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Abstract

We propose a discrete variational approach for image smoothing con-
sisting of nonlocal data and smoothness contraints that penalise general
dissimilarity measures defined on image patches. One of such dissimilarity
measures is the weighted Lo distance between patches. In such a case we
derive an iterative neighbourhood filter that induces a new similarity mea-
sure in the photometric domain. It can be regarded as an extended patch
similarity measure that evaluates not only the patch similarity of two cho-
sen pixels, but also the similarity of their corresponding neighbours. This
leads to a more robust smoothing process since the pixels selected for av-
eraging are more coherent with the local image structure. The suggested
approach includes two recently proposed filters as special cases: The NL-
means filter of Buades et al. and the NDS filter of Mrazek et al. In fact,
the approach introduced here can be considered as a generalisation of the
latter filter. We evaluate our method for the task of denoising greyscale
and colour images degraded by Gaussian and impulse noise, demonstrat-
ing that it compares very well to other more sophisticated patch-based
approaches.

Keywords: Discrete variational methods, Nonlocal image smoothing, Neigh-
bourhood filters, Nonlinear filtering, Image denoising.

1 Introduction

Image smoothing is a fundamental task in image processing. It serves as a noise
removal tool for improving the visual quality of noisy images taken from digital
cameras or scanners, as well as for providing simplified input images that are
further processed in tasks such as segmentation, feature extraction and texture
analysis. There exist numerous approaches to image smoothing emerging from
statistical methods, information theory, transforms in the frequency domain, par-
tial differential equations (PDEs) and variational methods [82, 1, 84, 18]. Estab-
lishing equivalences and relations between the different approaches has been focus
of intense research in recent years [6, 31, 32, 56, 67, 68, 77, 71, 85].

Mréazek et al. [56] pointed out the relations between several nonlinear smooth-
ing methods such as M-estimators [23, 85|, bilateral filtering [75], diffusion filters
(61, 81], and regularisation/Bayesian techniques [7, 35, 57, 85]. Although these
methods seem very different at the first glance and originate in different mathe-
matical theories, Mrazek et al. showed that they lead to highly similar discrete
algorithms, and that all these methods can be cast in a single unified framework
of discrete regularisation theory. The unifying model is formulated as an energy
functional with nonlocal data and smoothness (NDS) terms — hence called NDS
model. The data term rewards similarity of the filtered image to the input (noisy)



image, while the smoothness term penalises high deviations from regularity on
the solution. These terms can consider not only information from a small region
around a pixel but also make it possible to involve large neighbourhoods. Pizarro
et al. [64] showed that the NDS approach can outperform the methods obtained
as special cases mainly by adjusting the spatial extent where the nonlocal pixel
interactions occur. These interactions take the form of nonlinear differences of
intensity measuring pixel similarity. However, single differences do not carry re-
liable information about the local image structure/geometry too far away from
a chosen pixel. Thus, truly nonlocal interactions in the NDS model are rather
limited in practice. This is actually the main drawback of single differences-based
approaches.

Two equivalent and simultaneously proposed methods, namely the non-local
means (NL-means) filter [14, 15| and the unsupervised, information-theoretic,
adaptive (UINTA) filter [3, 4] are able to cope with such a problem. Both meth-
ods consider a whole neighbourhood (or patch) around a pixel to measure simi-
larity. In this way, if the corresponding neighbourhoods of two pixels are similar,
the pixels themselves will be considered alike even if they are spatially distant
from each other. This simple idea allows a real incorporation of nonlocal pixel in-
teractions in the smoothing process, providing impressive denoising results. The
NL-means filter belongs to the class of neighbourhood filters [51, 86, 70, 75, 16]
that average similar pixels based on their photometric and spatial proximities —
where the spatial distance does not play a role in NL-means. In particular, it can
be seen as a bilateral filter [75] with a patch-based photometric similarity mea-
sure. Several variational formulations of the NL-means filter have been proposed
[47, 38, 5, 13, 52| together with acceleration techniques [55, 8, 26, 28, 13, 60|
and invariant patch similarity measures [79, 48, 91, 53]. This method has in-
spired the appearance of numerous so-called patch-based approaches for image
smoothing, deblurring, segmentation, inpainting, super-resolution, and texture
synthesis, among others.

In this paper we propose the Generalised NDS (GNDS) framework for image
smoothing as an extension of the NDS model of Mrazek et al. [56]. Instead of
penalising deviations from similarity considering only single pixel differences, as
in the NDS model, we introduce a discrete variational approach with nonlocal
constraints that penalise general dissimilarity measures defined on image patches.
As an example of such dissimilarity measures we consider the weighted Lo distance
between patches used in the NL-means filter. In such a case the resulting GNDS
filter can be considered as an iterative neighbourhood filter consisting of two
terms, one prescribing the solution to be nonlocally similar to the input image and
the other imposing nonlocal regularity on the solution. Another characteristic of
this filtering model is that it induces a new similarity measure in the photometric
domain. We regard it as an extended patch similarity measure that evaluates
not only the patch similarity of two chosen pixels, but also the similarity of their
corresponding neighbours. This makes the selection of the most similar pixels



in the averaging (filtering) process more robust. The new similarity measure
includes three special cases: (i) similarity of single pixels, in which case we get
the NDS filter of Mrazek et al. [56], (ii) isotropic patch similarity, which leads to
the NL-means filter of Buades et al. [15], and (ii7) anisotropic patch similarity,
which results in a novel filter for removal of impulse noise.

This article is structured as follows: Section 2 describes the NDS model proposed
by Mrézek et al., and the most important filters that can be obtained from it as
special cases are summarised in Section 3. In Section 4, we report new relations
between the NDS framework and recently proposed graph regularisation tech-
niques. In Section 5, we introduce the Generalised NDS model, discuss relations
to other patch-based approaches, its extension to multichannel images and the
use of other similarity measures. In Section 6, we evaluate both the NDS and the
GNDS approaches for the task of denoising images degraded by Gaussian and
salt-and-pepper noise. We show that the NDS model outperforms other classical
non-patch-based approaches and that our GNDS model auspiciously compares
to other more sophisticated patch-based methods. We conclude the paper in
Section 7.

2 The Nonlocal Data and Smoothness (NDS)
Model

Let f,u: Q — R be scalar images defined on the discrete image domain €2. f
stands for the (noisy) original image while u represents a processed version of it.
Let J = {1,..., N} be the index set of all pixels in the images. The pixel position
in the bi-dimensional grid is indicated by z; (i € J). The discrete energy function
E of the NDS filter presented in [56] is a convex combination of a nonlocal data
(or similarity) term Ep and a nonlocal smoothness term Fg:

Ep(u) = Z Up (Jus — fil?) wp (|2 — 250%) (1)
Es(u) = Z Us (Jui — uy]?) ws (Jos — 25/%) - (2)

Here ¥ : Ry — R{ are increasing functions that penalise large (greyvalue)
tonal distances, e.g., the Cauchy function ¥(s?) = M log (1 + s?/\?) [42, 61].
The weights w) : R4y — R{ are nonnegative functions downweighting large
spatial distances, e.g., the hard window w(x?) = {1 for 2% < r2,0 otherwise} [49]
or the soft window w(x?) = exp (—z?/(2r?)) [23]. For a more comprehensive list
of penalisers, see [58].

The complete NDS model can be regarded as a discrete nonlocal variational



method combining both the data (1) and the smoothness (2) terms:
E(u) = (1—a)Ep(u) + aEs(u)
= (1—a) Y Up (jui = f;*) wp (2 — ;)
ijet
ta Y s (Jup —uyl*) ws (o — 2;)) (3)
ijeJ

with regularisation parameter o € [0, 1].

2.1 Numerical Implementation

After introducing the NDS model in the previous section, we now consider a
robust and stable iterative procedure for minimising the energy functional. Even
if the presented iterative fixed point approach is very simple, we will see that it
satisfies a maximum-minimum principle for a general set of penaliser functions,
and we will prove the existence of a fixed point.

