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Self-calibrated, multi-spectral photometric stereo for 3d face capture.
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Abstract This paper addresses the problem of obtaining 3d
detailed reconstructions of human faces in real-time and with
inexpensive hardware. We present an algorithm based on a
monocular multi- spectral photometric- stereo setup. This
system is known to capture high-detailed deforming 3d sur-
faces at high frame rates and without having to use any
expensive hardware or synchronized light stage. However,
the main challenge of such a setup is the calibration stage,
which depends on the lights setup and how they interact
with the specific material being captured, in this case, hu-
man faces. For this purpose we develop a self-calibration
technique where the person being captured is asked to per-
form a rigid motion in front of the camera, maintaining a
neutral expression. Rigidity constrains are then used to com-
pute the head’s motion with a structure-from-motion algo-
rithm. Once the motion is obtained, a multi-view stereo al-
gorithm reconstructs a coarse 3d model of the face. This
coarse model is then used to estimate the lighting param-
eters with a stratified approach: In the first step we use a
RANSAC search to identify purely diffuse points on the
face and to simultaneously estimate this diffuse reflectance
model. In the second step we apply non-linear optimiza-
tion to fit a non-Lambertian reflectance model to the outliers
of the previous step. The calibration procedure is validated
with synthetic and real data.
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Fig. 1 Acquisition setup. The subject stands in front of three lights of
different frequencies (red, green and blue) and a video camera (left).
The frame captured is shown on the right. There is a 1 — 1 mapping
between the RGB triplet measured by the camera sensor and the sur-
face orientation of the scene at each pixel. This leads to a system that
can obtain high-detail 2.5d reconstructions of the subject at each frame
and hence can be used for facial expression acquisition.

1 Introduction

The 3d capture of human faces is an important task in the
fields of computer vision and computer graphics. Recent
progress in hardware capabilities make the demand of such
technology even greater than before, with applications rang-
ing from medical care to human behavior or computer games.
Even though much progress has been made in the recent
years in deformable surface capture, faces are specially dif-
ficult to capture because humans are very well trained in
face recognition and are thus very sensitive to reconstruction
errors. Recent progress in facial capture has produced very
high quality reconstructions to the point of being able to leap
the “uncanny valley” and produce photo-realistic animations
that may fool a person into thinking that the avatar is real
[14]. However, these types of results can only be achieved
with very expensive hardware and thousands of man-hours
of interactive editing. In this paper we propose an inexpen-
sive system based on a special case of photometric-stereo
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[23] that uses multi-spectral lighting [ | 1,24] (see Fig. 1) and
that is able to capture high-detailed 3d faces in real-time.
Even though the results show a low frequency shape defor-
mation that is intrinsic to photometric stereo techniques, the
algorithm is able to reconstruct very fine details such as skin
porosity and wrinkles. Since the method is based on multi-
spectral photometric-stereo, the system does not require any
time-multiplexing hardware. However it does require a cal-
ibration for the material being captured. This means that, in
practice, the system has to be calibrated for every different
face to be captured. In this work we present a self-calibration
algorithm that allows for automatic calibration of the setup
and greatly simplifies the whole acquisition pipeline.

1.1 Related work

This paper addresses the problem of deforming shape re-
construction from images and is therefore related to a vast
body of computer vision and computer graphics research.
However, since faces are quite a specific type of deformable
surface, we focus on facial capture systems.

For static faces, range scanner [1] or light stage setups
[17] are the state-of-the-art methods to capture both accurate
geometry and detailed texture. As for capturing dynamic
faces, several facial performance capture systems exist us-
ing markers [3], structured light [25,26], stereo [2, 8], pho-
tometric stereo [11,24] or a combination of several tech-
niques [18]. In terms of accuracy and detail, only the meth-
ods with photometric stereo capabilities are able to capture
the fine details of the face. Structured light methods such
as [25,26] produce very good low frequency shape, but the
need of time-multiplexing the patterns creates characteris-
tic artifacts in the shape that need a strong post-processing
stage, loosing much of the detail [22]. Stereo methods only
work well whenever the face has sufficient texture [8]. In
this case, the low frequency of the shape is also very accu-
rate, but due to the nature of the cue being used, fine de-
tail is very difficult to recover. This is in contrast to pure
photometric stereo techniques, where the high frequency of
the shape is easily recovered, but the low frequency is very
noisy, leading to large scale deformations in the shape. Pho-
tometric stereo methods come in two variants: multi-spectral
and time-multiplexing. Time-multiplexing techniques such
as [18,15] need to cope with misalignment artifacts due to
the fact that frames taken under different illuminations are
also taken at different times. This creates creasing artifacts
due to the scene motion between frames. In [15] optic flow
is used to align successive frames. Also, since the effective
framerate is divided by the number of lights, more expen-
sive hardware is needed in order to obtain real-time capture
frame-rates. On the other hand, multi-spectral techniques
such as [11,24] (shown in Fig. 1) do not need any time-
multiplexing mechanism and only require a video camera

and three lights. These methods however cannot cope with
different materials in the scene and need to specifically cali-
brate every time the material changes. In the case of human
skin, the variation in skin color among several people re-
quires individual calibration per person.

