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Abstract HARDI (High Angular Resolution Diffusion
Imaging) is a recent magnetic resonance imaging (MRI)
technique for imaging water diffusion processes in fi-
brous tissues such as brain white matter and muscles. In
this article we study left-invariant diffusion on the group
of 3D rigid body movements (i.e. 3D Euclidean motion
group) SE(3) and its application to crossing-preserving
smoothing of HARDI images. The linear left-invariant
(convection-)diffusions are forward Kolmogorov equations
of Brownian motions on the space of positions and ori-
entations in 3D embedded in SE(3) and can be solved
by R? x S%-convolution with the corresponding Green’s
functions. We provide analytic approximation formulas and
explicit sharp Gaussian estimates for these Green’s func-
tions. In our design and analysis for appropriate (nonlinear)
convection-diffusions on HARDI data we explain the un-
derlying differential geometry on SE(3). We write our left-
invariant diffusions in covariant derivatives on SE(3) using
the Cartan connection. This Cartan connection has constant
curvature and constant torsion, and so have the exponential
curves which are the auto-parallels along which our left-
invariant diffusion takes place. We provide experiments of
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1 Introduction

High Angular Resolution Diffusion Imaging (HARDI) is a
recent magnetic resonance imaging technique for imaging
water diffusion processes in fibrous tissues such as brain
white matter and muscles. HARDI provides for each posi-
tion in 3-space (i.e. R3) and for each orientation (antipodal
pairs on the 2-sphere $?) an MRI signal attenuation pro-
file, which can be related to the local diffusivity of water
molecules in the corresponding direction. It is generally be-
lieved that such profiles provide rich information in fibrous
tissues. DTI (Diffusion Tensor Imaging) is a related tech-
nique, producing a positive symmetric rank-2 tensor field.
A DTI tensor (at each position in 3-space) can also be re-
lated to a distribution on the 2-sphere, albeit with limited
angular resolution. DTI is incapable of representing areas
with complex multimodal diffusivity profiles, such as in-
duced by crossing, “kissing”, or bifurcating fibres. HARDI,
on the other hand, does not suffer from this problem, be-
cause it is not restricted to functions on the 2-sphere induced
by a quadratic form, see Fig. 1 where we used glyph visual-
izations as defined in Definition 1. For the purpose of trac-
tography (detection of biological fibers) and visualization,
DTI and HARDI data should be enhanced such that fiber
junctions are maintained, while reducing high frequency
noise and small incoherent structures in the joined domain
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Fig. 1 This figure shows glyph visualizations of HARDI and
DTI-images of a 2D slice in the brain where neural fibers in the corona
radiata cross with neural fibers in the corpus callosum. In HARDI and
DTI socalled “glyphs” (i.e. angular diffusivity profiles) reflect, per po-
sition, the local diffusivity of water in all directions. More, precisely,
to a DTI tensor field x — D(x) we associate a distribution on positions
and orientations (x, n) — n’ D(x)n which is depicted on the left. The
rank-2 limitation of a DTI tensor constrains the corresponding glyph
to be ellipsoidal, whereas no such constraint applies to HARDI

of positions and orientations. This crossing-preserving en-
hancement/diffusion along fibers within distributions de-
fined on the joined space of positions and orientations (such
as HARDI and DTI images) is the main objective of this
article.

Definition 1 A glyph of a distribution U : R? x § — R+
on positions and orientations is a surface S, (U)(x) =
{x+ U, n)n | n e S?} ¢ R3 for some x € R3 and p > 0.
A glyph visualization of the distribution U : R? x §? — R+
is a visualization of a field x — S, (U)(x) of glyphs, where
i > 0 is a suitable constant.

Promising research has been done on constructing dif-
fusion (or similar regularization) processes on the 2-sphere
defined at each spatial locus separately (Descoteaux et al.
2007; Florack and Balmachnova 2008; Florack 2008; Hess
et al. 2006) as an essential pre-processing step for robust
fiber tracking. In these approaches position and orientation
space are decoupled, and diffusion is only performed over
the angular part, disregarding spatial context. Consequently,
these methods are inadequate for spatial denoising and en-
hancement, and tend to fail precisely at the interesting loca-
tions where fibres cross or bifurcate.

Therefore in this article we extend our recent work on en-
hancement of elongated structures in 2D greyscale images
(van Almsick 2005; Franken and Duits 2009; Franken 2008;
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original 2D image  CED: standard approach CED-OS: our approach

Fig. 2 Left-invariant diffusion on SE(2) = R? x S! is the right ap-
proach to generically deal with crossings and bifurcations in practice.
Left column: original images. Middle column: result of standard co-
herence enhancing diffusion applied directly in the image domain R?
(CED), cf. (Weickert 1999). Right column: coherence enhancing dif-
fusion via the corresponding invertible orientation score (CED-OS) in
the 2D Euclidean motion group SE(2), cf. (Duits and Franken 2010;
Franken and Duits 2009). Top row: 2-photon microscopy image of
bone tissue. Second row: collagen fibers of the heart. Third row: ar-
tificial noisy interference pattern. CED-OS of 2D grey value images
is capable of handling crossings and bifurcations, whereas CED pro-
duces spurious artifacts at such junctions. In the 3D case of HARDI
images U : R3 x $2 — R, we do not have to bother about invertibil-
ity of the transform between a grey-value image and its orientation
score as the input-data itself already gives rise to a function on the 3D
Euclidean motion group SE(3). This is now simply achieved by set-
ting l7(x, R)=U(x,Re;), Re SOQ3),x € R3, e, = (0,0, DT and the
challenge rises to generalize our previous work on crossing preserv-
ing diffusion to 3D and to apply the left-invariant diffusion directly on
HARDI images

Duits and van Almsick 2008; Duits et al. 2007; Duits and
Franken 2009; Duits and Burgeth 2007; Duits and Franken
2010) to the genuinely 3D case of HARDI/DTI, since this
approach has proven to be capable of handling all aforemen-
tioned problems in various feasibility studies, see Fig. 2. In
contrast to the previous works on diffusion of DTI/HARDI
images (Descoteaux et al. 2007; Florack and Balmachnova
2008; Florack 2008; Hess et al. 2006; Ozarslan and Mareci
2003), we consider both the spatial and the orientational part
to be included in the domain, so a HARDI dataset is consid-
ered as a function U : R3 x §2 — R. Furthermore, we ex-
plicitly employ the proper underlying group structure, that
naturally arises by embedding the coupled space of posi-
tions and orientations into the group SE(3) of 3D rigid mo-
tions. The relevance of group theory in DTI/HARDI imag-



Int J Comput Vis (2011) 92: 231-264

233

Fig. 3 Visualization of a simple HARDI image (x,y,z,n(8,y))
— U(x,y,z,n(B, y)) containing two crossing straight lines, visual-
ized using Q-ball glyphs in the DTI tool from two different viewpoints.
At each spatial position x a glyph (cf. Fig. 1 and Definition 1) is dis-
played

ing has also been stressed in promising and well-founded
recent works (Gur and Sochen 2009; Gur and Sochen 2005;
Fletcher and Joshi 2007). However, these works rely on bi-
invariant Riemannian metrics on compact groups (such as
SO(3)) and in our case the group SE(3) is neither compact
nor does it permit a bi-invariant metric (Arsigny et al. 2006;
Duits and Franken 2010, Part II). In general the advantage
of our approach on SE(3) is that we can enhance the origi-
nal HARDI/DTI data using simultaneously orientational and
spatial neighborhood information, which potentially leads to
improved enhancement and detection algorithms. Figure 3
shows an example clarifying the structure of a HARDI im-
age.

This paper is organized as follows. In Sect. 2 we will
start with the introduction of the group structure on the do-
main of a HARDI image. Here we will explain that the do-
main of a HARDI image of positions and orientations carries
a semi-direct product structure rather than a direct Carte-
sian product structure reflecting a natural coupling between
position and orientation. We embed the space of positions
and orientations into the group of positions and rotations
in R3, which is commonly denoted by SE(3) = R3 x SO(3).
As a result we must write

R? x §2:=R3 x SO(3)/({0} x SO(2))

rather than R3 x S$? for the domain of a HARDI
image.

In Sect. 3 we will discuss basic tools from group theory,
which serve as key ingredients in our diffusions on HARDI
images later on. Within this section we also provide an ex-
ample to embed a recent paper (Barmpoutis et al. 2008) by
Barmpoutis et al. on smoothing of DTI/HARDI data in our
group theoretical framework. We show that their kernel op-
erator indeed is a correct left-invariant group convolution on
R3 % S2. However, their kernel does not satisfy the semi-

group property and does not relate to diffusion or Tikhonov
energy minimization on R3 x §2.

Subsequently, in Sect. 4 we will derive all linear
left-invariant convection-diffusion equations on SE(3) and
R3 x S (the actual domain of HARDI images) and show
that the solutions of these convection-diffusion equations are
given by group-convolution with the corresponding Green’s
functions, which we explicitly approximate later. Further-
more, in Sect. 4.2, we put an explicit connection with prob-
ability theory and random walks in the space of orientations
and positions. This connection is established by the fact
that the convection-diffusion equations are Fokker-Planck
(i.e. forward Kolmogorov) equations of stochastic processes
(random walks) on the space of orientations and positions.
This in turn brings a connection to the actual measurements
of water-molecules in oriented fibrous tissues. Symmetry
requirements for the linear diffusions on R3 x $? yields the
following cases:

1. The natural 3D generalizations of Mumford’s direction
process on R2 x S! (Mumford 1994; Duits and van Alm-
sick 2008), which is a contour completion process in the
group SE(2) = R? x §' = R? % SO(2) of 2D-positions
and orientations;

2. The natural 3D generalizations of a (horizontal) random
walk on R? x S!, cf. (Duits and Franken 2010), corre-
sponding to the diffusions proposed by Citti and Sarti
(2006), which is a contour enhancement process in the
group SE(2) = R? x S! = R? x SO(2) of 2D-positions
and orientations;

3. Gaussian scale space (lijima 1962; Koenderink 1984;
Alvarez et al. 1993; Duits et al. 2004) over position space,
i.e. spatial linear diffusion;

4. Gaussian scale space over angular space (2-sphere) (De-
scoteaux et al. 2007; Ozarslan and Mareci 2003; Florack
and Balmachnova 2008; Florack 2008; Hess et al. 2006),
i.e. angular linear diffusion,

or combinations of these four types of convection-diffusions.
Previous approaches of HARDI-diffusions (Descoteaux et
al. 2007; Ozarslan and Mareci 2003; Florack and Balmach-
nova 2008) fit in our framework (third and fourth item),
but it is rather the first two cases that are challenging as
they involve a natural coupling between position and ori-
entation space and thereby allow appropriate treatment of
crossing fibers. In Sect. 5 we will explore the underlying dif-
ferential geometry of our diffusions on HARDI-orientation
scores. By means of the Cartan connection on SE(3) we
put a useful relation to rigid body mechanics expressed in
moving frames of reference, providing geometrical intuition
behind our left-invariant (convection-)diffusions on HARDI
data. Furthermore, we show that our (convection-)diffusion
may be expressed in covariant derivatives and we show that
both convection and diffusion locally take place along the
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exponential curves in SE(3), that are explicitly derived in
Sect. 5.1. In Sect. 6 we will derive suitable formulas and
Gaussian estimates for the Green’s functions of linear left-
invariant convection-diffusions on HARDI images. These
formulas are used in the subsequent section in our numeri-
cal convolution-schemes solving the left-invariant diffusions
on HARDI images.

Section 7 explains the basic numerics of our left-invariant
PDE- and/or convolution schemes, which we use in the sub-
sequent experimental section. Section 8 contains prelimi-
nary results of linear left-invariant diffusion on artificial
HARDI datasets over the joined coupled domain of posi-
tions and orientations (i.e. over R3 x §2).

The final section of this paper provides the theory for
nonlinear adaptive diffusion on HARDI images, which is
a generalization of our nonlinear adaptive diffusion schemes
on the 2D Euclidean motion group (Franken and Duits 2009;
Duits and Franken 2010).

2 The Group Structure on the Domain of a HARDI
Image: The Embedding of R3 x S2 into SE(3)

In order to generalize our previous work on line/contour-
enhancement via left-invariant diffusions on invertible ori-
entation scores of 2D-images we first investigate the group
structure on the domain of a HARDI image. Just like ori-
entation scores are scalar-valued functions on the space of
2D-positions and orientations, i.e. the 2D-Euclidean motion
group, HARDI images are scalar-valued functions on the
space of 3D-positions and orientations. This generalization
involves some technicalities since the 2-sphere $? = {x €
R3 | |Ix|| = 1} is not a Lie-group proper' in contrast to the
1-sphere §' = {x € R? | ||x|| = 1}. To overcome this prob-
lem we embed R? x §? into SE(3) which is the group of
3D-rotations and translations (i.e. the group of 3D rigid mo-
tions). As a concatenation of two rigid body movements is
again a rigid body movement, the product on SE(3) is given
by

x, R)(X', R") = (RX' +x, RR"),

R.R' €50(3), x,x eR’.

The group SE(3) is a semi-direct product of the translation
group R3 and the rotation group SO(3), since it uses an
isomorphism R — (x — Rx) from the rotation group onto
the automorphisms on R3. Therefore we write R x SO(3)

'Tf % were a Lie-group then its left-invariant vector fields would be
non-zero everywhere, contradicting Poincaré’s “hairy ball theorem”
(proven by Brouwer in 1912), or more generally the Poincaré-Hopf
theorem (the Euler-characteristic of an even dimensional sphere S2"
is 2).

@ Springer

rather than R? x SO(3) which would yield a direct product.
The groups SE(3) and SO(3) are not commutative. Through-
out this article we will use Euler-angle parametrization for
SO(3), i.e. we write a rotation as a product of a rotation
around the z-axis, a rotation around the y-axis and a rota-
tion around the z-axis again.

R=Rez,yRey,ﬂRez,ou ()

where all rotations are counter-clockwise, where all rota-
tions are counter-clockwise, i.e.:

cosy —siny 0
Re.,=| siny cosy O and
0 0 1
cosp 0 sinf
Re, p = 0 1 0
“ —sin 0 cosp

The advantage of the Euler angle parametrization is that
it directly parameterizes SO(3)/SO(2) = $2 as well. Here
we recall that SO(3)/SO(2) denotes the partition of all left
cosets which are equivalence classes [g] = {h € SO(3) |
h ~ g} = gSO(2) under the equivalence relation g1 ~ g2 <&
gl_lgz € SO(2) where we identified SO(2) with rotations
around the z-axis and we have

SO(3)/SO(2) > [Re,,y Re,, ]

= {Rez,yRey,ﬂRez,oc | €[0,2m)}

< n(B,y) = (cosysinp, siny sin B, cos )T

= Re,,y Re, pRe, a: € 5% 2)

Like all parameterizations of SO(3)/SO(2), the Euler angle
parametrization suffers from the problem that there does not
exists a global diffeomorphism from a sphere to a plane. In
the Euler-angle parametrization the ambiguity arises at the
north and south-pole:
Re. .y Rey,ﬁ:ORez,a = Rez,y—s Rey,ﬁ:ORej,a+6 , and
Rez,y Rey,ﬂ:n Rez,a = Rez,y+8 Rey,ﬁ:n Rez,a+6 ,

for all § € [0, 27). 3)

Consequently, we occasionally need a second chart to cover
SOQ3);

R=Re, jR, ;Re.a. “

ey.B

which again parameterizes SO(3)/SO(2) = S? using differ-
ent spherical coordinates § € [~ 7), 7 € (=7, %),

0(B.7) = Re, 7 R, ge:

= (sin 8, —cos Bsiny, cos Bcos )T, (5)
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Fig. 4 The two charts which together appropriately parameterize the
sphere $2=50(3) /SO(2) where the rotation-parameters « and & are
free. The first chart (left-image) is the common Euler-angle parame-
trization (1), the second chart is given by (4). The first chart has sin-
gularities at north and south-pole (inducing ill-defined parametrization
of the left-invariant vector fields (24) at the unity element) whereas the
second chart has singularities at (&1, 0, 0)

but which has ambiguities at the intersection of the equator
with the x-axis

Re jRe, sz Re.d = Re. 5—sRe fixRe ass,
forall § € [0, 27). (6)

See Fig. 4. Away from the intersection of the z- and x-axis
with the sphere one can accomplish conversion between the
two charts by solving for either («, B y) or (¢, B,y) in
Re, 7Ry Re, &= Re.yRe,pRe o

Now that we have explained the isomorphism n = Re;, €
52 < SO(3)/S0(2) > [R] explicitly in charts, we return to
the domain of HARDI images. Considered as a set this
domain equals the space of 3D-positions and orientations
R3 x S2. However, in order to stress the fundamental em-
bedding of the HARDI domain in SE(3) and the thereby in-
duced (quotient) group-structure we write R3 x $2, which
equals the following Lie-group quotient:

R3 x 82 := (R x SO(3))/({0} x SO(2)).

Here the equivalence relation on the group of rigid-motions
SE(3) =R3 x SO(3) equals
x,R)~x,R) & x=x and

R~'R’ is a rotation around the z-axis

and the set of equivalence classes within SE(3) under this
equivalence relation (i.e. left cosets) equals the space of cou-
pled orientations and positions and is denoted by R3 x S2.

3 Tools from Group Theory

In this article we will consider convection-diffusion oper-
ators on the space of HARDI images. We shall model the

space of HARDI images by the space of quadratic integrable
functions on the coupled space of positions and orienta-
tions, i.e. Lo(R3 x $2). We will first show that such oper-
ators should be left-invariant with respect to the left-action
of SE(3) onto the space of HARDI images. This left-action
of SE(3) onto R® x §? is given by

g (y,n) = (Ry +x, Rn),
g=x R) eSE3), x,yeR? neS? ReSO®3)

and it induces the so-called left-regular action of the same
group on the space of HARDI images similar to the left-
regular action on 3D images (for example orientation-
marginals of HARDI images):

Definition 2 The left-regular actions of SE(3) onto
Lo (R? x §?) respectively L, (R3) are given by

(Lo pn Uy, M) =U(g™ " (y,m))
=UR (y—x),R 'n),
x,yeR> ne S U el R x 5%,

Ug=x.0) ) = (R~ (y —x)),
R e SO3),x,yeR3, f eLr(RY).

