
Int J Comput Vis (2011) 93: 201–225
DOI 10.1007/s11263-010-0398-7

Inference and Learning with Hierarchical Shape Models

Iasonas Kokkinos · Alan Yuille

Received: 19 October 2009 / Accepted: 29 September 2010 / Published online: 28 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this work we introduce a hierarchical represen-
tation for object detection. We represent an object in terms of
parts composed of contours corresponding to object bound-
aries and symmetry axes; these are in turn related to edge
and ridge features that are extracted from the image.

We propose a coarse-to-fine algorithm for efficient de-
tection which exploits the hierarchical nature of the model.
This provides a tractable framework to combine bottom-up
and top-down computation. We learn our models from train-
ing images where only the bounding box of the object is pro-
vided. We automate the decomposition of an object category
into parts and contours, and discriminatively learn the cost
function that drives the matching of the object to the image
using Multiple Instance Learning.

Using shape-based information, we obtain state-of-the-
art localization results on the UIUC and ETHZ datasets.

Keywords Inference · Learning · Hierarchy · Contours ·
Grouping · Deformable models · Shape · Parsing

1 Introduction

Object recognition has recently made major progresses us-
ing part-based models. These decompose the problem of de-
tection into the detection of simpler, individual parts which

I. Kokkinos (�)
Department of Applied Mathematics, Ecole Centrale Paris
and Equipe Galen, INRIA-Saclay, France
e-mail: iasonas.kokkinos@ecp.fr

A. Yuille
Department of Statistics and Computer Science, University
of California at Los Angeles, Los Angeles, USA
e-mail: yuille@stat.ucla.edu

are then combined to detect the whole object. This ap-
proach owes its success to its ability to cope with de-
formations, occlusions and variations in scale, while ex-
ploiting sparse image features for efficiency. However, it
is still not clear what a part is and what is the best way
of composing an object from its parts. During the last
decade, parts (or ‘visual words’) have been defined in terms
of image patches (Felzenszwalb and Huttenlocher 2005;
Moosmann et al. 2006; Shotton et al. 2006), descriptors
extracted around interest points (Agrawal and Roth 2002;
Fergus et al. 2003; Lowe 2004), edge contours (Fergus et
al. 2005; Shotton et al. 2005; Kokkinos et al. 2006) or re-
gions (Borenstein and Ullman 2002; Russell et al. 2006). In
our understanding, these structures are often not semanti-
cally meaningful and should be considered as equivalent to
‘letters’, instead of ‘words’; treating them as parts of objects
is to some extent unjustified. For example, modeling a horse
in terms of corners, blobs, or junctions deviates from what
we perceive as the parts of a horse, namely its torso, head,
neck, and feet. It is more natural to define object parts in
terms of—potentially recursive—compositions of such sim-
pler structures. Hierarchical representations should thus link
the objects with the image information extracted by front-
end processing via more abstract, intermediate structures. In
our models we use shape-based parts, which can correspond
to semantically meaningful structures such as wheels, han-
dles, or necks. These parts are built by composing several
contours extracted from the image.

Hierarchical representations can be supported on at least
three different grounds. First, they can expand the repre-
sentational power of current object models by allowing for
structure variation using And-Or graphs (Zhu and Mumford
2007) and by encoding complex dependencies among object
parts with context-sensitive relations (Jin and Geman 2006;
Zhu and Mumford 2007). Second, the sharing of parts

mailto:iasonas.kokkinos@ecp.fr
mailto:yuille@stat.ucla.edu

202 Int J Comput Vis (2011) 93: 201–225

Fig. 1 Object Parsing Task: Our goal is to compose objects using simple tokens (straight edge and ridge segments) extracted from the image. This
amounts to building a parse tree, that indicates how image tokens are composed to form objects

among several categories is feasible in a hierarchical set-
ting as demonstrated in Fidler et al. (2008) and can in the-
ory allow vision algorithms to deal with hundreds, or thou-
sands of object categories, with computation demands that
scale-up sublinearly in the number of categories. Third, hi-
erarchical models can deal with the problem of combining
bottom-up and top-down computation in a tractable man-
ner. The last point is our main claim in this paper. In our
earlier works (Tu et al. 2005; Kokkinos and Maragos 2009)
we have been using bottom-up ‘proposals’, such as the re-
sponse of a boundary or face detector, to drive the top-down
fitting of more complex probabilistic models. Here we use
instead a single model for both detection and validation; this
model is expressive enough to account for the whole object,
but thanks to its hierarchical nature can be simplified to de-
liver efficiently a small set of ‘proposals’. These proposals
are now part of a single, principled inference algorithm. In
the end, using a hierarchical representation allows us to deal
with an object having tens of parts in reasonable time.

Our contributions in this work are threefold: first, we
introduce a hierarchical object representation and a set of
grouping rules to recursively compose an object from sim-
pler image structures—a task we refer to as ‘parsing’. Sec-
ond, we present an efficient inference algorithm to perform
the parsing task. Third, we describe a method to learn a hi-
erarchical model from minimally annotated images.

Regarding our first contribution, in Sect. 3 we introduce
a hierarchical compositional representation for object cat-
egories. At the highest level of the hierarchy we have the
object and at lowest level the image, which is represented
by a sparse set of straight edge and ridge segments. We call
these structures ‘tokens’ to highlight their atomic nature.
Our model describes how an object can generate a set of to-
kens by recursively generating simpler structures. Each ob-
ject is seen as a small ‘grammar’, which can explain a part of
the image, while detecting an object can be phrased as ‘ob-
ject parsing’. During parsing we create increasingly com-
plex structures by composing simpler ones, starting from the

image tokens, as shown in Fig. 1. Apart from localizing an
object, we thereby also segment it, as we identify the im-
age structures that it consists of. In Sect. 4.1 we formally
describe parsing and present a simple bottom-up parsing al-
gorithm for composing an object with minimal cost.

Our second contribution addresses the problem of effi-
ciently finding good object parses. In Sect. 4.2 we describe
an inference algorithm that deals with the huge number of
candidate compositions. For this, we exploit the hierarchi-
cal representation to devise a coarse-to-fine detection algo-
rithm that was inspired by the Generalized A∗ algorithm
of Felzenszwalb and McAllester (2007). Our algorithm first
uses a simplified version of the representation for a quick
initial detection, and then refines the search at a few promis-
ing locations. This scheme integrates the bottom-up infor-
mation extracted from the image with the top-down guid-
ance of the object model, which results in a substantial
speedup in detection time.

Our third contribution, described in Sect. 5 consists in
learning an hierarchical model from training images where
only the bounding box of the object is known. We break this
task into three subproblems: initially we recover the object
contours by bringing the training images into registration,
using an automatically learned deformable model. Then, we
group contours into object parts by combining perceptual
grouping with Affinity Propagation. Finally, we learn the
parameters of the cost function that drives parsing using
Multiple Instance Learning. As demonstrated in Sect. 6, this
yields state-of-the-art shape-based detection results.

2 Previous Work

We first give a brief overview of the current state-of-the-art
on part-based models for object detection, and then focus on
research that is most closely related to our work on: (a) rep-
resentation, learning and inference with hierarchical and
compositional models, (b) efficient optimization for detec-
tion and (c) contour-based image and object representations.

Int J Comput Vis (2011) 93: 201–225 203

2.1 Part-Based Models

Based on the image structures used to represent parts most
approaches can be classified as interest point & descriptor-
based (Welling et al. 2000; Agrawal and Roth 2002; Fer-
gus et al. 2003; Csurka et al. 2004; Sivic et al. 2005; Lam-
pert et al. 2008), patch- or filter-based (Felzenszwalb and
Huttenlocher 2005; Crandall et al. 2005; Wu et al. 2007),
contour-based (Fergus et al. 2005; Shotton et al. 2005;
Kokkinos et al. 2006; Ferrari et al. 2006; Opelt et al. 2006a)
or region-based (Borenstein and Ullman 2002; Russell et
al. 2006; Todorovic and Ahuja 2006; Gu et al. 2009). The
constraints among the relative locations of parts are com-
monly expressed using graphical models, e.g. star graphs
(Fergus et al. 2005; Kokkinos et al. 2006; Wu et al. 2007;
Felzenszwalb et al. 2008), trees (Felzenszwalb and Hutten-
locher 2005), k-fans (Amit and Kong 1996; Crandall et al.
2005) or fully-connected graphs (Fergus et al. 2003). Other
works, for example the Implicit Shape Model (Leibe et al.
2004) or boosting-based approaches (Shotton et al. 2005;
Opelt et al. 2006a) include these constraints implicitly,
while ‘bag-of-words’ models discard location and form a
histogram of parts (Csurka et al. 2004; Sivic et al. 2005;
Lampert et al. 2008) or allow each model part to match sev-
eral image parts (Sudderth et al. 2005).

The works above involve a diverse set of techniques for
image and object representation, training and inference; for
lack of space, we now present at some further extent only
works to which our research is more closely related. Some
technical differences will be clarified during the presentation
of our approach in the following sections.

2.2 Grouping and Hierarchical Models

The syntactical/compositional approach to recognition has
its roots in the works of Fu (1974), while hierarchies also un-
derly the approach to recognition proposed by Marr (1982).
However, grouping-based approaches to recognition were
primarily applied to rigid objects (Grimson 1991) and were
hindered by the limited feature extraction and statistical
modeling tools available at the time. Therefore, with the
exception of research on recognition from binary shapes
(Siddiqi and Kimia 1995; Zhu and Yuille 1996; Keselman
and Dickinson 2001) or articulated person detection (Ioffe
and Forsyth 2001), the ideas of compositionality and gram-
mars had long been ignored. However recent influential
works such as (Tu et al. 2005; Zhu and Mumford 2007;
Jin and Geman 2006) and recognition systems such as
(Ahuja and Todorovic 2007; Fidler and Leonardis 2007)
which can simultaneously deal with multiple categories have
resulted in increased interest.

The work of Zhu and Mumford (2007), Porway et al.
(2008) aims at accurately modeling complex object cate-
gories by relying on And-Or graphs to account for structure

variation and by using context-sensitive relations among
parts. Learning extends the FRAME model (Zhu et al. 1998)
to include relations among parts and to deal with attributes
such as position, scale and orientation, while inference relies
on the bottom-up/top-down scheme developed in Tu et al.
(2005). There, discriminative techniques such as Adaboost
(Tu et al. 2005) or RANSAC (Han and Zhu 2005) provide
proposals, which are then refined by generative models in a
top-down manner. Instead, we use the same model to sug-
gest object locations during coarse-level search and for val-
idation at a finer level, in an integrated optimization algo-
rithm.

Jin and Geman (2006) use a perturbation of a context-free
model that incorporates context-sensitive relations among
parts through attribute functions. Their model involves dis-
crete variables that encode ‘part-of’ relationships at different
levels of the object hierarchy and they resort to greedy op-
timization to deal with the NP-hard problem emerging from
the context-sensitive relations. The authors argue that using
continuous attributes is hard in a Markov system; however
our inference scheme allows us to incorporate the continu-
ous variables of location and scale in our model.

Todorovic and Ahuja use segmentation for both learning
and detection (Todorovic and Ahuja 2006) and to exploit
the shared structures among similar categories (Ahuja and
Todorovic 2007; Todorovic and Ahuja 2008). During train-
ing, object models are discovered by computing the maxi-
mal common subtree from a set of hierarchical image seg-
mentations. During testing, the hierarchical segmentation of
a new image is matched to the learned tree, which allows
for the simultaneous detection and segmentation of objects.
This method deals with changes in scale, orientation and
multiple categories, but heavily relies on hierarchical seg-
mentation, while it still lacks a clear probabilistic interpre-
tation.

In the work of Fidler and Leonardis (2007), Fidler et al.
(2008) a hierarchical representation of objects is learned us-
ing edge-based information. For this a Gabor filterbank is
used to capture the image information at the lowest level,
and the intermediate layers are obtained by hierarchical
clustering. This leads to increasingly complex structures un-
til in the end forming the whole object. Still, this work does
not clearly optimize a criterion either during training or de-
tection.

Related work by Zhu et al. (2008a) gives a probabilis-
tic formulation for leaning a hierarchical representation by
learning probability models of substructures which are com-
posed together to form larger structures. This gives good
performance on detection tasks.

Finally, in the same way that Conditional Random Fields
(CRFs) have replaced Markov Random Fields in low-level
image labelling, recently discriminative training of high-
level models has gained ground, as it allows to ‘tune’ the

204 Int J Comput Vis (2011) 93: 201–225

model for the task at hand, e.g. parsing or classification.
Initially the work of Ramanan and Sminchisescu (2006)
used CRF training to increase the likelihood of the ground-
truth body poses under a graphical model. In Quattoni et
al. (2007) an algorithm was proposed to train CRFs with
hidden layers so as to maximize the likelihood of the class
labels. In the work of L. Zhu et al. algorithms developed
for language parsing, namely Max-Margin parsing (Taskar
et al. 2004) and structure perceptron (Collins 2002) were
used for body parsing (Zhu et al. 2008b) and deformable
model training (Zhu et al. 2008c) respectively. Finally, in
Felzenszwalb et al. (2008) latent SVMs were proposed for
training a star-graph model for detection, which as we de-
scribe in Sect. 5.3 is closely related to our Multiple Instance
Learning approach.