Taking the partial derivatives of the data term (1) yields

0Fp
8uk

2 Z U (lur = f57) (we = f)wp (o — 25/%) (4)

jeJ

where U’ denotes the derivative of ¥ w.r.t. its argument. In a similar way we
calculate the derivatives of the smoothness term (2) which leads to

9Es _ 4y W (Jur — wl?) (ux — wy)ws (|lon —25%) . (%)

ou
k jed

It is clear that the complete derivatives then have the form

OE 0Ep ~ 0Es

For a critical point u of the energy functional £ we have

oE

VE(u) =0 o 0 forallieJ. (7)

We define the abbreviations
dij = Y (Jui — fi*) wp (lzs — 2;]?) (8)
si; = 2Wy (|uZ — uj|2) wg (|QUz — xj|2) (9)

which help us to rewrite (7) as

0= (1—a)d dijlu—f;)+ o> si;(u— uy) (10)

JjeJ jeJ



where we use the partial derivatives shown in (4) and (5). This can be transformed
into fixed point form
(L—a) D jesdig i+ ad crsiu
U; = . (11)
(1—a) ZjeJ dij+ o Zje.] Si,j

To have a positive denominator we assume that ¥/, (s*) > 0 and W(s?) > 0,
i.e., the penalisers are monotonically increasing. Furthermore we assume that
wp(s?) > 0, wg(s?) > 0 as well as wp(0) > 0 and wg(0) > 0 for the spatial
weights. We use this equation to build up a first iterative method to minimise
the value of E' where the upper index k£ denotes the iteration number. Note that
d; j and s; ; also depend on the evolving image u” and thus also get a superscript
to denote the iteration level involved. The corresponding fixed point iteration
then reads as

uw o= f;, (12)
1. (1-a) ZjeJ dﬁj Ji +aZjeJ Si‘c,j “?
L (L=a)Yjesdiytadersiy
In the following we will write this scheme (13) in the form u**! = F(u*) with

F:RY — RY. We note that we calculate u**! using only components of the
vector u* of the old iteration level:

u (13)

ubtt = Fi(uF) forallie JkeN, (14)

7

Such a method can also be called a nonlinear Jacobi method.

Let us now state two important results.

Proposition 2.1 (Maximum-Minimum Principle)
With the assumptions on Vp, Ve, wp, and wg as above, the scheme (13) satisfies
a maximum-minimum principle:
min f; < uf < maxf; foralli€ JkeN. (15)
jed jeJ
Proof: With our assumptions on the tonal and spatial weights from above we
know that dﬁj > 0 and sﬁj > 0 for all 4,j,k. That means in (13), uf“ is
calculated as a convex combination of grey values of the initial image f and of
the last iteration step u*. Thus we have

]ei?{u;‘?, £} < ubtt < I?g{{ug, fi} forallie JkeN, (16)

Induction shows that the fixed point scheme (13) satisfies a maximum-minimum
principle, i.e.

min f; < uf < maxf; forallic JkeN. (17)

JjeJ JjeJ
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In the next proposition, we see that this property is not only useful from a
practical point of view: Together with continuity, it gives us the existence of a
fixed point.

Proposition 2.2 (Existence of a Fixed Point)
The fized point equation (11) has a solution.

Proof: Let us consider the set M = {u € R" | ||u||s < ||f]loc} with the norm
|u]|oo := maxjey |uj|. M is nonempty, compact and convex. Then the maximum-
minimum stability implies that F/(M) C M. With our requirements on the tonal
and spatial weights, the denominator in (13) is always larger than zero. This
means that each component F; : RN — R is continuous with respect to the norm
| |loo- Since this holds for all i, we know that F : (RY,]| - [|ec) — (RY, || - |leo)
is continuous. Then Brouwer’s fixed point theorem (see [11] or [87, page 51], for
example) shows that F' has a fixed point in M. O

From the derivation it is clear that a fixed point corresponds to a critical point
of E. If we have chosen our penaliser functions such that the energy functional
is strictly convex, this is equivalent to the unique minimum of E.

Alternatively, the solution of the NDS energy (3) can be obtained by gradient
descent optimisation:

ktl gk E
womw O e, (18)

T our

with step size 7 > 0. Considering (7)—(11), the energy minimiser is computed as

u = fi, (19)
(1—-a) Zjej df,j Jita ZjeJ S?,j u;“
(1—a) ZjeJ df,j t+a ZjeJ Sf,j

Note that by setting 7 = 1 one obtains the fixed point iteration (13).

uf“ = (1- T)uf + T

(20)

3 Important Special Cases

Recall that the NDS functional (3) can be optimised using the fixed point itera-
tions (11). Let us introduce the following notation for the tonal weights,

gl = U (Jui = fi), (21)
gfj = 2V (|uZ — uj|2) , (22)
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Figure 1: Overview of methods covered by the NDS functional. Left to right,
the parameter v balances the data and smoothness terms. Bottom to top, the
window size r determines the spatial extent of the methods, from local to global.

and for the spatial weights,

wfj’r = wp (|:1;Z — xj|2) , (23)
wff = wg (|x, — xj|2) , (24)

where the spatial weights w implicitly contain a scale parameter r specifying
how quickly the weight decreases: Small r means a local operation (or a smaller
window), larger r leads to operations with large-scale effects. The window sizes
for the data and smoothness terms may differ.

Using this notation, equation (11) can be written as

D D, S .S
(1-a) Z gigwi; fi+a Z Gij Wiy Uy

B jed jeJ
U; = . D7 Farra (25)
1—a)) gjwiy +a) gw;
jeJ jeJ

In the following sections we show that many well known filtering and estimation
methods can be derived from equation (25) (and thus from the NDS functional) by
a simple choice of the parameter o which balances the smoothness and data terms,
the window size r, and by an appropriate selection of the weighting functions g,
g°, wP, and w®. Fig. 1 gives an overview of the NDS landscape and the methods
covered below.



3.1 M-Estimators and Local M-Smoothers

When estimating the underlying constant signal from noisy samples, the selected
method should depend on the type of noise present in the data. For Gaussian
noise, taking the sample mean is a good choice, providing the maximum a pos-
teriori (MAP) estimate. For noise with heavier tails (caused either by the noise
properties themselves, or because e.g. the samples were mixed from two distribu-
tions due to signal discontinuity), one has to use methods from robust statistics
that are less effected by outliers, such as an M-estimator [43, 40]. An M-estimate
of a constant value u from noisy data f; is found by minimising

Blw) = Y w(ju— ) (20)

where the error norm ¥ can attain for example one of the forms presented in
Table 1.

The right column of Table 1 gives an overview of what element minimises the
functional (26) with the given error penaliser W. For the Ly norm (a), the so-
lution is the mean of the noisy samples. The L; norm (b) is minimised by the
median. For the robust error norms (¢) and (d), the influence of outliers is very
much reduced, and the solution w minimising (26) approximates a mode (maxi-
mum) of the probability density underlying the noisy samples. The mode ideally
corresponds to the most frequent value present in the data. For the discrete
noisy samples, the maximum of the density can be only estimated e.g. using
suitable smoothing kernels; see [22] for some examples and a connection to iter-
ative solvers. Note that while the L, and L; norms lead to a convex functional
minimisation, the robust error norms (c) and (d) in Table 1 are nonconvex, and
their corresponding functionals F(u) may exhibit multiple local minima.

The M-estimators were introduced to robustly estimate a single value from noisy
samples. For images, we have to consider also the spatial distribution of the
data. Such a generalization is known as local M-smoothers, and the functional to
minimise has the following structure [23, 85]:

N
Ew) =Y > W(luw— fi*) w(lz: — ;) (27)
i=1 jeB(i)
where w represents the spatial weight depending on sample distance. The local
window B(i) is introduced in (27) for computational convenience only, to make
the index j run through the neighbourhood of z; where w(|z; — x;]?) exceeds
some threshold of contribution importance.
The energy functional (27) can be minimized using an iterative scheme called
W-estimator [85],
s Zjes(i)g(‘uf - fj‘Q) w(|5’7i - ij) fi

= 28
' > e 9([uf — fil?) w(|z: — ;) )

8




Table 1: Examples of error norms for M-estimators. The parameter \ serves as
contrast parameter.

error norm — estimation result

(a) W(s?) =52

— mean
— median

(¢) U(s?)=1—e /¥ mode approximation

(d) U(s?) = min(s? \?)