Intuitively, {,—(x,r) represents a rigid motion operator on
images, whereas £,_(x g) Tepresents a rigid motion on
HARDI images.

In order to explain the importance of left-invariance of
processing HARDI images in general we need to define the
following operator.

Definition 3 We define the operator M which maps a
HARDI image U : R3 % §? — R to its orientation marginal
MU :R3 - R as follows (where o denotes the usual sur-
face measure on S2):

(MU)(y) = /S2 U(y.m)do(n).

If U:R3 x §? — R7 is a probability density on positions
and orientations then MU : R3 — R* denotes the corre-
sponding probability density on position space only.

The marginal gives us an ordinary 3D image that is a
“simplified” version of the HARDI image, containing less
information on the orientational structure. This is analogue
to taking the trace of a DTI image. The following theorem
tells us that we get a Euclidean invariant operator on the
marginal of HARDI images if the operator on the HARDI
image is left-invariant. This motivates our restriction to left-
invariant operators, akin to our framework of invertible ori-
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entation scores (van Almsick 2005; Franken and Duits 2009;
Franken 2008; Duits and van Almsick 2008; Duits et al.
2007; Duits and Franken 2009, 2010; Duits and Burgeth
2007).

Theorem 1 Suppose ® is an operator on the space of
HARDI images to itself. The corresponding operator ) on
the orientation marginals given by Y(M(U)) = M(®(U))
is Euclidean invariant if operator ® is left-invariant:

(<I> oLy =L,0®, forallge SE(S))
= UsoY=Voll,, forallgeSEQ3).

Proof The result follows directly by the intertwining rela-
tion 4y 0 M = Mo £, for all g € SE(3). Regardless of the
fact if ® is bounded or unbounded, linear or nonlinear, we
have under assumption of left-invariance of @ that

YollyoM=YoMog,
= Modog,
—MoLyod=ioMod
=40V oM. O

It follows by the Dunford-Pettis Theorem (Bukhvalov
and Arendt 1994, pp. 113-114) that basically every reason-
able linear operator in image processing is a kernel operator.
Therefore, we will classify all linear left-invariant kernel op-
erators KC on HARDI images and we will provide an impor-
tant probabilistic interpretation of these left-invariant kernel
operators.

Lemma 1 Let K be a bounded linear operator from
Lo (R3 x 82) into Loo(R3 % S2) then there exists an in-
tegrable kernel k : R3 x §% x R3 x §2 — C such that

ICI2 = Supy myer3xs? Jr3ws2 k(. m ¥, 0)|2dy'do (n)
and we have

(KU)(y,n) = / k(y.,m;y',n)U(y',n")dy'do (), (7)
R3 %52

X

for almost every (y,n) € R3 x 8% and all U € Lo(R? x §?).
Now Ky := K is left-invariant iff k is left-invariant:

Veese3) 1 Lg 0 Ki=Kiro L,
& VeesEd) Yy yerd nnes? |
k(g-(y.m);g-(y.n))=k(y,n;y, n). (8)

Proof The first part of the lemma follows by the gen-
eral Dunford-Pettis Theorem (Bukhvalov and Arendt 1994,
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pp. 113—-114). With respect to the left-invariance we note
that on the one hand we have

(KkLeU)(y, m)

:/ / k(y, n: y”,n”)
s2 JR3

X U(R—l(y// —X), R—ln//) dy”da(n”)

:/ / k(y,n; Ry +x, Rn)U(y',n")dy'do (n')

52 JR3

=/ / k(y,m; g-(y,n)U(y',n')dy'do (n)
s2 JR3

whereas on the other hand (£, U)(y,n) =
Jo Jrak(g™ (y, m); y.n)U (y',n')dy'do(n'), for all g €
SE3), U € Ly(R? x §?), (x,n) € R? x §2. Now SE(3) acts
transitively on R3 x $2 from which the result follows. [

From the invariance property, (8), we deduce that

k(y,m;y’,n)
= k((Re..y'Re, )" (¥ = ¥), (Re..y R, p) 1 0, €,),
k(Rez,ocy’ Rez,ﬂln; 07 ez) = k(Ya n; 0’ ez)a

and consequently we obtain the following result:

Corollary 1 By the well-known Euler-angle parametriza-
tion of SO(3), we have SO(3)/SO2) = §? via isomor-
phism [Re..y Re,.pl = {Rez,yRey,,BRez,a | @ € [0,27)} <
n(B,y) = (sin B cosy, sin B sin y,cos,b’)T = Rez,yRey,,gez.
To each positive left-invariant kernel k : R3 x §2 x R3 x
52 — RT with [ [p3k(0, ey, n)dydo(n) = 1 we asso-
ciate a unique probability density p : R3 x §2 — R with
the invariance property

p(y,m) = p(Re_ oy, Re,.on), foralla€l0,2r), )

such that

k(y,n(B.y);y . nB,y")
= P((Re..y Re,. )T (¥ = ¥). (Re.., Re, )T 0(B. 1))

with p(y,n) = k(y, n; 0, e;). We can briefly rewrite (Franken
2008, (7.59)) and (7), coordinate-independently, as

KUy, m) = (p #g3 52 U)(y. 1)

:/}‘Q:%\/‘S‘2 p(RI];/(y_y/)’ Rlz;/n)U(y/’n/)do,(n/)dy/’ (10)

where o denotes the surface measure on the sphere and
where Ry is any rotation such that n’ = Rye,.
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By the invariance property (9), the convolution (10) on
R3 x §2 may be written as a (full) SE(3)-convolution. An
SE(3) convolution (Chirikjian and Kyatkin 2001) of two
functions p : SE(3) — R, U:SE(3) — Ris given by:

(P *sez) U)(g) = / p(h ') U(h)dpseay(h),  (11)
SE(3)

where Haar-measure dusg@3)(X, R) = dxduso3)(R) with
dMS0(3)(ReZ,yRey,ﬂRez,a) = sin BdadBdy. If we now set
p(x, R) := p(x, Re;) and Ux,R) :=U(x, Re,), it follows
by (9) that the following identity holds:

(P *sE3) U)(X, R) = 27(p #p3 52 U) (X, Re;).

Later on in this article (in Sects. 4.2 and 4.3) we will relate
scale spaces on HARDI data and first order Tikhonov regu-
larization on HARDI data to Markov processes. But in or-
der to provide a road map of how the R? x $2-convolutions
will appear in the more technical remainder of this article
we provide some preliminary explanations on probabilistic
interpretation of R? x S%-convolutions.

In particular we will restrict ourselves to conditional
probabilities where p(y, n) = p;(y, n) represents the proba-
bility density of finding an oriented random walker at posi-
tion y with orientation n at time ¢ > 0, given that it started
at (0, e;) at time = 0. In such a case the probabilistic inter-
pretation of the kernel operator is as follows. The function
(y.n) = (K, U)(y, n) = (p; *p3 552 U)(y, n) represents the
probability density of finding some oriented particle, start-
ing from the initial distribution U : R® x §? — R* at time
t =0, at location y € R? with orientation n € S at time
t > 0. Furthermore, in a Markov process traveling time is
memoryless, so in such process traveling time is negatively
exponentially distributed P(T = t) = Ae™*' with expecta-
tion E(T) = A~'. Consequently, the probability density p*
of finding an oriented random walker starting from (0, e;) at
time t = 0, regardless its traveling time equals

Pry.m) = fo iy, )P (T = 1)dr

o
= k/ pe(y, me Mdt. (12)
0

Summarizing, we can always apply Laplace-transform with
respect to time to map transition densities p;(g) given a
traveling time ¢ > 0 to unconditional probability densities
p*(g). The same holds for the probability density P*(y, n)
of finding an oriented random walker at location y € R3 with
orientation n € S? starting from initial distribution U (i.e.
the HARDI data) regardless the traveling time, since

o
Pj(y.m) =2 / e M (pr w352 U)(y, mydr
0

= (p" #g3y 2 U)(y,m). (13)

3.1 Relation of the Method Proposed by Barmpoutis et al.
to R3 x $2-Convolution

In Barmpoutis et al. (2008) the authors propose” the follow-
ing practical decomposition for the kernel &:

K (y,m;y',m') = —kdm(lly YD) - kfien (- 1)
-k (Ln (= - y/))> (14)
e\ ly — v/l ’
t ’ 1 _ =y K
with kg (ly —¥'I) = e~ 4 and kg, (cosp) =
(@nt)2

xcos(¢)
ﬁber(cos o) = 271]0(”() with ¢ € (—m, ] the angle, respec-

tively, between the vectors m and n’ and the angle between
the vectors m and —(y — y’). So konent (cos¢) denotes the
von Mises distribution on the circle, which is indeed posi-
tive and f - 2;;:((lq:)d¢ = 1. The decomposition (14) auto-
matically implies that the corresponding kernel operator Ky

is left-invariant, regardless the choice of Kuist, K&ienes Kfiber
since

RYY X)) -k (R - R )

(R™'n)

K IR (y — %) —

1
T -
“b“< IRHy =% — R~y =)
Ry —x— ('~ x)))

- kdlst(”y y ") korlem(n . 11/)

1
(0 o
fiber\ ~ ly — I

k(g7 y,m); g7y, ) = k" (y,m; ¥, n),
for all g = (x, R) € SE(3).

The corresponding probability kernel (which does sat-
isfy (9)) reads

P (¥, m) = kdlst(IIYIl)konem(ez W kfpe (— [y~ - y),
y #0. s)

For a simple probabilistic interpretation we apply a spa-
tial reflection® and define pa’,K)(y, n) = p ) (—=y,n). Now
pa', ) should be interpreted as a probability density of find-
ing an oriented particle at position y € R with orienta-
tion n € S? given that it started at position 0 with ori-
entation e;. The practical rationale behind the decomposi-
tion (14), is that two neighboring local orientations (y, n) €

2We used slightly different conventions as in the original paper to en-
sure ILj-normalizations in (14).

3Later on in Sect. 8.2.1 we will return to the important practical conse-
quences of this spatial reflection in full detail.
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R3 % §? and (y',n’) € R? x §? are supposed to strengthen
each other if the distance between y and y’ is close (repre-
sented by the first kernel ki), if moreover the orientations
n, n’ are similar (represented by k% ... ), and finally if local
orientation (y, n) is nicely aligned according to some a pri-
ori fibre model with the local orientation (y’, n’), i.e. if the
orientation of ||y — y’|| "' (y — y’) is close to the orientation
n (represented by k¢, ..). The decomposition allows a reduc-

tion of computation via:

(K U)(y, m)
= (Pr.x *R3xs2 U)(y, m)

l —
= E/Rz kst (1Y — ¥ Do (ly = ¥ '0- v — )

. </ U(y’,n’)kgriem(n~n/)da(n/)>dy’. (16)
52

Despite the fact that the practical kernel in (14) gives rise
to a reasonable connectivity measure between two local ori-
entations (y,n) and (y/,n’) € R? x §? and that the associ-
ated kernel operator has the right covariance properties, the
associated kernel operator is not related to left-invariant dif-
fusion and/or Tikhonov regularization on R3 % S2, as was
aimed for in the paper (Barmpoutis et al. 2008). In this in-
spiring pioneering paper the authors consider a position de-
pendent energy and deal with the Euler-Lagrange equations
in an unusual way (in particular Barmpoutis et al. 2008, (7)).
The kernel given by (15) involves two separate time para-
meters ¢, k and the probability kernels given by (14) are not
related to Brownian motions and/or Markov-processes on
R3 % §2, since they do not satisfy the semigroup property.
A disadvantage as we will explain next, however, is that the
kernel is not entirely suited for iteration unless combined
with nonlinear operators such as nonlinear grey-value trans-
formations. The function y — |y||~'y - n within (15) is dis-
continuous at the origin. If the origin is approached by a
straight-line along n the limit-value is 1 and this seems to be
a reasonable choice for evaluating the kernel at y = 0. The
finite maximum of the kernel is now obtained at y = 0 (and
n = ¢;). Since the kernel is single-sided and does not have a
singularity at the origin convolution with itself will allow the
maximum of the effective kernel to run away®* from its cen-
ter. See Fig. 5, where we numerically R x $2-convolved
the kernel given in (14) with itself by a convolution al-
gorithm that we will explain later in Sect. 8.2. However,
if the kernel would have satisfied the semigroup-property
such artifacts would not have occurred. For example the
single-sided exact Green’s function of Mumford’s direction

4Set a 1= HL‘I[. ..,0,1,,0,...], then for every n € N the sequence

a, =a+"Daece¢ (@ has n+1 nonzero coefficients:
ak =1 +ot)*"oz"(;:), k=0, ..., n.So the position of the maximum of
a, increases with n (if o = 1 it takes place at k = L%J).

@ Springer

Fig. 5 Left: Glyph visualization (recall Definition 1) of the kernel
p(t’K) :R3 % §2 — RT (15) as proposed in Barmpoutis et al. (2008),
plotted in perspective with respect to indicated horizon (dashed line)
and vanishing point. Right: Glyph visualization of p(J;K) HR3 5 52 p(t )
i.e. the kernel numerically convolved with itself (kernels are sampled
on a 3 x 3 x 3-grid with 162-orientations). Parameter settings are
(t= %, k =4). The maximum moves away from the origin by itera-
tion: in the right image the second glyph on the z-axis has a larger
radius than the glyph at 0. The effective shape of the convolution ker-
nel is destroyed by iteration, as the kernel in (15) does not satisfy the
semigroup property. This motivates our quest (in Sect. 6) for appro-
priate diffusion kernels (related to Brownian motion on R3 % §2) on
R3 x §2 that do satisfy the semigroup property p; *R3 52 Ps = Ps+t

process (Duits and van Almsick 2008) (and its approxima-
tions Thornber and Williams 2000; Duits and Franken 2009;
Duits and van Almsick 2008) on SE(2) = R? x S! has a nat-
ural singularity at the origin.

Before we consider scale spaces on HARDI data whose
solutions are given by R3 % S2-convolution, (10), with
the corresponding Green’s functions (which do satisty the
semigroup-property) we provide, for the sake of clarity,
a quick review on scale spaces of periodic signals from a
group theoretical PDE-point of view.

3.2 Introductory Example: Scale Space and Tikhonov
Regularization on the Circle

The Gaussian scale space equation and corresponding resol-
vent equation (i.e. the solution of Tikhonov regularization)
on acircle T = {¢! | § € [0,27)} = §' with group product
eei? = i@+ are given by
du(@.1) = D1dju(@,1),
and
u(,t) =u@m,t) and u(0,0)= f(O) 7

py(0) =y(D11d2 —y D7 £(6),

with 6 € [0, 27) and D1 > 0 fixed, where we note that the
function > p,, (0) =y [y~ (0, 1)e~""ds is the minimizer
of the Tikhonov-energy

2
Epy) = /O YIpy©) — FO)F + Dyl ©)2d6

under the periodicity condition p,(0) = p, (27). By left-
invariance the solutions are given by T-convolution
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with their Green’s function, say G,D . TRt and
RPY . T — R*. Recall that the relation between Tikhonov
regularization and scale space theory is given by Laplace-
transform with respect to time:

Dy

u(,t)=e2T1f:=G,*r f and p,=R," %7 f,

oo (18)
with Rf“ = y/ GtD”e_ytdt,
0

where the T-convolution is given by (f T g)(eig) =
ffn f(e"(e_@,))g(em/)de’. For explicit formulas of the
Green’s function GtD ! (basically a sum of 27 -shifted Gaus-
sians) and the Green’s function R,,D 1 see Duits and Franken
(2009, Chap. 3.2). Now by ¢’ATe!AT = ¢6+DAT the heat-
kernel on T satisfies the (for iterations) important semigroup
property:

Dy,

GPsp GP =GP, foralls, > 0.

The generator of a Gaussian scale space on the torus is given
by Dqj 8(3. Just like the solution operator (D1 802 — )»I)_1 of
Tikhonov regularization, it is left-invariant on the group T
and thereby the solutions (18) of a Gaussian Scale Space and
Tikhonov regularization are given by T-convolution. In or-
der to generalize scale space representations of functions on
a torus to scale space representations of HARDI data defined
on R3 x §? (embedded in SE(3) =R> x SO(3)), we simply
have to replace the left-invariant vector field 99 on T by the
left-invariant vector fields on SE(3) (or rather R? x $2) in
the quadratic form which generates the scale space on the
group, (Duits and Burgeth 2007). This motivates the techni-
cal derivations of the left-invariant vector fields on SE(3) in
the next subsection.

3.3 Left-invariant Vector Fields on SE(3) and their Dual
Elements

We will use the following basis for the tangent space
T.(SE(3)) at the unity element e = (0, I) € SE(3):

Al :8)(7
Ay =05,

Ay =0y,
As =g,

A3 =0,,

Ag= . (19)
where we stress that at the unity element (0, R = I), we have
B =0 and here the tangent vectors dg and 9, are not defined,
which requires a description of the tangent vectors on the
SO(3)-part by means of the second chart.

The tangent space at the unity element is a 6D Lie algebra
equipped with Lie bracket

(A, B]= lifgr—z(a<t>b<t)<a(t))—l(b(r))—l —¢), (0
t

where ¢ + a(t) resp. t — b(t) are any smooth curves in
SE(3) with a(0) = b(0) =e and a’(0) = A and b’ (0) = B,

for explanation on the formula (20) which holds for general
matrix Lie groups, see Duits et al. (2009, App. G). The Lie-
brackets of the basis given in (19) are given by

6
[Ai, Aj1="cliAr, @1
k=1

where the non-zero structure constants for all three isomor-
phic Lie-algebras are given by
sgnperm{i — 3, j — 3,k — 3}
ifi, j,k>4,i#j#k,
Lk ek _ pkzd iz 22)
sgnperm{i, j — 3, k}
ifi, k<3, j=4,i#j#k.

More explicitly, we have the following table of Lie-brackets:

([Ai, A2y
0 0 0 0 A3 —Ap
0 0 0 —Aj3 0 Ay
_ 0 0 0 Ay  —A 0
o 0 Ay —Ap 0 Ag —As |’
—A3 0 Al —Ag 0 Ay
Ay —A 0 As —Ay 0
so for example 0?5 =1, c{’4 = 0125 =0, c]26 = —cgl =—1.