In [11] the authors propose a simple scheme for cali-
brating objects that can be flattened and placed on a planar
board. The system detects a pattern on the board, from which
it can estimate its orientation relative to the camera. By mea-
suring the RGB response corresponding to each orientation
of the material they directly estimate the linear mapping.
Naturally this method cannot be applied on human faces.

In [13] a two-step process is proposed. Firstly a mirror
is used to independently estimate the three light directions.
The next step involves capturing three sequences of the ob-
ject moving in front of the camera. In each sequence, only
one of the three lights is switched on at a time and from the
pixel intensities measured on the face, the light direction and
RGB response of that light can be estimated. Even though
this process can be applied on human faces and is very fast,
it assumes that the face is Lambertian and fully monochro-
matic (i.e. all points have the same chromaticity value and
potentially different intensity values).

The basis of this work was presented in [10]. In that pa-
per we proposed a self-calibration method, where, before
capturing a face, a short calibration sequence is obtained
in order to re-calibrate the system specifically for that sub-
ject’s facial skin. The method is based on using a multi-view
stereo algorithm to obtain a low resolution 3d model of a
face. This model is then used as a template to photometri-
cally calibrate the rig for that particular subject. The method
automatically discovers a subset of points on the face with
the same chromaticity and same intensity value, and hence
removes the monochromatic assumption of [13]. However,
this is achieved at the expense of discarding useful calibra-
tion data, namely points on the face with the same chro-
maticity but differing intensity values. The method typically
uses about 2-4% of points on the template and as a result, is
quite sensitive to the inlier threshold parameter. If the thresh-
old is set too high or too low, the accuracy of the 3d solution
suffers. (Fig. 11) and section 3.2.2

The calibration method proposed in this paper uses the
same low-resolution template as [ 10]. However this template
is used with a robust 2d homography estimation scheme that
allows us to automatically discover and use points on the
face with the same chromaticity and possibly different in-
tensity values. For the same sequences and identical thresh-
old parameters as [10] this new technique uses around 30-
40% of points on the template leading to much stable perfor-
mance with respect to algorithmic parameters. Furthermore,
we are also able to extend the Lambertian model assump-
tions by fitting a simple Phong reflectance model as a non-
linear optimization step, initialized by our robust homog-
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Fig. 2 Acquisition of 3d facial expressions using [1 1] together with the shadow processing of [13]. The system was calibrated using the self-

calibration technique described in this paper.

raphy solution (Section 4). This allows us to correct recon-
struction artefacts arising from specularities. Figure 2 shows
some 3d reconstructions of a video sequence successfully
calibrated using the proposed technique.

The rest of the paper will look at the system in more
detail.

2 Color photometric stereo

In classic three-source photometric stereo we are given three
images of a Lambertian scene, taken from the same view-
point, and illuminated by three distant light sources. The
light sources emit the same light frequency spectrum from
three different non-coplanar directions. The aim of the al-
gorithm is to estimate from these three images the surface
orientation of the object in each pixel.

Let ¢;(x,y) withi = 1...3 denote the pixel intensity of
pixel (z,y) in the i-th image. We assume that in the -th im-
age the surface point is illuminated by a distant light source
whose direction is denoted by the vector 1; and whose spec-
tral distribution is F; (A). We also assume that the surface
point absorbs incoming light of various wavelengths accord-
ing to the reflectance function R (x,y, A). Finally, let the re-
sponse of the camera sensor at each wavelength be given by
S () and n(z,y) the surface local normal. Then the pixel
intensity ¢;(x,y) is given by

ci(z,y) = l;-rn(x,y)/E (N R (z,y, ) S (M) dA. (1)

The value of this integral is known as the surface albedo p
so that (1) becomes a simple dot product

ci = l;'— pn. 2)

. T T
Ifwewrite L = [1; Iy 13] andc = [c1 ¢z c3] then
the system has exactly one solution for the surface orienta-

tion which is given by
_ L~'c
IL~tel|”

Once we compute the normals, the surface can be recovered
by integrating the normal field.