— mode approximation

=

where the process is initialised with u? := f;. This iterative scheme converges to
a local minimum of (27) close to the input data. Depending on the penaliser ¥,
the iterations may lead e.g. to a local mode approximation [78, 76, 77, 24], or to
an approximation of a windowed median filter or Gaussian smoothing.
Comparing equation (28) with our scheme (25), we observe that the local M-
smoothers and the W-estimator correspond to the data term of the NDS model.
To obtain the W-estimator from (25), simply set the smoothness parameter a = 0.
The spatial weight w will be chosen so that it covers some area around the current
pixel, typically larger than the immediate neighbourhood.

3.2 Bilateral Filtering

Contrary to the previous section, let us analyse the situation for the maximum
smoothness parameter, « = 1. Then, the data term from equations (3) and (25)
vanishes, and the full scheme consists of the smoothness term only. The resulting
energy functional

Es(u) = > Ws(|u; — ul”) ws(jz; — 2;]%) (29)
ijed
can be minimized by the fixed point iterations
Z >jes 95 (luff = uf?) ws (|2 — ;%)
Equation (30) is known as bilateral filter [2, 70, 75]. While bilateral filtering was
originally proposed as a heuristic algorithm, we have shown that it can be derived
as a special case from the NDS energy functional (3) where only the smoothness

term is considered, and the local smoothness of the signal u is evaluated in a
nonlocal window wg.




3.3 Regularisation Methods

Consider the optimality condition %% = 0 for (2) written as

0= Z s (Jur — wnsj)?) (we — wipy) ws (| — z45]7) (31)
JjeB(k)

with B(k) = {j € Z : |z — zk+;| < rs}, and the hard window

1 if |og — 2pry] <7s
2 +il =
wg(\mk _a:kﬂl ) - {O otherwise '

Then, following [80, 30], equation (31) can be regarded as a crude approximation
of the steady state of the rotationally invariant PDE

2 ™
Oy = ; /aap (gS(‘aesouls‘Q) aesou) ng (32)

0

when the kernel size § in us := Gg*u vanishes, gs := W%, and e, = (cos p,sinp) .
Furthermore, equation (32) is equivalent to the anisotropic model

dyu = div(D - Vu) (33)

with the diffusion tensor

™

2
D= ;/ewelgs(laewaﬁ) de.
0

In [80] it is shown that the eigenvectors and eigenvalues of D are given by

o /2

vi(p) = ( Cz;nf), M) = g [ sin® o gs(r cosel?) di:
/2

vi(p) = (Z?jz), )\L(yﬁ) — %E{COSQSpgS(‘T COSQpP) dy,

where (r,p) are the polar coordinates of Vu. In our case, i.e. § — 0, the
process (33) becomes isotropic with scalar diffusivity g := A\, :

Oyu = div(g - Vu). (34)

This means that the solution of the smoothness term (2) approximates a Perona-
Malik filter that diffuses in direction Vu® perpendicular to the gradient, i.e. along
edges.

If we now include the data term (1) with a local spatial window

1 oy =20
2 k k+j
wD(’xk B xk+j| ) - {O otherwise ’

10



the resulting process approximates

“éf — div(g - Vu), (35)

11—«

which can be regarded as a fully implicit time discretisation of the diffusion
process (34) with a single time step of size % > 0. Following Scherzer and We-
ickert [68], it can be shown that (35) corresponds to the Euler-Lagrange equation
of the continuous functional

Blu) = /Q((l—a)\I/D(]u—f\Q) s VaP)) de (36)

where {IVI’S := ¢. The continuous functional is the classical energy functional from
regularisation or Bayesian frameworks; see e.g. [7, 35, 57, 85]. As an example,
the continuous Mumford—Shah functional fits into this framework if we choose
Up(s?) := s? and Ug(s?) := min(s? A?). Also, the diffusion filters [61, 81] and
diffusion-reaction processes [59, 69, 72, 19] can be derived from equation (36).

3.4 Histogram Quantisation

For the sake of completeness, let us consider the case when the spatial support
window grows to ‘infinite’ size, and all the pixels are connected with the same
weight regardless of their position in the image, wps = 1. Then, the NDS
functional simplifies to

E() = (1—=a) > Up(jui = fil’) + a > Ws (jui —u?) . (37)

ijeJd ijeJ

Because the spatial information does not appear in the formula, the solution
can be equivalently found in a space where the spatial information was omitted
and only the tonal information remains: the image histogram. For example,
minimizing the functional for the robust penaliser ¥ from Table 1 (c¢) or (d)
corresponds to replacing each pixel value with the local mode of the corresponding
image histogram. The resulting image will have a smaller number of gray values,
adaptively quantised. The data and smoothness terms in this context correspond
to the non-blurring or blurring mean shift process, respectively [22].

4 NDS and Graph Regularisation

In this section we show that the discrete NDS framework is closely related to
graph regularisation techniques and that it extends recent developments in the
context of image and manifold regularisation on weighted graphs.

11



A discrete image is usually defined on a regular domain, e.g. on a rectangular
grid. However, for more general image domains it is more appropriate to represent
an image as a graph with arbitrary topology. Every vertex (pixel) ¢ of the graph
encodes both the pixel location z; and the pixel intensity f;. The edge connecting
two vertices ¢ and j represents the similarity between both pixels, expressed as
a weight function w(i, j) > 0. Employing such graph representation and special
calculus on graphs [89, 90], several regularisation models for general data living
on discrete spaces have been recently proposed. In the context of image denois-
ing Weickert [82] developed a space-discrete theory for diffusion filtering that is
directly applicable to functions defined on graphs, and Chan et al. [17] intro-
duced the digital TV filter as a discrete version of the continues ROF model [66].
In the context of semi-supervised learning Zhou and Schélkopf [89, 90] proposed
a discrete analogue of classical regularisation [74] with a p—Dirichlet regulariser;
and Zhou and Burges [88] introduced a discrete analogue of the Laplace-de Rham
operator as a regulariser.

Following the ideas from graph theory presented in [89, 90|, Gilboa and Osher
[38] proposed the use of nonlocal operators to extend some known PDEs and
variational techniques in image processing to a nonlocal framework. In partic-
ular, they use discretised differential operators such as gradient and divergence.
The discretisations involve pixel differences that are weighted by a patch-based
similarity between pixels as in [15]. Bougleux et al. [9, 33, 10] designed a dis-
crete graph regularisation framework that can be seen as a digital extension of
the continuous framework [38] employing a p—Dirichlet regulariser. The same dis-
crete framework has been applied in image segmentation tasks [73]. Furthermore,
nonlocal differential operators have been used to derive nonlocal morphological
PDEs [34].

We now show that the discrete variational NDS model (3) can be regarded as a
common regularisation method for general data defined on discrete spaces. Let us
consider the smoothness term (2) of the NDS model using ¥(s?) = %|s|p7 p >0,
as penaliser:

Bs(u) = 3> W (lui = uf?) w(i.j) (38)

iedJ jeJ
1 L

= 3wy — uyPw(i, g) (39)
p ieJ jeJ
1

= = (IVeul? (40)
pieJ

1

where ||V ,ull, = <ZjeJ |u; — uj|pw(i,j)>p is the weighted L, norm. Other
definitions of the weighted gradient norm are possible using alternative weighted
difference operators (see [41] and references therein). This regulariser has been
used in [90, 9, 33, 10] for regularisation on arbitrary graphs. In particular, the

12



following energy functionals have been proposed in [10]:

But) = 3 (B0 = 52+ 219l | (a1

icJ

Bun(t) = 30 (00— 7+ 5 I%ull) (12)

icJ

The functional (41) corresponds to an isotropic model whose minimiser is ob-
tained by solving a linear system, whereas (42) is an anisotropic model leading to a
nonlinear system. The nonlocal interactions between graph nodes are introduced
via the weight function w. In the general case the weight w(i,j) = w(F;, F;)
measures the similarity between the nodes ¢ and j with respect to a certain fea-
ture vector F. For instance, a weighted L, norm between image patches [15] can
be used for the task of image smoothing. This and other similarity measures are
discussed later in this paper.