The corresponding left-invariant vector fields {.A,'}?=1 are
obtained by the push-forward of the left-multiplication
Loh = gh by Ailg¢ = (Lg)«Aip = Aj(¢p o Lg) (for all
smooth ¢ : Q, — R which are locally defined on some
neighborhood €2, of g) and they can be obtained by the
derivative of the right-regular representation:

tAi _
Ailgd = (@R(A)P)(@) = lim M’

with R (h) = ¢ (hg). (23)

Expressed in the first coordinate chart, (1), this renders
for the left-invariant derivatives at position g = (x,y, 2,
Rez,yRey,ﬁ Re, o) € SE(3) (see also Chirikjian and Kyatkin
2001, Sect. 9.10)
A1 = (cosacos Bcosy — sina siny)dy

+ (sina cos y + cosa cos Bsiny)dy — cosa sin B9,
Ar = (—sinacos Bcosy — cosa siny)dy

+ (cosa cosy — sinacos Bsiny )y

+ sina sin B9,

24
Aj = sin  cos y 3 + sin B sin y d, + cos 89, 24
A t By + sinads — %

= cosa co sinadg — ,

* « P sing "

sin o

As = —si t S0 0 dy,

5 sina cot B0y + cosadg + snp

A = 0q.
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for B # 0 and B # m. The explicit formulae of the left-
invariant vector fields (which are well-defined in north- and
south-pole) in the second chart, (4), are:
Aj = cos@cos B0y + (cos y sina + cos @ sin B sin 7)dy

+ (sin@siny — cos@ cos 7 sin £)d;,
Ay = —siné cos B9y + (cos@cos — sind sin B sin V)0y

+ (sind sin B cos 7 + cos@sin 7)d;,

Az = sin 83, — cos Bsin Yoy + cos B cos 79, (25)
A4 = —cos@tan gz + sin&Blg + &Sofa);,
cosf
.~ ~ - sin &
As = sina tan 89z + Cosaaﬁ - —=dy,
cos

Ae = 0z,
for B # 7 and B # —7. Note that dR is a Lie-algebra iso-
morphism, i.e.
6
[Ai Aj1=)_ cfiAx
k=1
6
& [dR(A).dR(A)] =) cldR(Ap)
k=1
6
& [ALAjl=AA —AjA = ZCf-{jAk.
k=1

These vector fields form a local moving coordinate frame

of reference on SE(3), the corresponding dual frame
{dA', ..., dA®) e (T(SE(3)))* is defined by
(dA, Aj) i=dA (A) =8, i, j=1,...,6,

where 5; =11if i = j and zero else. A brief computation
yields the following dual frame (in both coordinate charts):

dA! dx
d.A? dy
dA3 _ (Rez,yRey,ﬁRez,oz)T | 0 dz
dA* 0 | Mg do
dA’ dp
d.A® dy
dx
dy
(Re, 7 Rey,gRez,&)T ‘ 0 dz

= = ~ (26)
0 [ M55) | 94
, I
dy

@ Springer

where the 3 x 3-zero matrix is denoted by 0 and where the
3 x 3-matrices Mpg,,,, My ; are given by

0 sine —cosasinf
Mgo=|0 cosa sina sin 8 ,
1 0 cos
~ Q s~ cosa -T
—cosatanf sinad ==
cos f
:-=| sindtanf cosqg —3n&
B.a B cos B
1 0 0

Finally, we note that by linearity the i-th dual vector filters
out the i-th component of a vector field Z?: (VA

6
<dAi,ZvjAj>=vi, foralli,j=1,...,6.

j=1

4 Left-Invariant Diffusions on SE(3) = R3 x SO(3)
and R3 x §2

In order to apply our general theory on diffusions on Lie
groups, (Duits and Burgeth 2007), to suitable (convection-)
diffusions on HARDI images, we naturally extend all func-
tions U : R3 x §2 — R to functions U : R? x SO(3) - Rt
by

Ux,R)=U(x, Re;) orin Euler angles:

~ 27
U(X, Re,y Re, pRe..o) =U X, (B, 7).

Definition 4 We will call U : R x SO(3) — R, given by
(27), the HARDI-orientation score corresponding to HARDI
image U : R3 x §? — R.

Here we note that the function U in general is not equal
to the wavelet transform of some image f : RY — R, in con-
trast to our previous works on invertible orientations of 2D
images (Franken 2008; van Almsick 2005; Duits and van
Almsick 2008; Duits and Franken 2010) and invertible ori-
entation scores of 3D images (Duits et al. 2007).

We follow our general construction of scale space repre-
sentations W of functions U defined on Lie groups (Duits
and Burgeth 2007), where we consider the special case
SE(3) =R? x SO(3):

HW(g, 1) =0P3(A, A, ..
ltlfg W(g,t)=U(g)

L AW (g, 1),
(28)
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which is generated by a quadratic form on the left-invariant
vector fields:

6 6
QD’a(Al,Az, o Ag) = Z—ai.Ai + Z A;iD;; A;j. (29)

i=1 i,j=1

Now the Hérmander requirement, (Hormander 1968), on the
symmetric D = [D;;] € R%*% D > 0 and a, which guaran-
tees smooth non-singular scale spaces for SE(3), tells us that
D need not be strictly positive definite. The Hormander re-
quirement is that all included generators together with their
commutators should span the full tangent space. To this end
for diagonal D one should consider the set

S={ie{l,...,6}| Djj #0V a; # 0},

now if for Example 1 is not in here then 3 and 5 must
be in S, or if 4 is not in S then 5 and 6 should be in S.
Following the general theory (Duits and Burgeth 2007) we
note that iff the Hérmander condition is satisfied the solu-
tions of the linear diffusions (i.e. D, a are constant) are
given by SE(3)-convolution with a smooth probability ker-
nel p2*: SE(3) — R such that

W(g.t)=(p>* *s£3) U)(g)

=/ prAh ™' ) U (h)dusee) (h),
SEQ3)
lim pP* *sg3) U = U,
110
. ~D,a ~D,a
with p;”" >0 and f Py (&)duseE) (g) =1,
SE@3)

where the limit is taken in IL, (SE(3))-sense.

The left-invariant diffusions on the group SE(3) also
give rise to left-invariant scale spaces on the homogeneous
space R x §% = SE(3)/({0} x SO(2)) within the group.
There are however, two important issues to be taken into
account:

1. If we apply the diffusions directly to HARDI-orientation
scores we can as well delete the last direction in our dif-
fusions because clearly A¢ = 9, vanishes on functions
which are not dependent on «, i.e. 80,0 =0.

2. In order to naturally relate the (convection-)diffusions on
HARDI-orientation scores, to (convection-)diffusions on
HARDI images we have to make sure that the evolution
equations are well defined on the cosets SO(3)/SO(2),
meaning that they do not depend on the choice of repre-
sentant in the classes.

Next we formalize the second condition on diffusions on
HARDI-orientation scores more explicitly. A movement
along the equivalence classes SO(3)/SO(2) is done by right

multiplication with the subgroup Stab(e;) = SO(2), with
Stab(e;) ={A € SO(3) | Ae; = e;}. Therefore our diffusion
operator @, which is the transform that maps the HARDI-
orientation score U : R3 x SO(3) — Rt to a diffused
HARDI-orientation score ®,(U) = Q"0 , with stopping
time ¢ > 0, should satisfy

(@ o Rp)(U) = ®,(U) = (R, U) (30)

for all h € Stab(e;) = SO(2), where R,yU(g) = U(gh).
Now (30) is satisfied iff

R©.Reoa) © QP2 (AL ... Ae) = QP (AL, ..., As). (1)
Note that (30) and (31) are equivalent to
QP ADW(, -, 1))(g) = (Q°*(ADW(, -, 1)) (gh)

for all g € SE(3), t > 0, h = (0~, Re, o) W[lere A =

(A, ..., As)T and observe that AU =Zy AU with
cose —sinae 0| O 0 0
sin¢ cosaa O] O 0 0
0 0 1 0 0 0
Zy =
0 0 Ofcosae —sina O
0 0 Ofsine cosa O
0 0 ol O 0 1
=Re, 0 ® Re, v, Zoy €S0(6), Re, o € SO(3). (32)

Hence for constant D and a (i.e. linear diffusion on the
HARDI data) the requirement (31) simply reads
QP2 (A) = QP*(Zy A) = Q17 D7 Zun(4)

& a=Z,a and D=Z,DZ!, (33)
which by Schur’s lemma is the case if

a'l=a>=a*=a"=a%=0 and

D =diag{D11, D11, D33, Da4, Daa, Des = 0}.

(34)

Analogously, for adaptive nonlinear diffusions, that is D and
a not constant but depending on the initial condition U,
i.e. D(U) : SE(3) — R®*® with (D(U))T =D(U) > 0 and
a(U) the requirement (31) simply reads

a(U)(gh) = 2] (a(U))(g) and )
D(0)(gh) = Z,D(U)(g)Z].

for all g € SE(3), h = (0, Re, o). Summarizing all these re-
sults we conclude on HARDI data whose domain equals the
homogeneous space R? x S? one has the following scale
space representations:

»W(yn,t) = QPWaW) (4, A, ..

U(y,n)

.y AS» A6)W(y,n,t),

36
W(y,n,O) = ( )
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with® QPW)al) (A Ay, ... As, Ag) = Zis:l(—ai/li +
23:1 A;D;;(U)Aj), where from now on we assume that
D(U) and a(U) satisfy (35). In the linear case where
D(U) =D, a(U) = a this means that we shall automatically
assume (34). In this case the solutions of (36) are given by
the following kernel operators on R3 x §2:

W(y,n,t)

= (PP xp3y g2 U)(y,m)

T 2w D
=/ / / Pi ((Re,y Rey p)T (¥ —¥).
0 0 R3

(Rez,y’Rey,ﬁ’)Tn))
U (', y") dy'dom(g’, y"), (37

where the surface measure on the sphere is given by
dom(p',y)) = sinpdy/df’ = do@(B.7) =
|cos B|dBdy. Now in particular in the linear case, since
(R3,1) and (0,SO(3)) are subgroups of SE(3), we ob-
tain the Laplace-Beltrami operators on these subgroups by
means of:

Ag = QD:dlag{O,O,O,l,l,1},a:0(A)

= (A% + (A5)> + (Ao)?
= (3p)* + cot(B)dp + sin~2(B)(3,),

Ags = QDzdlag{l,1,1,0,0,0},3:0(A)

= (AD* + (A2)* + (A3)?
= (3)% + (8,)% + (8)°.

Remark Recall that in the linear case we assumed (34) to
ensure (31) so that (30) holds. It is not difficult to show,
(Franken 2008, p. 170), that this implies the required sym-
metry (9) on the convolution kernel.

4.1 Special Cases of Linear Left-invariant Diffusion
on R3 x §2

If we consider the singular case D = diag{1, 1, 1,0,0, 0},
a = 0 (not satisfying the Hormander condition) we get the
usual scale space in the position part only

W(y,n,t) = ("2U (-, m))(y)
—tll|?

=T |:w > —Fs f(w)] ¥)
(2m)2

3 vl

= (G x f)(y), with G (y) = (4mt)"2e” 5

5Since AW (y,n, 1) =0 we set ag = Dijg =0 fori =1, ...,6. Note
that AW (y. m, 1) = (((A4)* + (A5)P)W)(y, m, 7).
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and consequently on R® x S? we have the singular distribu-
tional kernel p,D’a(y, n) = G;(y)de, (n), in (37).

If we consider the singular case D = diag{0, 0,0, 1, 1, 1},
a = 0 we get the usual scale space on the sphere:

W(y,n(B,y),1) = ("*2U(y, ) (x)
[eo) l

=2 Wi U)Yin (B, v)

=0 m=—I

00 1
= Z Z Yim, U)e 22 Y, (B, v)

=0 m=—I
1

o
=Y Wi, Ue Dy, 8, ).

=0 m=—1

where we note that the well-known spherical harmonics

{Ylm};"zzo_.'l""(;l form an orthonormal basis of ]Lz(Sz) and

A Yy, = =1+ 1)Y;,. Recall

4 (1 + |m])!
leN,m=—1,...,1. (38)

204+ 1)1 — ! .
Y B,y) = /( FDU=ImD! iy

Consequently, on R® x S? we have the singular distribu-
tional kernel p?’a(y, n) = g;(n)dy(y), in (37), where

g @B, y) =Y Vi (B, ) Yim(B, y)e Y

=0
_ - 2 @I+ DA = mDY a4
_;(PI (cos B)) “ad e .

Note that in the two cases mentioned above diffusion takes
place either only along the spatial part or only along the an-
gular part, which is not desirable as one wants to include
line-models which exploit a natural coupling between posi-
tion and orientation. Such a coupling is naturally included
in a smooth way as long as the Hormander’s condition is
satisfied. In the two previous examples, the Hormander con-
dition is violated since both the span of {A;, A, A3} and the
span of {A4, As, Ag} are closed Lie-algebras, i.e. all com-
mutators are again contained in the same 3-dimensional sub-
space of the 6-dimensional tangent space. Therefore we will
consider more elaborate left-invariant convection, diffusions
on SE(3) with natural coupling between position and orien-
tation. To explain what we mean with natural coupling we
shall need the next definitions.

Definition 5 A curve y : Rt — R3 x §2 given by s >
y(s) = (y(s),n(s)) is called horizontal if n(s) =
I¥(s)I~'¥(s). A tangent vector to a horizontal curve is
called a horizontal tangent vector. A vector field A on
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R x §? is horizontal if for all (y, n) € R* x §? the tangent
vector Ay n is horizontal. The horizontal part H, of each
tangent space is the vector-subspace of T, (SE(3)) consisting
of horizontal vector fields. Horizontal diffusion is diffusion
which only takes place along horizontal curves.

It is not difficult to see that the horizontal part H, of each
tangent space T (SE(3)) is spanned by {A3, A4, As}. So all
horizontal left-invariant convection diffusions are given by
(36) where one must set a;j =ax =as =0, Djp = Dy; =
Dij=Dj1=Dje=Dgj=0forall j=1,2,...,6. Now
on a commutative group like R® with commutative Lie-
algebra {0y,,..., dx,} omitting 3-directions (say Oy, Ox,,
0x¢) from each tangent space in the diffusion would yield no
smoothing along the global x1, x3, xg-axes. In SE(3) it is dif-
ferent since the commutators take care of indirect smoothing
in the omitted directions { A1, A2, Ag}, since

span{ A3, A4, As, [Az, As] = Ao,
[As4, As] = Ag, [As, A3] = A1} =T (SE(3)).

Consider for example the SE(3)-analogues of the Forward-
Kolmogorov (or Fokker-Planck) equations of the direction
process for contour-completion and the stochastic process
for contour enhancement which we considered in our pre-
vious works, (Duits and Franken 2010), on SE(2). Here we
shall first provide the resulting PDEs and explain the un-
derlying stochastic processes later in Sect. 4.2. The Fokker-
Planck equation for (horizontal) contour completion on
SE(3) is given by

atW(yv n, t)

= (= A3 + D((A9)? + (A5)2)W(y,n, 1)

(39)

1 2
=(—A3+DA52)W(y,n,t), DZEO' >O,

lim W (y,n,t) = U(y,n),
t]0

where we note that (Ag)2(W (y, n(B, ), s)) = 0. This equa-

tion arises from (36) by setting D44 = D55 = D and a3 =1

and all other parameters to zero. The Fokker-Planck equa-
tion for (horizontal) contour enhancement is

oW(y,n,1)

= (D33(A3)* + Daa((A2)* + (A5))) W (y, m, 1)

40

= (D33(A3)® + DAg) Wiy n. 1), 0

limW(y,n,t) =U(y,n).
t]0

The solutions of the left-invariant diffusions on R3 x $2

given by (36) (with in particular (39) and (40)) are again

given by convolution product (37) with a probability kernel
D,a 3 2

py T onR? x §-.

4.2 Brownian Motions on SE(3) = R3 x SO(3) and
onR3 x §2

Next we formulate a left-invariant discrete Brownian mo-
tion on SE(3) (expressed in the moving frame of refer-
ence). The left-invariant vector fields {A;, ..., Ag} form a
moving frame of reference to the group. Here we note that
there are two ways of considering vector fields. Either one
considers them as differential operators on smooth locally
defined functions, or one considers them as tangent vectors
to equivalent classes of curves. These two viewpoints are
equivalent, for formal proof see Aubin (2001, Prop. 2.4).
Throughout this article we mainly use the first way of con-
sidering vector fields, but in this section we prefer to use
the second way. We will write {e;(g),...,es(g)} for the
left-invariant vector fields (as tangent vectors to equiva-
lence classes of curves) rather than the differential operators
{Ailg, ..., Aslg}. We obtain the tangent vector e; from A;
by replacing

a)C <~ (150’07 05 09 0)5
3, < (0,1,0,0,0,0),

9, <> (0,0,1,0,0,0),
41)
0 < (0,0,0,cos Bcosy, acos Bsiny, —asin f),

0y < (0,0,0,acosy,asiny,0),
dy <> (0,0,0, cosy sin B, siny sin 8, cos ),

where we identified SO(3) with a ball with radius 27t whose
outer-sphere is identified with the origin, using Euler an-
gles Re_yRe, pRe .o <> an(B,y) € Bo2z. Next we for-
mulate left-invariant discrete random walks on SE(3) ex-
pressed in the moving frame of reference {ei}?: | given by
(24) and (41):

5
(Yui1. Nou) = (V0. No) + As > aieily, N,
i=1

5 5
+VAs Zsi,n+1 Zajiej|(Yn,Nn)

i=1 j=1
foralln=0,...,N —1,
(Yo, No) ~UP,

with random variable (Yo, Np) is distributed by U D where
UP are the discretely sampled HARDI data (equidistant
sampling in position and second order tessellation of the
sphere) and where the random variables (Y,, N,,) are recur-
sively determined using the independently normally distrib-
uted random variables {g; ,,+1 }?::10""’51\]7], gin+1 ~N(,1)

.....

and with stepsize As = % and where a := Z?:l a;e; de-

notes an a priori spatial velocity vector having constant co-
efficients a; with respect to the moving frame of reference
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{ei}?: | Gust like in (29)). Now if we apply recursion and let
N — oo we get the following continuous Brownian motion
processes on SE(3):

3

t
Y(t) = Y(O)+/O (Zaiei|(Y(r),N(r))

i=1

3

I _1

+ 51 % Zo'jieﬂ(Y(r),N(r)))dT,
j=1

[\

) (42)
t
N(t) = N(0) + /0 (Z aiei|(y (r), N ()

i=4

5

1 1

+ 57 %8 foﬁeﬂ(nw,mr)))dfs
j=4

\S]

with g; ~ N(0,1) and (X (0), N(0)) ~ U and where o =
V2D € R6*6, 5 > 0. Note that d/7 = 17~ 2dr.