2.3 Efficient Optimization for Object Detection

Even though efficient detection algorithms exist for detec-
tion using global object models, e.g. (Viola and Jones 2001;
Dalal and Triggs 2005), the problem becomes harder when
part matching gets involved. The combinatorics of match-
ing have been extensively studied for rigid objects (Grim-
son 1991), while (Moreels et al. 2004) used A∗ for detect-
ing object instances. In Lampert et al. (2008) branch-and-
bound is used for efficient detection with a bag-of-words
model, while (Lempitsky et al. 2008) combine Graph-Cuts
with branch-and-bound for object segmentation.

An efficient algorithm for detection of a single closed
contour is presented in Felzenszwalb and Schwartz (2007).
In Felzenszwalb and McAllester (2007) the detection of geo-
metric structures, such as salient open and convex curves is
formulated as a parsing problem. In our work we extend this
approach to deal with high-level structures, i.e. objects with
many parts and of potentially different types.

In the work of Chen et al. (2007) a pruned version of dy-
namic programming is used to efficiently detect deformable
objects. This involves a rough initial detection which is then
refined in a top-down manner. At a high-level this is simi-
lar to our method, but our work has been based on the A∗
algorithm which has guaranteed optimality properties. In
the more recent work of Parikh et al. (2009) a Steiner tree
formulation is introduced for learning and performing infer-
ence on an hierarchical model. The authors use approximate
optimization to identify the optimal manner of putting to-
gether low- and intermediate- level structures within images
of an object category. In our work we focus on the more lim-
ited problem of performing inference with a predetermined
hierarchical model, which allows us to perform exact opti-
mization of a cost function defined on a fixed tree-structured
graph.

2.4 Contour-Based Representations

Edges are largely invariant to intra-class appearance varia-
tions and were therefore used early on for object recogni-
tion (Russell et al. 1979; Lowe 1984; Grimson 1991). How-
ever, boundary detection is still an open problem, due to
occlusions, noise, etc., while describing and matching con-
tours is challenging. Therefore starting from (Lowe 2004;
Schmid and Mohr 1997) most recent works use point-based
image representations, which are easier to extract, model,
and match.

A revival of interest in contour-based representations has
been observed lately however, due to the increasingly bet-
ter performance of boundary detection methods on ground
truth datasets (Martin et al. 2004), and the understanding
that contours are better suited to capture shape information
than points. The technique that is currently most commonly
used for object detection using contours is that of form-
ing codebooks (Shotton et al. 2005; Kokkinos et al. 2006;
Opelt et al. 2006b; Ferrari et al. 2006); there ‘contour tem-
plates’ are formed during training by clustering, and dur-
ing testing the observed contours are matched to these tem-
plates. However, as observed in Kokkinos et al. (2006),
Kokkinos and Yuille (2008), Jiang et al. (2009) this lets
the contour segmentation problem creep in the model rep-
resentation: this results in several different codebook entries
encoding essentially the same structure. Therefore, in this
work we cater for the fragmentation problem by developing
a simple and efficient algorithm for matching broken curves,
detailed in Sect. 3.2 and Appendix A.

Another approach that relies on contours for detection
is that of Zhu et al. (2008d). There long, smooth contours
are put together by phrasing their grouping into objects as
an optimization problem that involves the context of each
contour within the object. This context-sensitive approach
avoids the problems of forming a codebook and is shown to
give results of high precision, but involves solving a compu-
tationally demanding optimization problem. Our approach
is context-free, which facilitates our efficient detection al-
gorithm.

3 Hierarchical Object Representation

In this section we introduce our hierarchical representation
for objects. At the highest level of our object hierarchy lies
the whole object. One level below are the object parts; these
should intuitively correspond to semantically meaningful
parts, such as fingers, wheels, or legs. We use the term ‘ob-
ject part’ for structures at this level in the hierarchy, while
‘part’ on its own will have the broader meaning used in vi-
sion. The object parts are decomposed into (potentially) long
and curved contours. At the lowest level we have simple

Int J Comput Vis (2011) 93: 201–225 205

image structures, namely straight edge and ridge segments
(‘tokens’).

We phrase object detection as the interpretation of some
of the image tokens in terms of an object; in quantifying the
quality of this interpretation we start in this section from a
probabilistic point, and describe what the interpretation cost
would be under a suitable generative model. In Sect. 5.3
however we will see how to ‘tune’ this cost in a discrimi-
native setting, so as to optimize detection performance.

3.1 Object Model

Our object representation consists of a graph structure with
nodes i ∈ V and edges (i, j) ∈ E; the nodes correspond to
the structures in the hierarchy and the edges to the part-
subpart relations. Each node i lies at a certain level of the
hierarchy, and is connected to a single parent node pa(i) at
the level above, and several children nodes ch(i) at the level
below. By ch∗(i) we denote all descendants of node i. The
graph has three levels—root node Vr , object parts Vp , and
object contours Vc . The parent of the root node is empty,
while the children of the contour nodes are the edge and
ridge tokens; these are our observations I.

Each node i is associated with a pose, namely a continu-
ous, vector-valued state variable si = (xi , logσi) describing
its position x = (x1, x2) and scale σ . By position we mean
the coordinates of the part’s center, while scale is understood
as the difference in size between the observed and the corre-
sponding, ‘nominal’ structure. The probability of an object
configuration S = (s1, . . . , sN) can be expressed by a Bayes
net P(S) = ∏

i∈V P (si |spa(i)), or by a more general expo-
nential form:

P(S) = 1

Z(λ)
exp

(

−
∑

i∈V

φi(si , spa(i))

)

,

φi(s1, s2) = −λi logP(s1|s2),

(1)

where for a Bayes net λi = 1, ∀i and Z = 1.
The P(si |spa(i)) terms describe the distribution of a

child’s pose given the pose of its parent. The relative pose
of the child is estimated as si|pa(i) = si − spa(i). We use a
Normal distribution N(μi,pa(i),�i,pa(i)) for the relative lo-
cation and another normal distribution N(0, .1) for the scale
coordinates, allowing for moderate relative scale changes.1

1Note that by ‘scale’ of a part we mean the ratio of the part’s size
(e.g. the radius of a disk) to the part’s nominal size in the object tem-
plate. The scale coordinate in the relative pose equals log(σi/σpa(i));
in words, we first measure separately how larger the parent and the
child are from their nominal scales (σi and σpa(i), respectively), and
constrain the ratio of these scales to be close to one. The prior of the
pose tolerates moderate changes in relative scale; large scale changes
can be accommodated for by modifying the root node’s scale.

At the lowest level of the hierarchy the pose of an object
contour si is related to a group of image tokens hi using an
observation potential ψi(Ihi , si), detailed in Sect. 3.2, that
compares the object contours to the image contours. This
provides us with the data-fidelity term for our model, in-
volving the poses of the contour nodes Vc, the image tokens
I, and the assignment variables H = (hi):

P(I|S,H) = 1

Z
exp

(
∑

i∈Vc

−ψi(Ihi , si)

)

. (2)

We allow for missing parts at any level of the hierar-
chy, using a binary variable yi that indicates if node i is
observed. When a node is missing, i.e. yi = 0 we replace
every summand in (1, 2) that involves either node i or a
descendant j ∈ ch∗(i) with a ‘missing’ potential function
φ0

j = − logP(yj = 0) that ‘penalizes’ the missing node j .
So conditioned on the parent being missing, all descendants
are forced to be missing; if the parent is present the proba-
bilities of missing its children are considered independent.

Combining all terms we write:

P(I,S,H,y)

= P(I|S,H,y)P (S,H,y) ∝ exp(−C(I,S,H,y))

C(I,S,H,y)

=
∑

i∈{Vp,Vc}

(
yiφi(si , spa(i)) + (1 − yi)φ

0
i

)

+
∑

i∈Vc

yiψi(Ihi , si) (3)

=
∑

i∈Vp

yiφi(si , sVr) + (1 − yi)
∑

j∈{i,ch∗(i)}
φ0

j

+
∑

i∈Vp

yi

∑

j∈ch(i)

yj

[
φj (sj , si) + ψj (Ihj , sj)

]

+ (1 − yj)φ
0
j . (4)

We note that the first term in (3) would be identical to (1),
if we set yi = 1,∀i, i.e. if we consider all parts as being
present. Now if part i is missing, yi will equal zero, so in-
stead we pay the cost φ0

i of missing part i. Using the latent
variable vector y thus allows us to compactly incorporate
missing parts inside our cost function. The second term in
(3) corresponds to the data-fidelity term in (2).

The expression in (4) is a rewrite of (3) which under-
lines that the cost can be computed recursively on the tree-
structured graph. In specific, it breaks up the parent-child
relationships into root-part and part-contour groups. If an
object part i is missing the 1 − yi factor enforces penalties
for missing i as well as all of its descendants; if a contour j

is missing the 1 − yj factor penalizes it by φ0
j .

206 Int J Comput Vis (2011) 93: 201–225

In the rest of the paper we will be dealing with this
cost function. In specific, during inference (Sect. 4) our un-
knowns are the pose −S, assignment −H and missing part
−y variables and our objective is to minimize (3) with re-
spect to them. Note that due to the independence assump-
tions we made when formulating our model the cost func-
tion is decomposed into simpler terms that can be optimized
separately. This underlies our inference algorithm.

During training (Sect. 5), we use data that contain only
the bounding box of the object to learn our hierarchical rep-
resentation. This includes, first, the structure of the model,
namely its contours and their grouping into object parts.
Second, the μi,pa(i),

∑
i,pa(i) parameters involved in the

parent-child relationships; these are estimated using max-
imum likelihood from registration information (Sect. 5.1).
Third, the λi parameters related to the φ potentials in (3). In
specific, note that the binary potentials in (1) are obtained
as the product of P(si |spa(i)) with a parameter λi which can
vary across i, namely across different parent-child relation-
ships. Therefore, the distributions used here constrain only
the form of our energy function (for instance, it is quadratic
in log si − log spai

) while its exact expression is obtained
after learning the λi parameters (Sect. 5.3). Moreover, we
also learn the missing cost potentials φ0

i used in (3), and the
parameters of the observation potentials ψi described in the
following subsection. All of these quantities are estimated
discriminatively as described in Sect. 5.3.

We introduce our representation as a graphical model, but
we can also think of it as a simple probabilistic grammar:
the production rules start at the root node and generate the
object parts, then the object contours, and finally the edge
and ridge tokens. All production rules are probabilistic and
involve continuous attributes. The missing part variables al-
low us to choose among observing or not a part, thereby
implementing a simple version of the ‘OR-ing’ advocated in
Zhu and Mumford (2007). This could be extended to a mix-
ture distribution on parts, (e.g. a chair having 4 feet versus
a chair with wheels), but we leave this for future research.
Structures at a certain layer of the hierarchy can only be built
from structures at the layer below, so there can be e.g. no
infinite recursion as is the case for language grammars. Fi-
nally, the grammar is context-free, as we assume indepen-
dence among the subparts given the part at the layer above.
The last three points indicate that we are exploiting only part
of the grammatical formalism’s potential; still, we present
state-of-the-art results on the image categories we experi-
ment with.

3.2 Image-to-Object Contour Matching

We now describe how we relate the nodes at the lowest level
of the hierarchy (object contours) to the image tokens via
the observation potential term in (2). A design choice in our

Fig. 2 Contour fragmentation problem: the model arc in (a) has to
match the fragmented observations in (b) and (c)

model is that we allow object contours to be long and corre-
spond to large groups of edge or ridge points (edgels). Apart
from higher discriminative power, this also deals with the
contour fragmentation problem.

In specific, the grouping of edgels into edge tokens is dif-
ficult and ambiguous. Suppose that we want an object con-
tour to represent the wheel of a car, shown on Fig. 2(a). As
shown in Fig. 2(b) (c), the low-level grouping of edgels can
give different edge tokens on relatively similar images.

For this we propose a two-step approach: first we form
groups of edge and ridge contours, starting from Lindeberg’s
primal sketch (Lindeberg 1998) (details can be found in Ap-
pendix B). We then match these groups efficiently to the
(long) object contours. The first step bypasses contour frag-
mentation by regrouping the image tokens into longer con-
tours. This allows us to have long contours in our object
representation, instead of forming codebooks of contours as
e.g. in Shotton et al. (2005), Kokkinos et al. (2006), Opelt et
al. (2006b), Ferrari et al. (2006).

A crucial problem is to match these groupings with the
model curves. We want to compare contours efficiently and
in a way that can deal with missing parts, small deformations
and changes in orientation. For this we now build a sim-
ilarity criterion that accommodates these kinds of variation
and can also be optimized efficiently. We describe object and
image contours using their tangent function θ(s), parameter-
ized in terms of the contour’s arc-length, s. A model contour
θM and an observed contour θO can then be registered using
three parameters: rotation by c degrees amounts to adding a
constant c to the tangent function, scaling amounts to divid-
ing the arc-length by α, while adding/subtracting τ to the
arc-length of one curve registers the two curves to reduce
the length of missing parts/protrusions.