There exist three main differences between the NDS framework and the graph
regularisation (GR) approaches previously reviewed: (i) in the NDS we allow the
use of any penaliser for both the data similarity and the smoothness term, whereas
GR only considers penalisers of the form ¥(s?) = %|s]p for p €]0,2]; (¢i) in the
NDS model nonlocal interactions are present in both the data and the smoothness
term, while in the GR techniques the non-localities are only considered in the
regularisation term; and (7i¢) in the NDS framework the functions w only depend
on the spatial node/pixel locations, whereas in the GR approaches w can be
defined in terms of several node characteristics. This last issue suggests that the
NDS model (3) can be generalised by extending the definition of the weighting
functions w. In this way, we obtain a general framework for processing data sets
defined on arbitrary discrete domains.

Despite the interesting extension of the NDS model described above, we do not
further develop this idea here. That will be part of future work. However, we
shall consider another generalisation of the NDS framework in the next section.
We will rather concentrate on the penalisers ¥, which we allow to act on more
general constraints.

5 Generalised NDS Model

The NDS model of the previous section was termed nonlocal data and smooth-
ness (NDS) because of the interactions between more distant pixels than the
immediate neighbourhood. However, the tonal weights in (3) depend on the sin-
gle differences between pairs of connected pixels. These single differences have a
limited ability to express local image structure and geometry, and for practical
purposes, the pixel interactions have to be kept to a relatively small neighbour-
hood.

13



Many recent approaches for image denoising make use of self-similarity of the
whole image, or similarity between several images. For filtering, pixels from very
distant locations could also contribute to the result. To distinguish which pixels
are compatible, a more powerful measure is needed to evaluate the similarity:
Not just pixel difference, but the similarity of a whole region of interest, or image
patch around the central pixel, is considered. The NL-means filter [14, 15] is a
typical example of this class of filters.

In this section, we combine the idea of patch similarity with the NDS functional,
which leads to a Generalized Nonlocal Data and Smoothness, or GNDS model.
We keep the discrete variational framework involving both data and smoothness
terms, and allow for different ways to calculate the distance of the image patches.
We will show which iterative filter can be derived as a minimizer of the GNDS
energy functional. Inspired by its form, we will relax a constraint and present a
new family of patch-based GNDS filters.

5.1 GNDS Functional and its Minimisation

First, let us introduce the tonal distance functions dp,ds : R? — R{ in the
data and the smoothness term. For example, in the data term, such a function
calculates the distance between two image patches u(P;) of the evolving image
and f(P;) of the initial image. The index sets P; and P; define image patches as
neighbourhoods of the pixels ¢ and j, respectively. Both patches are assumed to
have the same size p € N and the same shape.

As distance function, for example the weighted L, norm can be used, i. e.

|du(Po), FP))|* = 3 Calp) (wiry — frap)? (43)

where G,(p) := exp(—p?/(20?)). This has also been used as a patch distance in
the nonlocal means algorithm.

With these definitions, the Generalised Nonlocal Data and Smoothness (GNDS)
model reads

Eg(u) = (1 — Oé) EGD<U> + OéEgs<u)
= (W=a) Y Wp (|dp(u(P). F(P)[*) wp (fo: — ;)
To Z Vs (‘dS(U(Pi)a U(Pj))|2> ws (|2 — z;[*) . (44)

As we did in Section 2.1 for the NDS model, we now obtain the corresponding
fixed point form for (44). The minimiser u of (44) necessarily satisfies
8EG 8EGD 8EGS

ou, =(1—a) u. + 9u. =0 forallie J. (45)
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Using the distance function d3,; ; := |dp(u(P;), f(Pj))|2 as in (43), we have for
the data term:

OFap

R S ) o ()
, 9
= >V (dby) o (Z Go(p) (Uitp — fj+p)2> wp (|2 —z;]%)
1,jE€J k P
(i=k—p)
(j=l-p)
= 2y > Golp Abigpi—p) (W = f)wp (|T5-p — 215 [°)
leJ p
= QZGU * U (dzD;k_,J_,) (0)(ur, — fj)wp (Jzx — :vj|2) (46)
jeJ

where the operator ‘x’ stands for convolution. A more detailed derivation, and
the corresponding counterpart for the smoothness term, can be found in Ap-
pendix A.1.

Then, with help of the abbreviations

g = Gox Wy (|dp(u(Pi), (P;))[) (0), (47)
g% = 2y W ([ds(u(Pi) u(P;-))|*) (0). (48)

and with the spatial weights defined as in (23)—(24), the fixed point for the GNDS
model becomes

Dr Sr
1__(1 E gGD f7+-af§ gGS
JEJ jeJ

u; = , (49)

1—Oé ZgzD 'LDT—i_azng ;Sjr

jeJ jeJ

for all ¢ € J. This equation can be embedded in a fixed point iteration scheme
similar to (12)—(14). A maximum-minimum principle and the existence of a fixed
point can be proven following Propositions 2.1 and 2.2. Analogously to (18), the
energy minimiser can be obtained via gradient descent.

The data similarity and smoothness constraints in our generalised model (44)
penalise tonal distances between patches rather than between single pixels as in
the original NDS approach (3). Comparing (49) with the fixed point form of the
NDS model (25) we note that the patch distances induce convolutions with the
netghbouring tonal weights. In Sections 5.2 and 5.3 we discuss the implications
of this fact and how it inspires the modelling of new filters.

15



5.2 Double Weighting

Considering the data term of eq. (49) only (the situation for the smoothness term
is analogous), and expanding the convolution (47), the fixed point equation for
the filtered pixel u; becomes

u;p = Ml , Z Z Go(p) - V' <Z Go(q)|Uitpsq — fj+p+q|2) ~wi; - f (50)

where M; ; is the usual normalisation by the sum of all applied weights,

M;; = Z Z Go(p) - W' (Z Go (@) |Uisprq — fj+p+q|2> T Wi
J p q

In (50), G, is the Gaussian of radius r, which represents the patch size in the
patch similarity computation (43). Note that this weighting appears twice in
formula (50): Once during the patch similarity calculation (summed over ¢) before
the nonlinearity ¥’ is applied. We call this G, the inner weighting of patch pixels.
Moreover, G, appears also for a second time in (50), in the sum over p. We call
this the outer weighting which is applied when summing the results of the function
U’ after it is applied to individual patch distances. Figure 2 demonstrates this:
the tonal weight (47) entering in (50) not only involves the comparison of the
patches about the pixels ¢ and j, but also the patch similarity between their
corresponding neighbours is considered.

Equation (50), and particularly this double weighting, deserve a detailed discus-
sion. The estimated pixel value u; in (50) is obtained as a weighted average of
some data samples f;. Let us consider a single data pixel f;, and analyse what
is the weight by which this pixel contributes to the weighted result. For a single
value of the dummy variable p, the sum

Z Go(q) |Uitprg — fj+p+q|2
q

evaluates the weighted Lo distance between an image patch around pixel u;1, on
one hand, and an image patch around pixel f;;, on the other hand (where the
size of the patches is given by the weighting function G,). In the notation used
earlier in this paper, this patch distance is denoted d (u(Pitp), f(Pjip)). Note
that the compared patches are offset with respect to the estimation and data
positions ¢ and j, respectively, by a common shift p.

Coming back to equation (50), after evaluating the patch distance, the nonlin-
earity ¥’ is applied next. We remark that this nonlinearity can be related to
robust statistical estimation; its role is to downweight outliers, and convert patch
distance to (robust) patch similarity. Then, the resulting patch similarities are
summed over variable p in a second patch neighbourhood, again defined by the
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Figure 2: The weight computation in (50) between two pixels i and j involves
the patch comparison — using patches G, (dashed lines) — between every pair of
corresponding neighbours i+ p and j+p within a neighbourhood G, (solid lines).

weighing function GG,. Note that the inner and outer weighing functions are
identical, which originates in the functional E¢p of (44) and the derivatives with
respect to w; which duplicated the inner weight also out of the nonlinearity (see
Appendix A.1).