Now if we set U = g e, (i.€. at time zero ) then suit-
able averaging of infinitely many random walks of this
process yields the transition probability (y, n) — p?’a(y, n)
which is the Green’s function of the left-invariant evolution
equations (36) on R3 x §2. In general the PDEs (36) are
the Forward Kolmogorov equation of the general stochas-
tic process (42). This follows by Ito-calculus and in par-
ticular Ito’s formula for formulas on a stochastic process,
see Chirikjian and Kyatkin (2001) and see van Almsick
(2005, App. A) where one should consistently replace the
left-invariant vector fields of R” by the left-invariant vector
fields on R3 x S2.

In particular we have now formulated the direction
process for contour completion in R3 x §? (i.e. non-zero
parameters in (42) are Dyg = Ds5 > 0, az > 0 with Fokker-
Planck equation given by (39)), and the (horizontal) Brown-
ian motion for contour-enhancement in R®> x §2 (i.e. non-
zero parameters in (42) are D33 > 0, Dgg = Dss > 0 with
Fokker-Planck equation given by (40)).

4.3 Tikhonov-Regularization of HARDI Images

In the previous subsection we have formulated the Brown-
ian-motions (42) underlying all linear left-invariant con-
vection-diffusion equations on HARDI data, with in par-
ticular the direction process for contour completion and

(horizontal) Brownian motion for contour-enhancement.
However, we only considered the time dependent stochas-
tic processes and as mentioned before in Markov-processes
traveling time is memoryless and thereby negatively expo-
nentially distributed T ~ NE(X), i.e. P(T =1t) = Ae M
with expectation E(T) = A~1, for some A > 0. Recall our
observations (12) and (13) and thereby by means of Laplace-
transform with respect to time we relate the Fokker-Planck
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equations to their resolvent equations, as at least formally
we have

W(y.n 1) = (@ "Dy, n) and

o0
P, (y,n,t) =X / (@D ) (y, n)dr
0

=AM — QP2 AUy, m),

for £,A > 0 and all y € R?, n € S?, where the negative
definite generator QP-? is given by (29) and again with
AU = (AU, ..., AgU). This is similar to our introduc-
tory example on the torus in Sect. 3.2. The resolvent oper-
ator A(A1 — QP=d1g(DiD.a=0( £))~1 occurs in a first order
Tikhonov regularization as we show in the next theorem.

Theorem 2 Let U € Ly(R3 x §2) and A, D33 > 0, Dys =
Dss > 0, D11 = Dy > 0. Then the unique solution of the
variational problem

A
arg min / Z(P(y,n) — U(y,n))?
PeHI (R3 % 52) JR3x52 2

5
+ ) Dixl A P(y, m)[*dydo (n) (43)
k=1

is given by Pl)} (y,n) = (R)]? *p3ys2 U)(y,m), where the
Green’s function RP : R® x S — R* is the Laplace-
transform of the heat-kernel with respect to time: R)]? (y,n) =
A L2 pr = (y, mye~"*dr with D = diag{D11, ..., Dss, 0}.
PL)‘, (y, n) equals the probability of finding a random walker
in R3 % 82 regardless its traveling time at position y € R3
with orientation n € S starting from initial distribution U
attime t =0.

For a proof we refer to our technical report (Duits and
Franken 2009, Chap. 4.3).

5 Differential Geometry: The Underlying
Cartan-Connection on SE(3) and the Auto-Parallels
in SE(3)

Now that we have constructed all left-invariant scale space
representations on HARDI images, generated by means of
a quadratic form (29) on the left-invariant vector fields on
SE(3). The question rises what is the underlying differential
geometry for these evolutions?

For example, as the left-invariant vector fields clearly
vary per position in the group yielding a moving frame of
reference attached to luminosity particles (random walkers
in R? x $2 embedded in SE(3)) with both a position and
an orientation, the question rises along which trajectories in
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3 % 82 do these particles move? Furthermore, as the left-
invariant vector fields are obtained by the push-forward of
the left-multiplication on the group,

Ay = (Lo)sAe, ie. Agp=A(poLy),
where Loh = gh, g, h € SE(3), ¢ : SE(3) — R smooth,

the question rises whether this defines a connection between
all tangent spaces, such that these trajectories are auto-
parallel with respect to this connection? Finally, we need
a connection to rigid body mechanics described in a mov-
ing frame of reference, to get some physical intuition in the
choice of the fundamental constants® {a; }6 , and {D; ,}
within our generators (29).

In order to get some first physical intuition on analy-
sis and differential geometry along the moving frame
{Al,..., A¢} and its dual frame {dA!, ..., d.A%}, we will
make some preliminary remarks on the well-known the-
ory of rigid body movements described in moving coordi-
nate systems. Imagine a curve in R described in the mov-
ing frame of reference (embedded in the spatial part of the
group SE(3)), describing a rigid body movement with con-
stant spatial velocity ¢V and constant angular velocity ¢
and parameterized by arc-length s > 0. Suppose the curve is
given by

i,j=1

3
Y() =) o' () Ailys) wherea! € C*([0, L] R),

i=1

such that ¢ = Z?:l al (s)A; ly(s) for all s > 0. Now if we
differentiate twice with respect to the arc-length parameter
and keep in mind that L Ailys) = €2 x Ajly(s), we get

¥(s) =04 2¢@ x ¢V 4@ x @@ x y(s)).

In words: The absolute acceleration equals the relative ac-
celeration (which is zero, since ¢ s constant) plus the
Coriolis acceleration 2¢® x &1 and the centrifugal accel-
eration ¢ x (¢ x y(s)). Now in case of uniform circular
motion the speed is constant but the velocity is always tan-
gent to the orbit of acceleration and the acceleration has con-
stant magnitude and always points to the center of rotation.
In this case, the total sum of Coriolis acceleration and cen-
trifugal acceleration add up to the well-known centripetal
acceleration,

y(s) = 26@ x (=¢? x Rr(s)) + ¢ x @ x Rr(s))
e l||2

= —[|e@|I>Rr(s) = r(s),

60r later in Sect. 9 to get some intuition in the choice of functions

{a; }: | and {D,J}” 1

where R is the radius of the circular orbit y(s) = m+ Rr(s),
lr(s)|| = 1. The centripetal acceleration equals half the
Coriolis acceleration, i.e. §(s) = ¢® x ¢,

In our previous work (Duits and Franken 2010, Part II)
on contour-enhancement and completion via left-invariant
diffusions on invertible orientation scores (complex-valued
functions on SE(2)) we put a lot of emphasis on the un-
derlying differential geometry in SE(2). All results straight-
forwardly generalize to the case of HARDI images, which
can be considered as functions on R3 x $? embedded in
SE(3). These rather technical results are summarized in The-
orem 3, which answers all questions raised in the beginning
of this section. Unfortunately, this theorem requires gen-
eral differential geometrical concepts such as principal fiber
bundles, associated vector bundles, tangent bundles, frame-
bundles and the Cartan-Ehresmann connection defined on
them. These concepts are explained in full detail in Spivak
(1975) (with a very nice overview on p. 386).

The reader who is not familiar with these technicalities
from differential geometry can skip the first part of the theo-
rem while accepting the formula of the covariant derivatives
given in (48), where the anti-symmetric Christoffel sym-
bols are equal to minus the structure constants c ij —clj‘.
(recall (22)) of the Lie-algebra. Here we stress that we fol-
low the Cartan viewpoint on differential geometry, where
connections are expressed in moving coordinate frames (we
use the frame of left-invariant vector fields {41, ..., Ag} de-
rived in Sect. 3.3 for this purpose) and thereby we have non-
vanishing torsion.” This is different from the Levi-Civita
connection for differential geometry on Riemannian man-
ifolds, which is much more common in image analysis.
The Levi-Civita connection is the unique torsion free met-
ric compatible connection on a Riemannian manifold and
because of this vanishing torsion of the Levi-Civita connec-
tion V there is a 1-to-1 relation® to the Christoffel symbols
(required for covariant derivatives V;v/ = 3;v/ + Ff‘j wv’)
and the derivatives of the metric tensor. In the more general
Cartan connection outlined below, however, one can have
non-vanishing torsion and the Christoffels are not neces-
sarily related to a metric tensor, nor need they be symmet-
ric.

Theorem 3 The Maurer-Cartan form w on SE(3) is given
by

6

wg(Xg) =Y (dA'lg, Xg)Ai,

i=1

X, € T,(SE(3)), (44)

"The torsion tensor Ty of a connection V is given by Ty[X, Y] =
VxY — VyX — [X, Y]. The torsion-tensor T of a Levi-Civita con-
nection vanishes, whereas the torswn—tensor of our Cartan connection
V on SE(3) is given by Ty =3¢ kdAl @ dAT @ Ay

8
Ina Lev1-C1v1tg connection one has l"k! = Fl.k =3 Zm g™ (g +
8ml.k — 8ki,m) With respect to a holonomic basis.

i, jk=1¢ lj
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where the dual vectors {dA! }?:1 are given by (26) and
A; = Ajle. It is a Cartan Ehresmann connection form on
the principal fiber bundle P = (SE(3), e, SE(3), L(SE(3))),
where m(g) =e, Rgu =ug, u, g € SE(3). Let Ad denote the
adjoint action of SE(3) on its own Lie-algebra T,(SE(3)),
i.e. Ad(g) = (Ry-1Lg), i.e. the push-forward of conjuga-
tion. Then the adjoint representation of SE(3) on the vector
space L(SE(3)) of left-invariant vector fields is given by

Ad(g) =dR 0 Ad(g) o . (45)

This adjoint representation gives rise to the associated vec-
tor bundle SE(3) X1 L(SE(3)). The corresponding con-
nection form on this vector bundle is given by

6 6
o= adA)@dA = 3 & A4 @dA @dAT, (46)
j=1 ijk=1

with ad = (Ad)y, i.e. ad(A;) = Y5 [Ai, A;1® dA’ (Jost
2005, p. 265). Then @ yields the following 6 x 6-matrix val-
ued 1-form

() i=—adAS L Ak j=1,2,....6, 47)
on the frame bundle, (Spivak 1975, p. 353, p. 359), where
the sections are moving frames (Spivak 1975, p. 354). Let
{Hk}g:1 denote the sections in the tangent bundle E =
(SE(3), T(SE(3))) which coincide with the left-invariant
vector fields {Ak},f:]. Then the matrix-valued 1-form given

by (47) yields the Cartan connection given by the covariant
derivatives

Dxy,, (u(y (1)) == Duy ) (Xly @)

6
=Y d Oy )

k=1

6 6
+) d @)Y B (Xly@) 1y (@)
j=1

k=1
6 6 ‘
=Y dOm )+ Y P 0a @) Ty @)
k=1 i,j,k=1

(48)

with ak(t) = Z?:l )}i(t)(Ai|y(,)ak), for all tangent vec-
tors X1y = 21‘6:1 Y () Aily ) along a curve t v y(t) €
SE(2) and all sections pu(y(t)) = 22:1 a(y () (y (1)).
The Christoffel symbols in (48) are constant l"l.j = —c;./k,

with cl.]k the structure constants of Lie-algebra T,(SE(3)).
Consequently, the connection D has constant curvature and
constant torsion and the left-invariant evolution equations
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given in (28) can be rewritten in covariant derivatives (us-
ing short notation Vj := D 4,):

6
AW(g, 1) =) —a' (W)AW(g.1)

i=1

6
+ Y AD(W)) (g, A W)(g. 1)

i, j=1

6. 49)
=Y —d (W)ViW(g.1)
i=1
6
+ ) Vil(Dij(W))(g, HV,; W)(g, 1)
i,j=1

W(g,0)=U(g), forallgeSEQ3),t>0.

Both convection and diffusion in the left-invariant evolu-
tion equations (28) take place along the exponential curves
6 iAo , ,
Yeg(t) =g-€ Yi-1¢'Ai jn SE(3) which are the covariantly
constant curves (i.e. auto-parallels) with respect to the Car-
tan connection. In particular, if a' (W) = ¢ constant and if
D;j (W) =0 (convection case) then the solutions are
~ 6 g
W(g,1)=U(g-e ' Ximic4A), (50)
The spatial projections Pp3y of these of the auto-parallel/
exponential curves y are circular spirals with constant

curvature and constant torsion. The curvature magnitude
equals |6V ~11e® x W || and the curvature vector equals

1 . . .
k(t) = —— | cos(t ||c(2)||) ¢@ e
e

sin(z [|€@)) . . n
sint 1€7D sy o g@ xc(1)>, (51)

e

where ¢ = (¢!, c2,c3: ¢*, 3, ¢® = @WD; D). The torsion
vector equals T(t) = |€1 - €| k(1).

Proof The proof is a straightforward generalization from
our previous results (Duits and Franken 2010, Part II,
Thm. 3.8 and Thm. 3.9) on the SE(2)-case to the case
SE(3). The formulas of the constant torsion and curva-
ture of the spatial part of the auto-parallel curves (which
are the exponential curves) follow by the formula (54) for
(the spatial part x(s) of) the exponential curves, which
we will derive in Sect. 5.1. Here we stress that s(r) =
1/ (€24 (¢2)2 4+ (c3)? is the arc-length of the spatial
part of the exponential curve and where we recall that
k(s) =X(s) and T(s) = % (x(s) x X(s)). Note that both the
formula (54) for the exponential curves in the next section
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and the formulas for torsion and curvature are simplifica-
tions of our earlier formulas (Franken 2008, pp. 175-177).
In the special case of only convection the solution (50) fol-
lows by e'RA T (g) = Rl (g), with A= -0 ciA;
and dR(A) = — Y0, ¢/ A; with A; = dR(A)). O

5.1 The Exponential Curves and the Logarithmic Map
Explicitly in Euler Angles

Next we compute the exponential curves in SE(3) by an iso-
morphism of the group SE(3) to matrix group G €&(3)

0 1
with Ry g0 = Re,,y Rey,ﬁRez’ﬂt'

SE(R)5 (X, Ry pa) < <R%ﬂ'“ X) € GE®)

This isomorphism induces the following isomorphism be-
tween the respective Lie-algebras

6

> A € LISEB3)) < To(SE(3))

i=1
6 6
> ZciAi < ZciX,- e RV,
i=1 i=1

where {ci}?=1 € R® and with matrices {X,-}f,’=1 € R4 are
given by

00 0 1 00 0 0
00 0 0 00 0 1
Xi=loooo)l *looo ol
00 0 0 00 0 0
00 0 0 00 0 0
00 00 00 —1 0
X5=lo 00 1) Xa=lo 1 o 0)’(52)
00 0 0 00 0 0
0 01 0 0 -1 0 0
0 000 1 0 0 0
S=1_1 000 *=lo o 0ol
0 000 0 0 0 0

Note that A; < A; < X; = [A4;,A;] < [Ai,.Aj] <~
[Xi, X;] and indeed direct computation yields:

6
> A =1Ai Aj
k=1

6
< [X;, X;]= Z cf-‘j X\ with commutator table
k=1

247
0 0 0 0 X3 X2
0 0 0 —X3 0 X
0 0 0 X —Xi 0
0 X3 —-Xp 0 X¢ —Xs5 |’ (53)
—X3 0 X1 —Xs 0 X4
X, —Xi 0 Xs —X4 0

where i enumerates vertically and j horizontally and
[.Ai,.Aj] = .Ai.Aj - Aj.Ai and [X;, X;]1=X;X; — X;X;.
Each element in the Lie-algebra of the matrix group G €&(3)
can be written

6
. Q &0
A:chX,-:< ,
v 0 0

0 % &
Q=] & 0 —=c*|es00?),
- & 0
eP =, 2 ) er’,
with so(3) = {A € R3*3 | AT = —A}. Note that

exp(s0(3)) = SO(3) and Qx = ¢? x x and set § = [|¢@| =
V(M2 + (¢5)2 + (¢5)? so that 3 = —322 and therefore

Qk  Qk—lgM)
k _
“=(5 "7

o k 1 ~
t Q 150 1)
‘A k e t(f e ds)c
= = E — A" = 0
¢ P k! ( 0 1

R x
=<O 1)66(’3(3),

with
o0
/1 etstS — Z (tQ)k
|
0 = k+1)!
. 11— c~os((}t) Q4 q— z—i sin(G1) Q2.
r g q*
and
Ree® =1+ sin(ﬁt) a4t 1 —cos(gt) Q2

q q?

so that the exponential curves are given by

ye(t) = o iz €A
(c1t, cat,cat, I) ife® =0,

e ¢ pc;;((;t) Qe 4 (1g72 - sinq(;}t)) Q2

I+ sing;r)g n (1,?;(,;,)) Q%) else.
(54)
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As the exponential map is surjective we are also interested in
the logarithmic map. This means we have to solve for ¢! e
R3 and Q € s0(3), given a group element g = (X, Ry g.4) €
SE(3). Note that @7 = —Q, ()7 =Q? so that R — RT =
2%9 from which the logarithmic map 2 = loggg3) R,
R =R, g o follows explicitly:

4 4 . : . .
= = sin B(sina — siny),
¢ Cy.Ba 2sing B( ¥)
5 5 . q :
c=c = — sin B(cosa — cosy), 55
v.B.a 2sinq 13( J/) ( )

0= C)6/,ﬂ,(x = ZS(iInc} (2 cosz(§> sin(o + y))

and thereby § = /(24 (32 + ()2 = dy.pa =

arcsin \/cos2(%) sin? B + cos4(§) sin?(a + ). So it re-
3T
)

mains to express ¢\ = (¢! c2.c
Now 3 = —§*Q implies that

in Euler angles (y,8,«).

(I+G 20 —cos)Q+4 (G —sing)Q*)eV =x

Al _ aD)
& c()_cx’yﬂa

P

. 1 ~_2 ‘?%ﬂ’“
= <1 - EQyﬁ,a +4y 6.4 (1 )

.cot<q~yf*“>>(9y,m>2)x. (56)

Now equality (55) and (56) provide the explicit logarithmic
mapping on SE(3):

3 6

logsgz) (X, Ry.p.a) = ZCiyy,ﬁ,aAi + Zc;’ﬁ,aA,'. (57)
i=1 i=4

I Prsvel =
V(D2 + (¢2)2 + (¢3)2. Consequently the arc-length pa-
rameter s > 0 is expressed in ¢ by means of s(t) =
/(D2 + (2?24 (¢3)2. If we want to impose spatial
arc-length parameterizations of curves in SE(3) we
must rescale all ¢; — i so that [|¢(V] =

(61)2+(C2)2+(C3)2
VED2+ (@2 + (3?2 =1.