The core of the facial capture algorithm is based on the
technique of color photometric stereo [20]. The key obser-
vation is that in an environment where red, green, and blue
light is simultaneously emitted from different directions, a
Lambertian surface will reflect each of those colors simulta-
neously without any mixing of the frequencies. The quanti-
ties of red, green and blue light reflected are a linear function
of the surface normal direction. A color camera can mea-
sure these quantities from a single RGB image. In [11] it
was shown how this idea can be used to obtain a recon-
struction of a deforming object. Because color photometric
stereo is applied on a single image, one can use it on a video
sequence without having to multiplex the illumination be-
tween frames. In color photometric stereo each of the three
color channels of the CCD array can be seen as one of the
three images of classic photometric stereo. The pixel inten-
sity of pixel (z,y) for the i-th sensor is given by

n

3)

i) = S ) [ B O R (2,.0) 5 () dn

“4)

Note that now the sensor sensitivity S; and spectral distribu-
tion E; are different per sensor and per light source respec-
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tively. To be able to determine a unique mapping between
RGB values and normal orientation we need to assume a
monochromatic surface. We therefore require that

R(z,y,)\) :p(x’y)a()‘) &)

where p (z,y) is the monochromatic albedo of the surface
point and « () is the characteristic chromaticity of the ma-
terial. Let

vy = / B, () a (V) Si (\) dA ©)

be the i*"-row and j"-column element of matrix V. Then
the vector of the three sensor responses at a pixel is given by

c=V . Lpn. @)

The 5" column vector v; of matrix V provides the response
measured by the three sensors when a unit of light from
source j is received by the camera. The normal is obtained
by

(V- L)_1 c
v~

n—=

®)

In order to completely calibrate the system, we only need
to estimate the matrix V - L up to an unknown scale as seen
from eq. (8). The next section will focus on how to esti-
mate this matrix from a simple calibration procedure while
in section 4 we will look at how to estimate a more complex
nonlinear mapping that also models specular reflectance.

3 Self-Calibration of color photometric stereo system

When reconstructing 3d faces, the calibration method pro-
posed in [13] could be used. However, although the estima-
tion of the light directions 1; can be very accurate, the esti-
mation of the color vectors v; is much noisier. This is partic-
ularly true when computing the relative lengths of the vec-
tors, i.e. the relative strengths of each light when interacting
with the skin. The main reason for this is that [13] uses all
points on the face for calibration, assuming monochromatic
reflectance. Since this assumption is not true in general, the
accuracy of the calibration suffers. In order to avoid these
problems, we propose to use a completely automatic self-
calibration process where, starting from a calibration video
sequence, a coarse 3d shape of the face is computed, and the
lights are estimated in a robust way so that the shape and
the calibration matrix explain the video sequence as well as
possible.

The calibration step is based on the fact that, even if
faces are difficult to reconstruct using a passive method such
as multi-view stereo [21], some algorithms can provide a

Fig. 4 Sparse set of 3d points after using a structure-from-motion al-
gorithm on the sequence of Fig. 3. From left to right, the 3d points
are shown from three different viewpoints roughly at -45 degrees, 0
degrees, and 45 degrees.

sufficiently accurate reconstruction so that a robust light es-
timation algorithm such as [12] obtains a good estimate of
the light configuration. For this purpose, a calibration se-
quence is recorded were the person being captured performs
a rigid head motion, such as the one shown in Fig. 3. Since
the expression of the face does not change during the se-
quence, rigidity can be used to perform standard structure-
from-motion [27] in order to obtain both the camera motion
(which is equivalent to the rigid head motion) and a sparse-
set of 3d points (see Fig. 4). The next two sections describe
in more detail the two steps involved in the calibration pro-
cess: reconstruction of a coarse 3d face model and illumina-
tion estimation.

3.1 Estimating an approximate 3d face

Once the head motion is available, we can compute a dense
model with a multi-view stereo algorithm. It is worth noting
that the camera calibration may be inaccurate with a repro-
jection error of several pixels. This is due to the fact that
faces have relatively few interest points that can be well lo-
calized and tracked throughout long sequences with a small
reprojection error (mainly the corner of the eyes and the
mouth). Nevertheless, the calibration does not have to be
very accurate as we only need a coarse shape estimate. We
use a standard implementation of a SIFT feature detector
which provides a natural robustness to lighting changes. These
features are then tracked across the sequence using the 5-
point Essential Matrix RANSAC algorithm. No manual ad-
justment of the tracks was necessary. The method of [16]
presents an alternative for obtaining the coarse 3d shape us-
ing a combination of silhouette and stereo constraints from
just 5 images. However it is not clear if the shape obtained
would have the required level of accuracy.

