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Abstract We propose a novel motion segmentation algo-
rithm based on mixture of Dirichlet process (MDP) models.
In contrast to previous approaches, we consider motion seg-
mentation and its model selection regarding to the number
of motion models as an inseparable problem. Our algorithm
can simultaneously infer the number of motion models, esti-
mate the cluster memberships of correspondences, and iden-
tify the outliers. The main idea is to use MDP models to
fully exploit the geometric consistencies before making pre-
mature decisions about the number of motion models. To
handle outliers, we incorporate RANSAC into the inference
process of MDP models. In the experiments, we compare
the proposed algorithm with naive RANSAC, GPCA and
Schindler’s method on both synthetic data and real image
data. The experimental results show that we can handle more
motions and have satisfactory performance in the presence
of various levels of noise and outlier.

Keywords Motion segmentation · Mixture of Dirichlet
process

1 Introduction

Motion segmentation is important in interpreting and recon-
structing dynamic scenes. It is referred to as the problem of
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labeling observed correspondences to multiple moving ob-
jects. The most challenging part of this problem is to si-
multaneously estimate the number of motion models and
the labels of correspondences in the presence of noise and
outliers. From a theoretical viewpoint, this problem can be
interpreted as a coupled model selection and model fitting
problem. To solve this problem, one has to select a suitable
number of motion models, fit the correspondences to these
models, and reject outliers at the same time.

Three major approaches were proposed to solve this
problem in previous work. The first assumes the images
are taken under affine projection model and formulates
the motion segmentation problem based on a factorization
or subspace separation framework (Costeira and Kanade
1998; Gruber and Weiss 2006; Kanatani 2002; Sugaya and
Kanatani 2004; Vidal and Hartley 2004; Yan and Pollefeys
2006). The second relies on iteratively applying RANSAC
(Fischler and Bolles 1981) to extract the motion model
with the most correspondences (Schindler and Suter 2006;
Torr 1998; Tuzel et al. 2005; Wills et al. 2006). The third
accommodates multiple motions within a multi-body fun-
damental matrix by lifting the dimensionality of correspon-
dences (Vidal et al. 2006; Wolf and Shashua 2001). Al-
though all of the above three approaches (factorization,
RANSAC-based and lifting approaches) have shown satis-
factory results, each of the approaches still has its limita-
tions. We will discuss them separately in the following three
parts.

(1) Limitation regarding to the number of motion models in
the scene:

In general factorization methods, they require at least 2L

views (Costeira and Kanade 1998) where L is the number
of motion models in the scene, but this requirement is not
always feasible. In the lifting approach, the number of mo-
tion models it can handle is also limited because the number
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of required correspondences grows quartically to L (Vidal
et al. 2006). In the RANSAC-based approaches, as the num-
ber of motion models increases, the number of outliers also
increases for an individual motion model, because the cor-
respondences belonging to the other motion models are also
regarded as outliers (to be clear, we call them pseudo out-
liers hereafter). In this case, the performances of RANSAC-
based approaches degrade significantly since they have to
spend much more time sampling a set of consistent corre-
spondences.

(2) Model selection regarding to the number of motion
models:

Factorization and lifting approaches either assume the num-
ber of motion models is known in advance or use a com-
plexity or rank measurement to estimate this number. The
former makes a strong assumption that is unreasonable in
practice; the latter might lead to premature decisions about
the number of motion models in the presence of noise and
outliers.

(3) Outlier handling:

The nature of factorization methods makes it difficult to han-
dle outliers. Although using RANSAC to handle outliers is
popular in the problem of motion segmentation, most of
the previous work does not use it properly. As mentioned
above, for an individual motion model, most of the corre-
spondences are real outliers or pseudo outliers. In this case,
it is inefficient to apply RANSAC to process all correspon-
dences without firstly considering the geometric consisten-
cies within the inliers or pseudo outliers.

In this paper, we suggest a new approach to alleviate the
aforementioned problems. The problem of motion segmen-
tation is considered within a nonparametric Bayesian frame-
work, mixture of Dirichlet process (MDP) models (Anto-
niak 1974; Ferguson 1973). We assume the motion models
in the scene are generated from a Dirichlet process, and the
observed correspondences are samples from a mixture of
these motion models. MDP model is suitable for perform-
ing inference of motion segmentation because it not only
allows the number of motion models to be uncertain in ad-
vance, but also provides us the freedom to incorporate our
prior knowledge about the motions in the inference process.
In addition, considering that motion segmentation is essen-
tially a labeling problem, we make our algorithm work on
a discretized motion space which facilitates the MDP infer-
ence process and makes our algorithm robust to noise. In
this way, the problem of inefficient sampling encountered
in the RANSAC-based approaches is alleviated because we
do not have to put much effort in sampling multiple cor-
respondences on the same moving object; moreover, com-
pared with the lifting approach, our method has a good prop-
erty that the number of required correspondences only grows

linearly with the number of motions. After evaluating the
likelihoods of the correspondences with respect to motion
models, we then integrate the evaluated likelihoods within
the MDP inference process which can simultaneously infer
the number of motions, refine the model parameters and de-
rive the cluster membership of correspondences.

Furthermore, we also incorporate RANSAC into the pro-
posed algorithm to handle outliers. Compared with previous
work, our algorithm exploits the epipolar constraints among
the correspondences before applying RANSAC to remove
outliers. From the perspective of RANSAC, using RANSAC
in this way is more efficient because it only has to handle
a smaller and proper set of the correspondences. From the
perspective of MDP models, incorporating RANSAC is also
beneficial, since it makes MDP models capable of handling
outliers.

Three assumptions are made in this paper: (1) there are
correspondences between images, (2) camera intrinsic para-
meters are known, and (3) objects are rigid and have full 3-D
structure.

The remainder of this paper is organized as follows:
Section 2 reviews previous work on motion segmentation.
Section 3 gives an introduction to MDP models. Section 4
describes the proposed two-view motion segmentation algo-
rithm. We conclude this paper with discussions and future
work in Sect. 5.

