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Abstract In this paper we present a new robust approach
for 3D face registration to an intrinsic coordinate system
of the face. The intrinsic coordinate system is defined by
the vertical symmetry plane through the nose, the tip of the
nose and the slope of the bridge of the nose. In addition, we
propose a 3D face classifier based on the fusion of many
dependent region classifiers for overlapping face regions.
The region classifiers use PCA-LDA for feature extraction
and the likelihood ratio as a matching score. Fusion is re-
alised using straightforward majority voting for the identifi-
cation scenario. For verification, a voting approach is used
as well and the decision is defined by comparing the num-
ber of votes to a threshold. Using the proposed registration
method combined with a classifier consisting of 60 fused re-
gion classifiers we obtain a 99.0% identification rate on the
all vs first identification test of the FRGC v2 data. A verifi-
cation rate of 94.6% at FAR = 0.1% was obtained for the all
vs all verification test on the FRGC v2 data using fusion of
120 region classifiers. The first is the highest reported per-
formance and the second is in the top-5 of best performing
systems on these tests. In addition, our approach is much
faster than other methods, taking only 2.5 seconds per im-
age for registration and less than 0.1 ms per comparison.
Because we apply feature extraction using PCA and LDA,
the resulting template size is also very small: 6 kB for 60
region classifiers.
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1 Introduction

3D face recognition has made much progress during the last
decade. Both in the area of 3D face acquisition as well as in
3D face matching significant steps were made. Currently, a
wide range of sensors for 3D face acquisition is available,
mostly based on laser scanning and structured light tech-
niques. Many 3D face recognition approaches use the dis-
tance between the aligned facial surfaces as a measure of
how well faces match. To align the 3D facial shapes, nearly
all state-of-the-art 3D face recognition methods minimise
the distance between two face shapes or between a face
shape and an average face model. This process of aligning
facial shapes to a common coordinate system is called regis-
tration. In contrast to registration to a second or an average
face shape, we present an approach that registers 3D facial
shapes to an intrinsic coordinate system of the face, defined
by 3D landmark structures. For classification we use the fu-
sion of many regional likelihood ratio based classifiers and
PCA-LDA to extract compact feature vectors. Registration
to an intrinsic coordinate system has received little atten-
tion since the early days of 3D face recognition due to lack
of success. In this paper, we show, however, that excellent
results can be obtained if the registration is sufficiently ro-
bust and accurate. Below we briefly outline the basics and
advantages and disadvantages of the different approaches.
A popular method to align two faces is the Iterative Clos-
est Point (ICP) algorithm, Besl and McKay (1992). In this
approach, two 3D point clouds, representing the surfaces of
two different faces, are registered to each other by minimis-
ing the distance between the surfaces in an iterative process.
The distance between the surfaces is calculated by finding
the closest point in the second point cloud for each of the
points in the first point cloud and taking the average of all
these distances. The distance between the surfaces is min-
imised by rotating and translating one of the point clouds
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relative to the other. The resulting distance measure is then
used for face matching. Many of the top ranking papers on
3D face recognition of the last 5 years are based on ICP-
like approaches: Faltemier et al. (2008a), Kakadiaris et al.
(2007), Maurer et al. (2005), Mian et al. (2007), Queirolo
et al. (2010). Queirolo et al. (2010) actually do not use
ICP, but Simulating Annealing to obtain a closest fit be-
tween two point clouds. The ICP approach and Queirolo’s
approach, however, have several major disadvantages. Since
the point clouds (or other surface representations) are used
in the matching process directly, the only way to store the
templates is to store the whole point cloud. Firstly, this re-
quires much more space than normally is reserved for bio-
metric templates (a point cloud of 50.000 vertices requires
in the order of 600 kB). Secondly, it prevents the use of pri-
vacy protecting techniques aimed at the impossibility to be
able to reconstruct the original biometric data based on the
template. A third disadvantage is the fact that ICP is rela-
tively slow, generally taking several seconds for registration
and calculation of the distance measure. This is not neces-
sarily a problem in the verification scenario where only two
images must be compared, but it is a problem in the iden-
tification scenario where a probe image is compared to a
gallery of many images. Therefore the ICP approach is not
very fit for identification, as is also pointed out in Faltemier
et al. (2008a) and Queirolo et al. (2010), who incidentally
report the highest 3D face identification rates.

The approach we propose in this paper, does not regis-
ter two point clouds to each other, but transforms each point
cloud to an intrinsic coordinate system of the face. This ref-
erence coordinate system is based on the vertical symmetry
plane of the face and the tip and orientation of the nose.
The point cloud is then resampled into a range image from
which features are extracted using PCA and LDA. The fea-
tures form a template that is far more compact than a com-
plete point cloud. The likelihood ratio is used as a similarity
measure. Like in many other approaches, see e.g. Faltemier
et al. (2008a) and Queirolo et al. (2010), we divide the facial
surface into parts that are more or less stable under variation
of facial expressions. We found that using multiple overlap-
ping regions and combining them with a simple decision
level fusion approach using voting, gives excellent robust-
ness against variations in facial expression.

The proposed approach has some major advantages over
ICP-like approaches. Firstly, since we do not register two
point clouds to each other for each match, but use an in-
dependent registration and store templates consisting of ex-
tracted features, in the identification scenario, where one im-
age is compared to many images in a list, we save many reg-
istrations. If the list contains N entries, for the ICP-like ap-
proaches, N registrations must be performed for each probe
image. In our case only a single registration is required, be-
cause all gallery probes are pre-registered and only the tem-
plates are stored. The face matching using the PCA LDA
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likelihood approach on two templates is extremely fast and
allows for many thousands of comparisons per second. Sec-
ondly, because the coordinate system of the face is fixed, this
could be standardised. Thirdly, unlike to the point clouds, to
the templates we store, biometric template protection tech-
niques can be applied, see e.g. Buhan et al. (2010), Kelk-
boom et al. (2009, 2010), Chen et al. (2009). This means
that the “encrypted” templates cannot be traced back to the
original 3D data (or templates) and the matching takes place
in the protected domain. Privacy protection of biometric
data is an ever increasing concern, so this is a very useful
property of our approach. Finally, our approach provides
excellent recognition results, besting the highest published
identification results and ranking between the highest ver-
ification scores. The performance was evaluated using the
Face Recognition Grand Challenge (FRGC) benchmarking
for 3D face recognition (Phillips et al. 2005). In this bench-
mark a challenging database consisting of 4007 images of
466 subjects with varying facial expression is used. Sum-
marising, we present a 3D face recognition approach that is
superior both in speed and recognition performance relative
to other methods and has the additional advantage of being
better fit for biometric template protection.

This paper is organised as follows. Section 2 presents an
overview of related work. In Sect. 3 the registration method
is described in detail. Section 4 describes the PCA-LDA-
likelihood ratio classifier. In Sect. 5 the region classifiers are
defined and the used decision level fusion approaches are ex-
plained for both the identification and the verification cases.
Section 6 contains experiments and results and a description
of the used 3D facial data. Finally, Sect. 7 gives conclusions.

2 Related Work

This section on related work consists of two parts. The first
part addresses related work on 3D face registration. The sec-
ond part concentrates on 3D face recognition, i.e. the classi-
fication or comparison of 3D face images or extracted fea-
tures. In practise, the two are often tightly interwoven, like
in e.g. the ICP approach.

2.1 3D Face Registration

Registration basically means transforming shapes in such a
way that they can be compared. For 2D face recognition,
e.g. it is common to locate a number of landmarks (e.g.
eyes, nose, mouth) in each face and rotate, translate and
scale these landmarks in such a way that they are projected
to fixed, predefined positions. The same geometric transfor-
mation is then applied to the facial image. The facial image
is thus transformed to an intrinsic coordinate system. Once
the images are represented in this intrinsic coordinate sys-
tem, they can be compared, because corresponding features



Int J Comput Vis (2011) 93: 389414

391

N
@ probe
.ff.-.‘__ N
B

0,0,y, t

Rotate
Translate
Calculate
Distance

reference

or Adjust
atlas Parameters
- transformation  registered
distance parameters point cloud

Fig. 1 Iterative registration of one 3D point cloud to a reference point
cloud

are more or less in the same positions in the different facial
images.

Basically three different approaches to 3D face registra-
tion can be distinguished:

— One-to-all registration (register one face to another)

— Registration to a face model or atlas

— Registration to an intrinsic coordinate system using geo-
metric properties of the face like landmarks

Apart from this division in three classes, we can also dis-
tinguish rigid and non-rigid registration. The former only
performs rotation and translation (and possibly scaling) of
the point clouds. The latter also allows for (small) deforma-
tions of the point cloud to realise an optimal registration.
Non-rigid registration can be useful in handling facial ex-
pressions. Using non-rigid registration, e.g. a smiling mouth
can be fitted to a neutral mouth etc. which is impossible for
rigid registration.

The first approach: one-to-all registration (see Fig. 1) reg-
isters two surfaces or point clouds to each other using an
iterative procedure. One of the point clouds is the refer-
ence (from a gallery) while the other is the probe. The aim
of this registration approach is to find rotation and trans-
lation parameters that will transform the probe point cloud
to lie as close as possible to the reference point cloud. To
this end, a distance measure must be defined between the
two point clouds. Examples of such distance measures are
the Mean Square Error (MSE) between the surfaces and
the Surface Interpenetration Measure (SIM), see Silva et
al. (2005), Queirolo et al. (2010). Based on the distance
between the point clouds (or the change in distance due
to a change in the registration parameters) the registration
parameters (0, ¢, y, t) are updated and the probe is trans-
formed again etc. This process continues for a number of
iterations until convergence is reached. As a result, the reg-
istration parameters, the transformed probe and the resid-

ual distance between the two point clouds become avail-
able for further processing. The Iterative Closest Point (ICP)
approach is the most popular method for this optimisation
process of aligning one point cloud to another. Generally,
a reasonably good initial estimate of the registration para-
meters (0, ¢, y,t) is required to obtain convergence. Usu-
ally landmarks like the tip of the nose and sometimes the
vertical symmetry plane are used to obtain this initial esti-
mate. Examples of one-to-all registration are Maurer et al.
(2005), Mian et al. (2007), Queirolo et al. (2010), Faltemier
et al. (2008b). All of these address only rigid registration.
As pointed out in Sect. 1, one-to-all registration has the dis-
advantage that a probe must be registered to all images in
the gallery. Because the iterative registration procedure gen-
erally is quite time-consuming, this makes application to an
identification scenario (one-to-many) impractical. For a ver-
ification scenario (one-to-one), only a single registration is
required, so a somewhat slower registration is entirely ac-
ceptable.

The second approach: registration to a model or atlas ba-
sically operates in the same way, however, the probe image
is not registered to a gallery image, but to a model or at-
las (see Fig. 1). The model or atlas is learnt from a training
set. Examples of this approach are Kakadiaris et al. (2007),
Gokberk et al. (2006), Salah et al. (2007), Boehnen et al.
(2009), Alyiiz et al. (2009). In Kakadiaris et al. (2007) and
Gokberk et al. (2006) also non-rigid registration is explored.
In all these articles the Average Face Model (AFM) is built
from training examples. A significant advantage relative to
the one-to-all approach described above, is that each image
has to be registered only once. This means images in the
gallery can be pre-registered and application in an identi-
fication scenario becomes possible. A disadvantage is that
probes may be less accurately registered to an average face
model than to an image of the same subject.

