)–(f). We compare our results to Shecht-



Model Example Detections

Figure 25. Examples of event detection in crowded video. Training sequences and event models are shown on the left. Detections in
challenging test sequences are shown on the right. The action mask from the appropriate time in the event model is overlayed on the test
sequence, and a bounding box drawn around each part.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  100  200  300  400  500  600  700

M
at

ch
in

g 
D

is
ta

nc
e

Frame #

Pickup

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Shape+Flow (Parts)
Shape (Parts)

Shape (Whole)
Flow (Whole)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Shape+Flow (Parts)
Shape (Parts)

Shape (Whole)
Flow (Whole)

(a) Matching distance pick-up hand wave

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Shape+Flow (Parts)
Shape (Parts)

Shape (Whole)
Flow (Whole)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Shape+Flow (Parts)
Shape (Parts)

Shape (Whole)
Flow (Whole)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Shape+Flow (Parts)
Shape (Parts)

Shape (Whole)
Flow (Whole)

pushing elevator button jumping jacks two-handed wave

Figure 26. (a) Projected matching distance on video with three pick-up events. A threshold of 0.6 successfully detects all of them. (b)–(f)
Precision/recall curves for a variety of events. Our parts-based shape and flow descriptor significantly out-performs all other descriptors.
The baseline method [54], labeled as “Flow (Whole)”, achieves low precision and recall in most actions, demonstrating the difficulty of
our dataset.



Whole Template
Up Phase Down Phase

Parts-Based Template
Up Phase Down Phase

Figure 27. Illustration of how our parts-based model can stretch
to accomodate the mismatch in speed between the template and
the detected action. While the down-phase of the hand-wave is
matched to the whole template, the up-phase is clearly misaligned.
The parts-based template matches both phases well and thus en-
ables better detection accuracy.

man and Irani’s flow consistency method [54] as a base-
line, labeled as Flow (Whole) in our graphs. This state-
of-the-art baseline method achieves low precision and re-
call in nearly all actions, demonstrating the difficulty of our
dataset. Our combined parts-based shape and flow descrip-
tor is significantly better and outperforms either descriptor
alone [35]. The parts-based shape descriptor is better than
the whole shape descriptor in the hand-wave, push button,
and two-handed wave actions, while there is little benefit to
adding the parts model for the jumping-jacks and pick-up
actions. To llustrate qualitatively the benefits of the parts-
based model, we applied the two-handed wave template to
one of the videos in the KTH dataset. Figure 27 shows the
difference between the whole and parts-based templates as
they are overlayed (in pink) onto the video. There was a
difference in handwaving speed between the template and
the target video. Consequently, the whole template was not
able to align both phases of the action, while the parts-based
template was able to stretch to match the action well.

5.4. Automatic Part Generation

We have previously assumed that the parts were manu-
ally cut from a single training template. We would like to
automatically cut the whole template in Figure 22a to look
like the parts in Figure 22b. Given many training examples,
we can automatically learn the optimal place to cut the tem-
plates. Intuitively, the cuts divide the templates into parts

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
Split Point

N
or

m
. C

or
re

la
tio

n 
D

is
ta

nc
e

Left Right

Vertical

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1
Split Point

N
or

m
. C

or
re

la
tio

n 
D

is
ta

nc
e

Top Bottom

Horizontal

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1
Split Point

N
or

m
. C

or
re

la
tio

n 
D

is
ta

nc
e

Front Back

Temporal
Figure 28. Matching distance at different cut locations along each
axis.

that move independently of each other. This is done by try-
ing cuts at various locations and see which cut gives the
best performance. Performance is measured by the amount
of volumetric overlap between the individual parts.