2 Related Work

Motion segmentation has been studied in computer vision
for many years. Earlier work on motion segmentation fo-
cuses on the specific scenarios in which objects either move
perpendicularly to the optical axis of the camera or can be
approximated by 2-D planes. For details, we refer the read-
ers to Kumar et al. (2005), Wills et al. (2006) and Xiao and
Shah (2005) for their recent developments. Below we only
focus on the review of 3-D motion segmentation which deals
with general rigid-body motions and structures.

The first research track originates from the celebrated
factorization method (Tomasi and Kanade 1992) which as-
sumed that there is only one moving object, and the images
are taken under affine projection model. Hence the mea-
surement matrix can be factorized into a product of camera
matrix and shape matrix by singular value decomposition.
Costeira and Kanade (1998) generalized this idea to multi-
body factorization. This approach is mathematically elegant
and can simultaneously process all correspondences across
multiple images. However, calculating the optimal solution
to their formulation is actually an NP-hard problem. To over-
come this problem, they suggest approximating the optimal
solution with a greedy algorithm, but the resulting algorithm
is vulnerable to noise and outliers in practice. Kanatani
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(2002) introduced the affine subspace constraint to improve
the segmentation results, and uses a complexity measure-
ment to balance the fitness and the number of motions. Gru-
ber and Weiss (2006) incorporated spatial coherence of cor-
respondences into a constrained factor analysis framework
and solved it with EM algorithm. Yan and Pollefeys (2006)
proposed a unified framework to handle general motions.

These methods report encouraging results, but owing to
the nature of the factorization method, they have the follow-
ing limitations:

(1) they consider motion segmentation and its model selec-
tion regarding to the number of motion models as sepa-
rate problems,

(2) these methods seldom handle outliers explicitly, which
means they may be infeasible in practice,

(3) they generally require 2L views where L is the number
of motions.

The second track assumes that the images are taken under
perspective projection model and uses the essential or fun-
damental matrix (Hartley and Zisserman 2004) as the mea-
surement tool. Torr (1998) processed the correspondences
with RANSAC (Fischler and Bolles 1981) and used a com-
plexity measure to sequentially extract the dominant motion
model in the scene. Schindler and Suter (2006) explicitly
performed model selection over all parameterized models
via maximum likelihood, and formulated the motion seg-
mentation problem as a quadratic 0-1 integer programming
problem. To handle multi-view cases, Schindler et al. (2008)
generalized the method in Schindler and Suter (2006) by
linking possible motions between two consecutive frames to
form longer motion trajectories. These predetermined mo-
tion trajectories serve as possible solutions of motions pre-
sented in the images; then they formulate the multi-view mo-
tion segmentation problem as an integer programming prob-
lem similarly. The major limitation of this approach is that
the dimension of the resulting integer programming problem
increases with both the number of views and the number of
motions presented in the scene. Moreover, it is known that
integer programming problems are NP-hard, and hence they
use heuristic algorithms to approximate the optimal solu-
tion.

Wolf and Shashua (2001) and Vidal et al. (2006) gener-
alized the formulation of fundamental matrix to simultane-
ously accommodate multiple motion models by lifting the
dimensionality of correspondences. In this way, the multi-
body fundamental matrix, which describes the multilinear
relationship between correspondences, can be linearized in
a high-dimensional space. This framework provides an al-
gebraic geometric approach to motion segmentation, but the
required number of correspondences grows quartically to L,
where L is the number of motion models; this property
makes it only suitable for the scenes with limited motion

models. Following this research track, Yang et al. (2006) ex-
tended this idea to handle outliers.

The Hough Transform (HT) is a well-known technique to
detect multiple models. Several previous studies applied this
technique to motion segmentation but each of them has its
limitation. Ballard and Kimball (1983) assumed depth in-
formation is known. Adiv (1985) assumed the objects can
be approximated by piecewise planar surfaces. Bober and
Kittler (1994) and Tian and Shah (1997) both combined
HT with robust estimators to accommodate outliers; the for-
mer proposed a gradient-based algorithm to search in a dis-
cretized 3-D affine motion space while the latter adopted an
efficient two-stage approach but is only applicable to mo-
tions with small rotations.

In addition to the above approaches, we are also aware of
another developing strategy which attempts to directly for-
mulate the higher order constraints presented in the motion
segmentation problem, and solve it with non-negative tensor
factorization (Shashua et al. 2006).

The incremental processing capability of motion segmen-
tation is desirable in most real applications, but few of the
previous studies discussed this problem. Although Morita
and Kanade (1997) developed an incremental version of fac-
torization method, it only accounts for a single motion.

Dirichlet process (DP) was first proposed in the seminal
work of Ferguson (1973). The basic idea of DP is to induce
a prior distribution over an arbitrary partition of the parame-
ter space. The random samples drawn from a DP follow a
Dirichlet distribution with the induced prior as its parame-
ters. DP has many nice properties in handling nonparamet-
ric problems. One of the most important properties is that
the posterior distribution of a DP given several samples is
still a DP. Antoniak (1974) extended DP for finite or infinite
mixture modeling, and likewise it also demonstrated that the
posterior distribution of an MDP given samples is still an
MDP. MDP models are developed as a practical tool for non-
parametric Bayesian statistics by Escobar and West (1995),
MacEachern and Muller (1998) and Neal (2000). Recently
MDP models have successfully been applied to computer
vision applications such as image segmentation (Orbanz
and Buhmann 2006), object categorization (Sudderth et al.
2006), and motion segmentation (Jian and Chen 2007).

3 Mixture of Dirchlet Process (MDP) Models

3.1 Notations

Let x be the observation data, θ ∈ � be its hidden model
parameter, � be the parameter space, f (x|θ) be the likeli-
hood of x given θ , B = {B1, . . . ,Br} be a partition of �, and
(�,B) be a measurable space. G(θ) and G0(θ) are proba-
bility distributions over �. In the motion segmentation prob-
lem, we can treat � as the space of rigid-body transforma-
tion, B as an estimation of motions in the scene, x as the
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image coordinates of correspondences, and θ as the motion
parameter. The notation A ∼ B means that A is drawn from
a distribution or random process defined by B .