Remark It can be shown that

Remark The group SE(3) is isomorphic to the group of
rigid motions in R? well-known in mechanics. The vec-
tor ¢! denotes constant velocity in the moving coordinate
frame {.Al-}?: | Whereas ¢@ denotes constant angular veloc-
ity with respect to the same moving coordinate frame at-
tached to a particle on a moving rigid body in R3. Note that
k (0) equals the centripetal acceleration at the moving frame
of reference {A1, A2, A3}ly. )= = {A1, A2, A3}, whereas
k (s) equals the centripetal acceleration at the moving frame
of reference {A1, Az, A3}ly.(s), but again expressed in the
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global coordinate system {A1, A2, A3} = {0y, dy, d;} of the
spatial part = R of the group, which is for s > 0 no longer
aligned with the moving frame of reference. To re-express
k(s) in {A1, A2, A3} one must rotate «(0) over an angle of
s]1¢@ || around the angular velocity ¢, which explains (51).

6 Analysis of the Convolution Kernels of Scale Spaces
on HARDI Images

It is a notorious problem to find explicit formulas for the
exact Green’s functions pP® : R3 x §2 — R* of the left-
invariant diffusions, (36), on R3 x $2. Explicit, tangible
and exact formulas for heat-kernels on SE(3) do not seem
to exist in literature. Nevertheless, there does exist a nice
general theory overlapping the fields of functional analy-
sis and group theory, see for example (Nagel and Ricci
1990; ter Elst and Robinson 1998), which at least provides
Gaussian estimates for Green’s functions of left-invariant
diffusions on Lie groups, generated by subcoercive opera-
tors. In the remainder of this section we will employ this
general theory to our special case where R x S? is embed-
ded into SE(3) and we will derive new explicit and useful
approximation formulas for these Green’s functions. Within
this section we always use the second coordinate chart, (4),
as it is highly preferable over the more common Euler an-
gle parametrization, (1), since we rather avoid singulari-
ties at the unity element of SE(3). We refer to Duits and
Franken (2009, App. A) for an accurate approximation to
the exact Green’s functions for the direction process 39
(a contour-completion process) in R3 % $2, likewise (Duits
and van Almsick 2008), where we managed to derive the
exact Green’s functions of the direction process in SE(2).
However, unlike the SE(2)-case, we do have to apply a rea-
sonable approximation in the generator in order to get tangi-
ble approximation formulas. These approximations are valid
for 4t D44 small and are nearly exact in a sharp cone around
the z-axis where the Green’s function is concentrated.

We shall first carry out the method of contraction. This
method typically relates the group of positions and rotations
to a (nilpotent) group positions and velocities and serves as
an essential pre-requisite for our Gaussian estimates and ap-
proximation kernels later on. The reader who is not so much
interested in the detailed analysis can skip this section and
continue with the numerics explained in Chap. 7.

6.1 Local Approximation of SE(3) by a Nilpotent Group
via Contraction

The group SE(3) is not nilpotent. This makes it hard to get
tangible explicit formulae for the heat-kernels. Therefore
we shall generalize our Heisenberg approximations of the
Green’s functions on SE(2), (Duits and van Almsick 2008;
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Thornber and Williams 2000; van Almsick 2005), to the case
SE(3). Again we will follow the general work by ter Elst
and Robinson (1998) on semigroups on Lie groups gen-
erated by weighted subcoercive operators. In their general
work we consider a particular case by setting the Hilbert
space Lo (SE(3)), the group SE(3) and the right-regular rep-
resentation R. Furthermore we consider the algebraic basis
{As, A4, As} leading to the following filtration of the Lie
algebra

g1 = span{A3z, A4, As}
C go =span{ Ay, A, A3, Ay, As, Ag} = L(SE(3)). (58)

Now that we have this filtration we have to assign weights
to the generators

wi3=wg=ws=1 and w;=wy=wg=2. 59)
For example w3 = 1 since A3 already occurs in g1, we = 2
since Ag is within in g, and not in g;. Now that we have
these weights we define the following dilations on the Lie-
algebra T,(SE(3)) (recall A; = A;l.):

_RL“L&>’ q>0,

and for 0 < g <1 we define the Lie product [A, B], =
yq_l[yq (A), y4(B)]. Now let (SE(3))4 be the simply con-
nected Lie group generated by the Lie algebra (7, (SE(3)),
[-,-1¢). This Lie group is isomorphic to the matrix group
with group product:

(x, R Ry a0

2 8,-1X R,;

h:x

R 7 2) (60)

J;g ) (
=(x+ v.Ba

R Fa-

Qz

q.Bq.
where S, := diag{l,1,q} € R3*3 and we used short-nota-

tion R]; fa= Rex,;?Rey,,éRez,&’ i.e. our elements of SO(3)

are expressed in the second coordinate chart, (4). Now the
left-invariant vector fields on the group (SE(3)), are given
by Al = (;7(1_1 oLgoV,)«Ai,i =1,...,6. Straightforward

(but intense) calculations yield (for each g = (x, R. 7B, &) €
(SE(3))q ):

A(f lg = cos(g>@) cos(qB)d, + (cos(yq) sin(@g?)
+ cos(@q?) sin(Bq) sin(7¢))dy
+q(sin(@g*) sin(7 ¢)

— cos(@g?) cos(yq) sin(Bq))o;

Al = —sin(@g?) cos(Bq)dy + (cos(g*@) cos(7q)
— sin(@q) sin(Bg) sin(79))d,
+ q(sin(@g®) sin(Bq) cos(Bq)
+ cos(@q?) sin(7¢))d;
Al =g "sin(Bq)d. —q " cos(Bq) sin(7)d,
+ cos(Bq) cos(7¢)d;
Aflg = —q7" cos(@q®) tan(Bq)d; + sin(@q)d;

n cos(&qu) o
cos(Bq)
Al = g7 " sin(@q?) tan(Bq)dg + cos(@q);

sm(q Ol)
cos(qﬂ)
Ag|g=3&.
Note that [A;, Ajly = ¥, '[yg(A).v(Ap] =

V_lqw’+wf [A;,Aj]l= 22:1 qw"+wf_“’kcf-‘j Ay and thereby

[A4, Asly = Ae.  [A4, Aglg = —q°As,

[As. Asly =q*A4,  [As, A3]y=—As,

[A4. A2ly =q% A3, [As, Ally = —q*As, (61)
[As, A3l = A1, [Ae, Al =¢?A2 and

[As, A2, = —q*Aj.

Analogously to the case g = 1, (SE(3)),=1 = SE(3) we
have an isomorphism of the common Lie-algebra at the unity
element T,(SE(3)) = T.((SE(3)),) and left-invariant vector
fields on the group (SE(3))4:
(Ai oAl and Aj & A = [Ai, Ajl < [A], ATLL
It can be verified that the left-invariant vector fields Aiq sat-
isfy the same commutation relations given in (61).

Now let us consider the case g | 0, then we get a
nilpotent-group (SE(3))o with left-invariant vector fields

A?:ax, A(2)=3y, Ag=58x—f3y+3z,

- 62
A = —Bd + 9, Agzag, A? = 55 (62)

6.1.1 The Heisenberg-approximation of the Contour
Completion Kernel

Recall that the generator of contour completion diffusion
equals — A3+ D44 ((A4)> + (As)?). So let us replace the true
left-invariant vector fields {.A,'}?=3 on SE(3) = (SE(3))4=1
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by their Heisenberg-approximations {A?},.S:3 that are given
by (62) and compute the Green’s function p*3="24#=P55 on
(SE(3))o (i.e. the convolution kernel which yields the so-
lutions of contour completion on (SE(3))¢ by group con-
volution on (SE(3))g). For 0 < D44 < 1 this kernel is a
local approximation of the true contour completion kernel

=1,D44=D
p;ls s D44 55,onR3>4S2:

ﬁg:l,D44=D55
= oADMY D @ ¥ 9 5T @ 8] @8 =
PR Pu=bs (o y 2 BB, 7))
= 8(1 — (! TPEAPROPI 5 @ 5B (o B
(TR 55 @ 87) (v, 7)

_126=(1/2)2f)* 422

= — 3 423 Dyy
- a(t Z) 4(D44ﬂ12)26
23
-e 42°Dgq , (63)

where R(B,7) = Rex~)7Rev,5eZ = (sin B, —siny cos f,
cosy cos B). The corresponding resolvent kernel on the

group (SE(3))o is now directly obtained by Laplace trans-
form with respect to time

—a3=1,D44=Dss -
R, (x,y,z,n(B,7))
_ 126—-(1/2)2p)+:2 5
3 —AZ 4z3D44
HDunr e e
= _ R20+1/2)z5)2 42272 (64)
e 423Dy if z>0

0 if z<0and (x,y) % (0, 0).

So we make a remarkable observation: The Heisenberg-
approximation, (63), of the contour completion kernel in
(SE(3)) is a direct product of two Heisenberg approxima-
tions of contour completion kernels in SE(2), (Duits and van
Almsick 2008),

Das=Dss5:(SE(3 Y
ﬁla 44=Dss: ( ())O(X,y,z,n(ﬁ,)/))

—a3,Da4; (SEQ2 5 ,Daa; (SEQ2 ~
:p?3 443 (SE( ))O(Z’x’ﬂ) ﬁ;lz 443 (SEC ))o(z’ —y, 7).
(65)
Now since the Heisenberg approximation kernel

P33 DaiSE@D ¢ for reasonable parameter settings (that

is 0 < g—;‘;‘ < 1) close to the exact kernel pP3 P4 SE2)
we heuristically propose for these reasonable parameter set-
tings the same direct-product approximation for the exact

contour-enhancement kernels on R3 x $2:
a3,Das=Dss5;R3 %1 52 L
pp TR (x,y,z,0n(B,7))

,D44;SE(2 3 ,D44;SEQ2 ~
~ pla3 44 ( )(Z,x7ﬁ) . p;B 44 ( )(Z, -y, y)’ (66)

@ Springer

where the exact kernels pf3’D44;SE(2) : SE(2) — R for con-
tour completion in SE(2) can be found in Duits and van
Almsick (2008).

6.1.2 The Heisenberg-approximation of the Contour
Enhancement Kernel

Recall that the generator of contour completion diffu-
sion equals D33(A3)% + Das((As)> + (As)?). So let us
replace the true left-invariant vector fields {Ai}?:3 on
SE(3) = (SE(3))4=1 by their Heisenberg-approximations
{A?}?:3 given by (62) and consider the Green’s function
i P45 on (SE@))o:

—a3=1,D44=Dss
Pt

— ¢! (D33(AD?+Dag (AD*+(AD?) 5 R85 Q8 ® Sg ®sP
(67)

which is not easy to compute. However we follow the same
approach as we applied previously (Duits and Franken 2010)
to the diffusion kernels on the 2D Euclidean motion group
(SE(2))o, which follows the coordinate substitutions as pro-
posed by Citti and Sarti (2006). The group (SE(3))o how-
ever is not (entirely) a direct product of two H3 groups and
application of the coordinate-transformation

X =x,=— W] = p and
! 2 2+/2Dyq ’ 2Dyq

o 7 S5 2045
> /2Dy’ ' /DD’ 27 /D3iDy

expressed the generator into
(D33(A9? + Daa(AD* + (AD?)

1 ’ 2 1 ’ 2
= 5(80)/1 — 2x18ti) + 5(30)/2 — 2x2312)
1 / 2 1 / 2
+ E(axé + 2(1)23,5) + E(ax; + 20)18t{)
+ (3;)1 - 2xi 3,;)(32)2 — 2x§a,{)

1 A
=: EAK + Ay As,

where Ag = (1/2)((A2)% + (A3)% + (A3)? + (A4)?) equals
the Kohn’s Laplacian (Gaveau 1977), on the group Hs,
which is a sum of the four horizontal left-invariant vector
fields on Hs (Gaveau 1977; Duits et al. 2009). Note that Ag
is also the Kohn’s Laplacian on the group Hz x H3z (with ex-
tra imposed identification xj = x}). If we neglect the cross-
term A A4 in the generator we get the following approxi-
mation



Int J Comput Vis (2011) 92: 231-264

251

—D33,D44=Ds5;R3 % 52 P
P TR (x,y,z,0(B,7))

—Ds3,D44=Dss; (SE(2 =
~ P! 33, Daa=Dss; (. ())O(Z/Z,x,ﬁ)

.5?33,D44=D55;(SE(2))0 (2/2, =y, 7). (68)
So similar to the contour-completion kernel on R? x §? de-
rived in the previous section, recall (65), the Heisenberg-
approximation kernel on R3 x §2 is a direct product of two
Heisenberg-approximation kernels on (SE(2))o.

Now since the Heisenberg approximation kernel
ﬁD” DaaiSE@0 ¢ for reasonable parameter settings (that
is0<?2 D & 1) close to the exact kernel pD33 Daa: SED)
we heurlsncally propose for these reasonable parameter set-
tings the same direct-product approximation for the exact
contour-enhancement kernels on R? x §2:

D33, D44=Ds5;R3 1 §2 -5~
pt . “ » (x9yaZ7n(ﬂﬂ y))

~ N(Dy3, Daa 1) - p P 22, B)

ptD33,D44;(SE(2))(Z/2, ) f)v (69)

where N(Ds3, Dys,t) =~ %ﬁt@dm takes
care of L (R3 x $%)-normalization. In Duits and Franken
(2010), Citti and Sarti (2006) one can find the exact so-
lutions of the Green’s function pD” DaaiSE@o0- pejated
to the Green’s function (Gaveau 1977) on H (3) by means of
a coordinate transform, but these exact formulae are not as
tangible as the following asymptotical formulas:

—D33,D44;SEQ2
P! 33, Das ()(x,y,e)

=22
—e T u? \/(D_33+D_44 ) Dby DuaD33 (70)
327t2c* Daa D33
) 1 _ JENGY.0)
pt[)33’D44’SE(2)(x y,0) = e a2

T 32mt2¢4 Dyy D33

where we use short notation for the numerator of an expo-
nent

02 62(y — (—xsinf + ycos6))>\"
EN(x,y,0) = [ —
(62.0) <D44+ 4(1 —cos(6))? D )

1 O((xcosf + ysinf) — x) 2

D44 D33 2(1 —cos9)
and which for 6 = 0 equals
2\2 2
EN(x, y,0) = (x—> bl
D33 D44 D33

The estimates (70) are globally sharp, with % <c <2,
for details see Duits and Franken (2010, Chap. 5.4).

For the purpose of numerical computation, we simplify
EN(x,y,0) to

2 (& x)?
v = (£ Ry’

L —x0 0/ 2
DD\ 2 " an@/2)’
cos(6/2)
1—(92/24)

where one can use the estimate —/2- ~ for

tan(0/2)
0] < 1”—0 to avoid numerical errors.

6.2 Gaussian Estimates for the Heat-kernels on SE(3)

According to the general theory (ter Elst and Robinson

1998) the heat-kernels p = )4-P=0iag(0.0.053. Da4.Dss.0}
(SE3))y — R* (i.e. kernels for contour enhancement
whose convolutions yield horizontal® diffusion on (SE 3)g)
on the parameterized class of groups (SE(3))y, g € [0, 1]
in between SE(3) and its nilpotent Heisenberg approxi-
mation (SE(3))o satisfy the following Gaussian estimates
(for D isomorphic to the 3 x 3 identity matrix I3, D =
diag{0,0,1,1,1,0})

Cyllgl

Caligh? P
Fept VPR s e

Cie” %

3

with 0 < C; < C3 and 0 < C4 < C2, where the norm || - ||,
(SE(3))q — R is given by

lglg =1 log(SE(3)),, (&)lgs

where 10g(5E(3))q 1 (SE3))g —> Te((SE(3))q) is the logarith-
mic mapping on (SE(3)), (which we computed explicitly
for (SE(3))4=1 = SE(3) in Sect. 5.1 and which we will com-
pute for ¢ = 0 as well) and where the weighted modulus,
(ter Elst and Robinson 1998), in our special case of interest
is given by

— 1 2 6 32 412 512
= Jlell+ 121+ eI+ 112 + e + e 2,

where c; € R and where we recall our weighting given
in (59). However, similar to our work (Duits and Franken
2010, Chap. 5.4) on estimating heat-kernels on SE(2), we
estimate the weighted modulus by an equivalent differen-
tiable modulus:

6
2 cyAl

i=1

q

= JlelP 122+ 1cGP + (3 + e +1e3P)2,

“Horizontal diffusion in SE(3) is diffusion which takes place along
horizontal curves in R3 x $% <> SE(3). Recall Definition 5.
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where we note that +/6|g|? > lglg = |g|? for all g €
(SE(3))4,q €10, 1].

Now suppose (cé,...,cg) = (c;(g),...,cg(g)) =
log(se3)), (€), then there exist constants 0 < Cy < C; and

0< C~'4 < 62 such that the following Gaussian estimates
hold:

o/ e P+eE P+1c§ P+(1cd P+ich P+icg 122

Cie™ ar
SER):q.D=1;
=D (8)
N N P T T T I s I
<Cze” a , (71)
where we again use short notation cfl = c; (g),i=1,...,6.

Now, from the applied point of view D = diag{0, 0, 1, 1, 1, 0}
is an un-realistic situation and only for ¢ = O there ex-
ist dilations on the group (SE(3)),; so that we can eas-
ily generalize the estimates to the diagonal case D =
diag{0, 0, D33, Da4, Dss, 0}.