The third approach: registration to an intrinsic coordinate
system using e.g. landmarks, requires the accurate localisa-
tion of 3D landmarks on the face. The set of 3D landmarks is
mapped on the corresponding 3D landmarks in the intrinsic
coordinate system. The resulting transformation is then also
applied to the complete point cloud of the face, resulting in
the registered point cloud (see Fig. 2).

A problem is that most 3D landmarks are not stable un-
der facial expressions and/or can be covered by hair or oc-
cluded by other parts of the face. Landmark based regis-
tration is discussed in some depth in Papatheodorou and
Rueckert (2007). Registration to an intrinsic coordinate sys-
tem has the same advantages as registration to an atlas or
model: each image has to be registered only once. An added
advantage is that the intrinsic coordinate system can be pre-
cisely defined and standardised. Because atlases and AFM’s
are obtained using training sets, basing a standard on these
models is hardly possible. Tang et al. (2008) present a regis-
tration method to an intrinsic coordinate system based on the
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Fig. 2 Registration using 3D
landmarks on the face
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vertical symmetry plane of the face, the tip of the nose and
the slope of the nose bridge. These could be called landmark
structures in the image as opposed to landmarks, which only
mark positions. The advantage of using the symmetry plane
and the nose tip and bridge is that these features are rela-
tively stable under facial expression variations, while they
still completely define a 3D intrinsic coordinate system (see
also Fig. 4). Our approach, as presented in this paper, is
based on the same features: the vertical symmetry plane, the
location of the tip of the nose and the slope of the bridge of
the nose (see Fig. 3). However, we take a robust approach
to determine these which, together with a more advanced
3D face classifier, results in far better recognition rates (see
Sect. 6). Furthermore, we present more results on a far larger
database and compare our results with the state of the art,
which Tang et al. do not.

It is interesting that most of the best performing ap-
proaches to 3D face recognition are based on one-to-all reg-
istration and registration to an atlas or model, mostly us-
ing ICP, while on the other hand for 2D face recognition
landmark based methods are more common. In Boom et
al. (2007) and Spreeuwers et al. (2007) we proposed ap-
proaches to 2D one-to-all registration and registration to an
AFM registration and showed significant advantages over
landmark based approaches. Ironically, here we present a
landmark (structures) based approach to 3D face recognition
and show significant advantages over 3D one-to-all registra-
tion and registration to an AFM.

2.2 3D Face Recognition

A recent overview on 3D face recognition until 2006 is pre-
sented in Bowyer et al. (2006). Other reviews are presented
in Papatheodorou and Rueckert (2007), Scheenstra et al.
(2005). More recent work was covered in Faltemier et al.
(2008a), Queirolo et al. (2010), Boehnen et al. (2009), Alyiiz
et al. (2009). Since these give an extensive overview of work
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Fig. 3 Registration using vertical symmetry plane, nose tip and the
slope of the bridge of the nose

on 3D face recognition, in this section only a brief summary
is presented and the reader is referred to the above papers
for more details.

Early work on 3D face recognition started around 1989
using profile and minimum distance between surfaces ap-
proaches (Cartoux et al. 1989) and e.g. application of PCA
to range images (Achermann et al. 1997; Hesher et al. 2003).
One of the problems was that in the beginning only small
datasets were available and there was no unified approach to
comparing performance of the different 3D face recognition
methods.

In 2004, the Face Recognition Grand Challenge (FRGC)
data (Phillips et al. 2005) was released containing in total
4950 images of 466 persons and the definition of a num-
ber of experiments for evaluation, among which a number
of verification experiments and identification experiments,
normally using 4007 of the 4950 images. The FRGC dataset
also contains many images with various expressions. Unfor-
tunately, the FRGC database contains a number of images
with serious motion artifacts, acquisition errors and extreme
expressions, which might be rejected for classification in ac-
tual situations.

As described in the previous section on 3D face registra-
tion, ICP can be used to align 3D point clouds. Apart from
the aligned point clouds ICP also produces a measure for the
distance between the facial surfaces if they are aligned. This
measure can be used as a matching criterion, because the
distance between aligned 3D point clouds of two different
individuals will be larger than between two different aligned
point clouds of a single individual. The use of the iterative
closest point (ICP) approach started around 2003 (Medioni
and Waupotitsch 2003) and because it was very successful
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it has dominated the world of 3D face recognition since.
Because ICP only works properly if the two point clouds
are already quite close to each other, generally a form of
pre-registration is performed and often the data are cleaned
somewhat: noise is suppressed and spikes are removed. Im-
provements of the ICP approach using several regions in
the face that were more or less sensitive to expressions and
modified distance measures were published in e.g. Maurer
et al. (2005), Mian et al. (2007), Queirolo et al. (2010), Fal-
temier et al. (2008b). A major drawback of the ICP approach
to 3D face comparison, is that it is a slow method, gener-
ally taking several seconds to minutes per comparison. For
the verification scenario, where only two images have to be
compared, this may still be acceptable, but for the identifica-
tion scenario, where a single probe must be compared to all
gallery images, it is not a practical solution. As described in
Sect. 2.1 another approach is to register to an average face
model (AFM) using ICP and then extract features which are
used for the classification. In this case, ICP has to be per-
formed only once and more compact templates of the faces
can be stored for the gallery images. This approach with reg-
istration to an AFM is used in Kakadiaris et al. (2007), Gok-
berk et al. (2006), Alyiiz et al. (2009), Papatheodorou and
Rueckert (2005).

In recent work (Mian et al. 2007; Kakadiaris et al. 2007,
Gokberk et al. 2006; Alyiiz et al. 2009; Faltemier et al.
2008b; Maurer et al. 2005; Queirolo et al. 2010), generally
performance comparison to the state-of-the-art is done using
the FRGC database (often in addition to other databases).
Two of the most challenging tests that are most cited in pub-
lications are an all vs all verification test, resulting in a score
matrix of 4007 x 4007 and a closed set identification test us-
ing a gallery consisting of the first images of all 466 subjects
and the rest of the 4007 images as probes. For the former the
recognition rate at a false accept rate of 0.1% is reported,
while for the latter the rank-1 recognition rate is reported.
On the all vs. all verification test, currently the best perfor-
mance ranges from 93.2% (Faltemier et al. 2008b) to 97%
(Kakadiaris et al. 2007). For the closed set identification test,
the best rank-1 results reported were 98.4% (Queirolo et al.
2010). Our approach using rigid registration to an intrinsic
coordinate system and multiple region PCA-LDA likelihood
ratio classifiers yields excellent results with a verification
rate of 94.6% and a rank-1 score of 99.0% while offering a
significant advantage in processing speed.

3 3D Face Registration Method
3.1 Introduction

As explained in Sect. 2.1, our registration method does not
map one point cloud on another, but transforms each point

Fig. 4 The intrinsic coordinate system with u-, v- and w-axis of the
3D face is defined by its origin in the tip of the nose and 3 rotation
angles: ¢ around the z-axis, 6 around the y-axis and y around the
Xx-axis

cloud to an intrinsic coordinate system. In 2D face registra-
tion, generally landmarks, like the centres of the eyes, nose
tip and mouth are used to determine a transformation to an
intrinsic coordinate system. In the 3D data, often only a sin-
gle stable landmark can be distinguished: the tip of the nose.
At the centres of the eyes and the mouth, often there are
holes in the 3D data, making accurate localisation of these
landmarks very difficult. Also these landmarks may move
due to facial expressions. Therefore, we used two different
geometric properties of facial data: the vertical symmetry
plane of the face and the slope of the bridge of the nose.
Both geometrical properties are stable under variation of fa-
cial expressions (Tang et al. 2008). To define an intrinsic
coordinate system, three angles and an origin must be de-
termined. The symmetry plane defines two angles (0, ¢, see
Figs. 4 and 8). The nose tip defines the origin and the an-
gle of the nose bridge defines the third angle (y, see Figs. 4,
11 and 14). The intrinsic coordinate system of a 3D face is
shown in Fig. 4. The world coordinate system is spanned
by the vectors x, y and z. The intrinsic coordinate system
is spanned by the vectors u#, v and w. The v-axis is chosen
such that the angle with the nose bridge is & rad. This will
generally place faces in a frontal position.

As mentioned in Sect. 2.1, a 3D face registration method
based on similar geometric properties was presented by
Tang et al. (2008). However, the verification results they
present on the FRGC v1 data are far inferior to the results
we obtained as will be shown in the experiments in Sect. 6.

Our registration method operates on the rough 3D point
cloud and consists of the following main steps:

1. Determine a region of interest containing the face

2. Determine the vertical symmetry plane of the face
through the nose

3. Determine the nose tip and the slope of the nose bridge
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Fig. 5 Two samples from the FRGC v2 data (04529d93.abs and
04529d101.abs) of the same subject represented as a surface

4. Transform the point cloud to a coordinate system defined
by the symmetry plane, nose tip and angle of the nose
bridge

5. Construct a range image by projecting the point cloud to
a plane perpendicular to the symmetry plane

6. Perform hole filling and spike removal

The resulting range image can be readily used for face
comparison with a variety of face recognition methods. We
use the likelihood ratio classifier (Bazen and Veldhuis 2004;
Veldhuis et al. 2006), which is described in Sect. 4. Further-
more, we fuse the results of multiple classifiers of overlap-
ping regions of the face. The regions and fusion is described
in Sect. 5.

Because there is much variation in the 3D images due to
pose, expression, facial hair etc. we designed a robust ap-
proach to the steps of the registration method. This basically
means that some of the steps are performed twice: once ap-
plying a very robust approach with a large search space for
the parameters, but with lower accuracy and once with a nar-
row search space for the parameters but aimed at high accu-
racy. Each step will be explained in detail below.

3.2 Region of Interest

The full 3D scans may contain more than just the face. An
example from the FRGC v2 data set (Phillips et al. 2005)
is shown in Fig. 5. Because other body parts may disturb
the determination of the symmetry plane of the face, first a
Region of Interest (ROI) around the face is determined.

The region of interest is determined by first mapping
the 3D point cloud to a grid consisting of cells with size
20 x 20 x 20 mm. For each cell the average 3D coordinates
are determined and the surface normal is determined using
eigenvector/eigenvalue analysis. Only those cells are kept
with a sufficient number of 3D points and a largest eigen-
value that is clearly larger than the other two eigenvalues.
The latter signals that the cell represents a reasonably flat
surface with a clear normal.

Next a RANSAC (RANdom SAmple Consensus; Fis-
chler and Bolles 1981) is used to fit a cylinder piece to the
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Fig. 6 Fitting a cylinder piece to two points with associated normals.
Left: finding the axis and centroid C of the cylinder piece. Right: the
fitted cylinder piece

3D facial data. RANSAC an iterative method to estimate pa-
rameters of a mathematical model from data which contains
outliers. The mathematical model in our case is the cylin-
der piece and the outlayers are 3D points on the shoulders,
torso etc. The “inliers” are the points on the face that are
modelled reasonably well by the cylinder. The basic idea of
RANSAC is to use a small random subset of points from the
data to hypothesise the mathematical model and to calculate
the consensus of the hypothesis by counting the number of
points in the dataset that can be explained by the hypothesis.
The process of hypothesising is repeated a number of times
and the hypothesis with the maximum consensus is selected
as the best fit of the mathematical model to the data. Advan-
tages of the RANSAC approach are its robustness against
outliers and its speed.

In our case, two cells can be used to define a cylinder
piece using the averages of the 3D coordinates of the points
in the cells and the normals. This is illustrated in Fig. 6.