3.2 Formulation of MDP Models

To understand MDP models, first we must know what is
Dirichlet Process (DP). DP is a distribution of random prob-
ability measure G(·) over a measurable space (�,B), and
the random vector (G(B1), . . . ,G(Br)) is distributed as a
finite-dimensional Dirichlet distribution:

(G(B1), . . . ,G(Br)) ∼ Dirichlet(αG0(B1), . . . , αG0(Br)),

(1)

where α ∈ �+ is the concentration parameter and G0(·)
is the base measure. Hereafter we abbreviate (1) as G ∼
DP(αG0) for conciseness.

DP has some nice properties for nonparametric model-
ing. The first property (flexible prior) is that DP allows us to
specify our prior knowledge and its strength over the para-
meter space. This property is common in Bayesian inference
but not always available in nonparametric techniques. The
second property (closure) is that the posterior of DP given
observations is still a DP

G | {θi}Ni=1 ∼ DP

(
αG0 +

N∑
i=1

δθi

)
, (2)

where δθ denotes a delta function centered at θ . To sim-
plify (2), assuming there are L unique model parameters
{φl}Ll=1 among {θi}Ni=1 (L ≤ N ), we introduce a latent class
variable ci for each θi such that θi = φci

for 1 ≤ i ≤ N and
1 ≤ ci ≤ L, and define Nl as the cardinality of the index set
Il := {i|θi = φl, 1 ≤ i ≤ N}. With the above definitions, we
can simplify (2) as

G | {θi}Ni=1 ∼ DP

(
αG0 +

L∑
l=1

Nlδφl

)
. (3)

Equation (3) implies the following things:

(1) the joint distribution of the observed samples is invariant
to permutation (exchangeability),

(2) the posterior probability of a certain model parameter is
proportional to the number of times it has been observed
(aggregation),

(3) the weight of base measure decreases as the number of
observations increases.

We will demonstrate the connection between the above
properties and motion segmentation in Sect. 3.4.

Now we introduce the definition of MDP models. Here
we only focus on its infinite mixture modeling. In MDP

models, a model parameter θ is assumed to be drawn from
a DP(αG0) where G0 is an induced prior over the parame-
ter space. The mixture models is completed by introducing a
likelihood function f (x|θ); the observations are distributed
as a mixture distribution over the model parameters drawn
from a DP. Hence we can abbreviate MDP models as

x ∼ f (x|θ), (4)

θ ∼ G, (5)

G ∼ DP(αG0). (6)

3.3 Inference with MDP Models

The computation of posterior expectation of MDP models
can be realized by Markov Chain Monte Carlo (MCMC)
methods. We can sample from the posterior distribution
of {θi}Ni=1 by simulating a Markov chain that has this as
its equilibrium distribution. In our method, the sampling
method is based on Gibbs sampler (Escobar and West 1995;
MacEachern and Muller 1998; Neal 2000). Although Gibbs
sampler is originally used to sample a joint distribution, its
usage in MDP inference has another meaning. It is used to
make the motions parameters of the observed correspon-
dences converge to the posterior distribution on partitions
and parameters of MDP models.

The most direct approach is to imagine that xi is the last
observation, and then repeatedly resample the value of each
θi from its posterior distribution, given both the observation
xi and the current model parameters θ−i := {θj }Nj=1\{θi}.
This resampling process is actually supported by the closure
and exchangeability properties of DP. To find the posterior
of θi given xi and θ−i , we can write it with the Bayes’ law

p(θi |θ−i , xi) ∝ p(xi |θi)p(θi |θ−i ). (7)

By replacing p(xi |θi) with likelihood f (xi |θi) and p(θi |θ−i )

with conditional DP prior, we have the posterior distribution

θi |θ−i , xi ∼ qi0G0(θi) +
L∑

l=1

qilδφl
(θi), (8)

qi0 = 1

Zi

α

∫
f (xi |θ)G0(θ)dθ, (9)

qil = 1

Zi

N−i
l f (xi |φl) for 1 ≤ l ≤ L, (10)

where qi0 and qil represent the weights of base measure and
the lth model parameter respectively, L is the number of
distinct model parameters in the current state, N−i

l is the
number of data in φl without counting xi , and Zi is a nor-
malization constant such that qi0 + ∑L

l=1 qil = 1.
Hence we can resample ci , the assignment of θi , ac-

cording to the discrete probability distribution defined by
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(qi0, . . . , qiL). If the base measure (i.e. qi0) is sampled, then
we sample a new model parameter from G0; if one of the
existing models (i.e. qi1, . . . , qiL) is sampled, we assign the
sampled model parameter to θi . In the resampling process, a
new cluster may be created if a new model is resampled from
G0; existing clusters may be destroyed if a cluster has only
one member and this member is resampled to another clus-
ter. Iteratively executing (8) until {θi}Ni=1 are convergent con-
cludes the key steps of the MDP inference algorithm used in
this paper.

3.4 Motivation of Using MDP Models in Motion
Segmentation

MDP models have some desired properties for motion seg-
mentation, and we demonstrate them as follows:

(1) General treatment:

Most of the previous work on motion segmentation treats the
selection of motion numbers and the estimation of their mo-
tion parameters as separate problems. This point of view is
unfeasible in practice because these two factors are highly
correlated and could be seriously affected by noise and
outlier. MDP models provide an nonparametric Bayesian
framework to help us consider the above two problems as an
indivisible one. Within the MDP framework, we can simul-
taneously estimate the number of motion models and their
motion parameters.

(2) Flexible prior:

Most of the previous work on motion segmentation does
not allow the incorporation of prior knowledge about the
scene into their algorithms. In MDP models, it is quite easy
to specify a prior distribution over the motion parameter
space.

(3) Aggregation property:

In addition to the ability of inducing prior to guide the seg-
mentation process, MDP models tend to favor the models
with more supporting samples in the inference process. This
aggregation property is intuitive and suitable for the problem
of motion segmentation because motions with more support-
ing correspondences should have higher probability to be-
come the target of other correspondences.