Since (SE(3)) is a nilpotent Lie-group isomorphic to the
matrix group given by (60) (where we take the limit g |, 0) it
is not difficult (this is much easier than the case ¢ = 1, recall
Sect. 5.1) to compute the exponent (recall (61)):

0 —68 08 C(l)
0 0 —ct 2
exp 0 (3)
0O 0 0 o
0 0 0 0
1 —cg C(S)—I—écécg cl+%(c(3)c(5)—c%c0)+ cgcécg
_ 0 —cg cg lcgcé
3
0 1 o
0o 0 0 1
1 - B «x
_ 0O 1 -y vy
0 0 1 z
0 0 0 1

and inverting these relations we find the simple formulas for
the functions ¢, that we use in our estimates (73)

S R B i
cp(@)=x+y& — J2f+ 22a7, g8 =7,

1 S 72
@) =y+57, cg(g)=ﬁ—§a% (72)
@)=z  @=a

la—p

defined for all g = (x, Y, 2, (o‘f 7 )) € (SE(3))o- By our
00 1

embedding R3 x 2 into SE(3), we must set CO a=0.
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Consequently, for the Heisenberg approximations of the dif-
fusion kernels we have

L O fx= B+ L P72+ 1)
C1e 4t

<P,(x, v, 2,48, 7))

_ Cayfx= 2Byt e PP 241522
3e 4t

Qz

=

, (73)
where we used short notation p, = por@P=h .
R? x §? — R™ for the Heisenberg approximation g = 0 of
the contour enhancement kernel with D33 = Dyq = D55 =
1. Now by application of the following dilation:

, z , X
7= , X =,
D33 v/ D33 Dyq
'“/: B /= y );/z )7
VDas’ VD33Das’ ~/ Day

the generator of the corresponding diffusion on R3 x S?
for the general case where D = diag{0, 0, D33, D44, D55 =
Dy, 0} relates to the diffusion generator for the case D =
diag{0, 0, 1, 1, 1, 0}, recall (62):

ZDU@“O)Z D33(Bdy — 7y + 3.)?
= +D44(85)% + Dia(35)°
; -~ 2 2 2
< (B8 — 79, + ) + (95)° + (95)°,

consequently, we find the following estimates for the general
Heisenberg approximation kernels

3\/\c0|2+|( 2, (@2, IGPHER
“V D33Dyg " D33 Dy

éle_ 4t
1=0(x, (B, 7))

c ‘/|c(‘)\2+\z,~3\2 (D2 bR
4Y "D33Dyy D33 Dyy

< Cre” # ,

(74)

where we used short notation c’é = clg(x, R; 5.0)> k =

5, x=(x,y,2)7 € R3, recall (72).

In fact in Duits and Franken (2009, Chap. 6.2) it is shown
that the constants C3, C4 are very close and that a reason-
ably sharp approximation and upperbound of the horizontal
diffusion kernel on R3 x §2 is given by

D=diag{0,0, D33, D44, D550} . ~ &
P E WIS, (B, 7))

\/\z P22 1O | ()2 A2
D33Dyy D44 . D33 Dyy
1

1
" (4n2Dy3 D44)2

)

(75)
where we again use short notation c*

k=1,...,

. .k -
= qul(x’ R);_ﬁ’o),
6. Recall from Sect. 5.1 that these constants
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are computed by the logarithm, (57), on SE(3) or more ex-
plicitly by (55) and (56). The latter two equalities are anal-
ogously expressed in the second coordinate chart yielding
formulas for the functions ¢* in (75):

G = arcsin \/cos4()7/2) sin?(B) + cos2(B/2) sin®(7),
¢® = (c* 5. )T

=0 (0P sndeo(?
= @) (smycos <2>,smﬁcos (2>,

1 AT
Esinf sinﬂ) , (76)

<t

e = (!, 2, 3T

1
=x—-c? xx
2

+G72 <1 - (%) cot(%))c(z)(c@) X X).

These functions cf (the case g = 1) are indeed consis-
tent with the functions CS (the case ¢ = 0) in the sense
that Timg0q ™% ck(xg™!, g2, 2q"™*, f(g"™*B, 4" B)) =
cg(x, v,z,B,¥), where we recall (59) fork=1,2,...,5.

7 Implementation of the Left-Invariant Derivatives and
R3 x S2-Diffusion

In our implementations we do not use the two charts (among
which the Euler-angles parametrization) of S because this
would involve cumbersome and expensive bookkeeping of
mapping the coordinates from one chart to the other (which
becomes necessary each time the singularities (3) and (6)
are reached). Instead we recall that the left-invariant vector
fields on HARDI-orientation scores U : SE(3) — R, which
by definition (recall Definition 4) automatically satisfy

U(y,RRe,,)=U(y,R), forallyeR? (77)

are constructed by the derivative of the right-regular repre-
sentation

A;iU(g) = dR(ANT)(g)
. U(ge'*)—Ul(g)
m B

=1
t}0 t

_ U(ge') — U(ge™"4)
= lim ,
110 2t

where in the numerics we can take finite step-sizes in the
right-hand side. Now in order to avoid a redundant com-
putation we can also avoid taking the de-tour via HARDI-
orientation scores and actually work with the left-invariant
vector fields on the HARDI data itself. To this end we need

the consistent right-action R of SE(3) acting on the space
of HARDI images L,(R3 x §2). Let H denote the space of
HARDI-orientation scores, i.e. H is the space of quadratic
integrable functions on the group SE(3) which satisfy (77).
To construct this consistent right-action on H we first define
S:Ly(R? x §%) — H, by

(SU)(x, R) =U(x, R) = U(x, Re.).

This mapping is injective and its left-inverse is given
by (S~'U)(x,n) = U(x, Ry), where again R, € SO(3)
is some rotation such that R,e, = n. Now the consis-
tent right-action %R : SE(3) — B(Lo(R® x 5?%)), where
B(L»(R3 x §?)) stands for all bounded linear operators on
the space of HARDI images, is given by

R rU)(y,m) = (S oRx.r) 0 SU)(y, n)
= U(RyX+Y, RnRe;).

This yields the left-invariant vector fields (directly) on suffi-
ciently smooth HARDI images:

AiU(y,m) = (dR(AHU)(y, m)
(Rena; U)(y,m) — U(y, m)

=lim

hl0 h
— lim (R, U)Xy, m) — (R,-na; U)(y, M)
T hl0 2h ’

Now in our algorithms we take finite step-sizes and elemen-
tary computations (using the exponent given by (54)) yield
the following simple expressions for the (horizontal) left-
invariant vector fields:

U(y + hRney,m) —U(y — hRpe,,n)
2h ’
U(y +hRpey,n) — U(y — hRyey, n)
2h ’
U(y + hRne;,n) — U(y — hRpe;, n)
2h ’
U(y, Rn Rex,h e)—Ul(y, RnReXﬁh e;)
2h ’
U(y, Rn Rey,h e)—U(y, RnRey,fhez)
2h ’

Al U(y’ n) ~

AU (y,m) =

A3U(y,n) ~ (78)

AU (y,m) =~

AsU(y,n) =

The left-invariant vector fields {A;, A, A4, As} clearly de-
pend on the choice of R, € SO(3) which maps Rye, =
n. Now functions in the space H are «-right invariant,
so thereby we may assume that R can be written as
R = Re, yR, . now if we choose R, again such that
Ry = Rﬁ(ﬁ:);) = Rex,)?Rev,BRez,&=ao=0 then we take con-
sistent sections in SO(3)/SO(2) and we get full invertibility
S1oS=So0S1=17.
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In our diffusion schemes, however, the choice of rep-
resentant Ry is irrelevant, because we impose «-right in-
variance (31) on the diffusion generator (which in the
linear case boils down to (34)) and as a result we have
D4y = Dss5, Dyj = Da;. The thereby obtained operators
(A2 + (As5)? = Ag |y and .A% + A% = Aps — .A% are
invariant under transformations of the type A — Z,,A for
all g € [0, 27r), recall (32).

In the computation of (78) one would have liked to work
with discrete subgroups of SO(3) acting on S? in order
to avoid interpolations, but unfortunately the platonic solid
with the largest amount of vertices (only 20) is the do-
decahedron and the platonic solid with the largest amount
of faces (again only 20) is the icosahedron. Nevertheless,
we would like to sample the 2-sphere such that the dis-
tance between sampling points should be as equal as pos-
sible and simultaneously the area around each sample point
should be as equal as possible. Therefore we follow the com-
mon approach by regular triangulations (i.e. each triangle
is regularly divided into (0 + 1)? triangles) of the icosa-
hedron, followed by a projection on the sphere. This leads
to N, =2+ 10(0 + 1)? vertices. We typically considered
o =1,2,3, for further details on uniform spherical sam-
pling, see Franken (2008, Chap. 7.8.1).

For the required interpolations to compute (78) within
our spherical sampling there are two simple options. Ei-
ther one uses a triangular interpolation of using the three
closest sampling points, or one uses a discrete spherical
harmonic interpolation. The disadvantage of the first and
simplest approach is that it introduces additional blurring,
whereas the second approach can lead to overshoots and un-
dershoots. In the latter approach a 7 -symmetric function on
the sphere only requires even values for / € {0,2,4, ..., L}
in which case the total amount of spherical harmonics is
nsg = %(L + (L + 2). Although, there exist more effi-
cient and accurate algorithms for discrete harmonic trans-
forms (DSHT), (Driscoll and Healy 1994; Kunis and Potts
2003), we next give a brief explanation of the basic algo-
rithm we used. To this end we first recall that the continuous
spherical Harmonic transform is given by

(SHT ()L, m) = (YL, FLysy)

2 T

- [) /0 Y, (B, y) fm(B, y)) sin pdBdy.

(79)

The spherical harmonics (38) form a complete orthonormal

basis in ]LQ(SZ), so the inverse is given by

oo l

fmB.y)=> > SHT()ULm)Y,(B.y) (80)

=0 m=—I

for almost every B € [0, ) and almost every y € [0, 2m).
As mentioned before (in Sect. 4.1) the function f becomes
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a regular smooth function (which is defined everywhere) if
we apply a slight diffusion on the 2-sphere:

e hs2 f (B, y))

oo
=Y > e = SHT (M) m)Y, (B.y). (81

=0 m=—I

with 0 < t,,¢ < 1. Next we explain two basic discrete ver-
sions of the SHT-transform. Both can be used in a finite
difference scheme requiring discretization of for example
Agr = (A9)* + (A5)?| 1.

7.1 DSHT and DISHT

There exist two basic approaches to discretize the continu-
ous spherical harmonic transform. Either one considers (79)
as a starting point and approximates the integral by a Rie-
mann sum taking care of the surface measure, yielding the
DSHT-transform and its pseudo-inverse. Or one considers
(80) as a starting point yielding the DISHT-transform and
its pseudoinverse. The first approach is exact on the grid if
the number of spherical harmonics is larger than the number
of samples nsy > N,, whereas the second approach is exact
on the grid if ngg < N,.

The pseudoinverse QF of a matrix Q € R™*" is _de-
fined by Qx = lims0(QQ + 87)!Q'x, with Q7 = Q7.
Iff the columns of Q are linearly independent, then Qt =
Q'Q)'Q"and QTQ =1L

Consider a “uniform” spherical sampling {nk},ivil c §?
such that the associated a ngy x N,-matrix

. 1 :
M=[M]]= [ﬁn’;{})(nw},

with 1(j) = |y/j = 1] and m(j) = j — A())* = 1(j) — 1

and C = ZV;S:HI IYYIn((jj)) (0,0)|? (chosen to ensure that MM
has 1 on the diagonal), has linearly independent columns
(so N, < ngg). Then the DSHT and its pseudo-inverse are

given by

DSHTI[f] = MAf,
L _ (82)
DSHT*[s] = (MA)'MA)~'(MA)'s, nsy = No,
where the matrix A = diag{ds2(ny),...,852(ny,)} contains
discrete surface measures 82 (ny) given by
1
ds2(mi) = > A, nj,m), (83)

iFk, jFk i i~ j~k

where i ~ j means that n; and n; are part of a locally small-
est triangle in say the second order tessellation of an icosa-
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hedron and where the surface measure of the spherical pro-
jection of such a triangle is given by

A(n;,nj,ng)

= 4arctan{tan(s; j/2) tan((s;jx — sij)/2)
tan((sijx — six)/2) tan((sijx — 5,10/},

with s;jx = %(Sij + sik + 5jx) and s;; = arccos(n; - n;). The
DISHT (which follows by sampling of (80)) and its pseudo-
inverse DISHT™ are given by

DISHT[s] =M''s
_ _ (84)
(DISHT)*[f] = MM7)~! (MDf,

nspg < No.

The pseudo-inverse DISHT* is commonly used in HARDI-
DTI imaging (on separate glyphs) as initiated by Descoteaux
et al. (2007) where the authors include a Tikhonov-type
of regularization (MM + y2diag{l(j)(I(j) + )}) ™' (MD)f,
y > 0, within the transform DISHT™. This destroys (well-
posed) invertibility on the grid but clearly it stabilizes the ac-
quisition of low order spherical harmonic coefficients from
in practice often incomplete spherical samplings. However,
in our framework we would like to return from the spherical
harmonic coefficients to the spherical sampling on say a 2nd
order tessellation of an icosahedron. Moreover, we would
like to include the weighting factors §¢2 (ng) (which satisfy
Z,ivil 852 (ny) = 4m) that compensate for differences in the
surrounding areas of the sampling points. So we have two
options for computing the left-invariant Laplacian on S2:

ApW(y,ng,t)
1

=" D 10+ 1) SHT()) U m)Yi ()

=0 m=—I1
~ [DSHT[j — [(j){I(j) + 1)e s (DFDID)
-DSHT[K' > W (y, m, H1()H11[K]

[DISHT[j > [(j)(1(j) + 1)e e )+DIG)

~

dg2 ()

-DSHT[K' > W (y, m, D1()HIIIK], (85)

with regularizing parameter 0 < #,,; < 1. In order to stay
close to the continuous setting we have applied the sec-
ond option in our discrete experiments, although the sec-
ond option would act entirely in the discrete setting (where
DSHT™ o DSHT =1 if ngy > N,). The two methods con-
verge to each other if ngg — o0, since

(MM > Las ngy — o0)

= (DSHT" — A~'M” = A~!DISHT as ngy — c).

L=6(nsu=49) L=10(nsg=121) L =20 (nsg = 441)

|

I

32|

Fig. 6 Effect of increasing spherical harmonic bandwidth L on the net

operator matrix MM = MTM for the case N, = 32 (1st order tessel-
lation of dodecahedron). If one takes higher order spherical harmonics
than strictly required, reconstruction of the sampled function on the
sphere improves. Note that MM — T as ngy — 00

See Fig. 6. In practice one must be careful since if ngy
becomes too large aliasing artifacts arise and a potential
decrease of numerical instability arises. Therefore we in-
cluded a regularization parameter #,,, to guarantee stability.
Typically t,., > 0 should be chosen very small, but not too
small as the function j > [(j)(I(j) + 1)e e (DFDUEG) &
DSHT[k' — W(y, n;(, 1)]1(j) should nearly vanish at j > N,
to avoid aliasing.

7.2 Finite Difference Scheme for Linear R? x $2 Diffusion

The linear diffusion system on R? x S? can be rewritten as

HW(y,n, 1) = (D11((A1)? + (A2)?)
+ D33(A3)% + DasAg)W(y,n, 1)  (86)
W(y,n,0) =U(y,n).

This system is the Fokker-Planck equation of horizontal
Brownian motion on R? x S? if Dy; = 0. Spatially, we take
second order centered finite differences for (A4;)2, (A3)?
and (A3)?, i.e. we applied the discrete operators in the right-
hand side of (78) twice (where we replaced 2h +— h to en-
sure direct-neighbors interaction), e.g. we have

(A3)>W)(y,n, 1)

Wy +hRnez,n,t)—2W(y,n, 1)+ W(y —hRnez,n,r1)
~ P ,

87)

where one can either apply the earlier mentioned interpola-
tion methods (2nd order B-spline or (81)) or (as we did in
our experiments) one first computes all second order finite
differences on the cubic spatial grid and rotates them back
to the spatial part of the moving frame of reference, (24),
attached to (y, n). The spherical Laplacian Ay is computed
by means of (85) (second approximation). For efficiency, the
chain of operators, DSHT-diag{/ (I + 1)e"=!(+D}.DISHT,
is stored in a single N, x N,-matrix, so that calculation of
A s> consists of a simple matrix-vector multiplication. In our
algorithm we apply a first order approximation in time
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W(y,n,t + At) — W(y,n,t)

atW(y, nyt)% A[

(88)
where we choose At small enough such that the algorithm
is stable. As we have shown in Duits and Franken (2009,
Chap. 7.2, App. B) sharp upper bounds on At which guar-
antee stability are given by

h2
At = 2 _L(L+1)
4D11 +2D33 + Dash Dglreg LT
if treg - LIL+ 1) <1, (89)
hZ
Ars 4D11 4 2D33 + Dygh? 5. if freg - L(L +1) > 1

2etyeg

where h denotes spatial step size and L = |+/nsy — 1].
The estimate (89) is due to the wellknown Gerschgorin cir-
cle theorem, cf. Gerschgorin (1931). An increase of spa-
tial diffusivity and angular diffusivity yields a decrease in
the maximum time step, whereas an increase of the reg-
ularity parameter t,, allows a larger time step. We also
recognize a turning point if ..+ (L(L+1))=1. The multi-
plier I(j)I(j) + De et (DU attains its maximum at
J <nsy if teg > (L(L + 1))~!. This is desirable since the
multiplier is supposed to vanish at j = ngy ~ N,. In the
experiment of Fig. 10, we have set & = 107!, n, = 162,
L = 18 (restricting / to even order), e = 0.01, D33 =1,
D11 = 1072, Dgy = 10~* and At = 0.005.

7.3 Convolution Schemes for Linear R? x $2-Diffusion

Instead of a finite difference scheme one can use the theoret-
ical fact that the solutions of the linear diffusions, (36), are
given by R3 x §2-convolution, (37), with the corresponding
Green’s function p?’a that we derived analytically in Sect. 6.
The convolution scheme is a relatively straightforward dis-
cretization of W(y, n,t) = (p,D’al *p3ys2 U)(y,n) given by
(10), where the integrals are usually replaced by sums using
the mid-point rule (unless one has to deal with the singu-
larity at the origin of the contour-completion kernel). We
will consider specific practical implementation issues later
in Sect. 8.2. In this subsection we restrict ourselves to an
overview of options for the computation of the Green’s func-
tions.

We propose the following options to evaluate the Green’s
function for contour enhancement (i.e. non-zero parameters
are D33 >0, D4y = D55 > 0 and Dy = Dy, > 0) in (37):

1. Use the finite difference scheme to numerically approx-
imate the Green’s function. Disadvantage: This requires
interpolation. For small time steps Az < 1 this numeric
approximation is very accurate.