The direction a of the axis of the cylinder piece is per-
pendicular to both normals n; and nr;. The intersection of
a plane « through Py with normal b = a x nr| and the line
through P, with direction n; is a point on the axis of the
cylinder piece. The radius of the cylinder piece is given by
the distance of Py and P; to the axis. Finally, the extent of
the cylinder piece is determined by calculating the centroid
C between the projections of Py and P, and cutting off the
cylinder below and above half of the average face height 4.
The average face height was set to 200 mm.

For the RANSAC algorithm, we consider all cell pairs
for fitting cylinder pieces with distance between the cells in
the x-direction dc, of [dc;ni“, dc?™] and in the y-direction
dcy of less than dc™ (see Fig. 6 for definition of the
axes). We chose dc™" = 50 mm, dc™ = 100 mm and
d c;‘a" = 50 mm. The consensus Cyyj is calculated by count-
ing the number of cells with distance d less than d™** (here:
20 mm) from the cylinder piece and normal less than o™#*
(here: 7 rad) deviating from the normal at the corresponding
position on the cylinder.

=3 [ 1 W = e <am
Con@. ) = {0, otherwise M
k



Int J Comput Vis (2011) 93: 389414

395

Fig. 7 ROI determined by fitting a cylinder piece to the point cloud of
Fig. 5 using a RANSAC method. For points in the ROI the normals are
shown as well

Table 1 Parameter settings used in determination of the ROI

Description Symbol Value
Distances between pairs of points used to dc;!““ 50 mm
hypothesise cylinders dcma 100 mm
d c;‘,“ax 50 mm
Thresholds for contributing points to am¥ 20 mm
consensus oMmax % rad
Distance to cylinder for points in reduced 75 mm

point set

Where Cey(i, j) is the consensus for the cylinder fit through
the cells i and j, d(k) is the distance of cell k to the cylinder
and « (k) is the angle between the normals of cell k£ and nor-
mal on the closest point on the cylinder. The cylinder piece
with the maximum consensus is chosen as the best fit. An
example of a fitted cylinder piece is shown in Fig. 7. This
approach of extraction of the face region appeared very reli-
able and did not fail a single time on a total of approximately
10000 3D images.

All points with a distance larger than 75 mm to the cylin-
der piece are discarded from the point cloud. We will call
the remaining point cloud the reduced point cloud.

Table 1 summarises the parameter settings for ROI ex-
traction. Pairs of points used to hypothesise cylinders should
more or less lie in the same horizontal plane (we are look-
ing for cylinders with a vertical axis), hence the threshold
cglax. The distance between the pairs of points should not be
too small or too large, because this results in inaccurate esti-
mates of the parameters of the cylinder. The choices for the
thresholds relate directly to the average size of the face and
are not very critical.

Fig. 8 The symmetry plane is
defined by 3 parameters: 6, ¢
and d;

3.3 Symmetry Plane

The next step is finding the vertical symmetry plane of the
face through the nose. The determination of the vertical
symmetry plane takes place in two stages: first a rough es-
timate of the parameters of the symmetry plane and next a
refinement of the parameters.

3.3.1 Rough Symmetry Plane Estimation

First, a range image is created from the reduced point cloud
by projecting them to the xy plane. A grid is defined on the
xy plane consisting of square pixels of 5 x 5 mm. The pro-
jection of the centre of gravity of the reduced point cloud
defines the origin of the grid. The value of a pixel is deter-
mined by calculating the average distance to the xy plane of
the points that project to the pixel (i.e. the average of their
z-coordinates). The result is a low resolution range image,
which is shown in Fig. 10 on the left.

The symmetry plane is defined by 3 parameters as shown
in Fig. 8: the rotation 6 around the y-axis, the rotation ¢
around the z-axis and the x coordinate of the intersection of
the symmetry plane with the x-axis: d,. Note that the angle
¢ in both Figs. 8 and 4 refers to the rotation around the z-
axis.

To find the parameters of the symmetry axis, for 8 and ¢
in a range of [—7, 7], new range images are generated for
which the projection plane is rotated such that it is perpen-
dicular to the symmetry plane. The step sizes for 6 and ¢
were set to 75 rad. New range images only have to be gen-
erated from the point cloud for each value of 6. The range
images for different values of ¢ for a fixed value of 6 are
obtained by in-plane rotation of the range image.

The new range images are mirrored in the y-axis and
shifted along the original range image with distances d, in
arange of [—%w, %w] with a step size of 5 mm, where w is
the width of the range image. For each displacement d,, the
z-coordinates of the pixels at the same grid positions (i, j)
are compared and the differences d. (i, j) for pixels that dif-
fer less than a threshold dzmi“ are accumulated into a sum S.
This sum S is a measure for the symmetry: a low S means a
good match, a high S means a bad match. The threshold is
used to decide if the pixels are outliers. Outlier pixels have
very large differences in z-coordinates and would, therefore,
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Fig. 9 Nose template used for
rough nose fitting. Darker pixels
means nearer to the observer,
brighter pixels means further
away

-

have a large impact on the sum S. This is the reason why
they should not contribute to S. The symmetry measure S
also depends on the number of pixels that contributed to the
sum (i.e. those with d; < dg‘i“). To make the measure inde-
pendent for the number of pixels that contributed, we divide
by the number of contributing pixels. Because few contribut-
ing pixels generally means a bad overlap, we punish this by
dividing the sum through the number of contributing pixels
once more. The resulting expression for the symmetry mea-
sure S thus becomes:

0, ifd (i, j) > a™n
d; (i, j), otherwise

A\ 2
ifdz (i, j) > d™
otherwise

56,0,d) = = {
(Z,-,,- {?Z

Where d, (i, j) is the absolute difference of the z-coordinates
of two pixels at the same grid position (i, j) of the two range
images and d;“i“ the threshold used to decide if the pixels are
outliers. In all experiments, we set dg‘i“ = 10 mm. All lo-
cal minima in the 3 dimensional parameter space (6, ¢, d)
are recorded as potential symmetry plane candidates. The
candidates for the symmetry plane are sorted in a list with
increasing S.

For all candidate symmetry planes a nose model is fitted
to the area around the symmetry plane on the facial surface
using a simple 3D nose model as a template and Normalised
Cross Correlation (NCC) as a matching criterion (see e.g.
van der Heijden and Spreeuwers 2007). The nose template
is shown in Fig. 9.

For each symmetry plane, the projection plane is tilted
around the x-axis with an angle y and the best position of
the nose around the symmetry plane is selected. The search
range in the y-direction is across the full height of the face
and in the x-direction & 15 mm from the symmetry plane.
The step size in x- and y-directions is 5 mm. The range for
the head tilt y is [~ %, ] and the step size is 5 rad.

We now select the symmetry plane with low S while at
the same time a good nose fit. A good nose fit is in our
case defined as a NCC of 0.6 or larger (NCC has a range
of [—1, 1] with 1 the best match). If there are more candi-
date symmetry planes with a good nose fit, the one with the
best symmetry (lowest S) is selected. If there is no good nose
fit, the symmetry plane candidate with the best nose fit is se-
lected. The threshold for the NCC was found experimentally
and is not very critical. The main purpose is to discard false
symmetry planes, e.g. vertical planes through the eyes.

Apart from a first estimate of the symmetry plane, we
now also have a first estimate of the position of the nose and

@)
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Fig. 10 Rough symmetry plane detection. Left: low resolution range
image of original data in ROI; Right: rotated to frontal. The rough es-
timate of the nose tip is marked with a cross

Fig. 11 The projection plane is
perpendicular to the symmetry
plane, has an angle y with the
nose bridge and has its origin in
the tip of the nose

the tilt of the face (), so basically we have a first estimate
of the intrinsic coordinate system.

The parameters are used to transform the point cloud to
the intrinsic coordinate system and again a low resolution
range image is created as described before. The result for
the image in Fig. 5 is shown in Fig. 10. Darker pixels are
closer to the observer and brighter pixels are further away.

Figure 11 shows the symmetry plane and the projection
plane with the origin in the tip of the nose.

This first estimate of the intrinsic coordinate system para-
meters appeared very reliable. The next step is a refinement
of the estimation of the parameters of the symmetry plane
and the nose tip and the slope of the nose bridge.

Table 2 summarises the parameter choices for the rough
symmetry plane determination. The ranges for 6, ¢ and y
determine the maximum rotations the registration method
can handle.
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Table 2 Parameter settings for the rough symmetry plane detection
process

Description Symbol Value

Pixel size range image 5 mm

Search range + step ¢ and 6 —%, %], % rad
Search range + step d —%w, %w], 5 mm
Threshold to exclude points arm 10 mm

for symmetry calculation

Search range + step y [-%. 5], fprad
Search range + step nose [—15,15], 5 mm
X-pos

Threshold on NCC nose fit 0.6

3.3.2 Refinement of Symmetry Plane Estimation

For the refinement of the estimation of the symmetry plane,
the point cloud is first rotated and translated to frontal view
using the parameters found in the rough symmetry plane es-
timation, so all parameter estimation is relative to the al-
ready found rotations and translations. For the refinement of
the estimation of the symmetry plane, the same symmetry
measure from (2) is used. However, now a higher resolution
range image with a grid size of 1 mm is used and a circular
ROI with a radius of 110 mm around the tip of the nose (see
Fig. 12 on the left). We used an exhaustive search strategy
in the 6 direction in two stages: first in a range of [— {5, 751
with a step size of 1jj; rad and next around the found op-
timum 9;”” in the range [Ofpt -, Gfpt + 5] with a step
size of MJ)TW rad. For each value of 9, the point cloud is mir-
rored in the symmetry plane and projected to the projection
plane perpendicular to the symmetry plane. The resulting
range image is then rotated around the z-axis over an an-
gle of ¢ and shifted in the x-direction over a distance d,
and compared to the original range image. The differences
of the z-coordinates of the projected points and the pixels of
the range image are again accumulated using (2). To find the
optimal ¢ and d, for each value of 6, we applied a one di-
mensional parabolic fit optimisation approach as described
in Brent (1973), Press et al. (1988). The search ranges were
[—15> 1] for ¢ and [—10, 10] mm for d,. The parabolic fit
method iteratively fits a parabola through 3 points and sub-
stitutes the worst point by the maximum of the parabola.
First the optimal value for d, was determined for ¢ = 0 and
then this d, value was used in the optimisation of ¢, which
in turn is then used in a second optimisation of d, etc. and
after that in a third iteration. The number of iterations for
each individual parameter was set to a maximum of 10 and
the optimisation was stopped if the difference of ¢ resp. d,
relative to the values in the previous iteration was less than
Tooo rad resp. 0.1 mm.

The circular ROI used as input to the fine symmetry plane
estimation is shown on the left in Fig. 12. The result after

Fig. 12 Fine symmetry plane detection. Left: high resolution range
image of circular ROI around the nose; Right: rotated to frontal

Table 3 Parameter settings for the refinement of the symmetry plane
estimation

Description Symbol Value

Pixel size range image 1 mm

Radius range image 110 mm

Range and step st search 6 [— %, %], ﬁ rad
Range and step 2nd search 0 [— g’—o, ;’—O], ﬁ rad
Range and resolution search ¢ [— %, %], ﬁ rad
Range and resolution search d [—10, 10], 0.1 mm
Max # iterations 1D search 10

Max # iterations 2D search 3

adjustment using fine symmetry plane estimation is shown
on the right in Fig. 12. Note there is only a minor adjustment
to the rough symmetry estimation. The holes on the right
side of the nose (left in the images) occur because these parts
are invisible in the original 3D recording of Fig. 5.