4 Two-View Motion Segmentation Based
on RANSAC-Enhanced MDP Models

4.1 Preliminaries

We show how to use MDP models to deal with the two-view
motion segmentation problem in this section. The general

configuration of this problem is to label the observed cor-
respondences to different motions. Assume that we have N

correspondences {xi}Ni=1. We define xi ≡ (x1
i , x2

i ) where xk
i

denotes the image coordinates of the ith correspondences in
the kth frame. Given a pair of correspondences xi , if their
3-D positions in two frames undergo a rigid-body transfor-
mation between two images, then x1

i and x2
i have the fol-

lowing relationship (Hartley and Zisserman 2004):

x̂2t
i F x̂1

i = 0, (11)

where x̂
j
i is the homogeneous representation of x

j
i , F =

K−t T̂ RK−1 is the fundamental matrix, K is the intrinsic
parameter matrix, R is the rotation matrix, and T̂ is the
skew-symmetric matrix of the translation vector T . Since
the intrinsic parameters are assumed to be known in ad-
vance, we can define the likelihood of a pair of correspon-
dences with respect to a rigid-body transformation as

r(xi,Fj ) = S(x1
i , x2

i , Fj ) (12)

= (x̂2t
i Fj x̂

1
i )2

(Fj x̂
1
i )2

1 + (Fj x̂
1
i )2

2 + (F t
j x̂

2
i )2

1 + (F t
j x̂

2
i )2

2

, (13)

where S(x1
i , x2

i , Fj ) is the Sampson distance (Hartley and
Zisserman 2004).

In contrast to previous approaches, our algorithm works
on a discretized motion parameter space. We handle the
problem of motion segmentation in this manner because it
is essentially a problem of labeling correspondences. The
accuracy of labeling is more important than that of the mo-
tion parameter estimation. If finer estimations of motion pa-
rameters are desired, we can always calculate them by using
existing single-body structure-from-motion algorithms once
the labels of correspondences are correctly recovered (Hart-
ley and Zisserman 2004).

To reduce the dimension of the motion parameter space,
we assume that the camera is calibrated and the corre-
spondences are in the normalized image coordinate. Hence
F = T̂ R becomes an essential matrix, which has only five
degrees of freedom.

4.2 MDP-Based Two-View Motion Segmentation
Algorithm

Here we describe how we design the main components for
MDP models, and how we use it to design our basic MDP-
based two-view motion segmentation algorithm. For the rea-
sons of simplicity and clarity, we postpone presenting the
detail of handling outliers to the next section.

First we define the base measure (G0) of our MDP model.
Assume that there are M motion hypotheses {mj }Mj=1. We
denote mj ≡ (Rj , Tj ) as a rigid-body transformation, where
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Rj is the rotation matrix and Tj is the translation vector re-
spectively. Given the correspondences {xi}Ni=1, we first cal-
culate the fundamental matrices {Fj }Mj=1 of the motion hy-

potheses {mj }Mj=1 and then evaluate the pair-wise Sampson
distances {rij = r(xi,Fj )|1 ≤ i ≤ N,1 ≤ j ≤ M} with (13).
Then we calculate the normalized scores {sj }Mj=1 of the mo-

tion hypotheses {mj }Mj=1 by

sj = V (rj ) for 1 ≤ j ≤ M, (14)

where V (·) is a scoring function of a motion hypothesis, and
rj ≡ [r1j , r2j , . . . , rNj ]1×N denotes the evaluated Sampson
distances of j th motion. In our experiments, we simply de-
fine V (·) as a normalized truncated linear function

V (rj ) =
∑N

i=1 CN(rij , υ)∑N
i=1 CD(rij , υ)

, (15)

CN(r,υ) =
{

0, if r ≥ υ,
υ−r
υ

, otherwise,
(16)

CD(r,υ) =
{

0, if r ≥ υ,

1, otherwise,
(17)

where υ is a cutoff threshold for Sampson distance. The
numerator adopts a truncated linear function that excludes
the correspondences with large residual. We put a normal-
ization term in the denominator because MDP models al-
ready have the aggregation property for samples (3) and this
term could prevent us from favoring the moving objects with
more correspondences. At this stage, we merely collect the
likelihoods of every motion hypothesis in {mj }Mj=1, and do
not assert that L, the number of motion models presented in
the scene, is already known. Therefore, the computational
complexity of this step grows in O(MN) and is indepen-
dent of L. With {rij }Ni=1

M
j=1 and {sj }Mj=1, we define the base

measure G0 and the likelihood f as

G0(θ = mj) = sj∑M
j=1 sj

, (18)

f (xi |θ = mj) ∝ exp

(
− rij

σ 2

)
, (19)

where σ is the standard deviation of the Gaussian distribu-
tion. Substituting (18) and (19) into (8), (9) and (10) com-
pletes the construction of our MDP model.

The initial estimations of {θi}Ni=1 assigned to the Gibbs
sampler in (8) are

θi =
{
m

ĵ
|ĵ = arg min

j
rij

}
, for 1 ≤ i ≤ N. (20)

Once {θi}Ni=1 converge, the labeling results of {θi}Ni=1 are
taken as the solution to our algorithm. The convergency cri-
teria used here are (1) {θi}Ni=1 no longer change or (2) a pre-
defined number of iterations (K1 = 20 in our experiments) is

Algorithm 1: MDP-based two-view motion segmenta-
tion algorithm without handling outliers

Input:
{xi}Ni=1: the set of correspondences,
{mi}Mi=1: the set of motion hypotheses,
K1: the maximum iteration of Gibbs sampler

Main:1

Calculate {rij }Ni=1
M
j=1 with (13)2

Build G0 with (18), Initialize {θi}Ni=1 with (20)3

for k1 = 1 to K1 do /* Gibbs sampler */4

Resample {θi}Ni=1 with (8)5

if {θi}Ni=1 are convergent then break6

end7

achieved. Algorithm 1 summarizes our basic two-view mo-
tion segmentation algorithm. However, because of the sto-
chastic nature of Gibbs sampler, the solutions output by Al-
gorithm 1 may not be unique. Hence in practice, we will run
Algorithm 1 several times and take the fittest labeling result
as our solution. To measure the fitness of a segmentation
result, we estimate the motion parameters according to the
labeling results produced by our algorithm, and then calcu-
late the averaged Sampson distances of the correspondences
to their motion models.