The scaling and offsetting is applied to the observed
curve θO ; the support of the transformed function depends
on these parameters, and will be henceforth called SO , tem-
porarily assuming fixed values for α, τ ; the support of the
model curve is denoted by SM . The intersection of the sup-
ports of the two curves is denoted by Sc = SO ∩ SM , while
their set-difference is denoted by Sd = (SO ∪ SM) \ Sc. Our

Int J Comput Vis (2011) 93: 201–225 207

matching cost for two curves writes:

EθO,θM
(α, τ, c) =

∫

s∈Sc

(

γ1

[

θO

(
s

α
+ τ

)

− θM(s) + c

]2

+γ2c
2
)

ds + γ3|Sd |. (5)

The first term is the square norm between the observed and
model angles, and penalizes differences in the tangent an-
gle of the registered curves on their common domain; the
term γ2c

2 acts as a penalty on wide rotations; and |S| de-
notes the length of S, so γ3|Sd | equally penalizes protrusions
and missing curve parts. We emphasize that in Sect. 5.3 we
discriminatively estimate the degrees of flexibility γ1, γ2, γ3

separately for each contour.
We evaluate the similarity of two contours θO, θM as:

E∗
θO,θM

= min
α,τ,c

EθO,θM
(α, τ, c). (6)

As detailed in Appendix A, since our image contours are
formed by grouping piecewise straight edge segments we
can evaluate the quantity in (5) in constant time, instead of
linear in the length of the contours. This allows us to perform
the optimization in (6) over α, τ using brute force search,
while the minimum over c is obtained analytically.

Putting things together, consider that we want to find
matches for the model contour i. Matching a group of im-
age edges to the model contour i amounts to determining
that contour’s assignment variables hi . Each group hi yields
a different angle function θO , denoted as θhi

. As an exam-
ple, if hi groups tokens k and m, of lengths lk and lm, angles
θk, θm and with in-between gap g, we would have

θhi
(s) =

⎧
⎨

⎩

θk 0 ≤ s ≤ lk
θm lk + g ≤ s ≤ lk + lm + g

undefined elsewhere.
(7)

Once we form the θhi
function we can efficiently find

the α, τ, c variables that minimize EθO,θM
(α, τ, c), using the

technique described in Appendix A. From the optimal value
of α, τ, c in (5) we obtain the observation potential for the
model contour i in (3):

ψi(Ihi , s∗
i) = Eθhi

,θi
= min

α,τ,c
E(α, τ, c). (8)

For a certain assignment hi the pose s∗
i is obtained by setting

the scale of the node equal to the estimated α and its location
equal to the center of the model arc, estimated numerically
based on the α, τ parameters.

A caveat of this is that we choose a single α for each com-
bination of an image group with an object contour namely
the one that minimizes the matching cost. It may be better to
have a high matching cost if it gets balanced with an agree-
ment with the overall pose of the object. We therefore per-
form separate searches in different ranges of α, and perform

separate detections for each such range. In specific for an ob-
ject lying at scale 1 we use as search range α ∈ {.7,1,1.3}.
For different object scales we scale appropriately the range
of α’s.

The main advantage of this contour-based approach is
that on the one hand we have continuous models for con-
tours, represented as 1D functions of arc-length, and at the
same time we can work with a sparse image representation.
Our model can thus capture a large part of the object bound-
aries, while working with a small set of image structures.

4 Inference: Efficient Object Parsing

During detection we find the set of tokens and part poses
that minimize the cost function in (3). Our object repre-
sentation is a tree-structured graphical model, so we could
use a message-passing algorithm such as Max-Product for
this. However, the data likelihood terms are multi-modal and
cannot be approximated with a single Gaussian. Performing
message-passing would require either discretization, whose
complexity scales in the best case linearly with the size of
the image (Felzenszwalb and Huttenlocher 2005) or particle
filtering (Sudderth et al. 2003) which would however require
a huge number of particles if no initialization is provided.

We propose to exploit two aspects of our representation
to perform inference more efficiently. First, in Sect. 4.1, we
describe how to exploit its compositional nature to build up
the whole object from a small set of sparse image tokens. We
thus ignore the vast portion of the image where no tokens are
present. Second, in Sect. 4.2 we exploit the hierarchy in our
model to perform detection in a coarse-to-fine manner: we
use our model to quickly identify a few promising areas, to
which more computational resources are then devoted in a
top-down/bottom-up computation setting inspired from the
Generalized A∗ parsing of Felzenszwalb et al. (2008).

4.1 Bottom-up Object Parsing

4.1.1 Recursive Structure Instantiation

Our approach to inference exploits the sparse, edge- and
ridge- based representation of the image. Starting from these
elementary tokens we aim at building the whole object by
recursively composing its intermediate structures.

To formalize this, we describe a structure j at a certain
level in terms of its pose and its constituent parts:

Sj = (sj ,P 1, . . . P N). (9)

Sj is the description of the structure, sj is its pose, described
in Sect. 3.1 and P 1 . . . P N are the descriptions of the chil-
dren; if a child is missing, its description is empty, P = ().

208 Int J Comput Vis (2011) 93: 201–225

Otherwise it contains in turn the subpart’s own pose, sub-
parts, and so on. At the lowest level, a contour is described
by its pose and the indexes of the tokens assigned to it. For
example the description of an object with two parts, with the
first having two and the second having one contour would
have this LISP-like form:

SVr = (sVr , (sVp,1 , (sVc,1 ,h1), (sVc,2 ,h2)),

(sVp,2 , (sVc,3 ,h3))),

where sν is the pose of a structure, r,p, c stand for root,
object part, and contour respectively, and hi is the set of
image tokens assigned to contour i. We call a set of values of
the pose/assignment/missing part variables an ‘instantiation’
of the structure. An instantiation Sj of a structure j comes at
a certain cost: for an object structure this will be the cost in
(3), while for intermediate-level structures this will be their
contribution to the overall cost.

Note that the cost is additive and defined on a tree struc-
ture, as can be seen from (4). We can therefore define it using
the following recursion:

C(Sj) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
i∈{j,ch∗(j)} ψ0

i , if Sj = ()

ψj (Ihj , sj), if j ∈ Vc∑
i∈ch(j):P i 	=() φi(si , sj)

+ ∑
i∈ch(j) C(P i), else.

In words, if a structure is missing, Sj = (), its cost is equal
to the cost of missing the structure and all of its descendants.
Otherwise, if it is a contour, its cost is equal to its match-
ing cost with the tokens assigned to it. And if it is a higher
level structure, its cost is the sum of the spatial consistency
cost SC(Sj) = ∑

i∈ch(j),P i 	=() φi(si , sj) between the struc-
ture and its children and the recursively defined costs of its
parts. Missing parts do not have a spatial consistency cost,
and are therefore excluded from the summation for SC.

The goal of inference is to find low-cost instantiations
for the whole object (‘goal’ structure). We refer to an in-
stantiation of the goal structure as a parse for the object,
namely a relation between structures extracted from the im-
age and the object parts and subparts. There is a huge num-
ber of instantiations, corresponding to different assignments
of image tokens to contours, poses of object parts, or missing
parts, while our goal is to efficiently explore the small subset
of these that has low cost. In this subsection we phrase the
computation of instantiations as a ‘bottom-up’ algorithm; in
the next subsection we describe how this algorithm can be
sped up using ‘top-down’ guidance.

At iteration 1, we estimate the matching cost of each
group of image tokens to each object contour. If the cost
is below the penalty paid for missing the contour, we instan-
tiate the contour with its pose estimate and the edge tokens.
Otherwise it is cheaper to consider the contour as missing.

At iteration k + 1 we instantiate structures lying at level
k + 1 of the hierarchy. The previous iteration provides pos-
sible instantiations Sk,i = {(), s1, . . . , sNk,i

, }, i = 1 . . . |Vk|,
for each part i at level k. Including the empty element al-
lows for missing parts. A structure j can instantiate its N

parts from Sk,1 . . . Sk,N :

Sj = (sj ,P 1, . . . ,P N), P 1 ∈ Sk,1, . . . P
N ∈ Sk,N (10)

and its cost is estimated recursively in terms of the part costs.
The location is set to the value that minimizes the spatial
consistency cost, SC(Sj) given the observed children poses:

xj =
(∑

i:P i 	=()

�−1
i,j

)−1 ∑

i:P i 	=()

�−1
i,j (xi − μi,j), (11)

and the log-scale coordinate is set equal to the mean of the
part coordinates.

4.1.2 Ordering of Compositions

We now propose an algorithm to deal with the large number
of candidate compositions. It is also useful in formulating a
‘coarsening’ of the parsing problem in Sect. 4.2.

The main idea is to put parts together ‘one at a time’:
Consider a structure S with N parts S = (s,P1, . . . ,PN).
Initially we set Pi = ∗,∀i, where ∗ is a special ‘dummy’,
non-yet instantiated part. This means that there are initially
no state variables assigned to the nodes, and is not the same
as having a missing part. We gradually build structures by

applying composition rules of the form: (S, C)
ri→ S′, where

C ∈ Sk,i is the new constituent, attached to part i of S; ri is
the rule used to instantiate part i, and is applicable to S only
if its i-th part is not-yet instantiated. E.g. for i = 2 we would
have S = (s, S1,∗, S3) and S′ = (s′, S1, C, S3).

These rules are similar to the Greibach Normal Form
(Hopcroft and Ullman 2006) where production rules decom-
pose a nonterminal into a terminal and a nonterminal. Here
we compose a structure of layer k + 1 using a structure of
layer k + 1 and a structure of layer k.

The cost of the structure is updated based on the cost of
C and the change in the spatial-consistency cost:

C(S′) = C(S) + C(C) + SC(S′) − SC(S). (12)

Initially, when S = (∗, . . . ,∗),C(S) = 0. Note that C ∈ Sk,i

means C can also be empty as () ∈ Sk,i . This amounts to
missing the i-th part; in that case SC(S′) = SC(S) and the
cost of S′ is increased by the cost of missing its part.

This way of composing structures introduces a partial
ordering � among them, with P i � P j if P j has all the
parts of P i ; the ordering is partial as two structures are in-
comparable if e.g. each has a part that the other does not.

Int J Comput Vis (2011) 93: 201–225 209

Fig. 3 Hasse diagram for a 3-part structure: structures with more con-
stituents are closer to the top. The binary vector inside the box indicates
which parts have been found

This ordering can be visualized with a Hasse diagram (Birk-
hoff 1967), as shown in Fig. 3 for a 3-part structure. In
this diagram boxes correspond to structures, and when two
structures are connected the one lying higher has more el-
ements than the one below it. Gradually building up struc-
tures amounts to following a path that starts from the mini-
mum element and gradually goes to its maximum.

The number of paths that can be followed equals
∏N

i=1 |Sk,i |, where N is the number of the structure parts,
and |Sk,i | the cardinality of the candidate subparts. We deal
with this potentially huge number with an algorithm de-
scribed by the following Matlab pseudocode:

function cmp = Compose(parts,CostMaxPart,CostStructure)
cmp = []; % compositions
for i = 1:length(parts),

% compose old structures with i-th part
cmp_new = Compose(cmp,parts(i));
% upgrade i-th part (parts 1:i-1 are missing)
upgraded_part = Upgrade(parts(i));
cost_up = sum(CostPart(1:i-1));
upgraded_part.cost = upgraded_part.cost + cost_up;
% penalize missing i-th part in old structures
cmp.cost = cmp.cost + CostPart(i);
cmp = [cmp,cmp_new,upgraded_part];
below = find(cmp.cost < CostStructure);
cmp = cmp(below);
cmp = nonminimum_suppress(cmp);

end

Before each iteration i the structures formed so far
(‘cmp’) have only parts 1 . . . i − 1 instantiated, while parts
i . . .N are in the ‘dummy’, non-instantiated state. At the
i-th iteration, we combine these with structures that can cor-
respond to their i-th part (‘parts(i)’). Then we allow each
part to directly form a structure at the higher level (Upgrade
function); but this implies that all of the parts 1 . . . i − 1 will
be missing, so we penalize missing them. We also keep the
old structures in our pool of structures, but augment their
cost to account for missing part i.

We finally merge the upgraded parts with the composi-
tions and then compare the composition costs to the cost of
missing the whole structure. Those that have higher cost are
rejected: their cost can only increase by the further applica-
tion of rules, so it will be cheaper to treat the whole struc-
ture as missing instead. We order parts so that the ones with
higher missing cost come first. This quickly rules out weak
compositions that do not include them.

Finally we keep only the cheapest composition within
a small neighborhood (nonminimum suppression), to avoid
dealing with multiple candidates with higher costs. These
two steps can drastically reduce the number of utilized com-
positions. In the next subsection we show how to further
limit their number using top-down information.

4.1.3 Caveats

We mention two caveats of our method. First, we assume
that for a given set of subparts, the pose of the part can
only take one value, the one for which the probability of its
subparts is maximized. This ignores all other possible part
poses, which could potentially lead to an overall lower cost.
This would be the case if a different pose estimate turns out
to be in better accord with its own parent’s pose. We take
this shortcut as it avoids exploring all possible locations for
the pose of a part. In practice, the provided poses estimates
look reasonable. Further, we expect that during training we
can account for the systematically larger spatial consistency
costs that are potentially introduced by this process.