Suppose we have one training template that we would
like to cut and n labeled events in a set of video files.
First, we choose a cutting plane, for example the X-T plane,
which cuts the templates horizontally. We iterate through
all possible locations at which to cut, which in this case is
equal to the height of the template. At each cut location,
we match the parts to the labeled events and we measure



Vertical Cut 1 Vertical Cut 2

Part 1 Part 2 Part 1 Part 2

Horizontal Cut Temporal Cut

Part 1 Part 2 Part 1 Part 2
Figure 29. Automatically cutting whole template into parts.

the shape correlation distance. We scan a small area around
the labeled event to find the best matching distance. The
cut location that minimizes the distance between the parts
and all labeled events is considered the best one. Figure 28
shows the plot of the matching distance between the two-
handed wave template and the labeled events at various cut
locations. We see that there are two vertical cuts that gen-
erate good matches. The parts are illustrated in Figure 29
and we see that these two vertical cuts are near the arms,
which is quite intuitive. The horizontal cut is around the
waist, suggesting that the arms move independently as ex-
pected. Finally, the temporal cut splits the up and down
phases of the wave. We show only the first division of the
templates in Figure 29. Further divisions can be made by
recursively dividing the individual parts. One must weigh
the trade-off between robustness in using more parts and
the specificity of the template with fewer parts. Ideally, the
number of parts to generate could be automatically learned
as well. Instead of automatic cuts, one could cut the parts
manually, but the cuts would arbitrarily placed and likely to
be suboptimal. Once we have the parts, we can learn the
part configuration parameters, which we describe next.

5.5. Learning Part Configurations

The two main parameters for the parts configuration are
the mean and covariance of the part offsets. When we were
given only one template, we specified the mean offset, sij ,
as the location where we cut the part and the covariance,
Σij , as 10% of the template size. Ideally, we would want
to learn these parameters automatically given training data.
If there are multiple labeled examples for an event, we can
learn these parameters as follows. We propose two meth-
ods for learning the parameters – a completely supervised
method and a semi-supervised method.

s12

Σ12

Figure 30. Illustration of how the part offset parameters are initial-
ized.

The supervised method for learning the part parameters
is straight-forward. First, we assume that we have already
cut the template T into a set of m parts, T = {T1 . . . Tm}.
We then manually label the location of each part for all n
training examples. We denote lki as the location of part Ti

for the kth training example. The mean and covariance of
the part offsets, sij and Σij , can be estimated directly.

sij =
1
n

n∑
k=1

(lki − lkj ). (29)

Σij =
1
n

n∑
k=1

(lki − lkj − sij)2. (30)

However, this is a labor-intensive process and we would
like to minimize the amount of required manual labeling.
Further, we are constrained by the parts given to us; if
the template is divided into another part configuration, we
would need to relabel all of the events. Therefore, we pro-
pose a semi-supervised method for learning the part param-
eters.

The overall learning is an EM-like iterative process [44].
First, we label only the bounding box surrounding the event.
Because we do not label the individual parts, the manual la-
beling is much faster. However, this creates additional un-
knowns that must be estimated. Specifically, we need to
estimate the part offsets for each labeled event, lki − lkj . We
initialize our estimate of these parameters using the same
method as we used for the single template in Section 5.2. sij

is initialized to the location where we cut the part, and Σij

is initialized to 10% of the size of the template. Figure 30
shows an illustration of the parameters between two parts.
Now, we need to find the location of all the parts for every
labeled example, {lki }. Using the initial guess of sij and
Σij , we run the detector in a small area around the labeled
event. From the kth event, we use pictorial structures to find
the optimal location of the parts, Lk∗ = {lk1 , . . . , lkm} (using



Input: E = {E1 . . . En}: Location of training events.
s′,Σ′: Initial estimates of s and Σ.
T = {T1 . . . Tm}: Template parts.

Output: Estimated part configurations.

repeat
for i = 1 . . . n do

Estimate part locations {l1i . . . lmi } for event Ei

using pictorial structures with T, s′, and Σ′.
end

Estimate s,Σ using part locations for all events
(Equations 29 and 30).

s′ = s ;
Σ′ = Σ ;

until s,Σ converges ;

return s,Σ ;
Algorithm 2: Estimating part configurations.

Equation 26). Given the set of part locations, we can now
re-estimate sij and Σij using Equations 29 and 30. This
process is repeated until convergence. Our experiments in-
dicate that they converge relatively quickly, usually after a
few iterations. The process is summarized in Algorithm 2.