4.3 Remove Outliers by Incorporating RANSAC into MDP
Models

In computer vision applications, it is inevitable to have out-
liers in the correspondences. Ignoring outliers in the motion
segmentation problem will deteriorate the overall segmen-
tation performance. In the proposed method, although we
already use Sampson distance to exclude apparent outlier
motions for each correspondence, it is possible that a corre-
spondence is assigned to an arbitrary motion in the follow-
ing two cases. The first case is that a correspondence is re-
sampled according to the motion prior, i.e. G0(θ) in (9). The
second is that a correspondence point is attracted to a large
cluster according to (10). In these cases, the correspondence
point could be resampled to a motion where the Sampson
distance is not small. Hence having an outlier removal stage
after the regular MDP inference is necessary.

RANSAC is a popular tool to remove outliers, and it is
known that the performance of RANSAC degrades as the
ratio of outliers increases. However, despite this fact, most
of the previous work still uses it to handle all correspon-
dences at the same time, which implies that a high outlier
rate will be encountered as the number of motions goes up.
Our idea of handling outliers is also based on RANSAC,
but we think it is more appropriate to apply RANSAC after
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utilizing the geometric information within the groups of cor-
respondences. To this end, we design two criteria to identify
outliers when the Gibbs sampler converges to a stationary
solution. The first criterion is in terms of the number of cor-
respondences that belongs to a motion model; if the number
of correspondences is insufficient to fit a model, then these
correspondences are probably outliers. The second criterion
is in terms of model fitness. If a model is big enough, we
then apply RANSAC to remove outliers.

Our outlier removal mechanism is advantageous for
both MDP models and RANSAC. From the perspective of
MDP models, integrating RANSAC within MDP inference
process as a post-processing step makes it possible for MDP
models to handle outliers and then enhances their model-
ing capability. From the perspective of RANSAC, using
RANSAC at this stage is more efficient than using it at the
beginning, because we have utilized the epipolar constraints
to form rudimentary clusters such that RANSAC only has to
process a smaller and proper set of the correspondences.

Here we provide a rough analysis to give a picture of
the reduction ratios of outlier rates relative to using merely
RANSAC. Here we assume that the correspondences are
uniformly distributed in the scene motions, and the outliers
are also randomly distributed to each cluster. The reduction
ratios of outlier rates are plotted in Fig. 1. We didn’t plot
the reduction for the cases with only one motion, because in
those cases, using merely RANSAC instead of the proposed
method will be more efficient. Yet in general configurations
of motion segmentation, there are about four to six times of
reduction, which results in a great saving for the number of
required iterations for RANSAC.

Because of the effects of outliers and the stochastic na-
ture of our algorithm, the above outlier removal procedure
may mis-assign inliers to wrong models or misclassify in-
liers as outliers. To make it more robust, we can extend the
above binary decision procedure to probabilistic decision.
We rerun the Gibbs sampler several times (K2 = 15 in our
experiments) and count the times that a certain pair of cor-
respondences is labeled as an outlier. If a pair of correspon-
dences is really an outlier, it will have a high probability to
be labeled as outliers in terms of the above two criteria. After
using a threshold (T0) to remove outliers, we begin another
iteration by taking the remaining inliers as input to the above
process. The above process stops when the inlier set does not
change or a predefined number of iterations (K3 = 4 in our
experiments) is achieved. These numbers of iterations are
selected empirically. We observe that our algorithm is insen-
sitive to the number of iterations if there are large enough.
The effectiveness of this outlier removal procedure will be
evaluated in the experiments. Algorithm 2 summarizes the
proposed MDP-based two-view motion segmentation algo-
rithm.

Fig. 1 Estimated reduction ratios of outlier rates

Algorithm 2: MDP-based two-view motion segmenta-
tion algorithm

Input:
{xi}Ni=1: the set of correspondences,
{mi}Mi=1: the set of motion hypotheses,
K1: the maximum iteration of Gibbs sampler,
K2: the times to check outlier criteria,
K3: the maximum iteration of outlier removal,
To: a threshold for identifying outliers
Main:1

Calculate {rij }Ni=1
M
j=1 with (13)2

I := {1, . . . ,N} /* define an inlier set */3

for k3 = 1 to K3 do4

{Oi}Ni=1 := 0 /* reset counters */5

for k2 = 1 to K2 do6

Run lines 3–7 of Algorithm 1 with inliers7

{xi}i∈I

Check the outlier examination criteria in8

Sect. 4.3
foreach i ∈ I do Increment Oi if xi is an9

outlier in this iteration
end10

foreach i ∈ I do Remove i from I if11

(Oi/K3) > To

if I no longer change then break12

end13

4.4 Complexity Analysis

Here we analyze the computational and storage complex-
ity of Algorithm 2. The computation cost of constructing
base measure is O(MN) where M is the number of mo-
tion hypotheses and N is the number of correspondences.
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The first loop (line 4) executes K3 times in the worst case.
The second loop (line 6) runs K2 times. Line 7 executes
for O(K1N) times where K1 is the predefined maximum
number of iterations for Gibbs sampler. The computational
complexity of line 8 is proportional to the number of sig-
nificant clusters in the current loop. (Here we denote L as
the maximum number of clusters throughout the execution
of the algorithm.) Lines 9 and 11–12 are simple operations
which are negligible. In sum, the overall complexity would
be O(MN + K3K2(K1N + LR)) where R is the upper
bound complexity of applying RANSAC to estimate the mo-
tion parameter from correspondences. However, since K1,
K2 and K3 are all constants in our algorithm, the complex-
ity reduces to O(MN + LR).

The storage complexity of our algorithm is O(MN),
which is infeasible when M is large. Yet this issue could be
alleviated by using heuristics described in the next section,
or some adaptive or hierarchical partition techniques studied
in the literature of Hough transform (Illingworth and Kittler
1987; Li et al. 1986).

4.5 Implementation Issues

Several implementation issues are addressed as follows.