Figure 5 top shows the 3d reconstruction obtained with
[9]. Note that the shape does not contain much detail and
only the low frequencies of the shape are correct. However,
as shown in the following section, this coarse shape is suffi-
cient to estimate the lighting using [12] as only 8 dof of the
matrix V - L have to be estimated.
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Fig. 3 Face calibration sequence under a three-source color photometric setup.
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Fig. 5 Top: Coarse shape obtained with the multi-view stereo algo-
rithm [9] on the sequence of Fig. 3. Bottom: refined shape after suc-

cessful light estimation and photometric stereo evolution using the
scheme of [12].

3.2 Robust estimation of light sources from a coarse shape

The estimation of the calibration matrix V - L was inspired
by the photometric calibration scheme described in [12]. In
that work, an initial coarse 3d shape is obtained from silhou-
ettes, while in our case the initial shape is obtained from a
multi-view stereo algorithm. We now describe the light esti-
mation algorithm in our particular framework.

Calibrating our color photometric stereo setup involves
estimating the mapping from surface orientation n to the
RGB triplet ¢ measured in the camera sensor. To perform
this estimation we need a set of rgb/normal pairs (c,n) in
order to fit some type of parametric representation of this
mapping. This set of correspondences is readily provided
by our approximate 3d face model. The assumption here is
that despite its inaccuracies this model will contain enough
correct correspondences to accurately fix the parameters of

the mapping. The only question that remains is how to ro-
bustly fit the mapping to the correct points only while disre-
garding possibly inaccurate points. One of the simplest and
most effective robust model fitting techniques is RANSAC
[6] which works by randomly sampling minimal subsets of
the set of correspondences. For each such subset the corre-
sponding mapping is estimated and then all other correspon-
dences are tested to see if they conform with it. At the end
the algorithm returns the mapping with the largest number of
correspondences in agreement. RANSAC based estimation
is widely used for structure-from-motion problems where it
has been known to find the right model in datasets with a
large percentage of outlier correspondences.

In our problem, if the coarse shape contains enough cor-
rect points or inliers, then repeatedly sampling a subset of M
random pairs (c, n) on the shape will give a high probability
that at least one of those subsets consists of M inliers. At the
same time, one can expect that the outliers do not generate
a consensus in favor of any particular illumination model
while the inliers do so in favor of the correct model. This
observation motivated [12] to use a robust RANSAC scheme
[6] to separate inliers from outliers and estimate the light
matrix. The scheme can be summarized as follows:

1. Pick M random points on the coarse 3d model and, from
their RGB intensities and normals, estimate mapping hy-
pothesis.

2. Every point on the surface x,, will now vote for this
hypothesis if its predicted image intensities are within a
given threshold 7 of the observed image intensities c,,
where 7 allows for quantization errors, image noise, etc.
We use the L2 norm to calculate The distance between
the predicted and observed rgb triplets.

3. Repeat 1 and 2 a set number of times always keeping the
mapping hypothesis with the largest number of votes.



George Vogiatzis, Carlos Hernandez

Fig. 6 Inliers for 3-point algorithm as a function of direction of the
three rows of V - L. This image refers to the sequence of Fig. 3 using
the coarse shape of Fig. 5 top and 7 = 4. The image intensities are
quantized in the range from 0 to 255.

Fig. 8 Distribution of inliers (in white) for 7 = 2. From left to right:
3pt algorithm, 4pt algorithm, Phong model. Note that the greasy fore-
head is classified as an outlier (black) in both 3pt and 4pt algorithms.
After optimization of the Phong model parameters, the forehead points
fall within the inlier threshold.

In practice, since we have a calibrated video sequence and
not just a single frame, the algorithm uses all the frames in
order to vote for a light hypothesis. This heavily increases
the amount of data available. In all experiment reported here
we used 1000 RANSAC iterations. However in almost all
experiments convergence was achieved with 10-100 itera-
tions.

Depending on how the mapping between normals and
rgb pixel intensities is formulated and how the inlier set is
defined, one can have two variants of this RANSAC algo-
rithm. These two variants involve minimal subsets of three
and four correspondences respectively. The advantage of the
first variant (3-point algorithm) is that due to the smaller
minimal subset it can potentially be faster to converge to the
right solution. On the other hand the second variant (4-point
algorithm) typically admits a much wider set of correspon-
dences as inliers. Both variants are discussed below.