Second, when performing suppression we ignore some
of the alternative structures which have high cost, but could
potentially lead to cheaper overall compositions based on
their better spatial configuration. This becomes prominent
if a large suppression neighborhood is used, but is negligi-
ble for a small neighborhood. In specific, the difference in
the location cost is a quadratic function in the difference be-
tween the original coordinates and the ones resulting from
suppression - therefore for smaller neighborhoods this cost
becomes negligible. As we describe in Sect. 4.2.4, we keep
track of the suppressed nodes so that we initially perform
suppression at a large scale, but then reexamine at a smaller
suppression scale the interesting image regions.

4.2 Hierarchical Object Parsing

The inference scheme we have described so far is entirely
bottom-up, i.e. forming first all low-level structures and then
using them to assemble higher-level ones. This however can
be ‘myopic’, as it forms numerous compositions of a single
object part, before checking if they can be used to build the
whole object. For example if we cannot form the trunk and
the cabin of a car somewhere in the image, we should quit
forming compositions of the engine part there.

Our strategy for dealing with this consists in first per-
forming a quick detection of the object by composing only
roughly certain layers of the hierarchy. We then use these
results to guide detection at a finer level. The first step
quickly rules out a big portion of the image, and helps
devote resources to promising areas. This augments the
‘bottom-up’ computation with ‘top-down’ guidance. Recent
advances in A∗ Lightest Derivation (Parsing) (Felzenszwalb

210 Int J Comput Vis (2011) 93: 201–225

Fig. 4 A∗ combines the cost-so-far (dark line) with a heuristic esti-
mate (dashed line) of the cost-to-go (green line)

and McAllester 2007) provide us with the tools to formalize
this scheme.

After briefly introducing A∗ in Sect. 4.2.1 and its adapta-
tion to parsing in Sect. 4.2.2, we describe how we apply A∗
to object parsing in Sects. 4.2.3, 4.2.4. Our detection method
was initially based on a priority queue implementation of A∗
parsing that we describe in Sect. 4.2.2, but we have switched
to the simpler coarse-to-fine scheme described in Sect. 4.2.4.

4.2.1 Search: Dijkstra’s Algorithm vs. A∗

Consider an agent who wants to move from the start of the
maze of Fig. 4 to the exit using the path of shortest length,
say L. We can use Dijkstra’s algorithm until the distance
from the start to the exit is found and then get the optimal
path by backtracking. This algorithm explores all states ν

with cost C(ν) ≤ L.
The priority by which states are explored in Dijkstra’s al-

gorithm is equal to their distance from the start, or the ‘cost-
so-far’ traveled by the agent. A∗ (Pearl 1984; Russell and
Norvig 2003) is a search algorithm that instead combines
the ‘cost so far’ with an easily computable estimate of the
‘cost to go’, called a heuristic. The priority by which state ν

is explored is now equal to C(ν) + h(ν), where C is the dis-
tance from the start and h is the heuristic. When this estimate
is a lower bound of the cost to go, it is called an admissible
heuristic. A lower bound can be obtained by relaxing some
of the problem constraints, which is called problem abstrac-
tion. This could be for example the Manhattan distance, as
it ignores the walls of the maze, or the Euclidean distance
which also allows the agent to move diagonally.

A∗ is guaranteed to lead to the optimal solution if it uses
admissible heuristics; further it finds it by exploring only
those states ν for which C(ν) + h(ν) ≤ L. If h(ν) is a tight
lower bound these can be substantially fewer than those ex-
plored by Dijkstra’s method. This reduction in the number
of explored nodes comes at the cost of computing h.

As the lower bounds computed by problem abstractions
can be loose, another option is to use instead expected costs.
This can speed up A∗ but results in non-admissible heuris-
tics, which can lead to suboptimal solutions (Pearl 1984).

In summary A∗ keeps search focused towards the goal,
by favoring partial solutions that seem to be getting closer
to the goal. This is intuitively similar to the saying ‘keep
your feet on the ground and your eyes on the stars’. We do
not only want to have a good partial solution; we also want
it to lead us to the full solution with low cost.

4.2.2 Parsing: KLD vs. Generalized A∗

To describe A∗ parsing we use an analogy between search
and parsing. In parsing our ‘exit state’ is a ‘goal’ structure,
i.e. a structure at the highest level of the hierarchy; and the
‘path length’ we are minimizing is the cost of the structure’s
instantiation. To get to our goal structure we need to first in-
stantiate structures lying in intermediate levels of the hierar-
chy; similar to passing through intermediate states in search.
The ‘cost-so-far’ for an instantiation is its cost, computed
recursively as described in Sect. 4.1. And the ‘cost-to-go’ is
the additional cost that will be paid until we form an instan-
tiation of a whole object, while starting from this structure.

In the same way that Dijkstra’s algorithm prioritizes
intermediate states based on their distance from the start
(‘cost-so-far’), Knuth’s Lightest Derivation (KLD) (Felzen-
szwalb and McAllester 2007) prioritizes intermediate struc-
tures based on their instantiation cost. KLD maintains a list
of minimal-cost structures (similar to visited nodes in Dijk-
stra) and a priority queue of structures that can be composed
from structures in this list (similar to the paths in Dijkstra’s
queue). At each step KLD removes the cheapest structure
from the queue, and if it is not already in the list it forms
compositions that use this structure. KLD stops when it gen-
erates the goal statement, and is guaranteed to find the one
of minimal cost, L. However, it first needs to consider all
structures with cost less than L.

As in A∗ search, it is therefore beneficial to have an
estimate of the ‘cost-to-go’ and use it prioritize the com-
positions. To articulate this, Felzenszwalb and McAllester
(2007) use the concept of ‘context’. Loosely stated, the con-
text Con(S) of structure S is what S needs to get to the goal;
for a example, for a car the context of a wheel structure
would be the engine and trunk structures.

Formally, Con(S) is an instantiation of other structures
which, combined with S, lead to a goal statement. So if
structure S can be combined with structure P and lead
to a goal structure S′, S is P ’s context and vice versa.
Further, the cost of these contexts will be C(Con(P)) =
C(S′) − C(P) and C(Con(S)) = C(S′) − C(S), so that
C(S) + C(Con(S)) = C(S′). Contexts can be defined re-
cursively; if S and P lead to a non-goal structure S′, the
context of S is what it needs to get to S′ (P) plus what S′
needs to get to the goal. The context of S will thus have cost
C(Con(S)) = C(Con(S′)) + C(S′) − C(P). Obviously, we
are only interested in the context with minimal cost.

Int J Comput Vis (2011) 93: 201–225 211

Contexts are however hard to compute; implicit in their
recursive definition is that we knew how to compute the
goal statement, which means that we have already solved the
parsing problem. However, A∗ requires only a lower bound
of the cost-to-go. So to prioritize a structure S we only need
to lower bound the cost of Con(S). This can be performed
quickly by computing Con(S) in a simplified setting (prob-
lem abstraction), and then using its cost as an estimate of the
‘cost-to-go’. Formally, if abs(S) is the mapping of S to the
abstracted problem domain, the cost of Con(abs(S)) is used
as a heuristic to determine the priority of S at the fine level.
This is in brief the algorithm proposed in Felzenszwalb and
McAllester (2007).

4.2.3 Heuristics for Objects

Having shown how A∗ can use heuristics to speed up
computation without sacrificing optimality, we describe the
heuristics for our problem, namely object parsing. The Gen-
eralized A∗ algorithm was applied by Felzenszwalb and
McAllester (2007) to finding the most salient curve in an
image and was demonstrated to deal with the large num-
ber of groupings formed by aggregating local image features
into longer structures. Here we consider detecting objects by
composing multiple parts; we demonstrate that A∗ applies to
our problem based on the composition mechanism described
in Sect. 4.1.

We note that in our implementation we use a Coarse-to-
Fine scheme which we found to be better suited to the prob-
lem of detection, as described in detail in Sect. 4.2.4. This
uses the ideas described in this subsection, which are ap-
plicable to both the A∗ parsing and coarse-to-fine methods.

To compose a structure using for example three parts we
need to climb to the top of a Hasse diagram, as shown ear-
lier in Fig. 3. For each move we pay the cost of the new part,
plus the change in the composition cost. Adding up these
costs along the path to the top gives the cost of synthesizing
the whole structure. The main computational burden comes
from the large number of possible compositions: in the di-
agram we show only one path from one substructure to the
one above it; in practice there are as many different paths
as structure instantiations, while the number of possible top
nodes equals the product of the candidate part instantiations.

However, if we can construct a lower bound for all parts
lying above the first level, we can find only the first part (the
one at the lowest level), and then ‘fill in’ the other parts with
dummy structures having costs equal to the lower bounds of
the part costs. This gives us a lower bound for the cost of
composing the whole structure that is rapidly computable.

This amounts to what we call a structure coarsening. It
consists in collapsing several of the nodes of a Hasse dia-
gram into a single one as shown e.g. in Fig. 5, and consid-
ering as identical structures that have one, two or three parts
instantiated, as long as they have one part in common.

Fig. 5 Structure coarsening: a structure is considered completed if it
contains a single part

The cost of acquiring part P i is φi(si , spa(i)) + C(P i),
i.e. the location cost plus the part cost; a readily computable
lower bound is thus minsi φi(si , spa(i)) + 0 = λi

1
2 log |�i |,

as φi = −λi logPi(si − spa(i)) and Pi ∼ N(μi,�i).
Our composition algorithm should thus be modified for

coarsened parsing as follows:

..
nparts = length(parts);
for added_part = 1:nparts,

upgraded_part = Upgrade(parts(added_part));
other_parts = setdiff([1:nparts],added_part);
bound_others = sum(CostBound(other_parts));
cost_bound = upgraded_part.cost + bound_others;
upgraded_part.cost = cost_bound;
cmp = [cmp,upgraded_part];

...
end

So we no longer form compositions containing multiple
parts; we only upgrade parts from the previous level and add
to their cost the lower bound of the other part costs. This
drastically reduces the number of explored compositions.

Apart from structure coarsening we can also perform
location coarsening, by considering as identical structures
whose parts are in a common image neighborhood. This also
reduces the number of explored parts, while we are able to
go back and mend the inaccuracies of the first coarse-level
parsing by the simple book-keeping described in Sect. 4.2.4.

4.2.4 Coarse-to-Fine parsing

The original description of A∗ implies that we form a com-
position, compute its heuristic cost, and then insert it in
the priority queue. However, computing the heuristic cost
‘on demand’ is computationally impractical. Instead, as in
Felzenszwalb and McAllester (2007) we consider the oppo-
site strategy of first computing the heuristic and then using
it to trigger the formation of structures.

In specific, we first solve the parsing problem at the ab-
stract level, by coarsening the object-part layer of the hierar-
chy. At the end of this stage a set of object instantiations is
computed whose cost is a lower bound of the actual object’s
cost. We reject object structures whose cost is higher than a
conservative threshold and use the rest for fine-level search.

For this, we identify the low-level structures that can
lead to the retained object instantiations. This requires some
book-keeping during the coarse detection, where for each

212 Int J Comput Vis (2011) 93: 201–225

Fig. 6 A∗ Parsing of a car: Initially (left) the car is coarsely parsed
using Knuth’s Lightest Derivation. The coarsening consists in consid-
ering that each car part needs only a single contour. Once a car is thus
parsed its parsing is ‘rolled back’, and generates contexts for parsing

at the finer level. This blows-up a single coarse-level node into a full-
blown subtree at the fine level. The parse trees indicate the number of
low-, mid-, and high-level structures (orange,blue/green/red,black) that
are involved in the coarse- and fine-level composition procedure

structure we keep track of the structures it suppresses. We
can then backtrack from each object to all low-level struc-
tures that can be used to build it at the fine level.

We thus use a simplified version of A∗ that does not re-
quire a priority queue, and is substantially easier to imple-
ment: the process of ‘identifying’ the low level structures
described above amounts to providing them with a heuristic
cost equal to zero. The rest of the structures which were not
identified obtain a large heuristic cost which removes them
from consideration. This quantized heuristic cost thus acts as
a ‘top-down’ signal, indicating if it is worth trying to com-
pose structures towards building an object. This is exactly
what we were asking for initially, namely some indication
about where it is useful to search for complex compositions.

This method seems to us more natural for detection, as
we generate all instantiations that have a cost below a thresh-
old instead of focusing on the cheapest one; further it is sub-
stantially faster in Matlab as it is vectorizable, and we have
found it to be significantly easier to implement.

4.2.5 Object Parsing Demonstrations

We demonstrate how the algorithm works for an individual
object in Fig. 6: Consider detecting a car structure com-
posed of an engine, cabin and trunk structures, which are
in turn composed of multiple contours. Initially we simplify
the parsing problem by coarsening the object part level of
the hierarchy. For example for the engine structure, we con-
sider it is complete when we have found one of its contours,
e.g. the hood; the same applies to the cabin and trunk parts.
In this way we first compute a coarse parse of the object,
where each part is composed from one contour.