Summarising it in words, the equation (50) has the following meaning: For pixels
u; and f;, calculate the patch distances of all patches at positions i +p and j +p
taken with the offset p around w; and f;, respectively. Then, average these patch
distances (transformed first by the nonlinearity U’) using the outer weighting G,,.
Thus, the pixel f; will contribute to the result u; with a hight weight not only
if the patches around u; and f; are similar, but also if the neighbouring patches
Uitp and fj4, resemble each other.

5.3 GNDS Filter Family

In the previous section we discussed the roles of the inner (patch) weighting
G, and the outer (similarity integration) weighting. Derived from the energy
functional, these two weightings are identical. In the fixed point iteration though,
these two weighting functions have a different role, and it is instructive to analyse
what changes if they are decoupled.

In the following, we keep the parameter r, for the radius of the Gaussian G, of the
inner pixel weighing for patch similarity calculation. The outer integration scale
will use a different weighting function G, of radius r,, and the pixel averaging
equation becomes

1
u; = M, ZZGP(p) a4 (Z Go(q) |Uiyprq — fj+p+q‘2> ‘wig- f; (51)
Yogop q

where M; ; is the corresponding normalisation factor.
Let us now study what is the effect of varying the parameters ¢ and p which
determine the size of the inner and outer weighting windows, respectively.
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First, let p — 0, leading to the following outer weighting:

1 ifp=0;
Go(p) = {O ifp£0. (52)

The equation (51) then simplifies to

u; = J\/} , Z‘I’I (Z Go(q) [titg — fj+q|2) ‘Wi f (53)

which is exactly the non-iterative NL-means filter introduced by Buades, Coll and
Morel in [14, 15]! NL-means weights the contribution of the pixel f; using a single
patch distance comparing patches around u; and f;, and omits any additional
integration of these patch similarities using the outer summation.

Second, let ¢ — 0. This leads to

1
Ui = Mij Z Z Gp(p) -0 (‘ui+p - fj+p‘2) F Wi fj : (54)
RO R &

Comparing (54) with (53), we observe that these two equations have a highly
similar structure, with a single difference: The position where the nonlinearity
U’ is applied. For NL-means (53), we first sum the differences of individual pixels,
thus evaluating the weighted Lo similarity, and then apply the robust weighting
U’. In the other case of equation (54), we apply the nonlinearity ¥’ to individual
pixel differences, and then integrate the result over the window G,. Even in this
case, the weight of pixel f; is influenced by the whole patches around w; and
fj- The difference lies in the way the patch similarity is evaluated. Due to the
structural resemblance of the filters (53) and (54) to isotropic and anisotropic
penalisation [83] we call (54) anisotropic NL-means.

As a third example, let both ¢ — 0 and p — 0. Then, the generalised NDS
scheme (51) simplifies to the classical NDS scheme (11) which is based on simple
pixel differences instead of patch distances.

Table 2: Examples of filtering methods belonging to the GNDS family (51) with
varying inner scale o and outer scale p.

Patch size | Integration scale Method
o>0 p=o0 Generalised NDS (51)
og>0 p—0 NL-means (53), [15]
o—0 p>0 Anisotropic NL-means (54)
o—0 p—0 Classical NDS (3), [56]
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By varying the inner and outer scales o and p in (51), we obtain a full family of
highly nonlinear and robust filters. A single member of this family with p = o
can be derived from an energy functional. The well known NL-means method
belongs to this family. It represents the case when the outer scale vanishes. Some
of these special cases are summarised in Table 2.

Practically, the inner and outer scales both act in the direction that by increasing
them, we increase the area used to evaluate image similarity: Higher values lead
to a more thorough (and costly) patch comparison. Consider the special situation
when this combined scale is kept constant, the amount of integration just shifts
between the inner and outer scales. Such a setting forms a family of filters
with approximately the same spatial extent of operations. What changes is the
position at which the nonlinearity W’ enters the chain. The NL-means (53) and
the summation of robust pixel similarities (54) represent the two extremes of this
family. This is illustrated in Fig. 3. The practical effect of varying the inner and
outer scales will be demonstrated later in this paper.

Figure 3: The tonal weight in (51) is computed over an area determined by the
integration neighbourhood (solid lines) — Gaussian G, of radius 7, — and the
patch size (dashed lines) — Gaussian G, of radius r,. From left to right, different
configurations where the total area described by a Gaussian of radius 7, + 7,
(dotted line) is kept constant. The first and the last configurations correspond
to the weighting scheme of the filters (53) and (54), respectively.

5.4 Alternative Formulations of the NL-Means Filter

Using the Whittaker-Tikhonov penaliser ¥(s?) = s we obtain U/(s?) := 0,2 ¥(s?) =
1 and both filters (53) and (54) become equivalent to

1
U; = Mi’j ;wm fj . (55)

In our setting the spatial function w acts uniquely as a search window, i.e. it
delimits the spatial extent where the pixels j, neighbours of i, are taken from.
However, in various works [37, 9, 20] it is argued that (55) can be regarded as
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the NL-means filter by redefining the weights

Tfl\)/i’j = wm - exp <— . A (56)

with A > 0 as a filter parameter. Note that the additional weighting term is
constant as it depends on the input image f. This indicates that the filter (55)
could be directly derived from the data term (1) of the NDS functional employing
U(s?) = s? and w. Analogously, a filter that averages over the evolving image u
can be obtained from the smoothness term (2). Similar ideas have been considered
in [36, 5, 13].

In [45, 21, 63| energy functionals with weights depending on the unknown solution
u via d(u(P;),u(P;)) have been considered. However, all these methods assume
constant weights in the computation of the optimality conditions VE(u) = 0. The
variational filter proposed by Brox et al. in [13] also considers nonlocal weights
depending on u. Although they do not assume constant weights in the derivation
of the Euler-Lagrange equations, these become very complex and computationally
expensive. To a certain extent, the mentioned filters could be obtain from the
original NDS framework (3) by extending the definition of the weights w as in (56)
(see also a related discussion in Section 4). In the proposed GNDS framework
we keep regarding the weights w only as (nonlocal) spatial functions. Instead,
we generalise the constraints being penalised in the energy functional. That is,
in (44) we have replaced the single pizel similarity constraints of (3) by patch
similarity constraints using the weighted Lo distance between patches, obtaining
a new family of neighbourhood filters. The use of other similarity measures is
discussed in Section 5.7. It is important to mention that we do take into account
the dependency of the distance measures on the solution u when deriving the
optimality conditions. As a result, the classical and also some iterative versions
of the NL-means filter are obtained as special cases of the proposed filter family
without needing a redefinition of the spatial weights w.

5.5 (Non-) Iterative and Steady-State Solutions

In Section 5.3 we explored the full family of filters that can be obtained from the
proposed GNDS model by varying the inner and outer scales in the patch simi-
larity computation. This entails the immediate extension of the filters presented
in Section 3 to work with image patches rather than with single pixel differences.
Let us consider the fixed point (49) that iteratively minimises the energy func-
tional (44). For 0 < a < 1 this process will converge to a stationary state due to
the data term dependency on the input image. Note that for &« = 0 we obtain a
generalised nonlocal M-smoothing process. In this case we can think, for instance,
of a novel NL-means filter with a steady-state solution. For @ = 1 we have a gen-
eralised nonlocal Bilateral filter that needs to be stopped after certain number of
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iterations before the image gets completely smoothed away. These issues will be
further discussed later on in the experimental section.

5.6 Extension to Multichannel Images

The extension of the GNDS model to multichannel images is straightforward.
Let f,u : Q@ — R? be the noisy image and the unknown noise-free image,
respectively, both with d channels. To obtain the multichannel counterpart of
the scalar GNDS model (44) we just need to redefine the patch distance (43) as

|d(u(P), £( Z Go(p) iy — iz (57)

where |- ||2 is the Euclidean norm. Computing the optimality conditions VE(u) =
0 we obtain a fixed point for every channel u™ (m =1,...,d), cf. (49):

1_aZgGD Drfm+&zgas s:r m

JjeJ JjeJ

1__@ z{:gGD D7ﬂ+(l§£:gGS Sr

JjeJ jeJ

Note that all channels are coupled via the tonal or photometric weights
2
9P = Gox Wy (|ap(a(Pi) £(P,))[*) (0). (59)
2
g% = 26y W (|ds(u(Pi),u(P;))[) (0). (60)

which avoids the formation of discontinuities at different locations for the different
image channels.