3.2.1 Three point algorithm

If we are given three points x,, X}, X With an unknown but
equal albedo p, their (non co-planar) normals n,, ny, n,
and the corresponding collected RGB intensities c,, ¢y, C.,
we can uniquely determine the matrix pV - L that describes
the mapping from normals to rgb triplets as follows:

pV L = [n,ny nc]f1 [ca Cb Cc] - 9)

It is worth noting that, even though we are estimating
the simplest illumination model, i.e. the 3 x 3 matrix V - L,
the algorithm could easily be extended to estimate a first or-
der spherical harmonic illumination [4], i.e. a 3 X 4 matrix

modeling three distant light sources plus ambient light. The
RANSAC algorithm would be exactly the same, except that
now it would need to pick a minimum of four points instead
of three to build an illumination hypothesis. However, in all
the experiments ambient light was negligible, so this exten-
sion was not necessary.

We show in Fig. 6 the number of inliers per light direc-
tion, i.e. per row of V - L optimized for the best scale. The
space that RANSAC explores in this example is well behaved,
with a clearly defined global optimum.

We show in the top row of Fig. 7 the impact of the thresh-
old 7 on the number of inliers (in white). We can distinguish
how the mouth and the eyes are never selected as inliers for
two different reasons. While the mouth is an outlier because
of its different monochromatic intensity (different shade of
red than rest of the face), the eyes are outliers because they
moved during the rigid motion capture, so the reconstruc-
tion in that region is not correct. However we can further
observe that even in the rest of the face the algorithm only
picks a small percentage of points as inliers.

The biggest drawback of the 3-point algorithm is that
the set of inliers that validate a particular hypothesis is a
set of points with equal monochromatic intensity. As one
can imagine, in datasets with significant variability in inten-
sity, the number of points that have any particular intensity
will be small. This means that in such cases the normal to
rgb mapping estimation will be less robust as it is based on
smaller datasets. However if the dataset is largely of constant
monochromatic intensity then this approach may be faster to
converge than the 4-point variant described below.

3.2.2 Four point algorithm

The key to describing the four point algorithm is noticing
that the normal-to-rgb mapping of (7) is a R? — R3 map
where the scale of one of the two vectors is unknown. It also
happens to be the case however that this scale is actually
not important for photometric stereo since we are really in-
terested in the unit normal. If instead of the Euclidean 3d
spaces of (c1, ¢, 03)T and p (n1,ng, ng)T we consider the
projective 2d spaces of (¢1 /s, ¢2/cs)” and (ny/ns,na/ns)”
then the mapping of (7) is just P2 — P2, This type of map is
also known as a 2d homography [27] and is a very common
image coordinate transformation induced by acquiring two
images of a plane or when the camera motion between the
two frames is a pure rotation. In our case the two spaces are
not image coordinates. The first space is loosely equivalent
to the hue and saturation color coordinates of the rgb triplet
(c1,ca, 03)T while the second space is the coordinates of the

T
9z 0z
(%v a—y) . Our homog-

raphy is described by the matrix V - L. We know that a 2d
homography is completely determined if we have four cor-
respondences between the two spaces. This leads naturally

local surface gradient vector Vz =
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Fig. 7 Distribution of inliers (in white) as a function of the threshold 7. From left to right, 7 = 1,7 = 2, 7 = 3, 7 = 4, 7 = 5. The image
intensities are quantized in the range from 0 to 255. The first row shows the inliers for the 3pt algorithm while the second row is the same for the

4pt algorithm. This experiment used the calibration sequence of figure 3

Fig. 9 Face calibration sequence under a three-source color photometric setup.

to a RANSAC algorithm that uses a minimal set of four cor-
respondences. In fact this algorithm is identical to the well
known homography estimation algorithm that is used in SfM
systems [27].

The benefit of this approach is that the inlier set can be
virtually all points on the coarse 3d face model that have cor-
rect geometry (correct position and surface orientation) and
satisfy the monochromatic assumption. In particular, as op-
posed to the 3-point algorithm we are allowed to have inlier
sets that have varying monochromatic intensity (i.e. brighter
or darker points) as long they have the same chromaticity
(hue and saturation). In sequences with significant variation
in intensity this will lead to significantly larger inliers sets
and improved robustness compared to the 3-point algorithm.