At that point, we backtrack and find the mid- and low-
level structure instantiations that were suppressed during the

coarse-level detection. These structures now have a ‘con-
text’ at the coarse level, namely a lower bound of their cost-
to-go. These are then used for a more detailed parse at the
fine level, where all part contours are required to be present,
or else penalized. For example, as shown on the right of
Fig. 6, the context for the ‘back’ structure initiates a detailed
composition of the structure at the fine level, blowing up a
single node of the coarse parse tree to a whole subtree. We
can thus build complete parse trees while avoiding elaborate
search in background clutter.

In Fig. 7 we demonstrate the computational gain due to
the Coarse-to-Fine scheme for an entire image. At the coarse
level we perform structure coarsening and spatial suppres-
sion, so we find a few structures for each part—we show
their centers as dots. Contrary to the object-part level, we
do not coarsen the object level; namely we require all object
parts to be present. As all three object parts can be acciden-
tally detected only in few locations, this reduces the candi-
date objects as shown in the top left corner of Fig. 7.

The object structures whose cost is above threshold are
shown on the right column. Starting from these, we back-
track to the lower levels and focus on the image areas likely
to contain an object. We now penalize missing contours and
build full-blown object parts with multiple contours, which
leads to a single object instantiation being above threshold.

By contrast, as shown in the bottom row of Fig. 7 purely
bottom-up fine-level detection is ‘short sighted’. By trying
to form all object parts at full detail from the beginning,
it wastes computational resources. This is evident from the
large number of individual object parts formed on the back-
ground, avoided by the Coarse-to-Fine approach.

In Fig. 8 we show as a heat map the cost function at
the coarse and fine levels. A single ‘goal’ structure resides

Int J Comput Vis (2011) 93: 201–225 213

Fig. 7 The top-two rows demonstrate the Coarse-to-Fine detection
scheme, which is contrasted to the plain, Fine-Level detection scheme
of the bottom row. At the coarse level a small set of candidate object
locations is quickly identified; these locations guide search at the fine
level, acting like top-down guidance. Instead, when doing Fine-level

Parsing without guidance (bottom row) a detailed parse of the object’s
parts is performed in several background locations, e.g. around trees.
This wastes computation resources on locations which end up being
useless

Fig. 8 Cost function for the coarsened problem (left) and the original
problem (right); low costs are red and high costs are blue. We effi-
ciently compute the cost on the left, which provides us with a lower

bound for the cost on the right. We then refine the computation at those
locations where the coarse cost falls below a conservative threshold.
Please see in color

within each box-shaped neighborhood after location sup-
pression, and neighborhoods where the cost is lower are
more red. At the coarse level instead of admissible heuristics
we use expected costs, estimated during training. As we use
both structure and location coarsening, the domain of the
cost function is very coarsely quantized initially; this allows
us to rapidly focus on the interesting locations, and then re-
fine our detection.

For example, the car model, learned as described in
Sect. 5, contains 65 contours. Plain fine-level detection with
this model takes more than 50 seconds for an image with
approximately 300 image tokens. Instead, coarse-level de-
tection can be done in less than 10 seconds; following this,
fine-level detection can take place in less than 15 seconds,
so the sum is typically less than half the original compu-
tation time. These measurements do not include the aver-
age cost of boundary detection (�10 seconds), curve linking
(�3 seconds) and matching of contours to object boundaries

(�3 seconds) which are common for both methods. The gain
in efficiency varies per image, and is most prominent for im-
ages with heavy clutter.

We note that we have experimentally found expected
costs to be more effective at reducing the parsing time than
admissible heuristics. As mentioned in Sect. 4.2.1 on the one
hand this may result in suboptimal solutions, but the heuris-
tic is substantially closer to the actual cost and results in sub-
stantial reductions of the computation cost. Details about the
computation of the expected costs are provided in Appen-
dix B. A quantitative demonstration of the gain in perfor-
mance as well as the associated loss in accuracy due to the
non-admissible heuristics is demonstrated in Fig. 9. There
we plot the recall as a function of the false-positive-per-
image rate for the bottle category of the ETHZ dataset. The
orange-solid curve corresponds to fine-level search, while
the red-dashed curve corresponds to the performance of the
detector when optimization takes place in a coarse-to-fine

214 Int J Comput Vis (2011) 93: 201–225

manner. The loss in performance observed is due to false
negatives (lower recall), which demonstrates that our non-
admissible heuristics can reject some useful compositions
prematurely. On the other hand, parsing 231 images took
270 minutes using fine-level search and 160 minutes using
coarse-to-fine, almost cutting by half the computation time.

5 Model Learning

We now turn to the problem of learning our object model.
We assume that we are provided with a small set of images
(in the range of 20 to 50) that contain only the bounding box
of the object. We do not require any manually-segmented
features, while the images we work with have heavy occlu-
sions, noise, illumination variations etc; examples of images
in our training sets are shown in Fig. 10.

We decompose the learning task into three stages: First
we recover the object contours by registering the training
set using unsupervised Active Appearance Model training
(Sect. 5.1). We then find the object parts by estimating
the geometric affinity of contours and clustering them with
Affinity Propagation (Sect. 5.2). Finally we learn the pars-
ing cost discriminatively via Multiple Instance Learning so
as to optimize the detection performance (Sect. 5.3).

We demonstrate learning results for cars from the UIUC
dataset and the ETHZ shape classes (apples, bottles, gi-
raffes, mugs and swans). The testing evaluation of the last

Fig. 9 Performance curves for a detector using fine-level parsing (or-
ange-solid line) and a detector using our coarse-to-fine algorithm

5 categories uses a protocol where the training images are
chosen at random from a larger set of images 5 times; we
therefore demonstrate 5 different learning results per cate-
gory. We use common parameters throughout.

5.1 From Images to Contours

The contours used at the lowest level of the object repre-
sentation are obtained from the edge and ridge contours of
the images in our training set. On individual images these
contours are noisy but when aggregated over the training set
they become substantially more robust.

This idea underlies several other recent works that ei-
ther explicitly (Jiang et al. 2009; Ferrari and Jurie 2007)
or implicitly (Wu et al. 2007) register a training set. We
rely on our work on unsupervised Active Appearance Model
(AAM) learning in Kokkinos and Yuille (2007), which we
only briefly describe below for completeness.

In Kokkinos and Yuille (2007) we learn a deformable
template model for an object category from images that do
not contain landmarks. The template is a dense model of
edge and ridge maps, which are largely invariant to changes
in appearance. We therefore use the mean of these features
as the model prediction, and do not account for appearance
variation. The deformation model accounts for shape varia-
tion using a linear basis to synthesize the deformation field
applied to the template. This basis is category-specific, and
is combined with global affine transformations to register
the training images.

We learn the mean template and the deformation ba-
sis with EM. In the E-step we register the training set to
the template and in the M-step we update the deforma-
tion model and the template’s appearance so as to better
register the images in the next step. The output of this
process is (a) an Active Appearance Model (template and
deformation basis) and (b) a registration of the training im-
ages.

The improvement in registration can be seen by com-
paring the images in Fig. 11(b) with Fig. 11(c). Each im-
age shows the average ridge and edge maps of the whole
training set, obtained by taking the mean of the training im-
ages. The learned model aligns the training images and gives
clean contours after averaging. The object contours shown in
Fig. 11(d) row are obtained using nonmaximum suppression
followed by hysteresis thresholding. In Fig. 12 we show in-
dicative results for one trial of each category, to indicate that

Fig. 10 Typical Images from
our training set

Int J Comput Vis (2011) 93: 201–225 215

Fig. 11 We obtain the contours at the lowest level of our object rep-
resentation via deformable model learning: The car template in (a)
is computed by averaging the edges (black) and ridges (red) of the
training set before registration; it therefore has few clear structures.
The template in (b) is computed using only affine registration and is

still missing several structures. The template in (c), computed using
AAMs, is sharper as a category-specific deformation model is learned
and used. The object contours, shown in (d) are extracted from (c) by
non-maximum suppression followed by hysteresis thresholding

Fig. 12 Initial (top) and final (bottom) templates for the five categories of the ETHZ dataset, learned as described in Fig. 11

starting from a set of unregistered images we can accurately
extract boundary and symmetry information for the whole
category.

5.2 From Contours to Object Parts

Having obtained a set of long contours that capture the
boundaries and symmetry axes of the object, we want to
find the intermediate level structures that will connect these
contours into coherent object parts. This is similar to learn-
ing the structure of a graphical model (Chow and Liu 1968;
Heckerman et al. 1995); but our problem is harder as we
want to ‘invent’ hidden nodes with continuous variables for
the object parts.

We therefore use a data-driven approach that exploits the
geometric nature of our problem. We turn the contours ex-
tracted in the previous step into a set of straight edge and
ridge segments as shown in Fig. 13. Each of these segments
is treated as a node in a weighted undirected graph, whose
weights quantify the affinity among nodes. We then use pair-
wise clustering, specifically Affinity Propagation, (Frey and
Dueck 2007) to partition this graph into coherent compo-
nents.

Affinity Propagation is a non-parametric clustering algo-
rithm, that allows clusters to be formed based on the pair-
wise affinities of observations. Central to this algorithm is
the identification of ‘exemplars’, i.e. observations that have
high affinity to a subset of the data; these are identified in
a distributed manner, similar to inference on a graphical
model. Apart from the affinities themselves, which will be
discussed below, the only crucial parameter of this algorithm
is the ‘preference’, p for each point, which determines how
likely it is going to be picked as an exemplar. This quantity
determines the number of clusters and is set to p = .1 in all
of our experiments. If less than three object parts emerge, we
perform bisection search over p until we get at least three.

The affinity among two nodes on the graph is com-
puted based on both statistical and geometric cues. First,
we compute the geometric affinity among every pair i, j of
edges or ridges, based on contour continuity. For this we
quantify their grouping cost using the analytic approxima-
tion to the Elastica functional (Mumford 1993) provided by
Sharon et al. (2000). In specific, consider two edge seg-
ments i, j , with i ending at pi with angle ψi and j be-
ginning at pj with angle ψj as shown in Fig. 14. It has
been demonstrated in Sharon et al. (2000) that the quan-

216 Int J Comput Vis (2011) 93: 201–225

Fig. 13 Pairwise clustering is used to discover object parts: first the
object contours are broken into straight segments, which are seen as
nodes on a graph. Ridges are shown as ellipses whose width is propor-
tional to the scale of the ridge. Nodes are connected with edges based
on continuity and parallelism. The affinity among nodes is estimated
using statistical and geometric information. The object parts shown on
the left are obtained using Affinity Propagation

Fig. 14 The geometrical affinity among pairs of nodes is expressed
using the Elastica completion cost

Fig. 15 As pre-processing to estimate the statistical affinity of two
nodes, every image in the training set (left) is backward-wrapped to
the template coordinate system (middle) using the deformation esti-
mated during AAM training. There, we measure the extent to which
each node (black cell) is covered by an image contour (red curve) to
determine if the node is present in the training image

tity Ei,j = 4(ψ2
i ψ2

j − ψiψj) provides an accurate approx-
imate to the scale-normalized integral of the Elastica energy
(Mumford 1993) of the illusory contour grouping these edge
segments. We set w

shape
i,j = e−Ei,j . For adjacent contours we

set w
shape
i,j = max(1/2, e−Ei,j) to allow for corners, which

are otherwise severely penalized by Ei,j .
Second, to exploit symmetry during grouping we also

connect edges to ridges. Based on the scale of each ridge we
estimate the set of locations in its periphery where it would
expect to find edges; we then set its connection weight to the
edges nodes to be equal to the proportion of the edge that is
contained in the bounding box.

Third, we incorporate statistical information by measur-
ing how often two lines appear together in the training
images. This strengthens the bonds among parts that have
common appearance patterns and isolates parts that appear
rarely in the dataset. We compute the function Ii,k that in-
dicates whether line i was (partially) observed in image k

and set the affinity among lines i and j equal to wocclusion
i,j =

1
K

∑K
k=1 Ii,kIj,k .

To compute Ii,k we use the deformations estimated dur-
ing AAM training, as illustrated in Fig. 15. For this, we first
backward warp the edges found on training image i (left)
to the template coordinate system (middle), using the de-
formation estimated during AAM learning. On the template
coordinate system we measure the length of the edge con-
tour passing through the ‘cell’ associated to node k (right).
These cells are obtained by dilating the support of each tem-
plate edge, in order to tolerate small misalignments by the
AAM. If the length of the intersection of the image curves
with the cell is above half the length of the template edge
we consider that the corresponding cell is present, i.e. we
set Ii,k = 1.

Finally, the affinity is expressed as wi,j = w
shape
i,j ×

wocclusion
i,j . This affinity only partially captures the coherence

of two nodes. Two edges lying on opposite sides of a ridge
may both be strongly connected to the ridge, but weakly
connected with each other according to the continuity cue.
Intuitively we would like these two edges to be easy to group
together. We therefore consider the product of the pairwise
affinities among all possible paths connecting two nodes and
use as affinity the maximum of this product among all paths;
the product can easily be computed using matrix multiplica-
tions.