6. Improving Robustness

There are many important and practical issues that arise
when we apply event detection in real-world videos. There
are more drastic variations, such as viewpoint, scale, ac-
tor variability, and camera movement. We analyze how our
system performs in various settings and how robust it is to
these kind of variations.

6.1. Robustness to Viewpoint

A common challenge to all view-based recognition al-
gorithms is that they are dependent on the camera view
point. While our method is not view invariant, it is robust
to small changes in viewpoint. We quantify this using the
Multiview dataset, where we used four cameras to simulta-
neously capture the events. The cameras were arranged in a
45 degree semi-circle around the actors and sample frames
are illustrated in Figure 8. We averaged the area under the
precision-recall curve (AUPRC) [7, 13] over all actions and
plotted them against the camera viewpoint, shown in Fig-
ure 31. The models were trained using a camera placed
directly in front of the person, so we expect “0 degrees” to
give the best performance. The curves show that for all fea-
tures, there is only a slight drop in performance for a skew
of up to 30 degrees. At 45 degrees, the performance drops
significantly.

0

0.2

0.4

0.6

0.8

1

0 15 30 45
Degrees Offset

AU
PR

C

Flow Whole
Shape Whole
Shape Parts
Shape + Flow Parts

Figure 31. Multiview comparisons. The bump at 30 degrees for
the Shape+Flow Parts method is likely due to noise.

6.2. Multi-scale Detection

Our baseline algorithm is not invariant to spatial and
temporal scale changes in the events. While our parts-based
method is more robust to scale variations, a complete sys-
tem would need to also explicitly search across scales. We
show results that confirm the belief that searching across
scales improves performance. We scaled the templates lin-
early in both space and time and searched for these events
in the Multiview dataset. The templates were rescaled us-
ing factors of (0.8, 1.0, 1.2) in space and time to generate 9
templates from each of the original templates. The AUPRC
averaged overall all actors, actions, and camera view points
are plotted in Figure 32. Column (a) shows the detection re-
sults using a single template per action. Column (b) shows
the results with the multi-scale templates and it clearly im-
proves over the single template.

A potential problem with using multi-scale templates is
that since the templates are different sizes, they cannot be
directly compared to each other using the same detection
threshold. This is evident from our distance metric:

d(T, Vi; l) =
{

|T ∩ Vi| if |T (l) ∩ Vi| < |Vi|/2
|Vi − T (l) ∩ Vi| otherwise.

(31)
Larger templates generate larger distances, and therefore we
cannot use the same detection threshold for different tem-
plates. We introduce a regularization term that normalizes
for the size of the template:

dN (T, V ; l) =
d(T, V ; l)
EV [d(T, ·)]

. (32)

Note that this is different than the regularization term for
the segmentation granularity. We calculate EV [d(T, ·)] em-
pirically by averaging the correlation distance between the



0

0.1

0.2

0.3

0.4

0.5

Single Template Multi-scale
Templates

Normalized
Multi-scale
Templates

A
U

P
R

C

Figure 32. Effectiveness of scanning multiple scales in space-time
(on the Multiview dataset). Left: Single template. Middle: in 9
scales (3 in space and 3 in time). Right: Multi-scale normalized
templates to account for differences in template size.

(a) (b) (c)

Figure 33. Multiscale on aerobics videos. Successful detections
on actions with a 2.3x scale difference. Images in (a) and (b) are
from the same sequence a few tenths of a second apart and show
that all three events were detected at slightly different temporal
offsets. The actors were not completely synchronized.

template T and many segmented videos. Using this normal-
ized distance metric, we achieve the best detection results,
as shown in column (c). Figure 33 shows anecdotal results
on the Aerobics dataset. The spatial scale difference be-
tween the two views is 2.3× and we successfully detect all
of the events. The bounding box and template overlay show
that we correctly detected the scale of the events.