2. if D11 = Dy =0 we can use the analytic approximation
formulae for the contour enhancement kernel. Here one
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can either use (75) where the functions (x, n) — cf(x, n)
are computed by means of the algorithm (76), or one
may use the simpler but less accurate formula (69) us-
ing the asymptotical formula (70). In case D44/ D33 <K 1
one may want to use the fast Heisenberg approximation
kernel, (68), together with (70).

For the contour-completion case where the non-zero pa-
rameters are a> = 1, Dgy = D55 > 0 generalizations of the
finite difference scheme of the previous section are ques-
tionable due to the trade-off between accuracy of convec-
tion and stability of diffusion. Alternation of convection
and diffusion with very small time steps (like described in
Zweck (2004) for the SE(2)-case) is probably preferable
here. To avoid these technical issues we propose kernel-
implementations for the contour completion case, where we
distinguish between the following options:

1. For the resolvent of the contour-completion process use
analytic formula (64) (accurate if 4ADyq < 1).

2. For the time-dependent contour completion process use
analytical formula (65) (accurate if 4t Dyq < 1).

Figure 7 shows HARDI glyph visualizations of several
contour enhancement kernels and Fig. 8 shows HARDI
glyph visualizations of a contour completion kernel.

8 Experiments of Linear Crossing-preserving Diffusion
on R3 x §2

In the previous section we have discussed two different
kinds of implementations of crossing-preserving diffusion
on HARDI images, namely left-invariance finite difference
schemes and left-invariant convolution schemes. In this sec-
tion we will show some experiments of these approaches
and furthermore we discuss some practical issues that come
along with these approaches.

Before we will consider the different practical properties
of the two approaches, we briefly comment on their analo-
gies. Firstly, each step in the finite difference schemes is a
linear kernel operator and thereby in principle (due to Corol-
lary 1) a R® x S-convolution with a small kernel which is
non-zero on the discretization stencil). Secondly, the compu-
tational order of the algorithms is comparable. The R3 x §2-
convolutions are of order O(NyN,K;K,) and the finite
difference schemes are of order O(NyN,Nj;Ny;), where
N, N, respectively stands for the total number of spatial
and orientation samples of the HARDI image, K, K, re-
spectively stand for the number of spatial samples and aver-
age number of orientation samples of the convolution kernel
and N;; stands for number of iteration with a discretization
stencil of length Nj;. Thirdly, both approaches are very well
suited for parallel implementation.
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Fig. 7 Glyph visualization of the analytic approximations (for 0 <

D44/ D33 < 1), (69), using asymptotical formula (70) of the Green’s

D33, D445 R3 %1 §2

function p; for contour enhancement, satisfying the semi-

D33, DagsR3xS?_ pD33,044:R3 >dSZ>k D33, Dag;R3 x1 S?
=p; ;

group property: p; RS2 P

Dys = 0.07, A = 0.05

30

_—

2.3

Fig. 8 Left: Glyph visualization of the analytic approximations (ac-
curate for 0 < 4ADygq < 1) given by (64) of the Green’s function

p)"D“‘“R%"S2 for contour completion. Top right: HARDI glyphs at
(0,0, z) with from left to right z = 0.1,0.5, 1, 1.5. The contour com-

pletion kernel is single-sided (i.e. pA*D“‘“RNS2 (x,y,z,n) = 0 for

8.1 Experiments Finite Difference Scheme

We implemented linear, left-invariant diffusion on HARDI
data with diagonal diffusion matrix D = diag(D;;) with
D11 = D33, Das = Dss (and Dge = 0) using an explicit nu-
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and consequently there arise no artefacts (such as in Fig. 5) in the it-
erative diffusion. We normalized stretching parameter D33 = 1 and
the values of D44 and ¢ are depicted on top. The size of the kernel is
controlled by # > 0 and D4 controls the bending of the kernel

Singularityat z =z =y =0

15 n2

p(+/=0.001,0,7,0,0.1)
15 N

J . fll \ -2

z

z < 0), in contrast to the contour enhancement kernel depicted in Fig. 7.
The positive probability density kernel p’\’D“‘“]R3 nS? i LL;-normalized
but has a singularity at the origin, akin to its 2D-equivalent (Duits and
van Almsick 2008; Mumford 1994)

merical scheme as explained in Sect. 7.2. Figures 9 and 10
show results of the linear diffusion process. In these exam-
ples an artificial three-dimensional HARDI dataset is cre-
ated, to which Rician noise is added, meaning that we ap-
plied the transformation
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Fig. 9 Result of

R3 % $2-diffusion (computed by
the finite difference scheme,
Sect. 7.2) on an artificial
HARDI dataset of two crossing
straight lines, with and without
added Rician noise (90) with

o =0.17 (signal amplitude 1).
Image size: 10 x 10 x 10 spatial
and 162 orientations. Parameters
of the isotropic diffusion
process: D = Dy = D3z =1,
Dys = D55 = 0.01. Parameters
of the anisotropic diffusion
process: D11 = Dy =0.01,

D33 =1, Dyy=Dss =10"*.In
both cases we have set

treg = 0.01 in (81)

(e) t = 1, anisotropic, no noise

((y,m)—>U(y,n))
((y,n) —~

J WG cosr) + 12 + U (v, w sin(n) +13)%)
(90)

where 12,173 ~ N(0, ) normally distributed and n; uni-
formly distributed over [0, 27).

Next, we applied two different R3 x S2-diffusions on
both the noise-free and the noisy dataset. To visualize our re-
sults we used the DTI tool (see http://www.bmia.bmt.tue.nl/
software/dtitool/) which can visualize HARDI glyphs us-
ing the Q-ball visualization method (Descoteaux et al.
2007). In the results, all glyphs are scaled equivalently.
The isotropic diffusion (D33 = Dy = Dq1) does not pre-
serve the anisotropy of the glyphs well; especially in the
noisy case we observe that we get almost isotropic glyphs.

@ Springer

(f) t = 1, anisotropic, added noise

With anisotropic diffusion, the anisotropy of the HARDI
glyphs is preserved much better and in the noisy case the
noise is clearly reduced. See Figures 9 and 10. The result-
ing glyphs are, however, less directed than in the noise-free
input image. This would improve when using nonlinear dif-
fusion. The basic theoretical PDE-framework for nonlinear
diffusions, is the subject of the last section. As an alterna-
tive to nonlinear adaptive diffusion, we are currently inves-
tigating the inclusion of “sharpening” steps by means of
left-invariant erosions (solutions of left-invariant Hamilton-
Jacobi PDEs on HARDI data). Practical properties of the
left-invariant finite difference schemes are:

++ It is relatively easy to adapt and generalize to nonlin-
ear (adaptive) diffusion schemes.

—— The explicit finite difference scheme is only stable for
sufficiently small time steps.


http://www.bmia.bmt.tue.nl/software/dtitool/
http://www.bmia.bmt.tue.nl/software/dtitool/
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Fig. 10 Result of

R3 % $2-diffusion (computed by
the finite difference scheme,
Sect. 7.2) on an artificial
HARDI dataset of two crossing
lines where one of the lines is
curved, with and without added
Rician noise, see (90), with

o =0.17 (signal amplitude 1).
We have magnified the crossing
areas on the top-right of the
figures before and after the
linear anisotropic diffusion.
Image size: 10 x 10 x 10 spatial
and 162 orientations.
Parameters of the linear
anisotropic diffusion process:
D11 =Dy =001, D3z =1,
Dy = Dss = 1074, treg = 0.01
in (81)

(c)t = 1 no noise

—  The algorithm includes extra numerical blur, which
does not accurately follow the continuous PDE-
theory.

—  If the DSHT-coefficients of the HARDI image quickly
decay, best results are obtained with small #,,, > 0.
But often for those values of #,, the corresponding
impulse response contains aliasing artefacts.

8.2 Implementation and Experiments Convolution
Schemes

In Sect. 7.3 we have provided an overview of options for
computing the Green’s functions of contour enhancement
and contour completion. Now suppose we have chosen
an analytic approximation formula p(y,n) for the Green’s
function p : R3 x §2 — R*, then we can rewrite (37) in LL,-
inner product form

(P *p3ns2 U)(y,m) = (Ly.Ry) D> U, ®3xs2) 91
where we recall Definition 2 of £ and where we define
p(y.n) = p(—=RLy', RLe.). Note that
p(y.n')=k(0,e;y,n) and

p(y,m) =k(y,n;0,e;), forall (y,n), (y,n) eR? x §.

Now p(y, n) denotes the probability density of finding a ran-
dom walker at (y,n) given that it started at (0, e;), so that

(d) t = 1 added noise

p(y,n) = p(—RE Y, R,{ e;) denotes the probability density
of finding a random walker at (—RIy, RI'e,) given that it
started at (0, e;), which is by left-invariance of the stochas-
tic process the same as the probability density of finding a
random walker at (0, e;) given that it started at (y, n).

The main advantage of formula (91) is that in practice we
can pre-compute/sample all rotated versions and translated
versions {£y gD |y € R}, n € §?} of the check-kernel p,
so that the remainder of the algorithm just consists of com-
puting Lo-inner products which can be done in parallel. In
contrast to the finite difference schemes, the convolution
schemes are unconditionally stable. In fact, we even have

1P *R3 %52 UllL;®352)
= ||P||]L1(]R3>452)||U||]L1(]R3><1$2)
=1-IUlIL,®3xs2)

1P *r35s2 UllL, (®3 %52)

= sup |p *p3s2 Uy, n)|
(y,n)

= ||£(y,Rn)lv’||L2(R3>4$2)||U||]LZ(R3><152)
=< ||P||L2(R3>452)||U||L2(R3 x82)

i.e. preservation of mass (which also holds on the dis-
crete grid if the discretely sampled versions of £y g,)p are
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Fig. 11 Left: Plane in artificial 3D DTI input data (outside the plane
the DTI tensor field is set to 0). We added Rician noise, (90), o0 = 0.2.
Right: squared output of convolution algorithm (96) and (92) (with
R =1, tol = 107°) applying respectively, from left to right, a contour

£1-normalized on the grid) and a small IL,-perturbation on
the input yields a small L-perturbation on the output.

Finally, formula (91) provides the following fast discrete
approximation/truncation:

(P *R3552 U)(y, )

~ )

YER3, Iy —ylloo<R

Uy, mp) Ay 852 (),

K(y,ymn)

> EyrDG M)

k=1
92)

with spatial step size Ay = (Ay], Ay;, Ay;) and where
we truncated the spatial integration to a cube ||y’ — ¥|loo =
supi:1’2’3|y{ — vyl < R, R > 0, where we recall (83)
and where {n;(},ivil = {m .y, n)}]ivél, forms an a priori
defined lookup table by sorting the points {ng{},iv;l such
that

Ly, Ra) PO M) < Ly, Ry P 1Y)

and where K(y,y,n) = max{k € {l,...,N,} |
S(y,Rn)lv?(y/, ny) < €}, with tolerance € > 0. We usually set
R € {1,2,3,4} (see for example Fig. 11 where we even set
R = 1) for the spatial truncation and € = 10~ for angular
truncation. The gain in speed mostly lies in the angular trun-
cation, as the convolution kernels are for reasonable para-
meter settings of D33, Du4, t, A rather orientation-selective,
recall Fig. 7 and Fig. 8.

Summarizing we have the following practical properties
of the left-invariant convolution schemes:

+  The convolution kernels can be pre-computed and
truncated.

+  The algorithm does not suffer from the typical numer-
ical blur of finite difference schemes.

++4 The algorithm is unconditionally stable.
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completion kernel (a = 1, b = 0), a spatially reflected completion ker-
nel (a =0, b = 1), and the sum of a reflected and non-reflected comple-
tion kernel (a = 1, b = 1). All kernels are sampledona 3 x 3 x 3 x 162
grid, whereas input (/eft) is sampled on a 10 x 10 x 10 x 162-grid

+  For single sided kernels (completion) one can include
reflections, as we will see in Sect. 8.2.1.

The algorithm is easily extended to left-invariant di-
lations/erosions on HARDI images by replacing the
(+, -)-algebra by the (max, +)-algebra in the convo-
lution, akin to previous work on regular images (Bur-
geth and Weickert 2003; Burgeth et al. 2008).
Generalization to nonlinear adaptive diffusions:
Adapting the kernel to the data locally is no longer
a convolution and the relation to left-invariant PDEs
is no longer clear.

For further experiments of convolution schemes solving dif-
fusion (combined with basic grey-value transformations,
such as squaring U (y, n) — (U (y, n))2) on medical HARDI
and DTI datasets, see the recent works (Rodrigues et al.
2010; Prckovska et al. 2010), where the first author of this
article collaborated with P. Rodrigues, V. Prékovska et al.

++

8.2.1 Spherical Reflection Symmetries: Preservation
of Reflection Symmetry in Contour Enhancement and
including Glyph-attraction in Contour Completion

The big difference between the stochastic processes for
contour completion and contour enhancement is that con-
tour completion kernels are single-sided, whereas contour
enhancement kernels are double-sided. Compare Fig. 7 to
Fig. 8. This change in reflection symmetry has two conse-
quences:

1. The initial HARDI data are usually invariant under spher-
ical reflections, i.e. U(y,n) = (v2U)(y, n) := U(y, —n).
In contrast to contour completion, contour enhancement
preserves this symmetry during the evolution, as can be
seen in Fig. 9 and Fig. 10. This directly follows by the
fact that the generator of contour completion —A3 + A g2
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and the generator of contour enhancement (A3)% + A 52
satisfy

(A3 +Agp)otp =tpo(+A3+ Agp),

93)
((.A3)2 +Agp)orgp=tgpo ((./43)2 + Ag).

2. It allows a relevant extension of our contour completion
processes, where we replace the R> x S2-convolutions
by (R® x 0(3))/({0} x SO(2)) convolutions as we
will explain next. Here O (3)={M e R¥>3|MT = M~}
denotes the group of orthogonal matrices on R which
includes both rotations detM = +1 and reflections
detM = —1. The practical advantage of these
(R3 % 0(@3))/({0} x SO(2))-convolution is that it allows
us to include attraction of glyphs, rather than continua-
tion of glyphs. See Fig. 11 and compare the two images
in the middle. To achieve this extension we need a dif-
ferent kind of reflections, namely spatial reflections given
by tr3U(y, n) := U (—y, n). These spatial reflections tp2
intertwine the contour enhancement and completion gen-
erators in the same way as the angular reflections tg2:

(—A3+Agp)ortps =tpso (+A3 + Ag2),
%94)
((-A3)2 + Agp)otgs=tp3o ((./43)2 + Ag).

Now indeed (94) is analogous to (93) but the crucial dif-
ference between these two types of reflections is:

tp3de =8, and tgd. #J6. and

95)

tpeU #U and teU=U.

Now (95) and (94) directly imply the spatial reflection
symmetry of the contour enhancement kernel as can be
seen in Fig. 7. Clearly the contour completion kernel does
not admit such a symmetry and we arrive at the following
three possible choices of (R? x 0(3))/({0} x SO(2))-
convolutions:

A, D
R RIn03)/(01xs0@) U) (Y, M)

= Y da) phP4 (R (y — ¥), Rim)
52 JR3

g'ef{—1,1}

(p

-U(y',n")dy'do(n)
1
with qab(g/) = E(aas’l +bd_¢1),
a,be{0,1},ab#0. (96)

These two issues are illustrated in Fig. 11 for a simple
example of a HARDI image induced by a DTI image, i.e.
U(y,n) =n” D(y)n. In Fig. 11 we have set rotation ma-
trices S(y) such that D(y) = (S(y))_ldiag{O.l, 0.1, 1}S(y).
Furthermore, we applied Rician noise on the HARDI data,

recall (90). The particular case a = b = 1 in (96) yields re-
sults that are similar to convolution with contour enhance-
ment kernels (recall Fig. 7) for suitable choice of D33 and
Dy4. The difference in practice is that the sum of two spa-
tially reflected contour completion kernels yields a double
sided kernel that is typically sharper kernel at the center than
a contour enhancement kernel.

9 Nonlinear, Adaptive, Left-Invariant Diffusions
on HARDI Images

So far we have considered linear left-invariant diffusions,
whose solutions are given by convolution with a fixed
Green’s function reflecting an a priori probability model for
fiber-extension. In many applications however, it is impor-
tant to adapt the fiber-extension model to the data, where we
can include adaptive curvature and adaptive torsion. Now
by Theorem 3, it follows that in order to include adaptive
torsion and curvature we must re-align the left-invariant lo-
cal coordinate frame {Aj,..., A5} by means of a locally
optimally fitting exponential curve, where we recall (51).

Our first aim is to determine the exponential curve,
recall (54), that optimally fits the distribution (y,n) —
U(y,n) € Rt at each position (y,n) € R3 % §2. Recall
that such a distribution gives rise to a probability dis-
tribution (x, R) — U(x, R) on SE(3) by means of (27).
To achieve our goal, we follow the same approach as
in our previous works on nonlinear diffusions on invert-
ible orientation scores (of 2D-images) defined on SE(2)
(Franken 2008, pp. 118-120), (Duits and Franken 2010,
Part II, Chap. 3.4), (Franken and Duits 2009, Chap. 5.2).
We again formulate a minimization problem that minimizes
over the “iso-contours” of the left-invariant gradient vec-
tor at (y,n) € R3 x §2, yielding optimal tangent vector
c.(y.n) = (cl(y,m),....c2(y,n),0)7:

d - 2
¢.(y, n) = arg min { H —(VU(ge'*¥'My)
c(y.m | | dt i=oll
||C(y, n)”u = 1}, (97)

where the left-invariant gradient

5
dU(g) =Y (Ai(0))(g)dA,, geSE®),

i=1

a co-vector field, is represented by a row-vector given by
VU(g) = (A1U(g), ..., AsU(g),0) and where | - ||,, de-
notes both the norm on a vector in tangent space T, (SE(3))
and the dual norm on a covector in the dual tangent
space Tg* (SE(3)). We represent tangent vectors c(y,n) =

Zleci(y, n)A;lg—(y,R,) as column-vector c¢(y,n) =

@ Springer
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(ci(y, n),...,ci(y, n),0)7 and their norm is defined by
llell, = \/m with the inner product (c,¢), =
M2(Z§:1 clely+ 2?24 ¢/ ¢/, where parameter'” 11 ensures
that all components of the inner product are dimension-
less. The value of the parameter determines how the dis-
tance in the spatial dimensions relates to distance in the ori-
entation dimension. Implicitly, this also defines the norm
on covectors by [[€]l, = /(€ &), (€,8), = (&G,'¢) =
,LFZ(Z?:] cjcj) + Z?=4 cjcj. By means of the calculus
of variations it follows that the minimizer ¢, (y, n) satisfies

(M, HU(g)M,)T (M, HU (8)M,)& (v, ) = A& (y, n),
(98)

with M, :=diag(1/u, 1/, 1/p,1,1,1), ¢ = M;lc* and
where the 6 x 6 Hessian of U on R? x §2 equals

HU (g) = [Aj AU ()], oy index,
g=(y,R) € SEQ3),

where the last row contains of zeros only. This amounts
to eigensystem analysis of the symmetric 6 x 6 matrix-
valued function g +— (M, HU(g)M,)T (M, HU (g)M,,),
where one of the three eigenvectors gives €.(y,mn). The
eigenvector with the smallest corresponding eigenvalue is
selected as tangent vector ¢, (y, n), and the desired tangent
vector ¢, (y, n) is then given by ¢, (y, n) = M, ¢, (y, n).