5.7 Extension to Other Distance Measures

The proposed energy functional (44) is very general in the sense that one could
choose any suitable distance measures dp, dg to impose similarity of particular
image characteristics. Once the distances have been chosen, the optimality con-
ditions VE(u) = 0 need to be derived in order to prescribe the corresponding
energy minimiser, for instance, via a fixed point or a gradient descent scheme.
In the proposed GNDS model we have used the weighted Ly norm (43) to measure
similarity between image patches. However, one can employ different distance
measures as well. For example, Kervrann and Boulanger [45] use

|d(u(73i), u(Pj))‘2 = vec(u(Pi) — u(Pj))T V;j_l VGC(U(PZ') — u(Pj)) , (61)

where V}; is a diagonal matrix whose entries are averaged local variances of the
image patches. Similarly, Goossens et al. [39] replace V;; by a local estimation of
the noise covariance matrix to filter images corrupted by correlated noise.
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Another example where the selection of the patch distance is driven by the noise
type corrupting the image data is due to Coupé et al. [25]. Based on the Bayesian
non-local means filter [46] and on the Speckle noise model introduced in [54], the
authors propose a non-local filter for ultrasound images that uses the so-called
Pearson distance for computing patch similarity:

2
(P, u(py) = 3 e~ i) (62)
> Uj+p

These and other measures of similarity can be utilised in the proposed functional
(44) with accordingly derived minimisation algorithms. In addition, as classically
done in variational methods, the choice of the data similarity constraint can be
driven by the statistical properties of the type of noise present, whereas the
smoothness term must reflect desirable properties of the solution. Therefore, the
issue of selecting appropriate patch distances for the data and smoothness terms
of the proposed GNDS model is still open. We will explore these issues in a future
work.

6 Experiments

6.1 Evaluating the NDS Model

The NDS framework was originally proposed by Mrazek et al. in [56]. In that
paper, preliminary experiments showed the smoothing properties of the model
under different parameterisations. In particular, the behaviour of the data and
smoothness constraints over neighbourhoods with varying size using robust and
non-robust penalisers was analysed. In [29] several minimisation strategies for
the NDS functional were compared, and in [64] the NDS model was juxtaposed
with several well known filters from the literature. For the sake of completeness,
we show some of the key results presented in those papers. We focus on two main
issues: (i) We show that the NDS model is able to outperform a wide range of
classical filters, and (77) we study the relations among its smoothing parameters.
As motivated from a statistical point of view [64], two well suited models for
filtering signals degraded by Gaussian and salt-and-pepper noise are

Ew) = (L=a) Y |u-fil+a > |u—u (63)

ieJ,jeBp (i) i€JjeBs(i)

and

Euy = (1—a) > |u—fil+a > |u—ul, (64)

ieJjeBp (i) i€ J,jeBs (i)

respectively, where By is the disk-shaped hard window function used as spa-
tial kernel with radius r. We apply these models to reconstruct the noisy signals

22



50 100 150 200 250 50 100 150 200 250

Figure 4: Signal denoising with the NDS functional. Original signals in solid
lines, noisy and denoised signals in dashed lines. Left Column: Noisy signal
perturbed by zero-mean Gaussian noise with o, = 40, ¢! = 27.30 (top) and its
denoised version ¢! = 13.83 (bottom). Right Column: Noisy signal perturbed by
40% of salt-and-pepper noise, ! = 48.04 (top) and its denoised version ¢! = 4.61
(bottom,).

depicted in Fig. 4 (top). All parameters were optimised and the best five parame-
terisation for each model are shown in Table 3. We also report on the performance
of the mean and median filters as representatives of M-smoothers (Section 3.1),
and classical regularisation filtering (Section 3.3) with four different penalisers.
Without exceptions, our designed models outperform all the well known filters
obtained as particular cases of the NDS framework.

As it is noticeable in Table 3 there exists a trade-off between the parameter a and
the radii of the spatial kernels. For example, it is possible to achieve similar filter-
ing results either by decreasing « or by increasing rg. On the one hand decreasing
a reduces the influence of the smoothness term, but on the other, increasing rg
considers contributions to the smoothness term from a larger neighbourhood. To
illustrate this effect let us consider the original image shown in Fig. 5(a) (top left)
and its degraded version with Gaussian noise of Fig. 5(a) (top right) that we re-
store employing the model (63). The radius rp of the spatial kernel in the data
term was fixed to 1. Fig. 5(b) displays the filtering results for a range of values
a and rg. Fig. 5(a)(bottom) shows examples where similar restoration quality is
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Table 3: Quantitative comparison of different filters. Left: Denoising results
of the signal perturbed with Gaussian noise shown in Fig. 4 (top left). Right:
Denoising results of the signal perturbed with salt-and-pepper noise shown in
Fig. 4 (top right). The best results are written in bold letters and plotted in
Fig. 4 (bottom).

Filter rp TS « o Filter rp TS « o
2 2 0.93 13.83 0 1 0.10 4.61
model (63) 2 3 087 13.83 model (64) 3 1 019 4.67
for Gaussian 2 4 082 1385 for impulse 3 2 0.06 4.80
noise 2 5 0.78 13.93 noise 4 1 021 490
3 2 090 14.00 2 1 024 491
mean 4 - 000 14.93 mean 6 - 0.00 23.95
median 4 - 0.00 14.90 median 6 - 0.00 6.98
Tikhonov 0 1 0.67 14.57 Tikhonov 0 1 090 23.22
TV 0 1 099 15.62 TV 0 1 099 3504
Perona-Malik 0 1 0.70 1447 Perona-Malik 0 1 090 23.21
Charbonnier 0 1 069 14.53 Charbonnier 0 1 090 23.21

x 10

fu-f]

Figure 5: Denoising properties of the functional (63). (a) Original image (top
left); noisy image perturbed with zero-mean Gaussian with o = 20, ¢! = 16.02
(top right); restored image with @ = 0.8, rg = 2, £* = 4.88 (bottom left); restored
image with o = 0.2, rg = 6, ¢ = 5.18 (bottom right). (b) ¢! distance between
the original and the denoised image for different values of o and rg.

achieved under different parameterisation. Moreover, slightly better results are
attained for « large and rg small, which implies less operations and more effi-
ciency. Additional experiments in [64] showed the proportional relation between
the weight o and the radius rp of the spatial window in the data term.
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Although the NDS framework allows nonlocal processing by extending the sup-
port of the spatial windows wp and wg, note in Table 3 that for the best denoising
results the radii rp and rg do not take very large values. As mentioned before,
the effective utilisation of larger neighbourhoods is hindered by the limited ha-
bility of single tonal differences to express local image structure and geometry.
In the next section we show how the proposed generalised NDS overcomes this
problem by employing more powerful ways of measuring tonal similarity.