Unlike variations in spatial scale, there are much smaller
temporal scale variations between actions. Spatial scale
variations are determined by the size of the person, the dis-
tance between the person and the camera, and the resolution
of the camera. The best-known technique for recognizing
human actions at low resolutions is limited to a minimum
of around 30 pixels [22]. For 640 × 480 resolution videos,
this translates to a maximum of 16x in scale variation. Tem-
poral variations, on the other hand, are much smaller. Ta-
ble 2 shows the cycle periods of actions in the Weizmann
dataset. The maximum scale change is only 1.43 as seen in
the Pjump action. Therefore, we only need to scan across a
small range of temporal scales for event detection.

Table 2. Cycle periods of actions in the Weizmann dataset. There
are small temporal scale variations in this dataset, with a maximum
of 1.43 on the Pjump action.

Action Avg Std. Dev. Max/Min
Bend 2.35 0.13 1.19
Jack 1.11 0.06 1.17
Jump 0.54 0.06 1.36
Pjump 0.67 0.08 1.43
Side 0.63 0.03 1.17
Skip 0.49 0.05 1.36
Run 0.83 0.07 1.31
Walk 1.11 0.04 1.10
Wave1 1.15 0.08 1.26
Wave2 1.16 0.10 1.35

0

0.2

0.4

0.6

0.8

1

Jumping
Jacks

Pick-up One-
handed
Wave

Two-
handed
Wave

A
U
P
R
C

15F
1F

Figure 34. Recognition results comparing volumetric segmenta-
tion (15F) versus single-frame (1F) segmentation on 4 actions in
the Weizmann dataset. We see that segmentation using blocks of
15 frames gives better results than single-frame segmentation.

6.3. Volumetric Segmentation

Using volumetric segmentation is better than segment-
ing the video on a frame-by-frame basis. Figure 5 showed
anecdotally the improvement in quality between segment-
ing frame-by-frame versus blocks of frames. We now
demonstrate quantitatively the effect of volumetric segmen-
tation on recognition performance. Figure 34 shows the re-
sults of detecting various actions on the Weizmann dataset.
“15F” denotes the results from segmentation on blocks of
15 frames and “1F” corresponds to the results from 1-frame
segmentation. Only a single, whole shape template is used
per action to isolate the effects of segmentation. All mean-
shift segmentation parameters were fixed and we adjusted
average number of segmentations per frame to be the same
for both method. We see that segmentation using blocks
of 15 frames leads to better recognition results. This is
because volumetric segmentation is able capture the object
boundaries more consistently through time. Further, given
the same number of regions, volumetric segmentation can
more accurately represent the boundaries.



6.4. Real-world Videos

We now show anecdotal results on real-world videos
download from YouTube. The videos were found using the
search terms “pick up coin” and “jumping jacks”. Figure 35
shows example detections on these actions. We used the
same templates as in prior experiments and used the parts-
based shape and flow features for detection. The videos are
all unscripted and represent the diversity of how actions can
be performed. Many of the videos are low quality due to
high compression, noise, poor lighting, and have low frame
rate. Since the videos are mostly taken with hand-held cam-
eras, we do camera stabilization as a pre-processing step on
the videos. Figure 36 shows how much camera movement
there is in a typical video.

6.5. Robustness to Camera Movement

While our features are robust to small amounts of camera
motion such as those from a hand-held camera, it is not in-
variant to large camera movements. These movements dis-
tort both the volumetric shape and flow features. We use
an off-the-shelf camera motion estimation software, Mo-
tion2D [48], to compensate for these movements. A simple
translation and rotation motion model is sufficient to stabi-
lize the camera motion. Prior approaches have encountered
similar problems and have also used camera stabilization to
as a preprocessing step [6, 8, 45, 61]. To measure the effect
of camera movement, we captured a sequence of videos that
have large amounts of camera movement in them. There
are two types of motion – camera shake (hand-held cam-
era) and panning (simulating a pan-tilt camera). Figure 37
shows an example of camera shake and Figure 38 shows
an example of a camera panning. The average displace-
ment in this dataset is 2.73 pixels per frame, compared to a
displacement of less than 0.1 pixels per frame in a typical
hand-held camera. Panning at 2.73 pixels per frame gives a
82-pixel offset in one second of video, or roughly half the
video frame since the videos are 160×120. It would be very
difficult to reliably detect events with this amount of move-
ment and without motion compensation. Figure 37 shows
example frames from an original unstabilized and the cor-
responding stabilized video. Events that were undetectable
in the original videos are easily detected in the stabilized
videos. Quantitative results on the entire dataset is shown
in Figure 39. The results for all actions improve when we
add camera stabilization.