In order to obtain a clustering from these affinities we
have found Affinity Propagation to be particularly effective.
We had initially experimented with several alternatives of
Normalized Cuts, but finding automatically the number of
object parts turned out to be problematic. Affinity Propaga-
tion instead gave visually appealing results after little ex-
perimentation. As shown in Fig. 16, most of the object parts
are visually plausible and correspond to clear structures, e.g.
handles, heads, wheels, etc.

Once groups of tokens are identified by the process above
we form all possible groupings of these tokens into larger
convex arcs. For instance the green contour corresponding to
the apple on the top-left figure can be decomposed in several
different ways into smaller contours. These are included in
what is shown as the green part, but during learning (detailed
below) most of them are eventually ignored automatically.

5.3 Multiple Instance Learning for Discriminative Parsing

In Sect. 3 we have expressed our cost function as the likeli-
hood of the image under a probabilistic model. To derive it
we have assumed that the child nodes are independent con-
ditioned on their parent, that the reconstruction errors of the
tangent function are independent in (5), while other terms
were derived from some prior, e.g. on the probability of hav-
ing missing contour parts or non-overlapping image and ob-
ject contours. In practice the independence assumptions do
not hold, and we do not have annotated data to construct the
priors. Moreover, using generative models is not necessarily

Int J Comput Vis (2011) 93: 201–225 217

Fig. 16 Object parts delivered by our method for five different trials
for the categories of apples, bottles, giraffes, mugs, and swans: bound-
aries and symmetry axes belonging to the same object part are shown
with the same color. Please see in color

optimal for object detection, since our task is to discriminate
among objects and background images.

We therefore turn to a discriminative method to estimate
the parameters in our cost function. We view our cost func-
tion as the output of a linear classifier that uses the potentials
computed from an instantiation as features. The decision is
formed by taking a weighted sum of these features and re-
jecting instantiations whose cost is above a threshold.

In specific, the features F used by our classifier are
formed by concatenating: (i) The location features, equal to
the minus-log probability of the relative poses involved in
the part-child relationships,

F1 = {− logP(sν |spa(ν)), ν ∈ V \ Vr}. (13)

The λi parameters in (1) are the weights of these features.
(ii) The contour match features F2, namely the mismatch
cost

∫
s∈Sc

[θO(s
α

+ τ) − θM(s) + c]2ds, the turning penalty

c2|Sc|, and the missing length |Sd | of each object contour
ν ∈ Vc. The γ1, γ2, γ3 parameters in (5) are the weights for
these features; each contour has its own weights. (iii) The
missing node features F3, computed from the indicator func-
tion h as:

F3 = {h′(ν) = 1 − h(ν), ν ∈ V \ Vr}. (14)

The missing part potentials φ0
ν in (3) are the weights of these

features. For a missing part we set to zero the location and

contour match features of both it and its descendants, while
the corresponding missing-node features, y are set to one.

Each instantiation thus gives us 2(|V | − 1) + 3|Vc| fea-
tures. Our goal is to learn how to weigh these features for
the purpose of classification. Our training problem is non-
standard, as we do not know the correct object configura-
tions; so we do not know the features that our classifier
should be using. We only know that for a positive image
at least one configuration will be positive; and all config-
urations composed from a negative image should be nega-
tive. Essentially we want to train a classifier with a high-
dimensional hidden variable, namely the correct object con-
figuration.

This is a problem that can be addressed using Multiple
Instance Learning (MIL) (Dietterich et al. 1997). Before de-
scribing in detail MIL and how we apply it to our case, we
note that MIL has been used in computer vision in Viola et
al. (2006), Dollar et al. (2008), Vijayanarasimhan and Grau-
man (2008), but not for hierarchical models as in our case.
In Felzenszwalb et al. (2008) a latent SVM was proposed
to train a deformable part model discriminatively, with the
poses of parts treated as missing variables. Their algorithm
alternates between extracting features by minimizing the
cost function w.r.t to the hidden variables, and estimating
the feature weighting that optimally separates positive from
negative images. At each round this algorithm uses a single
hidden variable per positive image, which can cause instabil-
ities, as the authors mention. In more recent work (Felzen-
szwalb et al. 2010) that was developed independently from
ours (Kokkinos and Yuille 2009), the authors acknowledge
that their algorithm is an instance of the MIL framework,
but still use a single instance for each positive image, which
requires a careful initialization of their algorithm. Instead,
we entertain multiple instantiations for each positive image
and let the algorithm decide which is most appropriate.

MIL is a general framework to deal with missing data
in classification, accommodating for instance Large-Margin
training (Andrews et al. 2002) and Boosting (Viola et al.
2006). Typical learning assumes training samples come in
feature-label pairs. Instead, MIL takes as a training sample
a ‘bag’ of features and its label. Each bag is a set of features,
and the classifier is applied to each feature separately. A bag
should be labeled positive if at least one of its features is
classified as positive, and negative otherwise. The hidden
information is the identity of the positive feature(s) in the
positive bags. This is exactly our problem, too: from each
image we can form a bag of features, corresponding to all
possible object instantiations. We want to train a classifier
that will label at least one as positive for a positive image,
and all as negative for a negative image.

We rely on the Deterministic Annealing approach of
Gehler and Chapelle (2007) to MIL, which resolves some
problems in the original work of Andrews et al. (2002) on

218 Int J Comput Vis (2011) 93: 201–225

Fig. 17 Positive and negative bags for the car class: for each train-
ing image we compute a set of instantiations, visualized as a part-level
labelling of the image tokens. The goal of training is to learn a cost

function such that for each positive image at least one instantiation has
low cost, while all instantiations from a negative training image have
high cost. This is solved using Multiple-Instance Learning

Large-Margin MIL. In specific for the i-th training image
we form a bag-label pair Bi,Yi , where Bi is a set of fea-
tures computed from Ji candidate instantiations, i.e. Bi =
{Fi,1, . . . Fi,Ji

}. Yi = 1 if i is a positive bag and Yi = −1 for
a negative bag. Some instances from a positive and a neg-
ative bag for the car category can be seen in Fig. 17. Con-
sider now a hidden variable vector hi for each bag i, such
that hi,j = 1 if Fi,j corresponds to the correct instantiation
for a positive image. By default, all instances of a negative
bag have negative labels, so hi,j = 1∀j if Yi = −1.

If we know the hidden variable vector, training the large
margin classifier could be accomplished by minimizing the
following cost:

C(W,b) = c W · W

+
N∑

i=1

Ji∑

j=1

hi,j l[−Yi(Fi,j · W + b)], (15)

l[x] =
{

1 − x, x < 1
0, x ≥ 0

, (16)

where W is the weight vector, cW · W penalizes the classi-
fier’s complexity, b is the classifier’s offset and l[x] penal-
izes examples on the wrong side of the margin. Note that a
small value of the cost Fi · W + b implies i is positive, so
we need to flip the labels Yi to turn our problem into the
standard SVM training setup.

In practice we do not know the binary hidden variables
hi,j . However, we could compute them if we knew the clas-
sifier parameters (W,b); this suggests an iterative strategy,
similar to EM. Following (Gehler and Chapelle 2007) we
consider a distribution on the instances of each bag, and re-
place the binary hidden variables with probabilities pi,j . We
now consider a new optimization problem that involves both
(W,b) and p:

C(W,b,p) = cW · W +
N∑

i=1

Ji∑

j=1

pi,j l[−Yi(Fi,j · W + b)]

+ ν
∑

i,j

pi,j logpi,j , (17)

s.t.
Ji∑

j=1

pi,j = 1∀j if Yi = 1

pi,j = 1∀j if Yi = −1

(18)

0 ≤ pi,j ≤ 1, ∀i, j. (19)

The last two constraints guarantee that p will be a distrib-
ution on the instances of each bag; and

∑
i,j pi,j logpi,j is

the sum of the negative entropies of these distributions.
The entropy term is necessary to avoid the local min-

ima of the optimization problem: the optimized function
is convex in (W,b) for fixed p and convex in p for fixed
(W,b). However it is not convex in W,b,p, due to the
misclassification term, which contains negative products of
the p and W variables. Deterministic annealing is there-
fore used to avoid local minima: ν is set initially to a high
value, ‘convexifying’ the optimization problem. For that ν,
alternating optimization w.r.t to (W,b) and p is used to
optimize the cost function. At the next iteration, ν is de-
creased and the optimization w.r.t. to (W,b) and p is ini-
tialized using the solution computed at the previous step.
This process is repeated for decreasing values of ν, which
amounts to making the distribution p on each instance in-
creasingly peaked around the instance that has the low-
est cost. We have used the code provided by Gehler and
Chapelle (2007) and have found this scheme to provide sys-
tematically better solutions that those obtained without an-
nealing.

Adapting this approach to our case requires addressing
three technical points. First, the weight vector W should be
positive: for a negative weight a structure’s contribution to
the cost would turn negative, while worse parts would re-
sult in lower costs, which is counterintuitive. Moreover it
would no longer be possible to lower bound the cost of
a part. Therefore, during the optimization w.r.t. (W,b) we
need to keep W positive. At timestep t consider that we have
found the solution (W t , bt); we want to find the increment
to Wt,bt that maximally decreases the cost, while keeping
W positive. For this, we first form a second order approxi-

Int J Comput Vis (2011) 93: 201–225 219

Fig. 18 Improvement of the parsing cost function for cars: initially (middle) our model mistakes parallel structures for cars, giving low cost to the
street to the left of the car. After six iterations (right) of MIL training, the cost function indicates more sharply the location of the car

mation to the cost around Wt,bt , i.e.

C′(h,f) = C(Wt + h,bt + f)

� 1

2
[h,f]T H [h,f] + [h,f]T J + C(Wt , bt),

(20)

where H and J are the Hessian and Jacobian of C respec-
tively at the current estimate of W,p,b. At each t we then
recover the optimal update to Wt,bt by solving the follow-
ing quadratic program with inequality constraints:

min
h,f

1

2
[h,f]T H [h,f] + [h,f]J (21)

s.t. hi + Wt
i > 0 ∀i ∈ {1, . . . , |h|}. (22)

Second, it is impractical to consider all instantiations
for each image, as the optimization problem becomes in-
tractable. Instead we alternate between estimating (W,b)

using the annealing algorithm, and parsing our training set.
For each positive and negative image we keep the five best
scoring instantiations at each round, and add them to the bag
computed for that image from the previous rounds. We have
found this to be more robust than keeping only the instanti-
ations from the current round, as it allows the algorithm to
‘backtrack’ on occasion and give lower cost to instantiations
computed earlier. The initial instances are obtained by opti-
mizing the cost function that would correspond to the gener-
ative model formulation, i.e. by setting the λi variables equal
to 1 in (1) and the missing cost potentials equal to minus the
log probability of missing a part.

Third, changing the weight vector potentially has an ef-
fect on the features. To see this, consider that the cost of
a part’s instantiation is higher than the cost of missing that
part. As it will be cheaper for a higher- level structure to con-
sider that part as missing, such instantiations are rejected by
our composition algorithm. As during training W is chang-
ing, some of the instantiations become impossible: if the
cost of missing one part decreases, all structures having a
more expensive instantiation of that part could no longer be
generated. Instead, they should be replaced with structures
having that part missing. This means setting to zero their lo-
cation and contour match features and to one their missing
part features.

Therefore, a change (h,f) in (W,b) proposed from the
minimization above can potentially result in an increase
in the optimized function as the features will change at
(W + h,b + f). We deal with this by taking the increment
(h,f) computed at each iteration as a direction in which
the weight vector should be changed. Then we estimate the
length in which this direction should be followed using line
search: for each value of the length we modify the feature set
as described above, and compute the new cost function. This
procedure helps drastically reduce the number of rounds re-
quired by the parsing/training algorithm: in practice after 5
iterations the training algorithm converges.

In Fig. 18 we show how the training process gives a cost
function that is better suited for detection, by learning to dis-
criminate among car and car-like structures from the back-
ground. We note that after several iterations the cost function
is more sharply peaked around the actual location of the car;
this indicates that we learn a cost function that is better tuned
for the detection task.

6 Application to Object Detection

We validate our method using the UIUC car (Agrawal and
Roth 2002) and the ETHZ shape classes (Ferrari et al. 2006).
The car dataset is the most challenging in terms of image
quality; the images there are of low resolution, while in
many cases the image contrast is so low that whole parts
of the object are missed by the contour-detection front-end.
The ETHZ shape classes have been introduced more re-
cently and are used to benchmark detection algorithms that
deal with deformations, occlusions etc., while relying on the
shape cue that is dominant for these classes.

Our models have been automatically learned using the
procedure described in Sect. 5, while for all classes we use
common settings during both training and detection. For
cars we use 50 images to learn the contours and object
parts, and 300 positive and negative images for discrimina-
tive training. For the ETHZ datasets we use the common
evaluation protocol: for each category we use half of its im-
ages for training, and the remaining images from the cate-
gory, and all images of other categories, for validation; we

220 Int J Comput Vis (2011) 93: 201–225

Fig. 19 Parsing results: For each image we show object instantiations
that are classified as positive by our inference algorithm. We show the
parse results at the object part-level, using color to indicate the object

part to which a token is assigned; but our algorithm establishes a finer,
contour-level relation

present results averaged over 5 different trials. As negatives
we use 300 images from the Caltech background images.