A potential drawback to using a RANSAC scheme that
requires four samples instead of three in the minimal set is

the fact that such a scheme might require more iterations in
order to identify the correct solution. At the same time the
4-point scheme has a larger inlier set which decreases the
number of iterations required. In fact it is straightforward to
establish the necessary and sufficient condition under which
the 4-point scheme requires less RANSAC iterations (on av-
erage) to find the solution. One can show (e.g. see [27]) that
if 7 is the percentage of inliers among the data-points, n is
the size of the minimal set, k£ is the number of RANSAC it-
erations and p is the probability that the correct hypothesis
is found, then the following holds:

l—p=(1-a")" (10)

Let w3 and 74 be the percentages of inliers under the 3-point
and 4-point schemes respectively. In general we can expect
that m4 > m3. By applying equation (10) to the 3-point and
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threshold (0-255 graylevels)

Fig. 10 This graph plots for several different threshold values, the
percentage of inliers used by the 3 point and 4 point algorithms (red
and blue curves respectively) when applied to the sequence of figure 3.
The 4 point variant is able to treat many more points on the template
as inliers.

5 10 15 20
threshold (0-255 graylevels)

Fig. 11 Sensitivity analysis of 3pt and 4pt algorithms. We used both
RANSAC variants to estimate a light matrix in the image on the left. A
zero-mean Gaussian noise (¢ = 3) was added to all three channels of
the image

and the accuracy of the estimate (measured in degrees between light

directions) is shown. Each experiment was repeated 20 times. The

blue curves are the mean and std. deviations of the accuracy of the 4pt

variant while the red curve is the 3pt variant. The 4 point RANSAC
scheme seems to be much more tolerant to noise levels. This is due to

the fact that it uses a much wider pool of inliers than its 3pt
counterpart.

4-point case, we can establish that the 4-point scheme re-
quires less iterations than the 3-point scheme for the same

probability of finding the solution if and only if 74 > wg /.

In Fig. 10 we show the effect of the threshold parame-
ter 7 on the inliers picked by the 3 and 4 point algorithms.
We have run both schemes on the calibration data of se-
quence 3 and plot the number of inliers for the same thresh-
old value. We notice that the 4 point algorithm designates a
much higher percentage of points as inliers than the 3 point
algorithm.

This is also shown in the bottom of Fig. 7 where we show
these inliers on the coarse face model. Note that now parts
of the lips have been designated as inliers. However the eyes
are still never picked due to their deformation as explained
above. Finally the greasy forehead and tip of the nose are
never picked because they exhibit non-Lambertian, specular
effects. The following section outlines how this Lambertian
reflectance assumption can be removed.

To get a better understanding of the numerical properties
of the algorithm we also conducted an experiment with syn-
thetically generated data of a textured shiny sphere (shown
in the left of Fig. 11). In this case accurate ground truth of
the scene illumination is known so we can perform some
sensitivity analysis and comparison of the 3 point and 4
point variants. To that end we corrupted the synthesized im-
age of the sphere with noise (zero mean and standard devi-
ation equal to 3 intensity levels) and measured the accuracy
of the obtained calibrations under both schemes. Figure 11
plots the error in the calibration for both schemes as we vary
the threshold 7. The error was measured as the mean angle
between rows of the estimated and ground truth matrix VL.
All experiments were repeated 20 times and we also show
2-standard-deviation intervals for the error values. Our find-
ings confirm that the 4 point algorithm is able to offer better
estimates across all threshold values. The ‘smile’ shape of
these plots is due to the fact that if the threshold is too small,
the set of inliers is too small and the estimation is noisy with
high error. On the other hand if the threshold is too big then
some outliers are entering the estimation which again in-
creases the error. The 4 point algorithm also appears to be
much flatter which means that it is more stable with regards
to choosing a threshold value 7.

Finally in Fig. 12 we used different levels of noise to
contaminate the synthetic sphere image and we are showing
the number of inliers around the ground truth value for the 3
and 4 point algorithms. The x and y coordinates of the im-
ages shown correspond to a displacement of the = and y co-
ordinates of the third row of V - L, so the (0, 0) corresponds
to the actual ground truth calibration. We observe that the
shape of the cost function explored by RANSAC becomes
progressively less smooth for the 3 point algorithm (Fig. 12
top row). The 4 point variant however has a much more reg-
ular shape with a well defined maximum even at high levels
of noise (Fig. 12 bottom row).