6.6. Comparison on standard datasets

Although our goal is to detect and locate events, we
adapted our algorithm to perform video classification on the
KTH action database to compare against other algorithms.
The KTH actions database contains 25 people performing
six actions in four different scenarios [53]. Each video clip

contains one person performing an action multiple times un-
der significant lighting, clothing, and scale changes (Fig-
ure 40). Different people also perform the actions at dif-
ferent speeds and orientations. The videos were recorded
using a handheld camera which prevent simple background
subtraction techniques from reliably extracting the person.
The goal of the experiment is to classify the video clips into
one of the six actions — walking, jogging, running, boxing,
clapping, and waving. Classifying the entire video simpli-
fies the training and recognition process because we do not
have to label each instance of the action; we only need to
label the sequence as a whole.

To classify the video sequences, we first classify the in-
dividual frames and assign the class with the highest frame
count to the video clips. While there are a number of clas-
sifiers that one could use to classify the frames, we chose
to use SVM because of its reported success in a wide range
of applications. We train the SVM (using LIBSVM [14]
and an RBF kernel) as follows. Given a candidate video at
some space-time location, we correlate it with a database of
n template actions. This gives us a feature vector of size
n if use our region intersection algorithm, or 2n if we also
include flow features. Each dimension of the feature vec-
tor corresponds to a distance between the candidate video
location and a template action.

Following the methodology of Niebles et al. [47], we use
leave-one-out cross-validation grouped by person to mea-
sure the classification accuracy. To generate the trianing
data, we manually label 4 templates for each action. Each
template contains one cycle of the action, typically 15 to 30
frames long. The videos used to extract the templates are
removed from the cross-validation set. For each template
ti, we scan over all space-time locations in a video clip.
For each frame of the video, we extract the best correlation
score for each template. There is one feature f per frame,
where fi is the best correlation score to template ti. During
classification, each frame in a video clip is classified as one
of the six actions and votes for the label of the entire video
clip.

Figure 42 shows the confusion matrix on the KTH
dataset. The result is generated using both shape and flow
features and correlated against two templates per action. We
achieve an accuracy of 80.9%, which is comparable to the
most recent studies on the same dataset (Table 3). Unfortu-
nately, we can only loosely compare the results in Table 3
because different groups employed different experimental
methodologies. Like the other studies, we find that there
is confusion mainly between walk-jog-run and box-clap-
wave. As expected, running is more easily confused with
jogging than with walking. Boxing is also more easily con-
fused with clapping (horizontal motion) than waving (ver-
tical motion). Figure 42 shows the effect of using different
features and training on different number of templates. We



Pick-up

Jumping Jacks

Dog Sitting

Dog Jumping
Figure 35. Example detections of events on unscripted YouTube videos.

Figure 36. These frames show how much camera movement there
is in a typical video sequence. The frames were extracted in a two
second window.

(a) Video with Movement (b) Stabilized Video
Figure 37. Example detections from the Moving Camera dataset.
The jumping jacks were not detectable in the original video (a).
Using an off-the-shelf camera motion estimation algorithm [48],
we were able to easily detected events in the stabilized sequence
(b).

Figure 38. Example video of a camera panning like that of a
surveillance camera. This type of motion can be easily stabilized
and we are able to detect the events in these videos.

0

0.2

0.4

0.6

0.8

1

Pick-up Jumping
jacks

One-
handed
wave

Two-
handed
wave

A
U

P
R

C

Moving Camera
Stabilized

Figure 39. Detection results on the Moving Camera dataset. Using
camera stabilization dramatically increases the recognition rate.



(a) (b)
Figure 40. Notice the difference in scale between some videos in
the KTH dataset. The contrast is also low making segmentation
difficult.