In Fig. 19 we demonstrate parsing results on these
datasets. We show parsing at the object part-level, where the
color encodes the object part to which a token is assigned;
our algorithm actually works at a finer level, as each token
is assigned to a specific contour of the object. We observe
that our algorithm can deal with real images containing sub-
stantial clutter; for example, in the car images only a small
fraction of the image tokens is used to build the object. Fig-
ure 19 demonstrates that our algorithm is able to perform
simultaneously the localization and parsing tasks.

In Fig. 20 we report results on these benchmarks. On
the top-left plot we compare on the UIUC dataset our re-
sults to those of other works using sparse image representa-
tions. Our system outperforms these works despite not us-
ing appearance information. Our Recall at Equal-Error-Rate
(when precision equals recall) is 98% percent, equal to the
best reported so far by Fidler and Leonardis (2007) with a
sparse representation.

In the following plots we report results on the ETHZ
dataset, and compare to the boundary-based works of Fer-
rari et al. (2008, 2010) and the region-based works Gu et al.
(2009).

Int J Comput Vis (2011) 93: 201–225 221

Fig. 20 First plot: benchmark results on the UIUC dataset; we compare to the sparse, part-based approaches of Fergus et al. (2005) and Leibe et
al. (2004). Next five plots: Benchmark results on the ETHZ classes: comparisons with Ferrari et al. (shape-based), and Gu et al. (region-based)

We plot the recall of our detection algorithm (ratio of
detected objects) versus the number of false-positives-per-
image (FPPI), averaged over the whole dataset and averaged
over the 5 trials. We use the strict PASCAL evaluation cri-
terion that considers as correct a bounding box for an object
if its intersection with a ground truth bounding box is larger
than 50% of the union of their areas. All other detections are
counted as false-positives.

Our method systematically outperforms both shape-
based methods developed by Ferrari et al.; the first (Ferrari
et al. 2008) uses a discriminatively trained codebook-based
detector, while the second (Ferrari et al. 2010) uses voting
for bottom-up detection and graph-matching for validation.
Apart from delivering better results, our method is unified:
we use a single model for bottom-up and top-down detec-
tion, and discriminatively learn the cost function that is used
for detection.

Comparing to the region-based method of Gu et al.
(2009), we observe that our method performs better on mugs
and swans, equally well on bottles, slightly worse on apples
and systematically worse only on giraffes. The results are
not directly comparable, as the authors use an entirely dif-
ferent approach, involving hierarchical image segmentation,
boundary descriptors and exemplar-based detection, while a
substantially better boundary detection system is used. How-
ever, this difference in performance is to some extent intu-
itive: our method can accurately model the outline of ob-
jects, which is distinctive for the categories where it per-

forms well, while the regional cues used in Gu et al. (2009)
can more naturally capture the texture of giraffes. Further,
the edge and ridge maps for these images are particularly
noisy, which further challenges our approach for the giraffe
category.

This brings us to the limitations of our approach, which
can be exemplified by the failure cases in Fig. 21. On the
top row we show the tokens computed by our front-end:
several object boundaries and symmetry axes are missing,
due to the poor image contrast; almost the whole upper
part of the car is considered to be missing, while there are
very few edge segments aligned with the giraffe’s neck. It
is therefore hard to form a long contour during grouping.
On the bottom row, the coincidental bottle-like configura-
tion of tokens from different objects leads to a false posi-
tive. The failure case on the top row can be addressed in at
least three different ways (i) learning better boundary and
symmetry detectors (ii) incorporating different sparse fea-
tures, e.g. blobs, corners, junctions that can more easily be
detected than contours and (iii) using regional cues. There is
substantial work on all of these three research directions that
we intend to explore in future work. The failure cases on the
bottom can be addressed in three different ways: (i) incorpo-
rating appearance information to refine the set of contours
that are used to detect an object (Kokkinos and Yuille 2008)
(ii) using more elaborate grouping to form more distinc-
tive low-level structures than tokens (Zhu et al. 2008d) and
(iii) using context-sensitive relations (Jin and Geman 2006;

222 Int J Comput Vis (2011) 93: 201–225

Fig. 21 Modes of failure of our approach: on the top row, the poor im-
age representation delivered by the front-end results in a false negative.
On the bottom-row, the object-like configuration of some background
edges results in a false positive. Please see text for details

Zhu and Mumford 2007), potentially in a second, re-ranking
stage, to capture ‘horizontal’ spatial relations among the ob-
ject contours.

7 Conclusions and Future Work

In this paper we have introduced, first, a hierarchical object
representation, second, a principled and efficient inference
algorithm, and third, a learning method that only uses the
bounding box of the object to learn the model. Our results
demonstrate the practical applicability of our approach in
challenging images containing substantial background clut-
ter. There a substantial improvement in detection efficiency
is achieved, while the detection performance compares fa-
vorably to the current state-of-the-art.

One of the main results of this paper is that with a hier-
archical model one can perform efficient detection. This is
performed based on a tightly coupled bottom-up/top-down
inference scheme, with a small loss in detection accuracy.
This makes more elaborate, multi-part models affordable,
thereby allowing us to both detect and approximately seg-
ment an object.

There are several directions in which we intend to ex-
tend this research. The first is to incorporate regional infor-
mation from segmentation, which has recently been shown
to yield excellent results (Todorovic and Ahuja 2006; Gu
et al. 2009). The second is to complement our shape-based
features with appearance information, thereby capturing the
context around each contour; this is something that we have
started working on in Kokkinos and Yuille (2008). The third
is to allow our models to choose among different parts,
thereby implementing an OR-ing mechanism as in Zhu and
Mumford (2007), Felzenszwalb et al. (2010), Zhu et al.

Fig. 22 Matching image tokens to model structures: Using an an-
gle-based representation of contours, the fragmented lines of the image
become piecewise constant signals

(2008b). This is straightforward during inference (we al-
ready use an OR for missing parts), but the challenge lies
in automatically learning the part-mixture components dur-
ing training. Finally, in the long run, we would like to au-
tomatically learn the parts that are shared among multiple
categories and are reusable for modeling and detection. This
would allow us to simultaneously detect multiple categories
in time sublinear in the number of categories, thereby al-
lowing our algorithm to scale up to the detection of tens, or
hundreds of objects.

Acknowledgements This work was supported by the W.M. Keck
Foundation and NSF Grant 613563. We thank the Reviewers for their
constructive feedback, which helped improve the presentation of the
paper.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Integral Angles

In this appendix we describe an efficient method to match
image and object contours, generalizing the method of Arkin
et al. (1991) which was used to compare polygonal curves.
We use an idea inspired from integral images (Viola and
Jones 2001) to compare an arbitrary continuous curve (the
model contour) to an image curve, while also dealing with
missing parts.

The cost function we use in Sect. 3.2 to quantify the
match of two contours is:

EθO,θM
(α, τ, c) =

∫

s∈Sc

(

γ1

[

θO

(
s

α
+ τ

)

− θM(s) + c

]2

+ γ2c
2
)

ds + γ3|Sd |. (23)

For fixed α, τ the optimal value of c can be obtained in
closed form as:

c∗ =
∫
s∈Sc

θM(s) − θO(s
α

+ τ)ds

|Sc|(1 + γ2
γ1

)
. (24)

Int J Comput Vis (2011) 93: 201–225 223

However, E is nonlinear and nonconvex in α and τ . This
leaves exhaustive evaluation as the only choice, so we need
to speed up the computation of the integral in (5). For this
we exploit working with piecewise straight contours: If a
contour is formed by linking N line tokens Tn, each having
length ln and orientation θn, the matching criterion writes:

E(α, τ) =
N∑

n=1

∫ ln
α

s=0

(
γ1

[
θn − θM(s + τn) + c∗]2

+ γ2(c
∗)2)ds + γ3|Sd |,

τn = τn−1 + ln−1 + gn−1

α
, τ1 = τ. (25)

Above gn is the gap between tokens Tn−1, Tn, and τn is the
coordinate where the n-th line segment begins (see Fig. 22).
As θn is constant, the integral above writes:

(θn + c∗)2 ln

α
− 2[θn + c∗]

∫ ln
α

s=0
θM(s + τn)

+
∫ ln

α

s=0
θ2
M(s + τn)ds.

The only integrals that remain involve the model angle func-
tion θM and its square. Using the precomputed ‘integral an-
gle’ functions �M(s) = ∫ s

0 θs we can reduce the complexity
of computing these from O(L) to O(1) as follows:

∫ ln
α

s=0
θM(s + τn) = �M

(

s + τn + ln

α

)

− �M(s + τn).

Finally |Sd | can be computed for α, τ as follows: θM is
defined in the domain Dm = [0,L], while θO is defined in
Dc = [τ1, τn + ln

α
]. Considering the case where the two sets

are not disjoint, we have |Dc ∪ Dm| = max(τn + ln
α
,L) −

min(τ1,0), |Dc ∩ Dm| = min(τn + ln
α
,0) − max(0, τ1). De-

noting by G the length of the gaps that fall within Dc ∩ Dm,
we then have |Sd | = |Dc ∪ Dm| − |Dc ∩ Dm| + G.

The ‘integral angle’ technique described above allows
brute force search within a range of values for α, τ with a
small computation cost, while using densely sampled con-
tour models - we use 50 points per contour.

Appendix B: Implementation Details

Below we provide implementation details for several parts
of the paper that have been presented at a high level. As
AAM learning with be the subject of a future publication,
we focus on the rest of the paper.

Section 3.1: Contour grouping: We first extract a set of
straight edge/ridge segments, using the contour fragmenta-
tion method of Lowe (1984) and the code of Kokkinos et
al. (2006). Edges are obtained from the Berkeley boundary

detector (Martin et al. 2004) and ridges from Lindeberg’s
primal sketch (Lindeberg 1998).

We subsequently form all possible combinations of such
segments into convex arcs by combining the method of Ja-
cobs (1996) with the intervening contour idea of Malik et al.
(2001). The technique of Jacobs guarantees that all group-
ings returned will be convex arcs. On top of that, we do not
allow arcs linking two tokens if there is a roughly perpendic-
ular edge intersecting the line connecting their endpoints. To
determine whether these are perpendicular we use the con-
dition |cos(θ1 − θ2)| < cos(2π/3), where θ1 is the angle of
the line connecting the two tokens and θ2 is the angle of the
intervening contour. The intervening contour cue is used if
the response of the boundary detector is above .1.

We form all groupings composed of up to four tokens.
We then reject all groupings for which the sum of the gap
lengths is more than half the length of the grouped edgels.
This discards groupings of faraway edges, which simply
happen to lie on a convex arc.

Section 3.2: Contour Matching: We do a preliminary
screening before matching a contour group with a model
curve to reduce the number of matchings. We denote the
length of the contour group by lg and its orientation by θg ;
orientation is defined as the angle of the line connecting
its two endpoints. We denote the corresponding quantities
for the model curve as lm and θm; note that as we con-
sider separate ranges of α, lm is obtained by the ratio of
the nominal length of the curve over the median scale con-
sidered at a time (so that we can perform a scale-invariant
match). Our screening consists in rejecting matches when
|cos(θm − θg)| < cos(π/4) and when |log(lg/ lm)| < .6. We
thereby avoid checking for very large rotations and for con-
tour matches which would imply large missing parts.

Section 4.2.4(a) Inadmissible Heuristics: For structure
coarsening instead of composing all parts of a multi-partite
structure we compose only one, and replace the costs of the
remaining ones with predictions of their costs. Forming an
admissible heuristic would require using a lower bound of
the cost of each part. Unfortunately, these bounds can often
be loose. Instead we use inadmissible heuristics, which may
no longer be lower bounds, but are more efficient at ruling
out unpromising search directions.

For this, we keep track of each part’s cost over the whole
positive set during training; in specific, we work with the
instances identified as witnesses for the positive bags: for
each image i we identify j∗ = argmaxjpi,j , where pi,j is
the distribution over instances entertained by the MIL-SVM
algorithm of Gehler and Chapelle (2007) in (19). Denoting
by ci,k the cost for part k in instance j∗ of image i, our
prediction for the cost of part i is the 20-th percentile of
the set {c1,k, . . . , cN,k} where N is the number of training
images. Even though this is obviously not a lower bound
of the cost, it is a relatively conservative estimate of the cost

224 Int J Comput Vis (2011) 93: 201–225

that can guide the heuristic search. Note that if the part is not
present in any of the ‘witness’ instances, the cost estimate
will be equal to the cost of missing the part.

Section 4.2.4(b) Location Coarsening: Apart from
structure coarsening we can also use location coarsening.
This amounts to quantizing the location coordinates with a
fixed grid. In specific, we use two levels of coarsening; at the
coarse level we quantize the location coordinates into boxes
of 60×60 pixels, and at the fine level we quantize into boxes
of 10 × 10 pixels. For efficiency, we use kd-trees to quickly
identify the box into which every candidate composition
should contribute to. For each box we keep only the compo-
sition falling into it that has minimal cost. If no composition
enters a box, its cost is set to infinity. This coarsening is per-
formed separately for each part. We can form compositions
of more complex structures by putting together these fewer
representatives. This reduces the number of compositions.