6.2 Evaluating the Generalised NDS Model

6.2.1 Comparison of similarity measures

The filter (51) induces a novel similarity measure between two pixels u;, u; that
can be considered as an extended patch similarity measure

Seat(ui; uj) = Z Go(p) - V' (Z Go(q) - Witprq — uj+p+q|2> : (65)
q

Choosing p — 0 one obtains an isotropic similarity measure

Siso(uia uj) = (Z GU(Q) ’ |ui+q - uj+q‘2> ) (66)
q
while with 0 — 0, equation (65) becomes an anisotropic similarity measure

Sani(ui,ug) - ZG \If’ ]uzﬂ, uj+p]2). (67)

Considering the penaliser of Leclerc [50] and Perona/Malik [61]

U(s?) = 2\? (1 — exp (_28_;2)) (68)

with filter parameter X, (66) corresponds exactly to the similarity measure used
by Buades et al. [15] in their NL-means filter. A couple of recent works have
proposed the use of other robust penalisers as well [39, 62]. We test these three
measures on the noisy images displayed in Fig. 6. For each one of the 16 textures
we select 30 random pixels and compute their similarity to all other pixels in
the image. For every chosen pixel we take its best 20 matches (pixels with the
largest similarity) and check whether they belong to the same texture or not.
Table 4 shows the average number of matches within the same texture and the
overall performance of each similarity measure. In the case of Gaussian noise we
used the Leclerc penaliser and for salt-and-pepper noise the regularised L; norm
U(s?) = v/s2 + €2 The radii of the Gaussians were set to r, = r, = 4.
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Figure 6: Left: Original image with 16 textures, each one identified by its coor-
dinates in matrix notation T'(z,y), =,y = {1,2,3,4}. Middle: Added zero-mean
Gaussian noise with ¢ = 20. Right: Added 20% of salt-and-pepper noise.

Table 4: Quantitative comparison of the three similarity measures S;s,, Sqni and
Sezt induced from the GNDS filter (51). Se,; is more suitable for images degraded
with Gaussian noise, while S,,; is more robust under salt-and-pepper noise.

Gaussian noise (o = 20) salt-and-pepper noise (20%)
Siso | Sani | Seat Siso Sani | Seat
T(1,1) 3 4 13 1 3 2
T(1,2) 19 19 19 19 19 19
T(1,3) 20 16 20 10 19 13
T(1,4) 10 8 12 11 10 8
T(2,1) 20 18 20 20 20 18
T(2,2) 14 5 19 9 18 12
T(2,3) 20 13 20 1 11 2
T(2,4) 16 15 4 11 6
T(3,1) 12 20 4 16 7
T(3,2) 18 17 19 11 20 14
T(3.3) 14 7 20 3 12 3
T(3.4) 12 13 18 1 13 3
T(4,1) 10 8 14 8 10 8
T(4,2) 20 14 20 4 20 5
T(4,3) 9 7 11 1 ) 1
T(4.,4) 17 10 16 1 18 6
matches 234 170 276 108 225 127
% 73.1 53.1 86.2 33.7 70.3 39.7
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The results show that the extended similarity measure is more robust and per-
form best under Gaussian degradation. This is due to the fact that, via the outer
Gaussian weighting, the selection of similar pixels relies more strongly on the un-
derlying image structures. On the other hand, it performs poorly under impulse
noise. In this case the best choice is the anisotropic similarity measure, which
acts as a noise detector at every pixel location. The same holds for higher levels
of noise. Smoothing experiments will be presented in the following sections.

6.2.2 Comparison of several patch-based methods

We now evaluate the smoothing capabilities of the proposed GNDS model on
the set of test images Barbara, House, Lena, Peppers, Boats from Portilla et al.
[65] which already contain Gaussian noise. The proposed GNDS filter is run
iteratively via a gradient descent scheme. In all experiments we use the Leclerc
penaliser (68) with fixed contrast parameter A for successive iterations of the
filter, a search window of size 21 x 21 and circular patches of radius r, = 5. The
radius 7, of the outer patch weighting was chosen between 0 and 2 pixels. Table 5
juxtaposes several patch-based filters proposed in the literature. We employ the
peak signal-to-noise ratio (PSNR) as criterion for quality measure:

PSNR (dB) = 101log 2557 (69)
. ﬁ 2ies(0i —wi)? )

where o denotes the original noise free image and u the estimated denoised ver-
sion. The shown results for [15, 4, 37, 36] were taken from [13]. From those most
competitive methods related to the proposed GNDS filter: Brox et al. [12, 13]
run an iterative NL-means algorithm that uses the noisy image for averaging and
updates the weights from the estimated solution u of the previous iteration. A
similar strategy is due to Kervrann et al. [44, 45] who additionally adapt the
size of the averaging neighbourhood at each pixel location to better capture local
geometries. Azzabou et al. [5] developed a variational filter structurally similar
to [38] and [13] that also adapts the spatial extent of the local neighbourhoods.
Although the proposed GNDS filter does not utilise such powerful and sophisti-
cated adaptive strategies, it also allows for a robust and more coherent selection
of the similar pixels within the search window considered for averaging. This
is achieved by making use of the extended patch similarity measure defined in
(65). Note that in some cases the GNDS filter outperforms the more elaborated
methods, though it is still below the state-of-the-art results provided by Dabov
et al. [27].

It is worth mentioning that the nonlocal smoothness term of GNDS model (44)
reaches higher PSNRs than the nonlocal data term, which is more pronounced
for higher levels of noise. Interestingly, the combined use of both terms leads to
slightly better results than the smoothness term alone. We also run experiments
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Table 5: Denoising results of several patch-based filters on standard test im-
ages degraded with additive zero-mean Gaussian noise with standard deviation
{20,50}. The parameters (), 7, iterations) are displayed for the GNDS-D (data
term of (44)) and the GNDS-S (smoothness term of (44)) filters. GNDS, i.e.
the combination of both terms, yields better results than applying each of them
independently, outperforming most of the listed methods.

Gaussian noise (o = 20)

Filter \ PSNR (dB) Barbara House Lena Peppers Boats

22.18 22.11 22.13 22.19 22.17

Buades et al. [15] 30.31 32.49 31.78 29.62 29.34

Awate et al. [4] 30.14 32.59 31.79 29.75 29.54

Gilboa et al. [37] 30.20 32.55 31.95 30.28 29.89

Gilboa et al. [36] 29.43 32.17 31.39 30.04 29.53

Brox et al. [13] 30.33 32.74 32.08 30.04 29.69

Azzabou et al. [5] 30.46 32.34 32.12 30.67 29.94

Kervrann et al. [45] 30.37 32.90 32.64 30.59 30.12

Dabov et al. [27] 31.78 33.77 33.05 31.29 30.88

GNDS.D 30.62 32.66 31.98 30.21 29.78
(14,1.0,1) | (15,1.0,1) | (14,1.0,1) | (13,1.0,1) | (12,1.0,1)

GNDS.S 30.62 32.75 32.03 30.21 29.78
(14,1.0,1) | (11,0.8,2) | (10,0.8,2) | (13,1.0,1) | (12,1.0,1)

GNDS 30.64 32.78 32.05 30.22 29.80

Gaussian noise (o = 50)

Filter \ PSNR (dB) Barbara House Lena Peppers Boats

14.76 14.56 14.62 14.68 14.59

Kervrann et al. [45] 24.09 28.67 28.38 25.29 25.93

Dabov et al. [27] 27.17 29.37 28.86 26.41 26.64

GNDS.D 25.40 27.66 27.30 25.25 25.16
(23,1.0,2) | (24,1.0,2) | (24,1.0,2) | (24,1.0,2) | (23,1.0,2)

GNDS.S 25.75 28.38 27.77 25.64 25.58
(20,0.9,2) | (19,1.0,2) | (19,1.0,2) | (19,1.0,2) | (20,0.9,2)

GNDS 25.78 28.40 27.81 25.67 25.60

considering models such as (i) local data terms Y ., ¥ (Ju; — f;|*) with a non-
local smoothness term, and (ii) a nonlocal data term combined with semilocal
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Figure 7: Performance of the GNDS-D filter (see Table 5) on the test image
House degraded by Gaussian noise with standard deviation 20 (Left) and 50
(Right). The PSNR curves are displayed as functions of the time step size 7 and
the filter parameter A. The plots show that there exists an optimally global \*
for a chosen time step size. Considering all the experiments carried out, the best
results were obtained with 7 in the range [0.8,1.0].

smoothness terms >, ;i ¥ (|ui — u;]?), where the set N/(i) contains the 4
direct neighbours of pixel i. However, both models led to poorer results. This is
in concordance with the findings in [37, 36], where the proposed variational filters
perform better when a nonlocal regulariser is used and the data fidelity term is
disregarded.