First, how to efficiently generate a set of discrete motion
hypotheses {mj }Mj=1 is an application dependent problem.
In the case where prior knowledge is available, the genera-
tion of motion hypotheses can focus on the high confidence
regions in the motion parameter space. In the case without
any prior knowledge, we can generate samples in the motion
space with application dependent bounds and resolution.
More specifically, we can sample the rotation angle ω along
a positive real value axis, and the translation direction T and
rotation axis 
 over a unit sphere. The former part should
be straightforward. For the latter part, we adopt the itera-
tive sphere subdivision technique described in Horn (1986).
Once 
 and ω are selected, we can compose a rotation
matrix with the quaternion notation. Although the quater-
nion notation is well-known for efficiently representing ro-
tations, it is surprising that previous work usually adopts the
Euler angles notation. It is known that uniformly partition-
ing the Euler angles would generate non-uniform samples
in the motion space. This non-uniformity would make the
vote accumulation step spend much more time processing
the densely-sampled regions of the motion space which do
not necessarily contain the scene motions. In our method,
we adopt the quaternion notation to represent rotations and
use the vertices of an iteratively sub-divided icosahedron as
the rotation axes and translation vectors. This parametriza-
tion scheme would generate uniform samples in the motion
space and facilitate the following process.

Second, the number of motion hypotheses should be as few
as possible, because it directly affects the efficiency of our

algorithm. Each time we subdivide an icosahedron, the num-
ber of vertices would increase about four times. If we sub-
divide an icosahedron from zero to three times, there will
be 12, 42, 162 and 642 vertices on them, and the corre-
sponding angular resolutions of adjacent vectors on a sphere
are 63.4, 31.7, 15.9 and 7.4 degrees respectively. Assuming
that the translation vectors and the rotation axes are sam-
pled from an icosahedron with three levels of subdivisions,
and the rotation angles are quantized into five-degree in-
tervals, we will have about 106 ∼ 108 motion hypotheses
which is infeasible in most cases. However, the number of
motion hypotheses can be significantly reduced by the fol-
lowing heuristic observations: (1) the scale of T is redundant
because it does not affect the corresponding epipolar lines
and the Sampson distance, (2) the rotation angle is always
non-negative because we have already sampled the rotation
axes over the entire unit sphere, (3) for a pair of correspon-
dences, the motion hypothesis corresponding to a solution
that violates cheirality (Hartley and Zisserman 2004) can be
discarded, and (4) when building the base measure, we can
set a threshold to remove the motions without sufficient sup-
porting votes. With the above four heuristics, we can remove
redundant or infeasible hypotheses in the stage of construct-
ing the MDP base measure. In our experiments, the number
of motion hypotheses is usually reduced from 106 ∼ 108 to
103 ∼ 104. This reduction would make the following MDP
inference stage more efficient.

Third, the discretization resolution of the motion space is
crucial. When two motions are too close with respect to the
discretization resolution, our approach may not be able to
disambiguate them. Increasing the discretization resolution
is not necessarily a good solution to this problem because
there is a trade-off between segmentation performance and
computational complexity. In the literature of Hough trans-
form, this issue has been discussed thoroughly. A common
practice is to partition the parameter space in an adaptive
(Illingworth and Kittler 1987) or hierarchical (Li et al. 1986)
manner instead of partition the entire parameter space uni-
formly at the beginning.

We can also reduce the memory complexity by utilizing
other constraints such as the spatial coherence of correspon-
dences or appearance of moving objects. Though these clues
are not incorporated in the proposed method, they have been
proved to be useful in the problem of motion segmentation
(e.g. Gruber and Weiss 2006).

4.6 Relation to the Hough Transform

The Hough Transform (HT) is a well-known technique
to detect multiple models. Although the first step of our
method is similar to the vote accumulation step in HT, the
remaining steps of these two methods are different. Here we
identify their key differences.
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First, in HT, the accumulators are used as the only evi-
dence for model detection. HT iteratively performs peak de-
tection over the accumulators to extract its supports until no
significant model remains. In our method, the accumulators
do not play such a key role as that in HT. The accumulated
votes are only used to construct the base measure (G0) of
MDP models which provides a prior distribution over the
motion space to guide the MDP inference process. Second,
the model inference mechanisms of these two methods are
also different. HT adopts a deterministic approach which it-
eratively extracts peaks in accumulators. HT may mislabel
correspondences to wrong motions, and these incorrect de-
cisions made in the early stages have no chance to be re-
covered in the later stages. In contrast, our method adopts
a stochastic approach on the basis of MDP inference and
RANSAC which lets significant models gradually emerge
and makes outliers gradually removed. It also allows the
correspondences mislabeled in the early iterations to be cor-
rectly clustered in the later stages.

4.7 Experimental Results

In this section, we evaluate the performance of the proposed
two-view motion segmentation algorithm under different
concentration parameters, quantization levels, noise levels
and outlier rates. Then we compare our performance with
those of the other algorithms on synthetic data, Schindler’s
database,1 and some real images. We choose the following
algorithms for comparison:

(1) Hough Transform (HT),
(2) naive RANSAC (Torr 1998),
(3) Vidal’s GPCA-based two-view multibody structure

from motion (Vidal et al. 2006) accompanied with its
robust extension, RGPCA (Yang et al. 2006), and

(4) Schindler’s 2-View method (Schindler-2) (Schindler
and Suter 2006).

These methods are chosen because they all require only two
views.

For HT, the parametrization scheme is identical to that of
our method (in Sect. 4.5). We iteratively detect the peaks and
remove the votes of their supporting correspondences in the
accumulators. Then we form a new motion with these points
and perform RANSAC to remove outliers. This procedure is
repeated until no significant model remains.

For RANSAC, since the intrinsic parameters are known,
we implemented our RANSAC on the basis of Nister’s five-
point algorithm (Nister 2004; Stewenius et al. 2006). The
verification technique proposed by Chum et al. (2003) (i.e.
LORANSAC) is also incorporated.

1Database and programs available at http://www.vision.ee.ethz.ch/~
konrads.

For GPCA/RGPCA, the implementations are available
on websites.2 Since these packages do not estimate the num-
ber of motions, we have to provide this information as input
to them. For Schindler’s method, we adopt the scale esti-
mator and the multi-branch search program released on his
website1 and re-implemented the other parts of the algo-
rithm.