4 Fitting a specular reflectance model

The RANSAC scheme described in the previous section, in
both its 3-point and 4-point variants is based on Lambertian
reflectance assumptions. More specifically it is assumed that
there is a set of points on the coarse 3d face model, whose re-
flectance is purely diffuse with no specular component. This
assumption is justified in cases where (a) the face is truly
perfectly diffuse (e.g. through the use of special make-up)
or (b) where the face is so shiny that the specularity is very
localized. In this latter case only a small subset of the points
will have been contaminated and one can still calibrate the
system using the rest of the 3d shape. However there are
cases where the specular reflectance extends to a large range
of viewing angles, producing a big specularity on the im-
ages. Such an example can be seen in Fig. 8 (middle) where
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Fig. 12 Effect of noise in search space. For the synthetic data used in
figure 11 we render the inliers corresponding to 3pt algorithm (1st row)
and 4pt algorithm (2nd row) as a function of a displacement of the =
and y coordinates of the last row of V - L . The middle point in each
image corresponds to zero displacement from the ground truth value
of V - L. For all experiments we used a threshold value of 7 = 10.
From left to right are different noise levels (std. dev. of noise is 1,2,3
and 4 graylevels respectively). Note that the shape of the search space
becomes much less smooth in the 3pt case, in the presence of some
image noise.

we show the inliers of the 4-point algorithm on the face tem-
plate. Notice that there were no inliers registered in the fore-
head because due to skin grease that area had a significant
specular reflectance component. In a video sequence of that
face we can expect to have a significant number of pixels
corrupted by specularities.

Clearly, if we use the mapping estimated by RANSAC
on these pixels, the surface orientation we obtain would be
incorrect. When we then try to integrate these orientations
to obtain 3d shape we will observe characteristic ‘bulging’
artifacts. Such an example is shown in the first two images
of Figure 13 where the forehead seems to be slightly pro-
truding. To remedy this problem we would need to fit a
more complex reflectance model that includes specular re-
flectance. In this work we experimented with fitting a simple
Phong model. Even though this is a very simplistic model
that has well known limitations, it was adequate for the pur-
poses of photometric stereo reconstruction. The Phong re-
flectance model for a scene with three color lights and three
pixel sensors is given by

c = clff 4 ¢opee (11)
where the diffuse component is as previously
ctff = pV - Ln (12)

while the specular component is given by

P (wyy) = Z [} (2on” — 1) v]”

y / B (\) Rapec (2,5, ) S (A) dA

In this equation the sensor sensitivity S and light source
spectral distribution E' are the same as previously. However

in general the material will have a different reflectance func-
tion for the specular component given by R,p... Parameter
« is known as the specular hardness and it controls the size
of the specular lobe. A large value corresponds to a narrow
specular lobe while a small value makes it wide. The vector
v is the viewpoint direction while vector (2nnT -1 ) v is
the specular direction.

To make the problem tractable, as previously, we will
assume monochromaticity. For the same reasons, this time
we will also require the specular monochromatic albedo of
the material to be constant. If the specular albedo was al-
lowed to vary on the surface, the mapping between normal
and rgb triplet would no longer be invertible. This is because
there would be four unknowns per pixel (two for direction
and two for the albedos) and only three constraints from the
three sensors). The assumption appears to be validated in
practice. In vector form, the specular reflection component
can be written as

c”* =W [L (20n” — 1) v]" (13)

where W is a 3 x 3 matrix and « is a scalar parameter and
both of which are constant for all pixels.

Having obtained an estimate of the Lambertian reflectance
model V-L as well as an inlier/outlier classification for each
point using RANSAC (see previous section) we now fit the
specular model described above. We need to estimate matri-
ces W, and L as well as «. The matrix V-L is assumed to be
given by our previous RANSAC estimation so the value of
V is automatic given L. Also, we need to obtain the diffuse
albedo p () for each point on the face template model. Our
approach is to minimise the L2 norm of the differences be-
tween observed rgb triplets and the ones synthesised through
the model:

. T [0} 2
wleits <Z> HC —pV -Ln+ W [L (200" — 1) v]
T,y

(14)

Since we already have identified points of the template that
adhere to the Lambertian reflectance, our cost function need
only be optimized for the outlier points. It is worth pointing
out that given a particular choice of light direction matrix L
and hardness parameter « the rest of the unknown variables
can be obtained through solving a linear least squares prob-
lem. This makes the optimization process considerably more
efficient. We apply a simple nonlinear optimisation scheme
(in our experiments we used Matlab’s 1sgnonlin func-
tion). We initialize L to the normalised columns of V - L
while « is typically initialised to 1.