.88 .08 .04 .00 .00 .00

.14 .67 .19 .00 .00 .00

.04 .15 .81 .00 .00 .00

.03 .00 .00 .84 .10 .03

.00 .01 .00 .12 .80 .07

.00 .00 .00 .06 .06 .88

walk

jog

run

box

clap

wave

walk
jog run box clap

wave

Figure 41. KTH Actions confusion matrix. Walk, jog, and run
actions are most easily confused. Box, clap, and wave actions are
sometimes confused.

Table 3. Although our method is not specifically designed
for whole-video classification, our results on the KTH actions
dataset [53] are competitive with recent studies.

Related work Accuracy
Our Method (shape + flow) 80.9%
Ke et al. [33] 63.0%
Schuldt et al. [53] 71.7%
Dollar et al. [21] 81.2%
Niebles et al. [47] 81.5%
Jiang et al. [31] 84.4%
Laptev et al. [37] 91.8%

are able to generalize the actions and increase the classifi-
cation performance by training on more templates, but with
diminishing returns. On this dataset, shape-based correla-
tion performs better than the flow-based correlation, and
performance improves slightly when we combine the two
features.

7. Conclusion
We presented a method for using volumetric features for

event detection in crowded videos. The video is treated as a
spatio-temporal volume and events are detected using our

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

No. of Templates

A
c
c
u
ra

c
y

Shape + Flow

Shape

Flow

Figure 42. Results on the KTH actions database. Training on more
templates improves results with diminishing returns. The com-
bined shape and flow features perform better than either alone,
especially with few training examples.

volumetric shape descriptor in combination with Shecht-
man and Irani’s flow descriptor. Unlike existing shapebased
methods, our system does not require figure/ground sepa-
ration, and is thus more applicable to real-world settings.
We extend our baseline shape matching algorithm to de-
tect event parts (sliced in both space or time), and gener-
alize the model to recognize actions with higher actor var
ability. The parts are combined using pictorial structures
to find the optimal configuration. Our approach detects
events in difficult situations containing highly-cluttered dy-
namic backgrounds, and signficantly out-performs the base-
line method [54]. This paper emphasizes the matching
aspects of event detection and demonstrates robust perfor-
mance on real-world videos. While the system is view de-
pendent and is not scale invariant, we demonstrate robust-
ness to camera view changes and some scale variations. We
also demonstrate the feasibility of training and using multi-
ple templates for greater generalizability.

There are several promising directions of future work.
Although this work did not demonstrate real-time event de-
tection, speed optimizations such as course-to-fine search
could drastically improve the performance. Another inter-
esting area of work is to automatically generate the event
templates in a semi-supervised and ultimately completely
unsupervised setup. For example, just by observation an
action occur many times in a training sequence, one could
automatically segment the event, align the training events
spatially and temporally, and finally automatically generate
the parts-based templates. In addition to shape and flow fea-
tures, it would be interesting to explore texture and gradient
features for shape matching. Further, better segmentation
and more consistent super pixels would improve the shape
matching part of this work.



References
[1] QuickFix Tight Abs Workout. Peter Pan Studios. ASIN:

B00004Z73V.
[2] Wimbledon 2000 Semi-Final - Agassi vs. Rafter. SRO Sports

Entertainment. ISBN: 0-7697-7886-0.
[3] YouTube, 2008. http://www.youtube.com/.
[4] J. K. Aggarwal and Q. Cai. Human motion analysis:

A review. Computer Vision and Image Understanding,
73(3):428–440, 1999.

[5] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl.
3D shape histograms for similarity search and classification
in spatial databases. In Proceedings of International Sympo-
sium of Advances in Spatial Databases, 1999.

[6] P. Arambel, J. Silver, J. Krant, M. Antone, and T. Strat.
Multiple-hypothesis tracking of multiple ground targets from
aerial video with dynamic sensor control. In In Proceedings
of SPIE 5429, (Signal Processing, Sensor Fusion, and Target
Recognition XIII), 2004.

[7] J. A. Aslam, V. Pavlu, and E. Yilmaz. A geometric interpre-
tation of R-precision and its correlation with average preci-
sion. In Proceedings of the International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, 2005.