For the proposed algorithm, we generate the motion hy-
potheses {mj }Mj=1 by subdividing an icosahedron three times
and then take its vertices for both the translation direction T

and rotation axis 
. We take the rotation angles between
10 to 45 degrees with 5-degree intervals in the experiments.
The interval between 0 to 10 is not quantized because we
think these motions can be approximated by translations.
In the outlier removal process, we adopt identical settings
as the naive RANSAC approach. All of the parameters in
the experiments if not mentioned; we set the cutoff thresh-
old υ = 20, Gaussian standard deviation σ = 1 (in (19)),
RANSAC threshold to 0.01, the maximum number of iter-
ations for Gibbs sampler K1 = 20, the times to check out-
lier criteria K2 = 15, the maximum number of iterations of
outlier removal K3 = 4 and the outlier removal threshold
T0 = 0.5.

A pair of correspondences is identified as an error count
if one of the following three cases happens:

(1) false positive (labeling an outlier as an inlier),
(2) false negative (labeling an inlier as an outlier),
(3) misclassified (labeling an inlier to an incorrect motion).

All the segmentation error rates are calculated by averaging
the results of 10 trials.

4.7.1 Procedures of Generating Synthetic Datasets

The configuration used to generate the synthetic datasets is
similar to that used in Nister (2004). Rigid-body objects are
synthetically generated in the scene, and each of the objects
has 20 3-D points on it. The 3-D points before and after
applying a rigid-body transformation are projected onto the
2-D image planes under perspective projection model. These
projected 2-D points are taken as the correspondences.

4.7.2 Model Selection of the Concentration Parameter

We perform experiments to select a good concentration pa-
rameter (α) of MDP models for our algorithm. Following
the procedure of generating synthetic data, we generate 15
datasets with three to five motions. We then inject samples
of Gaussian noise (σ = 1) and outliers (10%) to the cor-
respondences, and evaluate the segmentation error rates on
α = 10−4,10−3, . . . ,102. We observe that the choice of α

affects the overall segmentation error rates. If α is set too

2Software available at http://perception.csl.uiuc.edu/gpca.

http://www.vision.ee.ethz.ch/~konrads
http://www.vision.ee.ethz.ch/~konrads
http://perception.csl.uiuc.edu/gpca
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low, MDP models are not able to generate new motion hy-
potheses; if α is set too high, MDP models would generate
too many new motion hypotheses and make the inference
unstable. Our algorithm has the best performance when α is
around 10−3 to 10−2. Hence we set α = 10−2 in the follow-
ing experiments.

4.7.3 Sensitivity to Quantization Levels

Here we demonstrate the sensitivity of our algorithm to the
quantization levels of motion parameters. Using the identi-
cal procedure, we generate 15 datasets with three motions.
In Table 1, we show the error rates of different quantization
levels and data configurations. The numbers below the R and
T columns are the numbers of subdivisions applied on an
icosahedron. The rotation axes and translation directions are
drawn from the subdivided icosahedrons accordingly. The
A column denotes the resolutions of rotation angles. The
numbers under the other columns are the error rates of dif-
ferent data configurations where σ is the noise level and γ

is the outlier rate. The baseline configuration is empirically
selected. The following three variation sets have different
quantization levels in R, T or A respectively.

As shown in the table, the error rates go higher as noise
levels (σ ) or outlier rates (γ ) increase; for the variations of
quantization resolutions, we observe that in the R and T sets,
the error rates go lower as the quantization resolutions be-
come finer. However, this conclusion is not always true for
the A set; we observe that the error rates remain unchanged

Table 1 Error rates (%) of different quantization and data configura-
tions

R T A σ = 1
γ = 10%

σ = 3
γ = 10%

σ = 1
γ = 25%

σ = 3
γ = 25%

Baseline 3 3 5° 3.0 5.3 6.2 8.1

R Set 1 3 5° 5.6 6.5 9.3 13.0

2 3 5° 4.1 5.4 7.7 10.9

4 3 5° 2.8 4.9 5.8 9.0

T Set 3 1 5° 10.1 11.5 14.0 18.1

3 2 5° 5.1 6.5 8.7 11.7

3 4 5° 2.5 2.9 5.7 7.1

A Set 3 3 15° 5.3 5.9 9.8 12.9

3 3 10° 4.4 5.4 8.2 9.4

3 3 2.5° 3.1 5.0 6.2 8.5

or become higher when the quantization resolutions of A
increase from 5° to 2.5°. It means we could gain nothing
from over-quantization of the parameter space. We also ob-
serve that the quantization resolutions of R, T and A have
different influences on the segmentation performance. The
quantization level of T has stronger influence to our method
while those of R and A have comparable influences.

Although the numbers of the motion hypotheses are large
(106 ∼ 108) at the beginning, in our experiments we observe
that these numbers can be significantly reduced (103 ∼ 104)
by applying the heuristics mentioned in Sect. 4.5. This re-
duction would make the following MDP inference stage
more efficient.

4.7.4 Execution Time

In Table 2, we provide the average CPU timing information
for our Matlab implementation of the proposed method on
an Intel Core 2 Duo machine. The CPU times are measured
on 15 datasets with three motions (σ = 1.5, γ = 15%). We
also divide our algorithm into several components and iden-
tify their execution times and percentages. The first stage
is to calculate pairwise Sampson distances. The MDP in-
ference stage is divided into three parts: the construction of
base measure, Gibbs sampler and RANSAC for outlier re-
moval. Currently our implementation requires 11 seconds to
process one dataset in average. Although this implementa-
tion is not suitable for real time applications, its speed can
be improved by adopting C/C++ implementations or by par-
allelizing our algorithm.

4.7.5 Comparison with Other Methods on Synthetic Data

Here we conduct two experiments to compare the perfor-
mance of our algorithm with those of the others. We ran-
domly generate 15 synthetic scenes with three motions, and
inject various levels of noise and outliers respectively. In
the noise experiment, the noise levels (ρ) range from 0 to
3 pixels; while in the outlier experiment, the outlier rates
(γ ) range from 0 to 25 percents (with ρ set to 1). Then we
apply all algorithms to segment the synthetic scenes, and the
averaged error rates are shown in Fig. 2. GPCA and RGPCA
break down in our experiments; their error rates are usually
more than 40%, so we do not plot their performance in our
figures. HT, Naive RANSAC and Schindler’s method have
moderate levels of error rates in both experiments. In both
experiments, the error rates of the our method are consis-
tently lower than those of the other methods.