The next step in the registration procedure is accurate
estimation of the tip of the nose and the slope of the nose
bridge. This will be detailed in the next section.

Table 3 shows the parameter settings for the refinement
of the symmetry plane estimation.

3.4 Nose Tip and Slope of Nose Bridge

In order to locate the nose tip and determine the slope of
the nose bridge, a rough estimate of the tilt angle y of the
face is required. A first estimate of the tilt angle was already
obtained in the rough nose detection process in the symme-
try plane estimation. However, it turned out that sometimes
this estimate was insufficiently reliable, because it relies on
fitting a crude local nose model to a very low resolution
(5 mm) range image.

Therefore, a second more accurate and reliable estimate
of y is determined by fitting a cylinder to the circular ROI
of the face, thus using higher resolution (1 mm) and more
global data. Basically this means finding the ‘up’ axis of
the face. The cylinder in this case has a fixed radius r =
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Fig. 13 A cylinder fitted to the circular ROI surface provides a first
estimate of the “up”-axis

100 mm and the axis of the cylinder lies in the symmetry
plane with an angle y to the vertical y-axis. The angle y
of the axis is varied between —7 rad and 7 rad with a step
of 15y rad. The y that gives the cylinder with the highest
consensus according to (1) is selected as an initial estimate
for y. The result of fitting a cylinder to the circular ROI is
shown in Fig. 13.

Next the projection plane for the range images is adjusted
for the new y and a profile of the face is extracted by pro-
jecting all points of the point cloud with a distance less than
5 mm from the symmetry plane on the symmetry plane and
record their v and w coordinates (see coordinate system in
Fig. 4).

First outliers are removed from the profile. The profile
is resampled with a point distance of 1 mm in the v direc-
tion, recording both the maximum as well as the average
in the w-direction for each position. Outliers are defined
as points with a w-coordinate deviating more than 5 mm
from the average. Next the first estimate of the tip of the
nose is found by detecting the point with the maximum w-
coordinate. Around the tip of the nose, now straight lines are
fitted to the profile. The line fitting is done again using the
RANSAC (Fischler and Bolles 1981) approach. All combi-
nations of two points around the tip of the nose that have a
distance to each other of at least 10 mm are used to construct
straight lines. The consensus of a line with the profile is cal-
culated by counting the points above the tip of the nose that
have a distance in the w-direction of less or equal to d;"** to
the line:

G, J) =Z{

k

—

. ifdi(k) < A
0, otherwise

3
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Fig. 14 Left: line fitted to nose bridge of the profile of the face. The
tip of the nose is at coordinates (0, 0). Two profiles of the same person
are shown on top of each other. Right: definition of the tip of the nose
as intersection of two lines

Where Ci(i, j) is the consensus of the line through points
i and j on the profile and d(k) is the distance in the w-
direction of point k to the line. The line with the highest
consensus is selected as the best fit. Because the nose bridge
is the longest more or less straight line piece around the tip
of the nose, the found line lies on the nose bridge. As men-
tioned before, the RANSAC approach is very robust against
outliers and generally results in an accurate estimate of the
best fitting line. The angle y defining the tilt of the head is
now defined as the angle of the found line on the nose bridge.
The profile is rotated such that y = % rad. This places the
face in an upright position, resulting in a frontal view. Fi-
nally the tip of the nose is found as the intersection of a line
parallel to the v-axis through the point on the profile with
the maximum w-coordinate and the line on the nose bridge.
It turned out that choosing this point as the tip of the nose
is slightly more stable than the point with the highest w-
coordinate or the point with the highest curvature. The result
of the line fitting to the nose bridge is shown in Fig. 14. To il-
lustrate how well the alignment of two faces works, two pro-
files of different 3D images of the same person are shown.

At this point, all parameters needed for registration of a
facial point cloud to the intrinsic coordinate system defined
in Fig. 4, have been determined. For further processing us-
ing face classifiers, some post processing steps are required,
which are described in the subsequent section.

Table 4 summarises the parameter settings for the esti-
mation of the position of the nose tip and slope of the nose
bridge. The radius of the cylinder is derived from the average
size of the head. We observed that the registration accuracy
is not very sensitive to these parameters, which is supported
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Table 4 Parameter settings for the nose tip and slope estimation

Description Symbol  Value

Radius cylinder r 100 mm

Search range + step y [—7%. 5], 1o rad
Max distance to cylinder am¥ 20 mm

Max deviation from normal oM T rad

Max distance to symmetry plane 5 mm

Resample density profile 1 mm

Outlayer threshold 5 mm

Min dist points for line hypothesis 10 mm

Max dist point to line for consensus @™ 5 mm

Fig. 15 High resolution range
image. For the black areas, no
depth information is available in
the original point cloud

by the fact that the same parameter values resulted in correct
registrations for about 10000 3D faces.

3.5 Range Image

The first of the post processing steps is the generation of a
high resolution range image. This may not be necessary for
all types of 3D face recognition methods, but the PCA-LDA-
likelihood ratio approach that we chose requires an input
vector of fixed length. Therefore, a high resolution range im-
age is constructed by projection of the original point cloud
to the projection plane defined by the found parameters. In
principle a higher resolution may give better recognition, be-
cause details are better represented. For each pixel of the
grid of the range image, the average of the w-coordinates of
the points projected on the pixel is determined. The number
of contributing points is stored in a counter flag f for each
pixel as well. A simple filter for removing occluded points
from the point cloud is also applied. These are points that
lie more than several millimetres behind other points that
project on the same pixel in the grid of the range image. The
resulting range image is shown in Fig. 15.

Due to resampling, imperfect scanning and the fact that
some areas in the face may not have been visible during
scanning, holes occur in the range image. Furthermore, er-
rors in the scanning process may produce spikes. In order
to further process the range images, the holes must be filled
and the spikes must be removed.

Fig. 16 Spikes near the eyes
and on the forehead in a 3D face
surface

3.6 Spike Removal, Hole Filling and ROI

Spikes occur in the data due to scanning errors. These er-
rors may be caused by specular reflections in e.g. the pupils
of the eyes. Smaller spikes can occur anywhere in the data.
Figure 16 shows an example of spikes in the eye.

Spike removal is performed by low-pass filtering the
range image and discarding all points from the point cloud
with a w-coordinate that deviates more than dj®* from the
average w-value of the corresponding pixel of the grid of the
range image. We chose dj®* = 5 mm. The low pass filtering
step is a special kind of filtering, because to some pixel of
the grid, no points are projected, while to other pixels more
or fewer points of the point cloud are projected. The low pass
filtering takes the number of points that project on a pixel
into account. Cells with a larger count are considered more
reliable and given a higher weight in the averaging process.
The low pass filtering now proceeds as follows: First, the
average contributing point count f per pixel is determined
for the range image. Next, for each pixel i, a new w-value
wgr(i) and count fi (i) are determined by adding together
the average w-value of the pixel and the pixels in a square
neighbourhood N (i), weighted with their respective counts
f(j) dividing by the total count of the neighbourhood:

fa®y= Y f() )
JEN()
o1 o
wari) = .Z, w(j) f () )
JEN(@)

The size of the neighbourhood of each pixel is chosen
such that the new count f (i) is larger or equal to a fixed
multiplier My, times the average count f. In the left image
of Fig. 17 the spikes of Fig. 16 are visible as dark spots
(closer to the observer). The resulting filtered range image
for a multiplier M, = 25 is shown in the middle in Fig. 17
and on the right the result of the spike removal is shown.

Holes can be distinguished in small holes, large holes
and missing face parts. Small holes are caused by minor
scanning failures, the high resolution resampling process or
the spike removal process. Large holes are caused by scan-
ner failures and occlusion. A typical example of large holes
caused by scanner failure are the pupils of the eyes (see
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Fig. 17 Left: spikes in the range image; Middle: filtered range image
for spike removal; Right: after spike removal

Fig. 5). An example of large holes caused by occlusion are
the sides of the nose, which can be occluded if the face is ro-
tated around the y-axis. Missing facial parts can be caused
by scanner failure and by large rotations of the face around
the x-axis and/or the y-axis. If e.g. a person is looking down,
the part between the upper lip and the nose may not be visi-
ble in the 3D scan. After rotation to frontal pose, this causes
a hole.

Small holes are filled using interpolation. This interpola-
tion works similar to the low pass filtering used for the spike
removal with the exception that the w-values and the counts
of the neighbourhood are weighted with the reciprocal of the
distance to the centre of the neighbourhood:

S 0)
for(i) = 'Z. e 6)
JENG@)
L w() £ ()
= 7
) fhfo')je%.) r@ ) @

Where r(i, j) is the distance between pixels i and j in the
grid of the range image. In this case the multiplier Mys =
0.25, or if Mys f < 1, Mys is chosen such that Mys f = 1.

Large holes and missing parts are filled using the symme-
try of the face. Large holes are detected by testing if a pixel
i and all its immediate neighbours j have counts f(i) and
£(j) that are less than My f. If for a pixel i in a big hole the
pixel i, on the position mirrored in the symmetry plane has
a count larger than thf, then w(i,,) and f(i;,) are copied
to pixel i.

The order of processing holes is that first the big holes are
filled and then the remaining small holes. If the big holes
cannot be filled using symmetry, because holes occur on
both sides of the symmetry axis, the big holes will still be
filled using the approach for small holes.

An example of the result of the hole filling is shown in
Fig. 18 on the left.

The final step of the post processing is cutting out an el-
liptical region of interest (ROI), keeping only parts of the
face that are visible in all images. Choosing a larger ROI
may result in including parts of the background for smaller
faces. The final range image is shown in Fig. 18 on the right.
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Fig. 18 Result after hole filling (left) and after selection of an elliptical
ROI (right). The latter is the final result of the post processing

Table 5 Parameter settings for spike removal and hole filling

Description Symbol Value
Max deviation to low pass filtered agy™ 5 mm
surface for spike removal

Multiplier defining neighbourhood Mg 25
for spike removal

Multiplier defining neighbourhood m 0.25
for hole filling

Although the simple approaches to spike removal and
hole filling perform well in most of the cases (evaluated us-
ing visual inspection and supported by the excellent 3D face
recognition results reported in Sect. 6), more advanced ap-
proaches, like hole filling using a PCA model (see Colombo
et al. 2006) may yield even better results.

Table 5 shows the parameter settings used in the spike
removal en hole filling process. Spikes deviating more than
5 mm from the average surface are removed. The values of
the multipliers result for spikes consisting of a single pixel
in a neighbourhood of 5 x 5 and for holes of a single pixel
in a neighbourhood of 3 x 3. For larger holes/spikes, the
neighbourhoods are extended to include a sufficient number
of 3D points to make a reasonable prediction of the local
depth value.

3.7 Alternative Registration Approach

A disadvantage of determining the tilt of the head by the
slope of the nose bridge is that for some people if they show
severe facial expressions the tip of the nose is pushed up-
wards. In addition, in some scans the tip of the nose cannot
be determined accurately either because it is missing (see
Fig. 25) or because inaccuracies occur due to e.g. specular
reflections. We, therefore, investigated a second approach to
determining the tilt of the face (the angle y) and the origin
of the intrinsic coordinate system. In this case, the origin is
defined not at the tip of the nose, but at the point just below
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Fig. 19 Determining the dent in the nose bridge (upper dot) and the
point below the tip of the nose (lower dot) from curvature. Both points
are a local maximum of the curvature. The tilt of the face is determined
by the line through the two points

the nose. Both of these points can easily be determined using
the curvature of the (smoothed) profile. This is illustrated in
Fig. 19 which shows the smoothed profile of a face and the
corresponding curvature. The tip of the nose has a large neg-
ative curvature. The dent above the nose bridge (black dot)
and the point just below the tip of the nose (blue dot) both
have large positive curvatures and are the first strong local
maxima near the tip of the nose. The tilt of the face is de-
termined by first locating the dent at the top of the nose and
fitting a line through these two points (dashed line).