Now that we have computed the optimal tangent vector
c(y,n) at (y,n) — U(y, n) (and thereby the best fitting ex-
ponential curve ¢ geZ?zl ¢Ai in R3 xq 5%) we construct
the nonlinear adaptive diffusion function:

7 1121 = Dy (U)(y, m))
n)
lety.m)2

)
ui )

where D,(U)(y, n) is a locally adaptive anisotropy factor.
Finally, we note that the conditions (35) are satisfied so our
final well-defined nonlinear diffusion system on the HARDI
data are:

D(U)(y. m) = ¢« (y, m)e(y,

0,0 (g

6
aW(y,m 1) =Y (ADWU)(y, mljA;W)(y.n, 1),

ij=1 99

hml¢0 W(ys n, t) = U(Ya n)

1011 some of our previous works on SE(2) we denoted this fundamental

parameter by f~! > 0, but here we use x> 0 to avoid confusion with
Euler-angle 8 > 0 in SO(3). The left-invariant Riemannian metric on

SE(3) is given by 37, u?dA! @ A’ + Y 9_, dA/ @ dAJ.

@ Springer

10 Conclusion

For the purpose of tractography (detection of biological
fibers) and visualization, DTI and HARDI data should be
enhanced such that fiber junctions are maintained, while re-
ducing high frequency noise in the joined domain R3 x §2
of positions and orientations. Therefore we have considered
diffusions on HARDI and DTI induced by fundamental sto-
chastic processes on R3 x S? embedded in the group mani-
fold SE(3) of 3D rigid body motions.

We have shown that the processing must be left-invariant
and we have classified all linear left-invariant diffusions
on HARDI images. We presented two novel diffusion ap-
proaches which take place simultaneously over both posi-
tions and orientations. These two approaches do allow en-
hancement of fibres while preserving crossings and/or bi-
furcations. These two diffusions are Fokker-Planck equa-
tions of stochastic processes (random walks) for respec-
tively contour enhancement and contour completion. In a
contour completion process a random walker always pro-
ceeds forward in space along its prescribed random direc-
tion, whereas in a contour enhancement process the random
walker randomly moves forward and backward in its pre-
scribed random orientation. As a result the contour com-
pletion process is generated by — A3 4+ D44Ag> whereas
the contour enhancement process is generated by the sub-
Laplacian +D33(A3)> 4+ DsgA g2, with D33, Dagy > 0 and
Aglg = Ai + A% the Laplace-Beltrami operator on the
sphere and where A;-denotes the i-th left-invariant vec-
tor field on R3 x $2. Consequently, the contour enhance-
ment process preserves the angular reflection symmetry of
HARDI data, whereas the contour completion process al-
lows a choice between attraction or continuation of glyphs.

As the solutions of linear left-invariant diffusion equa-
tions are given by R x S%-convolution with their Green’s
functions, we arrive at two types of implementations: Con-
volution schemes and finite difference schemes. Practical
advantages of convolution schemes over finite difference
schemes for linear diffusions are: they are unconditionally
stable and do not involve the typical numerical blurring of
a finite difference scheme. However, the finite difference
schemes with sufficiently small time steps do provide cross-
ing preserving diffusion as well, and they are preferable for
our extensions to nonlinear adaptive diffusions proposed in
Sect. 9.

The crucial theoretical observations in our framework lie
in the fact that the left-invariant evolution equations are ex-
pressed by a quadratic form in the left-invariant vector fields
{A; }?: | on R3 % $2 embedded in SE(3), which form a mov-
ing frame of reference consisting of a spatial velocity part
{A1, Az, A3} and an angular velocity part {A4, As, Ag}.
This moving frame of reference requires the Cartan connec-
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tion viewpoint!! on the underlying differential geometry and
by expressing the left-invariant diffusions in covariant deriv-
atives we see that even the adaptive nonlinear left-invariant
evolutions locally take place along the covariantly constant
curves, which coincide with the exponential curves in SE(3).
The spatial part of the exponential curves are circular spi-
rals, i.e. curves in R3 with constant curvature and constant
torsion. As a result our nonlinear adaptive diffusion schemes
allow local adaptation for curvature and torsion, which we
will further investigate and implement in future work.

Furthermore, in future work, we will apply our tech-
niques to medical DT7-data sets and investigate whether we
can create suitable orientation density distributions (to avoid
expensive HARDI acquisitions) at crossings by means of
R3 x S2-diffusion. Finally, we will consider natural exten-
sions of our scale spaces on R3 x S2, such as the combina-
tion of left-invariant diffusion and left-invariant Hamilton-
Jacobi equations (erosions, Burgeth and Weickert 2003) in a
single evolution on R3 x §2.

Acknowledgements Vesna Prckovska and Paulo Rodrigues, bio-
medical image analysis group Eindhoven University of Technology
are gratefully acknowledged for providing the artificial HARDI test
images and the DTI tool supporting HARDI glyphs. Special thanks
to Mark Bruurmijn and Paulo Rodrigues, Eindhoven University of
Technology, for their support on the visualization and implementation
of R3 % §2-convolutions. The Netherlands Organization for Scientific
Research (NWO) is gratefully acknowledged for financial support.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Alvarez, L., Guichard, F., Lions, P. L., & Morel, J.-M. (1993). Axioms
and fundamental equations of image processing. Archive for Ra-
tional Mechanics and Analysis, 123, 200-257.

Arsigny, V., Pennec, X., & Ayache, N. (2006). Bi-invariant means in
Lie groups. Application to Left-invariant Polyaffine Transforma-
tions. Technical report, Nr. 5885, INRIA, France.

Aubin, T. (2001) Graduate studies in mathematics: Vol. 27. A course
in differential geometry. Providence: AMS

Barmpoutis, A., Vemuri, B. C., Howland, D., & Forder, J. R. (2008).
Extracting tractosemas from a displacement probability field for
tractography in DW-MRI. In Lecture notes in computer sci-
ence: Vol. 5241. Proc. MICCAI 2008, Part I (pp. 9-16). Berlin:
Springer.

Bukhvalov, A. V., & Arendt, W. (1994). Integral representation of re-
solvent and semigroups. Forum Mathematicum, 6(1), 111-137.

Burgeth, B., & Weickert, J. (2003). An explanation for the logarithmic
connection between linear and morphological systems. In Lecture
notes in computer science: Proc. 4th int. conference scale space
2003 (pp- 325-339). Berlin: Springer.

Rather than the torsion free Levi-Civita connection on the Rie-
mannian manifold (SE(3), (diag(u?, u2, 12,1, 1, 1));;d A ® d.AY).

Burgeth, B., Breuss, M., Didas, S., & Weickert, J. (2008). PDE-based
morphology for matrix fields: numerical solution schemes. Tech-
nical Report No. 220, Math. and Comp. Science, Saarland Uni-
versity, Saarbriicken.

Chirikjian, G. S., & Kyatkin, A. B. (2001). Engineering applications of
noncommutitative harmonic analysis: with emphasis on rotation
and motion groups. Boca Raton: CRC Press.

Citti, G., & Sarti, A. (2006). A cortical based model of perceptional
completion in the roto-translation space. Journal of Mathematical
Imaging and Vision, 24(3), 307-326.

Descoteaux, M., Angelino, E., Fitzgibbons, S., & Deriche, R. (2007).
Regularized, fast, and robust analytical Q-ball imaging. Magnetic
Resonance in Medicine, 58(3), 497-510.

Driscoll, J. R., & Healy, D. M. (1994). Computing Fourier transforms
and convolutions on the 2-sphere. Advances in Applied Mathe-
matics, 15(2), 202-250.

Duits, R., & Burgeth, B. (2007). Scale spaces on Lie groups. In
M. Sgallari & Paragios (Eds.), Scale space and variational meth-
ods, (Ischia, Italy) (pp. 300-312). Berlin: Springer.

Duits, R., & Franken, E. M. (2009). Line enhancement and completion
via left-invariant scale spaces on SE(2). In Lecture notes in com-
puter science: Vol. 5567. Proceedings 2nd international confer-
ence on scale space and variational methods in computer vision
(pp. 795-807). Berlin: Springer.

Duits, R., & Franken, E. M. (2009). Left-invariant diffusions on
R3 % §? and their application to crossing-preserving smoothing
on HARDI images. CASA-report Department of Mathematics and
Computer Science, Technische Universiteit Eindhoven. Nr. 18,
May 2009. Available on the web http://www.win.tue.nl/casa/
research/casareports/2009.html.

Duits, R., & Franken, E. M. (2010). Left invariant parabolic evolu-
tion equations on SE(2) and contour enhancement via invertible
orientation scores, part I: Linear left-invariant diffusion equations
on SE(2), part II: Nonlinear left-invariant diffusion equations on
invertible orientation scores. Quarterly on Applied Mathematics,
68(2), 255-331.

Duits, R., & van Almsick, M. (2008). The explicit solutions of linear
left-invariant second order stochastic evolution equations on the
2d-euclidean motion group. Quarterly of Applied Mathematics,
American Mathematical Society, 66, 27-67.

Duits, R., Florack, L. M. J., de Graaf, J., & ter Haar Romeny, B. M.
(2004). On the axioms of scale space theory. Journal of Mathe-
matical Imaging and Vision, 20, 267-298.

Duits, R., Felsberg, M., Granlund, G., & ter Haar Romeny, B. M.
(2007). Image analysis and reconstruction using a wavelet trans-
form constructed from a reducible representation of the euclidean
motion group. International Journal of Computer Vision, 72(1),
79-102.

Duits, R., Fiihr, H., & Janssen, B. J. (2009). Left invariant evolutions
on Gabor transforms. CASA-report Department of Mathematics
and Computer Science, Technische Universiteit Eindhoven. Nr. 9,
February 2009. Available on the web http://www.win.tue.nl/casa/
research/casareports/2009.html.

Fletcher, T., & Joshi, S. (2007). Riemannian geometry for the statistical
analysis of diffusion tensor data. Signal Processing, 87(2), 250—
262.

Florack, L. M. J. (2008). Codomain scale space and regularization for
high angular resolution diffusion imaging. In S.A. Fernandez, &
R. de Luis Garcia (Eds.), Digital proceedings of CVPR workshop
on tensors in image processing and computer vision, Anchorage,
Alaska, USA, June 24-26, 2008. New York: IEEE.

Florack, L. M. J., & Balmachnova (2008). Decomposition of high an-
gular resolution diffusion images into a sum of self-similar poly-
nomials on the sphere. In Proceedings of the eighteenth inter-
national conference on computer graphics and vision, Graphi-
Con’2008 (pp. 26-31). Russian Federation, Moscow.

@ Springer


http://www.win.tue.nl/casa/research/casareports/2009.html
http://www.win.tue.nl/casa/research/casareports/2009.html
http://www.win.tue.nl/casa/research/casareports/2009.html
http://www.win.tue.nl/casa/research/casareports/2009.html

264

Int J Comput Vis (2011) 92: 231-264

Franken, E. M. (2008). Enhancement of crossing elongated structures
in images. PhD thesis, Eindhoven University of Technology, De-
partment of Biomedical Engineering, The Netherlands.

Franken, E. M., & Duits, R. (2009). Crossing preserving coherence-
enhancing diffusion on invertible orientation scores. International
Journal of Computer Vision, 85(3), 253-278.

Gaveau, B. (1977). Principe de moindre action, propagation de la
chaleur et estimees sous elliptiques sur certains groupes nilpo-
tents. Acta Mathematica, 139, 96—153.

Gerschgorin, S. (1931). Uber die Abgrenzung der Eigenwerte einer
Matrix. Izvestia Akademii Nauk USSR. Otdelenie Fiz.-Mat. Nauk,
7, 7149-754.

Gur, Y., & Sochen, N. (2005). Denoising tensors via Lie group flows.
In Lecture notes in computer science: Vol. 3752. Variational, geo-
metric, and level set methods in computer vision (pp. 195-208).
Berlin: Springer.

Gur, Y., & Sochen, N. (2009). Regularizing flows over Lie groups.
Journal of Mathematical Imaging and Vision, 33(2), 195-208.

Hess, C. P., Mukherjee, P., Tan, E. T., Xu, D., & Vigneron, D. B. (2006).
Q-ball reconstruction of multimodal fiber orientations using the
spherical harmonic basis. Magnetic Resonance in Medicine, 56,
104-117.

Hormander, L. (1968). Hypoelliptic second order differential equa-
tions. Acta Mathematica, 119, 147-171.

Iijima, T. (1962). Basic theory on normalization of a pattern (in case
of typical one-dimensional pattern). Bulletin of Electrical Labo-
ratory, 26, 368-388 (in Japanese).

Jost, J. (2005). Riemannian geometry and geometric analysis, 4th ed.
Heidelberg: Springer.

Koenderink, J. J. (1984). The structure of images. Biological Cyber-
netics, 50, 363-370.

Kunis, S., & Potts, D. (2003). Fast spherical Fourier algorithms. Jour-
nal of Computational and Applied Mathematics, 161(1), 75-98.

Mumford, D. (1994). Elastica and computer vision. In Algebraic geom-
etry and its applications (pp. 491-506). Berlin: Springer.

@ Springer

Nagel, A., Ricci, F., & Stein, EM. (1990). Fundamental solutions
and harmonic analysis on nilpotent groups. Bulletin of American
Mathematical Society, 23, 139-144.

Ozarslan, E., & Mareci, T. H. (2003). Generalized diffusion tensor
imaging and analytical relationships between diffusion tensor
imaging and high angular resolution imaging. Magnetic Reso-
nance in Medicine, 50, 955-965.

Prckovska, V., Rodrigues, P., Duits, R., ter Haar Romeny, B. M.,
& Vilanova, A. Extrapolating fiber crossings from DTI data.
Can we gain the same information as HARDI? Techni-
cal CASA report nr. 20, 2010, Department of Mathematics
and Computer Science, Eindhoven University of Technology,
http://www.win.tue.nl/casa/research/casareports/2010.html.

Rodrigues, P., Duits, R., ter Haar Romeny, B. M., & Vilanova, A.
Accelerated diffusion operators for enhancing DW-MRI. Tech-
nical CASA report, nr. 15, 2010, Department of Mathematics
and Computer Science, Eindhoven University of Technology,
http://www.win.tue.nl/casa/research/casareports/2010.html.

Spivak, M. (1975). Differential geometry (Vol. 2). Berkeley: Publish or
Perish.

ter Elst, A. F. M., & Robinson, D. W. (1998). Weighted subcoercive
operators on Lie groups. Journal of Functional Analysis, 157, 88—
163.

Thornber, K. K., & Williams, L. R. (2000). Characterizing the distrib-
ution of complete shapes with corners using a mixture of random
processes. Patern Recognition, 33, 543-553.

van Almsick, M. A. (2005). Context models of lines and contours. PhD
thesis, Eindhoven University of Technology, Department of Bio-
medical Engineering, Eindhoven, The Netherlands. ISBN:978-
90-386-1117-4.

Weickert, J. A. (1999). Coherence-enhancing diffusion filtering. Inter-
national Journal of Computer Vision, 31(2/3), 111-127.

Zweck, J., & Williams, L.R. (2004). Euclidean group invariant com-
putation of stochastic completion fields using shiftable-twistable

functions. Journal of Mathematical Imaging and Vision, 21(2),
135-154.


http://www.win.tue.nl/casa/research/casareports/2010.html
http://www.win.tue.nl/casa/research/casareports/2010.html

	Left-Invariant Diffusions on the Space of Positions and Orientations and their Application to Crossing-Preserving Smoothing of HARDI images
	Abstract
	Introduction
	The Group Structure on the Domain of a HARDI Image: The Embedding of R3 xS2 into SE(3)
	Tools from Group Theory
	Relation of the Method Proposed by Barmpoutis et al. to R3 x|S2-Convolution
	Introductory Example: Scale Space and Tikhonov Regularization on the Circle
	Left-invariant Vector Fields on SE(3) and their Dual Elements

	Left-Invariant Diffusions on SE(3)=R3 x|SO(3) and R3 x|S2
	Special Cases of Linear Left-invariant Diffusion on R3 x|S2
	Brownian Motions on SE(3)=R3 x|SO(3) and on R3 x|S2
	Tikhonov-Regularization of HARDI Images 

	Differential Geometry: The Underlying Cartan-Connection on SE(3) and the Auto-Parallels in SE(3)
	The Exponential Curves and the Logarithmic Map Explicitly in Euler Angles

	Analysis of the Convolution Kernels of Scale Spaces on HARDI Images
	Local Approximation of SE(3) by a Nilpotent Group via Contraction 
	The Heisenberg-approximation of the Contour Completion Kernel
	The Heisenberg-approximation of the Contour Enhancement Kernel

	Gaussian Estimates for the Heat-kernels on SE(3)

	Implementation of the Left-Invariant Derivatives and R3 xS2-Diffusion
	DSHT and DISHT
	Finite Difference Scheme for Linear R3 x|S2 Diffusion
	Convolution Schemes for Linear R3 x|S2-Diffusion

	Experiments of Linear Crossing-preserving Diffusion on R3 x|S2 
	Experiments Finite Difference Scheme
	Implementation and Experiments Convolution Schemes
	Spherical Reflection Symmetries: Preservation of Reflection Symmetry in Contour Enhancement and including Glyph-attraction in Contour Completion


	Nonlinear, Adaptive, Left-Invariant Diffusions on HARDI Images
	Conclusion
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