Table 2 Average CPU timing
information of our method Calculate pairwise

Sampson distances
MDP Inference Others Total

Build base measure Gibbs sampler RANSAC

2.4s (21%) 2.1s (18%) 3.6s (32%) 1.9s (17%) 1.2s (11%) 11.2s (100%)
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Fig. 2 Comparison of different
algorithms on synthetic datasets.
(a) The error rates of different
noise levels. (b) The error rates
of different outlier rates (with
all noise levels set to 1)

Fig. 3 The performance of the
proposed algorithm in terms of
different motions. (a) The error
rates of different noise levels.
(b) The error rates of different
outlier rates (with all noise
levels set to 1)

Table 3 Error rates (%) of
two-view motion segmentation
algorithms

Method Boxes (40|12) Bulb (60|15) Real1 (80|20) Real2 (100|25)
2 motions 3 motions 4 motions 5 motions

MC ER MC ER MC ER MC ER

HT 11.5 12.5 10.9 12.6 15.3 17.3 16.5 19.0

RANSAC 4.9 15.5 5.3 21.3 13.8 21.2 7.9 20.3

RGPCA 19.0 48.5 15.2 32.1 38.9 41.4 34.8 47.8

Schindler-2 3.8 5.9 10.7 13.5 12.4 15.1 12.1 14.5

Ours 2.1 2.7 2.6 4.0 4.7 6.3 5.2 8.5

To further investigate the performance of the proposed
method, we generate synthetic scenes with five motions. The
experimental results are shown in Fig. 3. The results show
that the proposed method has modest error rates when the
number of motions increases.

4.7.6 Experiments on Real Data

Four real image datasets are used in this experiment.
The first two datasets are taken from Schindler’s database
(“Boxes” and “Bulb” datasets) where the intrinsic parame-
ters are available. There are two and three moving objects in
these two datasets respectively. Since this database is orig-
inally used for multi-view motion segmentation, we pick
four pairs of consecutive frames from each dataset as the
input images to all algorithms and report the averaged er-
ror rates. In addition, we also picture two datasets (“Real1”
and “Real2”) with four and five moving objects respectively.
These two datasets are taken at indoor environment, and the

camera intrinsic parameters and radial distortion parameters
are calibrated by using Zhang’s method (Zhang 2000). All
of the correspondences are extracted by matching the SIFT
features between two images (Lowe 2004). We manually
identify whether a pair of correspondences is an inlier or
outlier by inspecting the matching results. The averaged er-
ror rates are summarized in Table 3. For each dataset, the
numbers next to its name indicate its configuration; the first
number means the number of inliers, and the second one
means the number of outliers. The error rates were separated
into two parts. MC means the ratio between the number of
misclassified inliers and the number of total inliers, and ER
means the total error rate. The difference between MC and
ER are caused by false positive and false negative. As in the
experiments on synthetic data, GPCA and RGPCA break
down because of the pixel noise, outliers and insufficient
correspondences. The error rates of our algorithm are con-
sistently lower than those of the other methods. Figure 4 il-
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Fig. 4 (Color online) Segmentation results of our method on four real
datasets: (a), (b) Boxes, (c), (d) Bulb, (e), (f) Real1 and (g), (h) Real2.
For each dataset, the presented two images are the inputs of our al-
gorithm. The left image illustrates the memberships of inliers (yellow)

and outliers (red). The right image shows the segmentation results; the
correspondences segmented to different motions are labeled with dif-
ferent colors

Table 4 Error rates (%) of our algorithm on Tron’s benchmark

2 motions 3 motions

Check Traffic Check Traffic

Error rate 3.93 3.13 6.78 5.12

lustrates the segmentation results of our algorithm. We show
the inlier/outlier labels and segmentation results with differ-
ent colors. For each dataset, the labels of inliers and outliers
are shown in the left image, and the segmentation results are
shown in the right image.

4.7.7 Experiments on Tron’s Benchmark

We also run our algorithm on Tron’s benchmark proposed
in Tron and Vidal (2007). This benchmark contains a to-
tal of 155 motion sequences: 120 with two motions and 35
with three motions, and each sequence contains roughly 30
frames. We exclude the sequences in the “Articulated/Non-
Rigid” category and run our algorithm on the “Checkboard”
and “Traffic” categories. Since this benchmark provides tra-
jectories to examine the performance of factorization-based
methods, we uniformly subsample four points along the tra-
jectories and report the average error rates over 20 trials
in Table 4. We only report the misclassification error rates
because the benchmark considers the cases without out-
liers. As shown in the table, our results are comparable or
slightly worse than the best results reported in Tron and Vi-
dal (2007), but the advantage of our method is that we can
automatically determine the number of motions while most
methods in Tron and Vidal (2007) need the users to specify
the number of motions as an input parameter.

5 Conclusions and Future Work

We present an MDP-based two-view motion segmentation
algorithm which treats motion segmentation and its model
selection regarding to its number of motion models as an
indivisible problem. To make it possible for MDP models to
handle outliers, we use RANSAC as a post-processing step
of MDP inference, and make RANSAC only have to process
a smaller and proper set of correspondences.

In future work, we plan to use the method proposed in
Makadia et al. (2005) or use Graphical Processing Unit
(GPU) to speed up the computation of our method. In ad-
dition, we can also employ more advanced Markov chain
Monte Carlo methods instead of Gibbs sampler to further
boost the performance of MDP inference.

Handling dependent or degenerated motions are also im-
portant problems in motion segmentation. If two different
objects move in the same way, it is impossible to sepa-
rate them by using our method. This problem can be alle-
viated by making extra assumptions or utilizing other vi-
sual/geometric information (Gruber and Weiss 2006; Maka-
dia et al. 2005; Schindler and Suter 2006). The problem of
degenerated motions is not addressed in this paper.

In this paper, we only discuss the scenario with two im-
ages. It would be interesting to generalize the proposed
method to handle the scenario with multiple images. We take
the above directions as our future work.
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