In Fig. 20 a case is illustrated for which the alternative
registration approach works better than the original. The fig-
ure shows the profiles of two images of the same subject for
the registration based on the slope of the nose bridge and
nose tip (“normal registration”) on the left and on the dent
above the nose tip and the point just below the nose tip (“al-
ternative registration”) on the right. Note that for the normal
registration the nose tip is at the origin (0, 0), while for the
alternative registration the point just below the nose is at the
origin.

Because of small motion artifacts at the tip of the nose,
the shape of the tip of the nose is deformed leading to incor-
rect localisation of the tip of the nose in one of the images
which causes a vertical shift in the range image, see Fig. 21.
The incorrect localisation of the tip of the nose is because
it is defined as the intersection of two lines (see Fig. 14).
Furthermore, there is compression of the nose area caused
by the facial expression in the face on the right, making the
slope of the nose bridge a less accurate measure of the tilt of
the head. Note that the eyes and nose tip are not at the same
vertical position in Fig. 21. The alternative registration does

Fig. 20 Profiles of two images of the same subject registered by the
normal registration (left) and the alternative registration (right). The
normal registration incorrectly localises the tip of the nose, because
the shape of the nose is different. The alternative registration is not
dependent on the shape of the tip

Fig. 21 Range images resulting from the normal registration. The in-
correct localisation of the tip of the nose causes a vertical shift in one
of the images

find the correct points in both images and correctly registers
both images. The range images of the alternative registration
are shown in Fig. 22. Note that the nose tip is better aligned
now, but because of the compression of the nose area caused
by the facial expression, the eyes are still not aligned.
Because only a small part of the complete registration
changes for this alternative approach, a range image with
the alternative registration can easily be generated in addi-
tion to the original range image at very little cost, i.e. it takes
hardly more time to generate two range images instead of
a single range image. The alternative registration appeared
slightly less robust than the “normal” registration. However,
because it makes different mistakes, it makes sense to fuse
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Fig. 22 Range images resulting from the alternative registration. The
faces are better aligned this time

classifiers trained on images registered with the two differ-
ent registration approaches.

4 PCA-LDA-Likelihood Ratio Classifier

For comparison of the 3D range images, we use a classifier
based on the likelihood ratio as described in Bazen and Veld-
huis (2004), Veldhuis et al. (2006), Beumer et al. (2006).
The likelihood ratio is defined as:

_ p(xlo)

L
® p(x)

®

Where p(x|c) is the conditional probability on a feature vec-
tor x for class ¢ and p(x) is the unconditional probability on
feature vector x for any class. The classes here refer to the
identities of the subjects. If we assume that p(x|c) and p(x)
are normally distributed, then:
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Where m is the dimension of the feature vector. wr and .
are the mean feature vectors of the total distribution (of all
classes) and the within class distribution (for a single class).
Y7 and Zw are the covariance matrices of the total distribu-
tion resp. the within class distribution. pr, ¥7 and Xy are
estimated from training data. Because generally only few
samples are available per class, we assume that the within
class variation Xy is the same for all classes. In this way
the data of all classes can be used to estimate Xy by sub-
tracting the class mean.

To compare two 3D range images, we first vectorise the
images. Next, one of the images is selected as probe x,, and
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the other as reference x,. We want to find out if the probe
and the reference are of the same class, i.e. are recordings of
the same subject. Since we have only one reference vector
available, the best estimate of the class mean is the refer-
ence vector itself, so we set . = X,. The likelihood can
then be calculated using (8). If the likelihood is above a
certain threshold, the probe is accepted as a recording of
the same subject as the reference, otherwise it is rejected.
Prior to classification, the feature vectors are transformed
to a lower dimensional subspace by a d x m transforma-
tion matrix M that simultaneously diagonalises the within
class and the total covariance matrices, such that the latter
becomes the identity matrix.

The transformation matrix M is found by PCA followed
by LDA (Veldhuis et al. 2006). The expression for the like-
lihood ratio can now be simplified by applying the transfor-
mation M and taking the natural logarithm:

I(y) = log 2Y19)

IR U N D
(Y = 2()’ ve)' ATy —ve)

+1( )¢ ) Lo W

Loy oy L

2}’ T) Y T 5 g
(11)

Where y = MXx, v. =Mpu,., vr =Mpg and A = M7 zyM
a diagonal matrix. The transformation matrix M depends on
the number of retained PCA components p and the number
of retained LDA components d. The dimensionality of the
transformed feature vectors y is d. One of the interesting re-
sults of this research is that only very few components are
needed for a good classification. As is shown in Sect. 6.3,
as few as 12 numbers suffice (d = 12) to obtain a recogni-
tion rate of around 80% for a FAR of 0.1%. This means that
discriminating 3D range maps of faces requires very little
information and very compact feature vectors can be used
as templates.

Because the estimate of the class mean vector v, is based
on a single reference vector, the estimate is not very accu-
rate. Bazen and Veldhuis (2004) argue that in this case all
elements of the within class covariance matrix are twice as
large as for the case with known class mean vectors. We use
the proposed correction to the within class covariance ma-
trix, resulting in an acceptance region 2¢/2 times as large.

5 Fusing Multiple Regions

5.1 Region Classifiers

One of the main deficiencies of the PCA-LDA-based clas-
sifier described in the previous section is its limited capa-
bility to handle local variations in the faces, caused by e.g.
expressions or acquisition errors like missing data, motion
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deformation etc. In principle these can be learnt from exam-
ple data, however, only if sufficient examples of each type
of variation are available. Normally, this is not the case. One
way to handle local variations is to divide the face into a
number of regions, perform recognition on the separate re-
gions and fuse the results. This approach was used in several
recent publications, including ICP based approaches using
local ICP, see e.g. Faltemier et al. (2008a), Queirolo et al.
(2010), Boehnen et al. (2009), Alyiiz et al. (2009). Gener-
ally, the regions are chosen disjunct in order to obtain inde-
pendent recognition results. A problem with smaller regions
is, however, that the recognition rates are very low. There-
fore, we investigated the fusion of many relatively large
overlapping regions. We defined a set of 30 overlapping re-
gions which are shown in Fig. 23 where the white area is
included and the black area is excluded. The regions were
chosen in such a way that for different types of local varia-
tion they would allow stable features for comparison. Exam-
ples of such regions are those that leave out the upper or the
lower part of the face because of variation in hair, caps etc.
or variation in expression of the mouth. Other examples are
leaving out areas covered by glasses and the left or right side
of the face, which are less visible for large rotations around
the vertical y-axis.

We started by combining a few overlapping regions, but
as it became clear that adding more still improved recog-
nition results, we added more regions until the 30 regions
shown in Fig. 23 resulted. After this point adding more re-
gions did not seem to result in significant improvements any-
more, as can be observed in the experiments presented in
Sect. 6.4. However, more careful research into the definition
of the regions and the combination of the right regions may
still give some performance improvement.

From now on we will call the classifiers for a certain re-
gion region classifiers. The next step is the fusion of the re-
sults of the region classifiers into a single score or decision.
Of course the region classifiers for the smaller regions will
perform worse than those of the larger regions, but they may
still contribute to the fused score if the small region happens
to be one of the few stable regions in the image (i.e. some-
times, due to acquisition errors, large occlusions by hats or
hair or extreme expressions, only a small part of the face,
e.g. the nose is still unchanged relative to the neutral face).
In the subsequent sections, the fusion methods used for the
verification and identification scenarios are explained.

5.2 Fusion

There are many ways to fuse the results of a pool of clas-
sifiers. In Ross et al. (2006a, 2006b), 5 levels of fusion are
distinguished:

1. Sensor level fusion—fusion of raw data from different
sensors before feature extraction
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Fig. 23 Regions used for different classifiers. Parts excluded by re-
gions include upper, lower parts, mouth region, hair region, glasses
etc. Some regions only use a small area around the nose. Note that
most regions overlap and the corresponding classifiers are, therefore,
not independent

[\

. Feature level fusion—fusion of extracted features ex-
tracted from different sensors, feature extraction methods
or different recordings of the same subject

. Rank level fusion—combination of sorted lists of identi-
ties in decreasing order (only for identification)

. Decision level fusion—combination of decisions of the
different classifiers, e.g. AND and OR rules and majority
vote

. Score level fusion—combination of the scores of the dif-
ferent classifiers e.g. the (weighted) sum and product of
likelihoods

(O8]

~

9]

Since we only use a single 3D sensor, sensor level fu-
sion is not applicable in our case. Feature level fusion can in
principle be applied in our case, but because all features of
all region classifiers are extracted from the same image us-
ing the same feature extraction technique (PCA-LDA), it is
questionable if this will result in any performance improve-
ment. The other 3 fusion approaches are all applicable to
our approach and indeed we performed a number of exper-
iments with different fusion techniques like the optimal OR
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decision fusion (Tao and Veldhuis 2007, 2009; Tao et al.
2007). In the end we opted for one of the most common
approaches to fusion: majority voting. Majority voting is a
form of decision level fusion, where the identity is assigned
on which the majority of the classifiers agree. Majority vot-
ing very well fits the idea of using multiple region classifiers
that each represent more or less stable regions for different
expressions or facial occlusions. For neutral faces, gener-
ally all region classifiers will present the correct decision.
For faces with expressions, some of the region classifiers
(e.g. the full face region classifier) may present the wrong
decision, but still many others will present the correct de-
cision. A further characteristic of the region classifiers we
use is that they are dependent, because the regions used for
feature extraction overlap. Support for using majority vot-
ing for the fusion of many dependent classifiers is provided
in Kuncheva et al. (2003). Applying simple majority vot-
ing fusion to the region classifiers already gave extremely
good results as is presented in Sect. 6. In this paper we,
therefore, did not explore the benefits of the different fu-
sion approaches in depth. However, in Ross et al. (2006a)
and Kuncheva et al. (2003) several approaches are described
(weighted majority voting, Dempster-Shafer Theory of Ev-
idence, selection of the best combination of classifiers etc.)
that will likely further improve the results. Another promis-
ing fusion approach combining optimal decision OR fusion
and the sum rule score level fusion was presented in Tao and
Veldhuis (2008). In future research, we will investigate other
fusion strategies in more depth.

5.2.1 Identification—Closed Set

Application of majority voting fusion is straightforward for
the closed set identification scenario. In this case, it is guar-
anteed that identity of the probe image matches one of the
identities of the gallery images. Each region classifier com-
pares the probe image to all images in the gallery and selects
the one with the highest score. This results in one vote for
the identity corresponding to the selected gallery image. The
identity of the subject in the gallery that gathers most votes
is the winner and presented as the output of the fusion.

5.2.2 Identification—Open Set

In case of an open set identification scenario, it is not guar-
anteed that the identity of the probe image is represented in
the gallery. In this case we need a threshold on the mini-
mum number of votes. If the number of votes is below this
threshold, the probe image is not recognised and rejected.
An example of this scenario is access control for e.g. build-
ings where entrance must be denied to all people not present
in the gallery.