As was mentioned above, the GNDS filter was implemented using a steepest
descent algorithm. We run the iterative scheme for different time-step size 7 =
0.1,0.2,...,1.0. Fig. 7 shows the performance of the GNDS-D filter applied to the
noisy test image House as a function of the time step 7 and the filter parameter
A. Similar curves are obtained with the GNDS-S filter. As noted from Table 5
the best denoising results are attained with 7 in the range [0.8, 1.0], in which case
the number of iterations needed to reach the highest PSNR ranges between 1 and
3.

Fig. 8 shows a visual comparison of the proposed GNDS filter with the two most
competitive methods [27, 45]. The absolute method noise (AMN) o — u| (x5)
between the noise free images o and the restored versions u are shown in Fig. 9. All
three approaches provide very good results, while the method of Dabov et al. [27]
gives the highest PSNRs. Although our GNDS approach does not outperform
these two methods in terms of PSNR, our results look much more pleasant and
natural than those from Kervrann et al. [45]. That filter tends to over-enhance
edges, creating staircasing artifacts that make the images look less natural, which
can be observed in Fig. 10. Another visible effect of the method of Kervrann et al.
is noticeable in the AMN images of Fig. 9. The black areas reveal that many
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edges remain untouched in the filtering process, i.e. no noise is removed at those
locations. Our GNDS results do not show any visible artifacts and almost no
loss of structures is perceived in the method noise images. These findings suggest
that PSNR is not a fully reliable measure for denoising capability and perceptual
quality altogether. Alternative ways of assessing these criteria are necessary, but
this goes beyond the scope of our paper.

Fig. 11 demonstrates the application of our GNDS filter to denoising colour im-
ages. The noisy Boy images were created adding zero-mean Gaussian noise in
every {R,G,B} channel independently. As it was indicated in Subsection 5.6 we
apply the filter (58) on every image channel using the so-called channel coupling
technique in order to avoid the formation of false colours and the dislocation of
edges. That is, the same tonal weights (59)—(60) are used in all channels. The
accurate localisation and restoration of edges can be observed in the zoomed
images of Fig. 12. This is especially visible in the transition between the Boy’s
cheek and the red collar. Our filter is able to restore gentle facial features and to
preserve small details such as the pullover’s zip.

Finally, Fig. 13 shows that our GNDS model can successfully remove impulse
noise as well. Compared to a semi-local median filter (over a 3 x 3 window), our
approach performs much better. We have used the regularised L; penaliser in
both the data term and the smoothness term with r, = r, = 2.

7 Conclusions

We have introduced a general nonlocal discrete variational framework for image
smoothing. It arises as a generalisation of the Nonlocal Data and Smoothness
(NDS) filtering approach of Mrazek et al. [56]. Although the NDS model allows
nonlocal interactions between pixels, these are effective only semi-locally. This is
caused by that fact that its model constraints just penalise single pixel differences
that cannot propagate reliable information about the local geometry too far away
from a chosen pixel. Therefore, we propose the Generalised NDS (GNDS) model
with data and smoothness terms penalising general dissimilarity mesures defined
on image patches. They allow us to incorporate structured pixel information
from truly nonlocal neighbourhoods in the smoothing process. We showed that
by using the weighted L, norm as distance measure the energy minimiser results
in a very robust and versatile neighbourhood filter that can be adjusted to restore
vector-valued images corrupted by Gaussian and impulse noise. With respect to
restoration quality our GNDS approach can outperform other related patch-based
methods and compares fairly well to the more advanced ones [27, 45].

Our discrete variational framework includes as special cases patch-based general-
isations of M-smoothers and bilateral filtering, as well as the NL-means filter of
Buades et al. [15]. Other related approaches due to Kervrann et al. [45], Bougleux
et al. [10] and Gilboa et al. [36, 37] could also be derived from our energy model by
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employing a different similarity measure and/or by redefining the spatial weight
functions that we use as search windows.

In this work we have mainly exploited the use of the weighted Ly norm to com-
pute patch distances. However, there is a rich opportunity for future work con-
cerning alternative similarity measures better suited for different types of noise
contamination as well as for other applications such as deblurring, inpainting,
super-resolution and segmentation.

A Appendix

A.1 GNDS Filter in Fixed-Point Form

The minimiser u of (44) necessarily satisfies

oF oF oF

81: =(1-a) auGiD“‘ auis =0 forallieJ. (70)
Using the distance function d},; ; := |dp(u(P;), f(Pj))|2 as in (43) we have for
the data term:

dEgp 0 2 a2
ouy, B Ouy, z;] Yo (dD;m') Wp (|x1 7] )
= S (By) o () w (J2 — )
pA D D;ij 0uk D;ij ? J
i,j€J
, 0
- Z ¥p (d%;m‘) Dun <Z Go(p)(titp — fj+p)2> Wp (|93i - :va2)
ijet P \p
=T Z Z Uy (dp—p ;) Gop) (ke = fivp)wp (lrip — 2;1°)
jeJ p
M Z Z G (p)¥h (d2D;k:—p,l—p) (ux — fi)wp (’f’”k*p - ml*PF)
leJ p
OFE /
(9quD = 2) GoxWp (dpy ;) (0)(u — f)wp (Joi — ;%) - (1)
jed

Similarly, with the distance function dg, ; := ‘ds(u(Pi),u(Pj>>‘2 as in (43) we
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have for the smoothness term:

0FEgs , 0
Duy, = Z; N95 (dé;m) 8_uk (d?@;z‘,j) ws (|$z - $j|2)
, 0
= ) s (di,y) o (Z Go(p)(Witp — Uj+p)2> ws (Jz; — ;)
i,j€J k p
= 23 N W (dypy) Golp)(we — ujpp)ws (Joa—y — z5]%)
jeJ p
#2370 W (A ay) Go ) (e — i) (—Luwss (Jos — iy )
i€ p
OF, ,
81:5 = 4) Gox Uy (diy ;) (0)(ux — uy)ws (|zx — 25)%) . (72)
jeJ

Plugging the partial derivatives (71)—(72) into (70) and employing the abbrevia-
tions (23)—(24) and (47)—(48) one obtains the fixed point form (49).
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(a) Barbara, PSNR = 22.18

»,

(j) PSNR = 30.64, GNDS (k) PSNR = 29.80, GNDS (1) PSNR = 32.05, GNDS

Figure 8: Comparison to state-of-the-art methods. Top Row: Test images
degraded by Gaussian noise with standard deviation 20. 2nd Row: Restored
images by Dabov et al. [27]. 3rd Row: Restored images by Kervrann et al. [45].
Bottom Row: Restored images by the proposed GNDS model (44).



(a) AMN for the restored Barbara, Boats and Lena by Dabov et al

(b) AMN for the restored Barbara, Boats and Lena by Kervrann et al. [45].

(¢) AMN for the restored Barbara, Boats and Lena by the proposed GNDS model (44).

Figure 9: Absolute method noise (AMN) |o — u| (x5) for the smoothing results
shown in Fig. 8 obtained by (a) Dabov et al. [27], (b) Kervrann et al. [45], and
(c) the proposed GNDS filter.
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(b)

(c) Restored images by Kervrann et al. [45].
v i

(d) Restored images by the proposed GNDS model (44).

Figure 10: Zoomed restored images from Fig. 8. All methods provide pleasant
visual results, although the method by,Kervrann et al. [45] also shows some
staircasing artifacts that make the images look less natural.



(a) Original Boy image (b) PSNR = 22.43 (c) PSNR = 16.85

N N

(d) PSNR = 38.61 (e) PSNR = 33.76 (f) PSNR = 29.70

Figure 11: GNDS filtering on colour images. Top Row: From left to right: Orig-
inal noise free image and noisy versions degraded by Gaussian noise with standard
deviation {20,40}. Bottom Row: From left to right: Slightly smoothed original
image and the corresponding restored images by the proposed GNDS filter.
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Figure 12: Zoomed images from Fig. 11. Gentle facial features are well restored,
and the edges are well localised thanks to the channel coupling.
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(c) PSNR = 20.17 (d) PSNR = 25.14

Figure 13: Filtering impulse noise. Top Left: Noise free image. Top Right:
Image degraded with 20% of salt-and-pepper noise. Bottom Left: Restored
image with a median filter. Bottom Right: Restored image with our GNDS
model.
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