Section 4.2.4(c) Structure and Location Coarsening:
We solve the parsing problem at three levels of abstraction.
At the highest (most abstract) level, we perform structure
coarsening at the level of mid-level parts together with lo-
cation coarsening with a grid of boxes sized 60 × 60. At
the second level we perform only location coarsening with a
grid of boxes sized 60 × 60. At the finest level we use a grid
of boxes sized 10 × 10; this last level provides us with our
detector results.

References

Agrawal, S., & Roth, D. (2002). Learning a sparse representation for
object detection. In ECCV.

Ahuja, N., & Todorovic, S. (2007). Learning the taxonomy and models
of categories present in arbitrary images. In ICCV.

Amit, Y., & Kong, A. (1996). Graphical templates for model registra-
tion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 18, 225–236.

Andrews, S., Tsochantaridis, I., & Hofmann, T. (2002). Support vector
machines for multiple-instance learning. In NIPS.

Arkin, M., Chew, L., Huttenlocher, D., Kedem, K., & Mitchell, J.
(1991). An efficiently computable metric for comparing polyg-
onal shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13, 209–217.

Birkhoff, G. (1967). Lattice theory. Providence: AMS.
Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmen-

tation. In ECCV
Chen, Y., Zhu, L., Lin, C., Yuille, A. L., & Zhang, H. (2007). Rapid in-

ference on a novel and/or graph for object detection, segmentation
and parsing. In NIPS.

Chow, C., & Liu, C. (1968). Approximating discrete probability distri-
butions with dependence trees. IEEE Transactions on Information
Theory, 14, 462–467.

Collins, M. (2002). Discriminative training methods for hidden
Markov models: theory and experiments with perceptron algo-
rithms. In EMNLP.

Crandall, D., Felzenszwalb, P., & Huttenlocher, D. (2005). Spatial pri-
ors for part-based recognition using statistical models. In CVPR.

Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004).
Visual categorization with bags of keypoints. In ECCV.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In CVPR (Vol. 2, pp. 886–893).

Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving
the multiple-instance problem with axis-parallel rectangles. Arti-
ficial Intelligence, 89, 31–71.

Dollar, P., Babenko, B., Belongie, S., Perona, P., & Tu, Z. (2008). Mul-
tiple component learning for object detection. In ECCV.

Felzenszwalb, P., & Huttenlocher, D. (2005). Pictorial structures for
object recognition. International Journal of Computer Vision, 61,
55–79.

Felzenszwalb, P., & McAllester, A. (2007). The generalized A∗ archi-
tecture. Journal of Artificial Intelligence Research, 29, 153–190.

Felzenszwalb, P., & Schwartz, J. (2007). Hierarchical matching of de-
formable shapes. In CVPR.

Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discrimi-
natively trained, multiscale, deformable part model. In CVPR.

Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010).
Object detection with discriminatively trained part-based models.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(9), 1627–1645.

Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recogni-
tion by unsupervised scale-invariant learning. In CVPR.

Fergus, R., Perona, P., & Zisserman, A. (2005). A sparse object cat-
egory model for efficient learning and exhaustive recognition. In
CVPR.

Ferrari, V., Tuytelaars, T., & Gool, L. V. (2006). Object detection by
contour segment networks. In ECCV.

Ferrari, V., Jurie, F., & Schmid, C. (2007). Accurate object detection
with deformable shape models learnt from images. In CVPR.

Ferrari, V., Fevrier, L., Jurie, F., & Schmid, C. (2008). Groups of adja-
cent contour segments for object detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30, 36–51.

Ferrari, V., Jurie, F., & Schmid, C. (2010). From images to shape mod-
els for object detection. International Journal of Computer Vision,
87(3), 284–303.

Fidler, S., & Leonardis, A. (2007). Towards scalable representations of
object categories: learning a hierarchy of parts. In CVPR.

Fidler, S., Boben, M., & Leonardis, A. (2008). Similarity-based cross-
layered hierarchical representation for object categorization. In
CVPR.

Frey, B., & Dueck, D. (2007). Clustering by passing messages between
data points. Science, 315, 972–976.

Fu, K. S. (1974). Syntactic pattern recognition. New York: Prentice-
Hall.

Gehler, P., & Chapelle, O. (2007). Deterministic annealing for multiple
instance learning. In AISTATS.

Grimson, E. (1991). Object recognition by computer. Cambridge: MIT
Press.

Gu, C., Lim, J. J., Arbelaez, P., & Malik, J. (2009). Recognition using
regions. In CVPR.

Han, F., & Zhu, S. C. (2005). Bottom-up/top-down image parsing by
attribute graph grammar. In ICCV.

Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning
Bayesian networks: the combination of knowledge and statistical
data. Machine Learning, 20, 197–243.

Hopcroft, J., & Ullman, J. (2006). Introduction to automata theory,
languages, and computation. Reading: Addison-Wesley.

Ioffe, S., & Forsyth, D. A. (2001). Probabilistic methods for finding
people. International Journal of Computer Vision, 43, 45–68.

Jacobs, D. W. (1996). Robust and efficient detection of salient convex
groups. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 18, 23–37.

Jiang, T., Jurie, F., & Schmidt, C. (2009). Learning shape prior models
for object matching. In CVPR.

Jin, Y., & Geman, S. (2006). Context and hierarchy in a probabilistic
image model. In CVPR.

Int J Comput Vis (2011) 93: 201–225 225

Keselman, Y., & Dickinson, S. (2001). Generic model abstraction from
examples. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27, 1141–1156.

Kokkinos, I., & Maragos, P. (2009). Synergy between image segmen-
tation and object recognition using the expectation maximization
algorithm. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31, 1486–1501.

Kokkinos, I., & Yuille, A. (2007). Unsupervised learning of object de-
formation models. In ICCV.

Kokkinos, I., & Yuille, A. (2008). Scale invariance without scale selec-
tion. In CVPR.

Kokkinos, I., & Yuille, A. (2009). Inference and learning with hier-
archical compositional models. In Stochastic Image Grammars
Workshop.

Kokkinos, I., Maragos, P., & Yuille, A. (2006). Bottom-up and top-
down object detection using primal sketch features and graphical
models. In CVPR.

Lampert, C., Blaschko, M., & Hofmann, T. (2008). Beyond sliding
windows: object localization by efficient subwindow search. In
CVPR.

Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object cat-
egorization and segmentation with an implicit shape model. In
ECCV, SLCV workshop.

Lempitsky, V., Blake, A., & Rother, C. (2008). Image segmentation by
branch-and-mincut. In ECCV.

Lindeberg, T. (1998). Edge detection and ridge detection with auto-
matic scale selection. International Journal of Computer Vision,
30(2), 117–156.

Lowe, D. (1984). Perceptual organization and visual recognition. Dor-
drecht: Kluwer.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60, 91–110.

Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture
analysis for image segmentation. International Journal of Com-
puter Vision, 43, 7–27.

Marr, D. (1982). Vision. New York: Freeman.
Martin, D., Fowlkes, C., & Malik, J. (2004). Learning to detect natural

image boundaries using local brightness, color, and texture cues.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
26, 530–549.

Moosmann, F., Triggs, B., & Jurie, F. (2006). Randomized clustering
forests for building fast and discriminative visual vocabularies. In
NIPS.

Moreels, P., Maire, M., & Perona, P. (2004). Recognition by proba-
bilistic hypothesis construction. In ECCV (p. 55).

Mumford, D. (1993). Elastica and computer vision. In C. Bajaj (Ed.),
Algebraic geometry and its applications (pp. 507–518). Berlin:
Springer.

Opelt, A., Pinz, A., & Zisserman, A. (2006a). Incremental learning of
object detectors using a visual shape alphabet. In CVPR.

Opelt, A., Pinz, A., & Zisserman, A. (2006b). Boundary-fragment-
model for object detection. In CVPR.

Parikh, D., Zitnick, L., & Chen, T. (2009). Unsupervised learning of
hierarchical spatial structures in images. In CVPR.

Pearl, J. (1984). Heuristics. Reading: Addison-Wesley.
Porway, J., Yao, B., & Zhu, S. C. (2008). Learning compositional mod-

els for object categories from small sample sets. In Object cate-
gorization: computer and human vision perspectives. Cambridge:
Cambridge University Press.

Quattoni, A., Wang, S., Morency, L. P., Collins, M., & Darrell, T.
(2007). Hidden conditional random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29, 1848–1852.

Ramanan, D., & Sminchisescu, C. (2006). Training deformable models
for localization. In CVPR.

Russell, S., & Norvig, P. (2003). Artificial intelligence: a modern ap-
proach. New York: Prentice Hall.

Russell, G., Brooks, R., & Binford, T. (1979). The ACRONYM model-
based vision system. In IJCAI.

Russell, B. C., Efros, A. A., Sivic, J., Freeman, W. T., & Zisserman, A.
(2006). Using multiple segmentations to discover objects and their
extent in image collections. In CVPR

Schmid, C., & Mohr, R. (1997). Local grayvalue invariants for object
retrieval. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 19, 530–534.

Sharon, E., Brandt, A., & Basri, R. (2000). Completion energies and
scale. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 22, 1117–1131.

Shotton, J., Blake, A., & Cipolla, R. (2005). Contour-based learning
for object recognition. In ICCV.

Shotton, J., Johnson, M., & Cipolla, R. (2006). Semantic texton forests
for image categorization and segmentation. In ECCV.

Siddiqi, K., & Kimia, B. (1995). Parts of visual form: computational
aspects. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 17, 239–251.

Sivic, J., Russell, B., Efros, A., Zisserman, A., & Freeman, W. (2005).
Discovering object categories in image collections. In ICCV.

Sudderth, E., Ihler, A., Freeman, W., & Willsky, A. (2003). Nonpara-
metric belief propagation. In CVPR.

Sudderth, E., Torralba, A., Freeman, W., & Willsky, A. (2005). Learn-
ing hierarchical models of scenes, objects, and parts. In ICCV.

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning, C. (2004).
Max-margin parsing. In EMNLP04.

Todorovic, S., & Ahuja, N. (2006). Extracting subimages of an un-
known category from a set of images. In CVPR.

Todorovic, S., & Ahuja, N. (2008). Learning subcategory relevances
for category recognition. In CVPR.

Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). Image parsing: unifying
segmentation, detection, and recognition. International Journal of
Computer Vision, 63, 113–140.

Vijayanarasimhan, S., & Grauman, K. (2008). Multiple-instance learn-
ing for weakly supervised object categorization. In CVPR.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. In CVPR.

Viola, P., Platt, J. C., & Zhang, C. (2006). Multiple instance boosting
and object detection. In NIPS.

Welling, M., Weber, M., & Perona, P. (2000). Unsupervised learning
of models for recognition. In ECCV.

Wu, Y., Shi, Z., Fleming, C., & Zhu, S. C. (2007). Deformable template
as active basis. In ICCV.

Zhu, S. C., Wu, Y. N., & Mumford, D. (1998). FRAME: filters, random
field and maximum entropy: towards a unified theory for texture
modeling. International Journal of Computer Vision, 27(2), 1–20.

Zhu, S. C., & Mumford, D. (2007). Quest for a stochastic grammar
of images. Foundations and Trends in Computer Graphics and
Vision, 2, 259–362.

Zhu, S. C., & Yuille, A. (1996). Region competition: unifying snakes
region. Growing and Bayes/MDL for multiband image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 18, 884–900.

Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. (2008a). Unsuper-
vised structure learning: hierarchical recursive composition, sus-
picious coincidence and competitive exclusion. In ECCV.

Zhu, L., Chen, Y., Lu, Y., Lin, C., & Yuille, A. (2008b). Max margin
AND/OR graph learning for parsing the human body. In CVPR.

Zhu, L., Chen, Y., Ye, X., & Yuille, A. (2008c). Structure-perceptron
learning of a hierarchical log-linear model. In CVPR.

Zhu, Q., Wang, L., Wu, Y., & Shi, J. (2008d). Contour context selection
for object detection: a set-to-set contour matching approach. In
ECCV.

	Inference and Learning with Hierarchical Shape Models
	Abstract
	Introduction
	Previous Work
	Part-Based Models
	Grouping and Hierarchical Models
	Efficient Optimization for Object Detection
	Contour-Based Representations

	Hierarchical Object Representation
	Object Model
	Image-to-Object Contour Matching

	Inference: Efficient Object Parsing
	Bottom-up Object Parsing
	Recursive Structure Instantiation
	Ordering of Compositions
	Caveats

	Hierarchical Object Parsing
	Search: Dijkstra's Algorithm vs. A*
	Parsing: KLD vs. Generalized A*
	Heuristics for Objects
	Coarse-to-Fine parsing
	Object Parsing Demonstrations

	Model Learning
	From Images to Contours
	From Contours to Object Parts
	Multiple Instance Learning for Discriminative Parsing

	Application to Object Detection
	Conclusions and Future Work
	Acknowledgements
	Open Access
	Appendix A: Integral Angles
	Appendix B: Implementation Details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