@ Springer

-150
1 T ™ T
------------------- -7 095
= 08 5 -
=} ]
—5 ]
£ 06 5 .
A i
5 04 ; 1
'§ imposters '
& (02 genuines ! 4
............................... -----t--10.1

0 1 1 1 L
-1000  -800 —-600  —-400  -200 0
threshold

Fig. 24 The tippet plot of a classifier shows the fraction of imposter
scores and genuine scores that are larger than the threshold as a func-
tion of the threshold. The dashed lines show that at a FAR of 10% the
threshold is —150 and the VR is 95%

5.2.3 Verification

In the verification scenario, the identity of a subject must be
verified against a claimed identity. In face recognition, this
normally means that a facial recording must be compared to
an image on some kind of identification document. In prin-
ciple, this scenario corresponds to an open set scenario with
a gallery consisting of a single image. A typical example is
border control using the photograph on a passport. In this
case a decision is made by comparing the score of the clas-
sifier to a threshold. This threshold is chosen to match the
requirements of the application. Requirements can be for-
mulated in terms of e.g. maximum verification rate (VR)
at a predefined false acceptance rate (FAR). A requirement
often used in verification experiments is maximum VR at
FAR = 0.1%, i.e. if 1 out of 1000 imposter claims is ac-
cepted as a genuine claim.

‘We implemented the majority voting fusion for the verifi-
cation scenario, by first determining the decision thresholds
for all region classifiers using a separate dataset for a fixed
FAR. For each pair of images in the dataset, the matching
score is determined. For an imposter claim this results in
an imposter score and for a genuine claim into a genuine
score. If we plot the fraction of imposter scores larger than
the threshold (that is the FAR) as function of the threshold,
we can determine the required threshold for a certain re-
quired FAR. By also plotting the fraction of genuine scores
larger than the threshold, we also obtain the VR. This plot is
sometimes referred to as the Tippet plot, see e.g. Gonzalez-
Rodriguez et al. (2002). An example is shown in Fig. 24,
where the VR at FAR = 10% is equal to 95% at a threshold
of —150.

To determine the fused decision for the comparison of
a probe to a reference image, the scores S; for each region
classifier i are compared to the threshold 7; of the region
classifier and the decisions are accumulated:

1, ifS;>T;
0, otherwise

V=%

i

all regions
{ 12)
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The number of votes is then regarded as a new score and
is compared to a another threshold 7;, to reach a decision:

1,

D= { ;
The threshold 7, must be determined using a second
dataset and again is tuned for a specific FAR or FRR which
is not necessarily the same as the one used in obtaining the
thresholds 7; of the individual region classifiers. We call the
FAR that is used to obtain the first set of thresholds 7; the

projected FAR FAR ,. The optimal setting for FAR, can be
different from the FAR required for the fused classifier.

ifV; > T,

otherwise (13)

6 Experiments and Results

In this section a number of experiments is presented. The
first set of experiments (Sect. 6.2) reports results of the reg-
istration method. The second set of experiments (Sect. 6.3)
concern the selection of the parameters of the classifier.
The third set of experiments (Sect. 6.4) shows results of re-
gion classifiers and fusion. The fourth experiment (Sect. 6.5)
shows a comparison to Tang’s work. The last set of ex-
periments concerns a comparison with the state of the art
of 3D face classification methods both in processing speed
(Sect. 6.6) as well as on performance (Sect. 6.7). For all
comparisons the FRGC v2 3D data set was used (Phillips
et al. 2005). For training, other data sets were used: the
Bosphorus (Savran et al. 2008) data and a part of the 3Dface
data (3DFace 2009). The different data sets are detailed in
Sect. 6.1.

6.1 3D Face Databases

In our experiments we used 3 databases with range images:

1. FRGC database
2. Bosphorus database
3. 3DFace database

The FRGC database was used for evaluation, while the
other two databases were used for training of the region clas-
sifiers. In the subsequent sections follows a brief description
of the three databases.

6.1.1 FRGC Data

In our experiments we use the FRGC v2 database (Phillips et
al. 2005) for evaluation. This database was released in 2004
and consists of 4007 images of 466 different subjects. The
number of images per subject varies from 1 to 22. The 3D
scans were acquired using a Minolta Vivid 910 laser scanner
and the 3D data are represented as a grid of 480 x 640 3D
points. The effective resolution on the face surface is around

i
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Fig. 25 Examples of images in the FRGC data base with motion arti-
facts, a missing nose and puffed cheeks

0.6 mm between points in x- and y-directions. All recorded
faces are close to the frontal pose. Facial expressions vary
from neutral through mild to extreme expressions with puffy
cheeks. Some of the images have artifacts due to e.g. motion
during acquisition and improper distance to the scanner, see
Fig. 25. One of the subjects has a wrong identification num-
ber as reported in Queirolo et al. (2010) (subject 04643 is
the same as subject 04783). For fair comparison, we did not
make any changes to the data or signature sets.

In addition to the FRGC v2 database, we used the FRGC
v1 database consisting of 943 images of 275 of the same
subjects as the FRGC v2 data for adjusting thresholds for
fusion for the verification experiment.

6.1.2 Bosphorus Database

The Bosphorus database (Savran et al. 2008) became avail-
able in 2008 and consists of 3396 recordings of 81 sub-
jects with 31-53 samples per subject. The 3D images were
recorded using an Inspeck Mega Capturor II 3D, which is a
commercial structured-light based 3D digitiser device. The
resolution of the images is generally somewhat lower than
those of the FRGC v2 database at around 0.8 mm between
points on the face surface, because the images are subsam-
pled. There are, however, fewer acquisition artifacts like mo-
tion or spikes. It contains images under several different
poses with up to 90 degree side views, different expressions
and partly occluded faces by hands, glasses etc. We used the
Bosphorus data only for training and selected all frontal im-
ages without occlusions but with expressions. This resulted
in a set of 2733 images of 81 subjects.

6.1.3 3DFace Database

The 3DFace dataset was acquired for an EU FP6 research
project: 3DFace (3DFace 2009). This dataset is not public. It
was acquired using the viSense scanner, based on structured
light and developed within the 3DFace project. The images
are available as a grid of 480 x 640 3D points. The resolution
of these faces is around 0.5 mm between points at the face
surface. It consists of images with different poses, with and
without glasses, occlusion (caps) and various expressions.
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Fig. 26 Registration results of images in the FRGC data base with
motion artifacts, a missing nose and puffed cheeks

We used the 3DFace dataset only for training purposes and
selected images without glasses, resulting in a set of 673
images of 64 subjects.

6.2 Performance of Registration

For this research a total of 8356 images were registered
using the new registration method. Registration failed for
very few of the images, most notably those with missing
noses (two images of the FRGC dataset) and extreme ex-
pressions. But even images with severe expressions, occlu-
sions by glasses, hats, caps etc. are handled quite well. Some
expressions, liked puffed cheeks etc. deform the face in such
a way that although the faces are registered correctly to the
intrinsic coordinate system, still comparison with other im-
ages of the same subject may fail. Results for the images
with artifacts of Fig. 25 are shown in Fig. 26. The left image
shows the effect of motion artifacts: the nose bridge is still
vertical but the rest of the face is distorted. The image in the
middle shows the effect of a missing nose: here the tilt of the
face cannot be estimated accurately. The image on the right
shows the result on a face with puffed cheeks.

The registration method was originally developed for the
3DFace data, which means high resolution and high qual-
ity data from a 3D scanner based on structured light. The
3DFace dataset also contains images with glasses and with
large variation in pose and, hence also large variation in pose
is handled well too (up to +45 deg in all directions). An ex-
ample is shown in Fig. 27.

The range image in Fig. 27 also shows that the hole fill-
ing using interpolation and mirroring is not always working
perfectly and needs some improvements. This, together with
extensive experiments on 3D face recognition for large vari-
ations in pose, expressions and occlusions are subjects of
our future research.

The registration was implemented in C++ on a standard
Linux PC as a single threaded program. Registration takes
on average 2.5 seconds for images from the FRGC v2 data-
base and 3DFace database. Both contain images with 50000
to 120000 points. Registration of images from the Bospho-
rus database is faster with around 1.2 seconds, because they
contain fewer points (around 40 000).

@ Springer

Fig. 27 Sample bsO00_YR_R45_0_3D from the Bosphorus data with
a rotation of 45° and the resulting range image

It hardly makes sense to present 8000 examples of cor-
rectly registered faces. A better means of evaluation of the
quality of the registration is by applying it for face recogni-
tion as will be done in the subsequent sections.

6.3 Selection of Parameters

The PCA LDA likelihood ratio based classifier has two im-
portant parameters that must be chosen: the number of prin-
ciple components for the PCA step and the number of com-
ponents in the LDA step. From our experience in 2D face
recognition, we expected optimal number of around 200
PCA components and 100 LDA components. However, for
3D face recognition, the optimal number of required LDA
components turned out to be much lower. We performed two
experiments to determine optimal values for the number of
PCA and LDA components. We selected a single classifier
region (top right in Fig. 23) and trained the classifier using
the Bosphorus frontal data. In the first experiment the num-
ber of LDA components was varied from 3 to 90 while the
number of PCA components was fixed to 100. In the sec-
ond experiment the number of PCA components was varied
from 25 to 500 while the number of LDA components was
fixed to 25. The resulting classifiers were evaluated using
the verification test on the complete FRGC v2 target set of
4007 images using an all vs all test. Figures 28 and 29 show
the results of the experiments.

As can be observed in Fig. 28, which shows the EER
(Equal Error Rate) and the FRR (False Rejection Rate) at a
FAR (False Accept Rate) of 0.1% as a function of the num-
ber of LDA components, if the number of LDA components
is above a certain value, the performance of the classifier re-
mains nearly constant. For the EER this value is 10, resulting
in an EER of approx. 2.2% and for the FRR at FAR =0.1%
it is around 25 resulting in a FRR of approx. 12%. The con-
clusion we can derive from this is that although the human
face seems a complicated 3D surface, only 10-25 floating
point numbers suffice to discriminate between faces of dif-
ferent subjects. This results in very compact feature vectors.
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Fig. 28 FRR@FAR = 0.001 and EER of a single classifier as function
of the number of LDA components
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Fig. 29 FRR@FAR = 0.001 and EER of a single classifier as function
of the number of PCA components

If we choose 25 components, each classifiers needs features
with a length of 25 floating point numbers, which results in
a total of 25 x 30 = 750 numbers or 3000 bytes for fusion
of 30 region classifiers. Compared to the space required for
a complete point cloud (around 600 kB) this means a huge
compression.

Figure 29 shows the EER and the FRR at a FAR of 0.1%
as a function of the number of PCA components for a fixed
number of 25 LDA components. As can be observed, the
optimal number of components for minimum FRR (around
12%) at FAR = 0.1% is around 175 and remains nearly con-
stant in a range of 100-250. The EER has a minimum of
2.2% at 75 PCA components and remains nearly constant
between 50 and 150 components. Above 150 components
the EER gradually increases to 2.8% at 500 components.

Based on the above experiments, we chose to use 100
PCA components and 25 LDA components. For conve-
nience, we chose the same number of PCA and LDA com-
ponents for all region classifiers, although we observed dif-
ferent optima for different classifiers. For 150 PCA compo-
nents and 40 LDA components and an in-plane resolution of
1.5 mm, for example, the best region classifier resulted in a
rank-1 score of 96.1% and a FRR of 88.3% at FAR = 0.1%.
For the smaller regions, however, large numbers of PCA and
LDA components leads to overtraining (see e.g. Jain et al.
2000) and, hence, worse results. Optimisation of these para-
meters for the individual region classifier is, however, a time
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Fig. 30 FRR@FAR = 0.001 and EER of a single classifier as function
of the resolution of the range image

consuming process and, therefore, we made a compromise.
In future research, we will further optimise these parameters
and the regions which will likely result in further improve-
ment of the results.