[8] W. Bell, P. Felzenszwalb, and D. Huttenlocher. Detection
and long term tracking of moving objects in aerial video.
Technical report, Cornell University, 1999.

[9] S. Belongie, J. Malik, and J. Puzicha. Shape matching
and object recognition using shape contexts. PAMI, 24(24),
2002.

[10] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri.
Actions as space-time shapes. In Proc. ICCV, 2005.

[11] A. F. Bobick and J. W. Davis. The recognition of human
movement using temporal templates. PAMI, 23(3), 2001.

[12] O. Boiman and M. Irani. Similarity by composition. In NIPS,
2006.

[13] C. Buckley and E. M. Voorhees. Evaluating evaluation mea-
sure stability. In Proceedings of International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2000.

[14] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001. Software available at www.csie.
ntu.edu.tw/∼cjlin/libsvm.

[15] Y. Cheng. Mean shift, mode seeking, and clustering. PAMI,
17(8), 1995.

[16] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. PAMI, 24(5), 2002.

[17] T. Cour and J. Shi. Recognizing objects by piecing together
the segmentation puzzle. In Proc. CVPR, 2007.

[18] C. M. Cyr and B. B. Kimia. 3D object recognition using
shape similiarity-based aspect graph. In Proc. ICCV, 2001.

[19] D. DeMenthon. Spatio-temporal segmentation of video by
hierarchical mean shift analysis. In Statistical Methods in
Video Processing Workshop, 2002.

[20] D. DeMenthon and D. Doermann. Video retrieval of
near-duplicates using k-nearest neighbor retrieval of spatio-
temporal descriptors. MTAP, 30(3), 2006.

[21] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In IEEE VS-
PETS Workshop, 2005.

[22] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action
at a distance. In Proc. ICCV, 2003.

[23] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. PAMI, 28(4), 2006.

[24] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition. IJCV, 61(1), 2005.

[25] M. A. Fischler and R. A. Elschlager. The representation and
matching of pictorial structures. IEEE Trans. on Computers,
22(1), Jan. 1973.

[26] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman,
D. Dobkin, and D. Jacobs. A search engine for 3D models.
ACM Transactions on Graphics, 2003.

[27] L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt.
Shape representation and classification using the poisson
equation. PAMI, 28(12), 2006.

[28] R. Hamid, S. Maddi, A. Johnson, A. Bobick, I. Essa, and
C. Isbell. Discovery and characterization of activities from
event-streams. In Proc. UAI, 2005.

[29] S. Hongeng and R. Nevatia. Multi-agent event recognition.
In Proc. ICCV, 2001.

[30] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically
inspired system for action recognition. In Proc. ICCV, 2007.

[31] H. Jiang, M. S. Drew, and Z.-N. Li. Successive convex
matching for action detection. In Proc. CVPR, 2006.

[32] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation
invariant spherical harmonic representation of 3D shape de-
scriptors. In Symposium on Geometry Processing, 2003.

[33] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event
detection using volumetric features. In Proc. ICCV, 2005.

[34] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in
crowded videos. In Proc. ICCV, 2007.

[35] Y. Ke, R. Sukthankar, and M. Hebert. Spatio-temporal shape
and flow correlation for action recognition. In Workshop on
Visual Surveillance, 2007.

[36] I. Laptev and T. Lindeberg. Space-time interest points. In
Proc. ICCV, 2003.

[37] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In Proc.
CVPR, 2008.

[38] I. Laptev and P. Perez. Retrieving actions in movies. In Proc.
ICCV, 2007.

[39] B. Leibe, K. Schindler, and L. V. Gool. Coupled detection
and trajectory estimation for multi-object tracking. In Proc.
ICCV, 2007.

[40] Y. Leung, J.-S. Zhang, and Z.-B. Xu. Clustering by scale-
space filtering. PAMI, 22, 2000.

[41] H. Ling and D. W. Jacobs. Shape classification using the
inner-distance. PAMI, 29(2), 2007.

[42] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2), 2004.