Figure 13 shows a 3d face model obtained by a Phong
model whose parameters were estimated from the template
of Figure 5. To invert the Phong reflectance model per pixel
of the input image we minimise the difference between the
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Fig. 13 Color photometric stereo using the Phong model. We used the
calibration sequence of figure 3 to fit the parameters of a Phong model.
This was then used to reconstruct a single frame of the sequence. The
first two images show what happens if we just use the Lambertian
mapping estimated in section 3.2 while the second two images show
the reconstruction under the Phong model described in section 4. No-
tice the characteristic ‘bulging’ artefact that appears when specularities
are treated with the Lambertian model. These artefacts are eliminated
when the Phong model is used.

synthesized and observed rgb triplets for each pixel. The
minimization is performed with respect to each pixel’s sur-
face orientation and diffuse albedo:

mian—pV-Ln—i—W[L (2nn” — 1) v]aH2 (15)
n,p

where the reflectance parameters L, W, «v are those obtained
from the previous calibration step. Once again, for any given
surface orientation n the diffuse albedo is trivially computed
via least squares so the search can be limited to n. To opti-
mize the cost with respect to n we sample 64 locations on
the unit sphere and we use the location with the minimum
cost to initialize a gradient descent optimization. In our ex-
periments this simple strategy never failed to converge to the
global optimum.

After estimating the parameters of the reflectance model
and inverting the model to get surface orientations for each
input image, we can optionally refine the initial coarse ge-
ometry with the photometric cue by evolving the surface us-
ing a scheme such as [19] or [12]. We show in Fig. 5 bottom
how, by merging the multi-view stereo cue and the photo-

Fig. 14 Sparse set of 3d points after using a structure-from-motion
algorithm on the sequence of Fig. 9. From left to right, the 3d points
are shown from three different viewpoints roughly at -45 degrees, 0
degrees, and 45 degrees.

metric stereo cue, the low frequency shape of the multi-view
stereo solution is kept, while the high frequency shape of the
photometric stereo cue is “added” creating a very detailed
and realistic static reconstruction of the face.

5 Experimental results

‘We have run the same algorithm on a second sequence shown
in Fig. 9. After structure-from-motion, the camera motion
and the video sequence are fed into the multi-view stereo al-
gorithm in order to produce a coarse shape of the face shown
in Fig. 15 top. The sparse set of 3d points (shown in Fig.
14) is only used to define a rough bounding box in order to
speed-up the multi-view stereo algorithm. Once the coarse
shape is computed, we can run the light calibration step de-
scribed in Section 3.2, giving the light estimates shown in
Fig. 16. Again, in order to have an idea of how good the es-
timate is, we can visualize the distribution of inliers w.r.t the
RANSAC threshold 7 (see Fig. 17) and we can also refine the
coarse shape in order to obtain a high resolution static face
capture (see Fig. 15 bottom).

Once the calibration step is completed, we can recon-
struct video footage of that same person under the same
setup using [ 1](see Fig. 18). Note that, wherever the con-
stant chromaticity assumption is not verified, e.g. in the eyes
or inside the mouths, the normal estimation suffers from a
bas-relief ambiguity deformation [5]. However the impact
of such ambiguity in the final shape depends on the size of
the region. If the region is small compared to the rest of the
image, as it is the case with the lips, the low frequency of
the shape will not be very distorted since it is computed as
an integration process of the entire image. As for the high
frequency, it will bump the surface in a realistic way even if,
over all, the normals are distorted.

As an improvement to [| 1], we use a real-time imple-
mentation of the algorithm. Since the reconstruction algo-
rithm itself is just a per-pixel 3 x 3 matrix-vector multipli-
cation followed by a Poisson integration step[7], this can be
achieved real-time at 60 Hz by using an FFT-based integra-
tion implemented on a gpu (with the CUDA libraries).
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Fig. 17 Distribution of inliers (in white) as a function of the threshold . From left to right, 7 = 1, 7 = 2, 7 = 3, 7 = 4, 7 = 5. The image
intensities are quantized in the range from 0 to 255. The first row shows the inliers for the 3pt algorithm while the second row is the same for the
4pt algorithm. This experiment used the calibration sequence of figure 9

the person where a rigid motion is performed with a neutral
facial expression. This enables us to use a structure-from-
motion algorithm followed by a multi-view stereo algorithm
in order to reconstruct a coarse 3d shape of the static face.
The same calibration video can then be used together with
the shape in order to robustly estimate the color response of
the face under the photometric stereo setup. Once the system
is calibrated, reconstruction of 3d faces can be achieved in a
live real-time manner.

The main weakness of the proposed reconstruction frame-
work is the low frequency noise in the 3d shape, which is
characteristic of photometric stereo algorithms. A promising
research direction is to combine this technique with other
cues such as MVS [8] that can constrain the low-frequency

Fig. 15 Top: Coarse shape obtained with the multi-view stereo al-
gorithm [9] on the sequence of Fig. 9. Bottom: refined shape after
successful light estimation and photometric stereo evolution using the of the shape.
scheme of [12].
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