Another parameter that influences the results of the clas-
sifiers is the resolution of the range image generated by the
registration module. A very high resolution in x- and y-
directions may seem preferable, because all details can be
represented. However, choosing a very high resolution may
degrade classifier results, because of the curse of dimension-
ality (Jain et al. 2000) and imperfect interpolation for filling
of holes. Choosing a very low resolution, on the other hand,
will speed up processing, but will result in lower recogni-
tion rates. In Boom et al. (2006) we showed that for 2D
face recognition using a PCA-LDA likelihood ratio classi-
fier the recognition performance is relatively insensitive to
image resolution. In Fig. 30 we can observe that the same is
true for 3D face recognition. The figure shows the FRR at
FAR = 0.1% and the EER for a single region classifier as a
function of the resolution in x- and y-directions of the range
image. Both FRR at FAR = 0.1% as well as the EER remain
nearly constant at around 19% resp. 7.5% for a large range
of resolutions. For most of our experiments we chose a reso-
lution of 1.5 mm/pixel, resulting in range images of 75 x 87
pixels.

Again, for convenience we chose the same resolution for
all region classifiers. In future work we will investigate the
effect of the resolution on the individual region classifiers as
well.

6.4 Classifier Performance and Fusion

We performed two evaluation experiments on the FRGC v2
data: a closed set identification experiment and an all vs all
verification experiment.

6.4.1 Identification

For the identification experiment, the 4007 images of the
FRGC are split into a gallery and a probe set. The gallery set

@ Springer



408

Int J Comput Vis (2011) 93: 389-414

-H - .-
L A —h i\ JEE

83.6 91.0 80.1 948 959 957 913 899 946 86.8

Qi i( @R@O. |

88.8 832 785 88.1 879 860 877 79.8 813 648

Peol]. [« [O[rT

875 926 865 71.0 860 945 899 839 817 76.6

Fig. 31 Performance of individual region classifiers on FRGC v2
rank-1 identification experiment. The best rank-1 score for a single re-
gion classifier is 95.9% (number 5 in the top row)

consists of the first image of each subject in the data base,
resulting in a set of 466 images. Most of these first images
are neutral images, but not all of them. The remaining 3541
images are used as a probe set.

Figure 31 shows the rank-1 scores for 30 region classi-
fiers trained on the frontal Bosphorus data set. The maxi-
mum rank-1 score obtained for a single region classifier was
95.9%. Similar results were obtained for the region classi-
fiers trained on the 3DFace data set.

As described in Sect. 5, straightforward majority voting
is used to fuse the rank-1 scores of the individual region
classifiers. Figure 32 shows the result of adding the region
classifiers one by one and taking the majority vote. The first
curve shows the combination of 30 region classifiers trained
on the Bosphorus frontal data set, which results in a final
rank-1 score of 97.9% for 30 regions. The second curve
combines region classifiers trained on the Bosphorus frontal
data set and the 3DFace data set. The fusion of two times
30 region classifiers results in a rank-1 score of 99.0%. The
region classifiers trained on the 3DFace data set used the
alternative registration described in Sect. 3.7. Because the
two registration approaches make different errors and the
two datasets contain different variations of 3D facial shapes,
fusion results in further improvement of the performance.
Note that we used a complete separation of training and
evaluation data. The training data are even acquired using
a completely different process: using structured light as op-
posed to laser scanning for the FRGC v2 data base.

The drop in performance around the 9th region suggests
that better region selection is possible. This is one of the
subjects of our future research.

6.4.2 Verification

For the verification scenario, we use the all vs all experiment
defined in the FRGC protocol. Since there are 4007 images
in the FRGC v2 database, this results in 4007 x 4006 com-
parisons (images are not compared to themselves). For each
region classifier, the VR at FAR = 0.1% is determined us-
ing a Tippet plot (see Sect. 5.2.3). Figure 33 shows this VR
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Fig. 33 Performance of individual region classifiers on FRGC v2 all
vs all verification experiment. The best performance of a single region
classifier is VR = 87.5% @ FAR = 0.1% (5th on top row)

for all the region classifiers trained on the Bosphorus data-
base. The best performance of a single region classifier is
VR = 87.5% or FRR = 12.5% at FAR = 0.1%. Similar re-
sults are obtained using the 3DFace dataset for training and
the alternative registration of Sect. 3.7.

For fusion, we use the approach as described in Sect. 5.2.3.
We used the FRGC v1 data to determine the thresholds for
the region classifiers for a given projected FAR ,. Figure 34
shows the FRR at FAR = 0.1% for fused classifiers of 30,
2 x 30, 3 x 30 and 4 x 30 regions as a function of the
projected FAR,. The minimum FRR of 5.4% is reached
at FAR, = 0.00023 for the 4 x 30 region classifier (fusion
of 30 region classifiers trained on Bosphorus data and 30
region classifiers trained on the 3DFace dataset using both
the standard as well as the alternative registration).

We can also observe that like for the other parameters,
there is a reasonably large range where the performance is
more or less constant, i.e. the exact choice of FAR,, is not
very critical.

As an extra indicator of performance, the EER is shown
as well in Fig. 35. Note that unlike the FRR the EER does
not show a clear minimum for the chosen range of FAR,.
The best performance for the 4 x 30 regions is an EER
of 1.2%.
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Fig. 34 Performance of fused region classifiers on FRGC v2 all vs all
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Fig. 35 Performance of fused region classifiers on FRGC v2 all vs all
verification experiment as a function of the projected FAR,. The best
performance for the 4 x 30 regions is an EER of 1.2%

As mentioned in Sect. 5.2.3 further performance im-
provements may be expected by more in depth research into
the optimal combination of region classifiers. This will be
part of our future research.

6.5 Comparison to Tang

Although the main objective of the paper of Tang et al. is to
show that using the nose area to define the symmetry plane
(NSP) results in a more accurate estimate of the symmetry
plane than by using the full face (FSP) and not to perform an
extensive comparison of the recognition results to the state
of the art, it still is interesting to compare our results with
theirs, because our registration method is based on the same
landmark structures as Tang’s.

While Tang’s and our method use the same landmarking
structures, the approaches to estimate the corresponding pa-
rameters differ in several aspects. Whereas Tang et al. base
the estimation of the symmetry on a small area around the
nose, we determine the symmetry plane using a large area
around the nose, which, in our opinion, gives a more reli-
able result. Another difference is the definition of the tip of
the nose, which we defined as the intersection of two lines
rather than the point with maximum curvature. Furthermore,
our method uses a course-to-fine robust approach in each

Table 6 Comparison of our approach to Tang’s. Reported numbers are
EER’s on an all vs all experiment on the FRGC v1 data

Method EER
Tang-manual 6.1%
Tang-FSP 7.1%
Tang-NSP 5.5%
Spreeuwers 1 0.7%
Spreeuwers 2 x 30 0.3%

stage, whereas Tang’s method doesn’t. Finally, our 3D face
classifier is far more advanced than Tang’s. Tang et al. use
average distance between profiles of the face as a distance
measure for face comparison.

Tang et al. perform a single verification experiment on the
FRGC v1 3D data set, which consists of a part of the data
of the FRGC v2 data set (the Fall2003range data). This data
set consists of 943 images of 275 subjects and is regarded
as a relatively easy 3D data set. The experiment Tang et al.
performed was one-to-one verification for all data, resulting
in a 943 x 943 score matrix. Tang et al. only report equal
error rates (EER) where, generally, false reject rates (FRR)
at a false accept rate (FAR) of 0.1% are reported. In order to
compare our results to Tang’s, we trained the classifiers us-
ing the Bosphorus and the 3Dface databases. Two score ma-
trices were evaluated: one for a single classifier (Spreeuwers
1: trained on the Bosphorus data base using the region at the
top right of Fig. 23) and a full classifier using vote-fusion
(Spreeuwers 2 x 30), where the classifiers were trained on
both the Bosphorus and the 3Dface databases and the thresh-
old for the vote-fusion was tuned using the Spring2004range
and the Fall2004range data from the FRGC v2 data. The re-
sults are presented in Table 6.

Note that the classifiers we used for this test were not
specifically optimised for EER. We can also conclude that
unlike Tang’s full face symmetry (FSP) approach, our robust
approach to symmetry plane estimation does not suffer from
inaccuracy and performs even far better than Tang’s nose
symmetry (NSP) approach.

6.6 Comparison to State of the Art: Processing Speed

Processing speed is one of the major advantages of our ap-
proach. Table 7 shows for a number of top-ranking 3D face
recognition methods the times required for registration and
comparison of two images together with the processors that
were used to perform the calculations as reported in the pub-
lications. Of course, processing times are difficult to com-
pare, because they not only depend on the used processors
(which were comparable for all methods), but also on imple-
mentation, used programming language, amount and speed
of storage etc. However, since our method is an order of
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Table 7 Computation times for registration and number of compar-
isons per second of 3D recognition methods. Boehnen et al. do not
specify the registration time, but it is likely to take several seconds as
it involves ICP to an average model

Method Processor Prep. Comp.
[sec] per sec.
Queirolo et al. (2010) 3.4 GHz P4 - 0.25
Faltemier et al. (2008a) 2.4 GHz P4 7.5 0.36
Al-Osaimi et al. (2009) Core 2 Quad 4 10
Kakadiaris et al. (2007) 3.0 GHz P4 15 1000
Boehnen et al. (2009) 2.2 GHz T7500 ? 12500
Alyiiz et al. (2009) 2.7 GHz Core i7 131 20000
Spreeuwers 1 2.8 GHz P4 2.5 670000
Spreeuwers 30 2.8 GHz P4 2.5 22300
Spreeuwers 2 x 30 2.8 GHz P4 2.5 11150
Spreeuwers 4 x 30 2.8 GHz P4 2.5 5575

10-1000 times faster than the competing methods and was
run on rather modest hardware, we can safely state that it is
one of the fastest methods around. Also, the method could
as easily profit from parallel processing and more modern
processors as any other method (it currently runs in a single
thread on an old 2.8 MHz Pentium 4).

Queirolo et al. (2010) report an average time for com-
parison of two faces of 4 seconds. Faltemier et al. (2008a)
require 7.5 seconds for data preprocessing and rough regis-
tration. Face matching of 28 regions then takes 2.4 seconds.
Al-Osaimi et al. (2009) extract a cropped pose-corrected 3D
facial range image which is used as a template and takes 4
seconds. Face comparison is based on ICP and takes 100
ms per face. Kakadiaris et al. (2007) perform registration
to a spin model which takes 15 seconds and use extracted
features for matching which is very fast at 1000 matches
per second. Boehnen et al. do not report the time for pre-
alignment for their signature search, but because it involves
an ICP step for registration to an average model, it is likely
to take several seconds. Their matching for 8 regions on the
signatures is very fast with 100000 matches per second per
region or 12 500 full matches per second. Alyiiz et al. need a
total of 131 seconds for preprocessing and registration using
regional ICP. Matching is again very fast at 20 000 matches
per second.