[43] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of
the 7th International Joint Conference on Artificial Intelli-
gence, 1981.

http://www.youtube.com/
www.csie.ntu.edu.tw/~cjlin/libsvm
www.csie.ntu.edu.tw/~cjlin/libsvm


[44] G. McLachlan and T. Krishnan. The EM Algorithm and Ex-
tensions. Wiley Series in Probability and Statistics, 1997.

[45] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and
R. Nevatia. Event detection and analysis from video streams.
PAMI, 2001.

[46] G. Mori. Guiding model search using segmentation. In Proc.
ICCV, 2005.

[47] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learn-
ing of human action categories using spatial-temporal words.
In Proc. BMVC, 2006.

[48] J.-M. Odobez and P. Bouthemy. Robust multiresolution esti-
mation of parametric motion models. Journal of Visual Com-
munication and Image Representation, 6(4), 1995.

[49] D. Ramanan and D. A. Forsyth. Automatic annotation of
everyday movements. In NIPS, 2003.

[50] D. Ramanan, D. A. Forsyth, and K. Barnard. Building mod-
els of animals from video. PAMI, 28(8), 2006.

[51] D. Ramanan, D. A. Forsyth, and A. Zisserman. Tracking
people by learning their appearance. PAMI, 29(1), 2007.

[52] E. Sali and S. Ullman. Combining class-specific fragments
for object classification. In Proc. BMVC, 1999.

[53] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local SVM approach. In Proc. ICPR, 2004.

[54] E. Shechtman and M. Irani. Space-time behavior based cor-
relation. In Proc. CVPR, 2005.

[55] E. Shechtman and M. Irani. Matching local self-similarities
across images and video. In Proc. CVPR, 2007.

[56] E. Shechtman and M. Irani. Space-time behavior based cor-
relation -OR- How to tell if two underlying motion fields are
similar without computing them? PAMI, 29(11), Nov. 2007.

[57] Y. Sheikh, M. Sheikh, and M. Shah. Exploring the space of
a human action. In Proc. ICCV, 2005.

[58] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 22(8), 2000.

[59] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proc. ICCV, Oct.
2003.

[60] P. Srinivasan and J. Shi. Bottom-up recognition and parsing
of the human body. In Proc. CVPR, 2007.

[61] P. B. Thomas Veit, Frederic Cao. Probabilistic parameter-
free motion detection. In Proc. CVPR, June 2004.

[62] N. Vaswani, A. R. Chowdhury, and R. Chellappa. Activity
recognition using the dynamics of the configuration of inter-
acting objects. In Proc. CVPR, 2003.

[63] A. Veeraraghavan, R. Chellappa, and A. K. Roy-Chowdhury.
The function space of an activity. In Proc. CVPR, June 2006.

[64] P. Viola and M. Jones. Robust real-time face detection. IJCV,
57(2), 2004.

[65] J. Wang, P. Bhat, A. Colburn, M. Agrawala, and M. Cohen.
Interactive video cutout. In ACM SIGGRAPH, 2005.

[66] J. Wang, B. Thiesson, Y. Xu, and M. Cohen. Image and
video segmentation by anisotropic kernel mean shift. In
Proc. ECCV, 2004.

[67] L. Wang, W. Hu, and T. Tan. Recent developments in human
motion analysis. Pattern Recognition, 36(3), 2003.

[68] M. Weber, M. Welling, and P. Perona. Unsupervised learning
of models for recognition. In Proc. ECCV, 2000.

[69] D. Weinland, R. Ronfard, and E. Boyer. Automatic discovery
of action taxonomies from multiple views. In Proc. CVPR,
2006.

[70] D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint ac-
tion recognition using motion history volumes. Computer
Vision and Image Understanding, 104(2), 2006.

[71] A. Yilmaz and M. Shah. Actions as objects: A novel action
representation. In Proc. CVPR, 2005.

[72] G. Zhu, C. Xu, W. Gao, and Q. Huang. Action recognition in
broadcast tennis video using optical flow and support vector
machine. In ECCV Workshop in HCI, 2006.

[73] G. Zhu, C. Xu, Q. Huang, and W. Gao. Action recognition
in broadcast tennis video. In Proc. ICPR, 2006.