In Table 7 four of our classifiers are shown: “Spreeu-
wers 17 is the best performing single region classifier,
“Spreeuwers 30” is a fusion of 30 region classifiers trained
using the Bosphorus database and “Spreeuwers 2 x 30” is a
fusion of 30 region classifiers trained on the Bosphorus data-
base and 30 region classifiers trained on the 3DFace dataset
with alternative registration. The “Spreeuwers 4 x 30 clas-
sifier consists of 4 sets of 30 region classifiers trained on the
3DFace and the Bosphorus datasets using both types of reg-
istration. Using registration to an intrinsic coordinate system
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Table 8 Estimated times for identification of a single probe using a
gallery of 466 subjects of the FRGC v2 data. Boehnen et al. did not
report registration times which are likely to take several seconds

Method Total time [sec] rank-1 score
Queirolo et al. (2010) 1864 98.4%
Faltemier et al. (2008a) 1312 97.2%
Al-Osaimi et al. (2009) 50.6 96.5%
Kakadiaris et al. (2007) 15.5 97.0%
Boehnen et al. (2009) 0.03 + reg 95.5%
Alyiiz et al. (2009) 131 97.5%
Spreeuwers 1 2.5 95.9%
Spreeuwers 30 2.5 98.0%
Spreeuwers 2 x 30 2.5 99.0%

as an independent step in the recognition chain instead of a
one-to-all registration approach results in a significant ad-
vantage to ICP-like approaches. As is shown in Table 7, our
registration method also compares favourably to registra-
tion to AFM (average face models) methods, taking on aver-
age around 2.5 seconds on point clouds of 50 000-100 000
points like those in the FRGC v2 data set. Comparison it-
self, consisting of only a few matrix multiplications on the
reduced set of features is very fast with 670000 regions per
second or 22300 and 11 150 per second for the 30 and 2 x 30
region classifiers. Even the fusion of 120 region classifiers
(4 x 30) is still very fast with 5575 comparisons per second.

As argued before, methods applying an one-to-all regis-
tration approach are impractical for the identification sce-
nario. Table 8 shows for top-ranking methods the times re-
quired for identification of a single probe image to a gallery
of 466 subjects from the FRGC v2 data. Identification takes
in this case 1 registration/preprocessing of the probe im-
age and 466 comparisons. Table 8 also shows the maximum
rank-1 performance that was reported for the different meth-
ods. Our approach gives the highest rank-1 performance and
is more than 700 times faster than the second best perform-
ing approach of Queirolo et al. (2010). The fastest compet-
ing approach is by Boehnen et al. (2009), which probably is
about as fast as our method (registration to an average model
using ICP takes probably several seconds), but its rank-1
performance is far worse.

In Table 9 we estimated the time required to calculate the
complete 4007 x 4007 score matrix for the all vs all exper-
iment on the FRGC v2 data. We assume that the matrix is
symmetric and we do not compare images to the image self.
This means that a total of 4007 registrations/preprocessing
are required and 4007 x 4006/2 = 8026021 comparisons.
Clearly, our method has a huge advantage in computation
speed. Boehnen et al. (2009) did not report verification re-
sults and are therefore not included in the table.
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Table 9 Estimated times to calculate the complete 4007 x 4007 matrix
of the all vs all verification experiment on the FRGC v2 data. Boehnen
et al. did not report verification results

Method Total time [hours]
Queirolo et al. (2010) 8900

Faltemier et al. (2008a) 6250

Al-Osaimi et al. (2009) 227

Kakadiaris et al. (2007) 19

Alyiiz et al. (2009) 146

Spreeuwers 1 2.8
Spreeuwers 30 2.9
Spreeuwers 2 x 30 3.0
Spreeuwers 4 x 30 32

6.7 Comparison to State of the Art: Performance

In this section we compare the performance of our approach
using registration to an intrinsic coordinate system and fu-
sion of multiple PCA-LDA likelihood region classifiers to
the best performing 3D face recognition methods that pub-
lished results on the FRGC v2 database. Two experiments
were selected. The first experiment is an identification ex-
periment using a gallery of all 466 first images of the dataset
and the rest of the 4007 images as a probe set. For this
experiment rank-1 results are reported. The second exper-
iment is a verification experiment where each of the 4007
images is compared to all others. The verification rate (VR)
at FAR = 0.1% is reported for 3 different masks of the data:
mask I (within semester recordings), mask II (within year
recordings) and mask III (between semester recordings). In
some publications separate results are published with only
neutral faces in the gallery or as reference and probe im-
ages. We only show results on the most difficult case where
all faces with expressions are included and even some of the
faces in the gallery of the identification experiment show ex-
pressions.

For these experiments we used registration to a range
image with a resolution of 1.5 mm, resulting in range im-
ages of 75 x 87 pixels. For the region classifiers the num-
ber of PCA and LDA components was set to 100 resp. 25.
For the identification experiment we fused 30 region clas-
sifiers trained on the Bosphorus data and 30 region classi-
fiers trained on the 3DFace data with alternative registration
resulting in a total of 60 region classifiers. For the verifica-
tion experiment we used 30 region classifiers for both reg-
istration methods and datasets, resulting in a total of 120
region classifiers. Straightforward majority voting was used
as before and for the verification the vote fusion method as
described in Sect. 5 with projected FAR, = 0.00023. The
thresholds for the region classifiers were determined using
the FRGC v1 data.

Table 10 Comparison of rank-1 score on FRGC v2 data to top per-
forming 3D face recognition methods

Method rank-1 score
Kakadiaris et al. (2007) 97.0%
Faltemier et al. (2008a) 97.2%
Alyiiz et al. (2009) 97.5%
Queirolo et al. (2010) 98.4%
Spreeuwers 99.0%

Table 11 Comparison of verification rates at FAR = 0.1% on FRGC
v2 data to top performing 3D face recognition methods

Verification rate VR @ FAR =0.1%

Method Mask I MaskII MaskIII  All vs all
Maurer et al. (2005) 86.5%
Kakadiaris et al. (2007) 97.2%  97.1% 97.0%

Faltemier et al. (2008a) 94.8% 93.2%
Alyiiz et al. (2009) 85.8%  86.0% 86.1%

Al-Osaimi et al. (2009) 94.6%  94.1% 94.1%

Queirolo et al. (2010) 96.6% 96.5%
Spreeuwers 94.6%  94.6% 94.6% 94.6%

The results of the identification experiment are shown in
Table 10. For this experiment our method obtains the best
performance. As shown in Sect. 6.6 in addition our method
is much faster than the other methods.

The results of the verification experiments are shown in
Table 11. As can be observed, our method does not reach
the highest verification rate, but still respectable scores are
obtained that puts our method between the top contenders.
As mentioned before, we plan to investigate more advanced
fusion strategies and optimisation of the regions and region
classifiers and expect further improvement of the verifica-
tion scores (and identification scores as well).

Finally, Fig. 36 shows the ROC for the verification ex-
periment for the three masks. Note that since the scores are
actually counts of the number of votes, the range of the
score is [0..120], because there are 120 region classifiers.
This means that the ROC consists of 121 points rather than
a continuous line and hence the staircase shaped curves.

7 Conclusions

We present a new fully automatic registration approach for
3D face recognition which registers 3D point clouds to an in-
trinsic coordinate system defined by the vertical symmetry
plane through the nose, the slope of the nose and the tip of
the nose. A robust approach to the registration is used where
first on low resolution an exhaustive search strategy is used
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Fig. 36 ROC curves for the verification experiments for the 3 masks
defined in the FRGC. Verification rates at FAR = 0.1% are 94.6%

to obtain rough estimates of the parameters and in a sec-
ond stage for a smaller search range accurate estimation of
the registration parameters is performed. Post processing in-
cludes resampling to a range image, spike removal and hole
filling. The registration method is robust, accurate and fast:
a C++ implementation takes an average of 2.5 seconds on a
standard PC for images from the FRGC database. An alter-
native registration method was also developed based on the
dent above the nose bridge and the point just below the tip
of the nose instead of the tip of the nose and the slope of the
nose bridge. In some cases this alternative approach is more
robust against artifacts around the tip of the nose and severe
facial expressions. Computation of this additional registra-
tion adds only negligible extra processing time to the aver-
age of 2.5 seconds.

A 3DFace classifier was developed by fusion of many
region classifiers which are trained on specific regions of
the face that are supposed to remain stable under variation
of expression and occlusions by e.g. glasses, hair, caps etc.
For the region classifiers we used PCA-LDA likelihood ratio
classifiers. For the identification scenario the fusion of the
classifiers is straightforward majority voting. For the veri-
fication scenario all region classifiers are first tuned for a
specific projected FAR using a separate fusion training set.
The resulting thresholds are then applied to the region clas-
sifiers and fusion takes again place by counting votes of the
region classifiers. The resulting vote is regarded as a similar-
ity score and the performance of the fused classifier. Because
the classification only consists of a number of matrix multi-
plications, it is very fast at 670000 comparisons per second
for a single region classifier.

A system consisting of the described registration meth-
ods and 2 or 4 sets of 30 region classifiers was evaluated
using the FRGC v2 database and the results were compared
to the best performing methods. The region classifiers were
trained using independent datasets: the Bosphorus dataset
and the 3DFace dataset. The FRGC v1 dataset was used to
find the thresholds for the region classifiers. Two tests of the
FRGC were performed: a closed set identification test using
the first image of all 466 subjects of the FRGC v2 dataset
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and the remaining images as a probe set and an all vs all
verification test. The performance of our method compares
very favourably to the top ranking methods in the world:
the identification rate is 99% for this test, while the pre-
viously best reported identification rate was 98.4%. In ad-
dition, our method is more than 700 times faster than this
method. For the verification experiment our method reaches
an all vs all verification rate of 94.6%, which is not the high-
est score reported (97%), but is certainly one of the best
scores ever obtained. Although less significant for the verifi-
cation scenario, again the computation speed is much higher
than for the competition: the complete calculation of the full
4007 x 4007 score matrix for this experiment takes only
3.2 hours including registration.

Because registration is to an intrinsic coordinate system
of the face, each image only has to be registered once, which
is a huge advantage over one-to-one registration methods
like ICP. Furthermore, feature extraction from the range im-
ages allows for a compact template: for the classifier based
on 60 region classifiers with 25 LDA components, only
60 x 25 floating point numbers have to be stored or 6 kB.
For 120 region classifiers the required storage for a tem-
plate increases to a still very acceptable 12 kB. Unlike 3D
point clouds, these features can be used for privacy preserv-
ing template protection schemes as well.

There are many possibilities for further improvement of
the proposed method and extension to other fields. The reg-
istration method still leaves room for further improvement,
e.g. using more advanced hole filling and alternative ap-
proaches to nose tip localisation and determination of the
slope of the nose bridge, e.g. using more advanced robust
estimation techniques, like MLESAC (see Torr and Zis-
serman 2000) instead of RANSAC. Currently, for conve-
nience, the parameters for all of the region classifiers are
chosen the same. First experiments show however, that dif-
ferent region classifiers perform better or worse for differ-
ent resolutions of the range image and numbers of PCA and
LDA components. For fusion we used very simple methods
based on majority voting. In literature, more advanced ap-
proaches to automatically select the best combination of re-
gion classifiers and calculate weights for the voting process
are known, which would likely result in improved perfor-
mance. In future work we will investigate these improve-
ments to the method in depth. Finally, the proposed registra-
tion method works well for variations not represented in the
FRGC v2 data, like large variation in pose, occlusions by
caps or hats, glasses and hands. In some other datasets like
the 3DFace dataset and the Bosphorus dataset, these varia-
tion are present. In future research we intend to further in-
vestigate 3D face recognition for large variations of pose,
expression and various occlusions. We plan to make the 3D
face registration available as open source software so other
3D face comparison methods can be tested using this regis-
tration.
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