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Abstract Projectors are increasingly being used as light-
sources in computer vision applications. In several applica-
tions, they are modeled as point light sources, thus ignoring
the effects of illumination defocus. In addition, most active
vision techniques assume that a scene point is illuminated
only directly by the light source, thus ignoring global light
transport effects. Since both defocus and global illumina-
tion co-occur in virtually all scenes illuminated by projec-
tors, ignoring them can result in strong, systematic biases
in the recovered scene properties. To make computer vision
techniques work for general real world scenes, it is thus im-
portant to account for both these effects.

In this paper, we study the interplay between defocused
illumination and global light transport. We show that both
these seemingly disparate effects can be expressed as low
pass filters on the incident illumination. Using this observa-
tion, we derive an invariant between the two effects, which
can be used to separate the two. This is directly useful in
scenarios where limited depth-of-field devices (such as pro-
jectors) are used to illuminate scenes with global light trans-
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port and significant depth variations. We show applications
in two scenarios: (a) accurate depth recovery in the presence
of global light transport, and (b) factoring out the effects
of illumination defocus for correct direct-global component
separation. We demonstrate our approach using scenes with
complex shapes, reflectance properties, textures and translu-
cencies.
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1 Introduction

Active vision techniques use illumination as a probe for re-
covering a variety of scene properties. Recovery involves
building models of the interaction of light with the scene
(light transport) and inverting the models. In general, light
transport can be complex and inverting the models can be-
come intractable. Consequently, most such techniques have
historically used simplified models of light transport; it is
assumed that each scene point is illuminated only directly
by the light source. Additionally, it is also assumed that the
light source is a point or a distant light source or that the
scene is roughly planar, so that illumination defocus effects
are not modeled.

In most real world scenes, both these effects co-occur,
making these assumptions excessively severe. Global light
transport effects, such as sub-surface scattering, inter reflec-
tions and volumetric scattering are ubiquitous in any real
world scene. Additionally, if the light source is an area light
source or a limited depth of field device (such as projec-
tors), scene points will receive defocused illumination. This
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Fig. 1 Image formation model. (a) A periodic illumination pattern is
projected on the scene using a projector. The temporal radiance pro-
files of scene points which are not in focus are blurred. The amount
of defocus blur is a function of the scene depths. (b) The presence of

global light transport due to sub-surface scattering and inter-reflections
introduces an additional blur. We show that the blur due to global il-
lumination is independent of the projector focal plane position. This
enables depth recovery even in the presence of global light transport

assumption is specially pertinent as projectors are being in-
creasingly used as programmable illumination in computer
vision applications. Consequently, defocused illumination
and global light transport effects introduce strong, system-
atic biases in the recovered scene properties. To make active
vision techniques work for general real world scenes, it is
thus important to account for both these effects.

The goal of this paper is to study the interplay of both
these effects. It may seem that defocused illumination and
global light transport are completely different physical phe-
nomena. Defocus is a result of the optics of the source, and
encodes scene depths. On the other hand, global light trans-
port encodes the intrinsic properties of the scene, such as
3D geometry and material properties. Our key observation
is that both these effects manifest as low pass filters on the
incident illumination during image formation. This observa-
tion allows analyzing both the effects using signal process-
ing tools, without having to explicitly model either of them.
If the scene is illuminated with a periodic illumination pat-
tern, we show that the observed radiance at each pixel over
time can be modeled as a convolution of the input pattern
with the two blur kernels associated with defocus and global
illumination (see Fig. 1). We then derive an approximate in-
variant between the global light transport blur and defocus,
which can be used to separate the two effects. This invariant
is directly useful in scenarios where limited depth-of-field
devices such as projectors are used to illuminate scenes with
global light transport and large depth variations.

We show applications in two scenarios which require sep-
aration of the two effects. First, accurate depth recovery in
the presence of global light transport (sub-surface scattering
and inter-reflections). In the presence of global illumination,
techniques such as photometric stereo (Woodham 1980),

shape from shading (Horn 1975), structured light scanning,
shape from projector defocus (Zhang and Nayar 2006) pro-
duce erroneous results. For the depth cue of illumination de-
focus (Zhang and Nayar 2006), we show that global light
transport can be separated from the depth cue without ex-
plicitly modeling or measuring light transport. We follow
the frequency domain approach of Zhang and Nayar (2006)
and derive two depth estimation algorithms. The first algo-
rithm requires a sweep of the projector focal plane across the
scene and is dual to shape-from-camera-focus techniques.
The second algorithm requires only two focal plane settings
and is similar in spirit to shape-from-camera-defocus meth-
ods.

The second scenario that we consider is the separation
of the direct and global components of light transport for
scenes with depth variations larger than the narrow depth of
field of projectors (<0.3 m ). We follow the spatial domain
approach of Nayar et al. (2006) and derive defocus-invariant
measures of global light transport. Again, we present two
algorithms for separation based on (a) multiple focal plane
positions and (b) single focal plane position and a depth map
estimated in the first application. It is interesting to note the
duality between the two applications in terms of their re-
spective noise and signal: in the first application, global il-
lumination is noise and defocus is the signal, while in the
second application, defocus is the noise and global illumi-
nation is the signal.

We demonstrate our approaches using scenes with com-
plex shapes and material properties including (a) marble,
wax and natural objects such as fruits, milk and plants that
show strong subsurface scattering, (b) objects with complex
reflectance properties and textures such as fur, velvet, metal,
wood and (c) objects with occlusions and concavities with
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strong inter-reflections. Since our analysis is done indepen-
dently at each pixel, we do not impose any smoothness con-
straints, or require presence of scene texture.

2 Related Work

Modeling Global Light Transport and Defocused Illumina-
tion A lot of work has been done in the computer graphics
literature on modeling and simulating forward light trans-
port. However, most of these models are too complex for the
purpose of recovering scene properties. For volumetric scat-
tering, the single scattering assumption is used to simplify
light transport and thus, to recover scene properties (Treibitz
and Schechner 2006; Narasimhan et al. 2005, 2006). How-
ever, the single scattering assumption is not valid in gen-
eral for other modes of global light transport such as sub-
surface scattering and inter-reflections. There has been ex-
tensive work on modeling camera defocus (Subbarao and Lu
1992) and using it to recover scene depths (Nayar and Nak-
agawa 1994; Watanabe and Nayar 1998). However, there
has been limited work on modeling illumination defocus
due to area light sources or due to limited depth of field
devices such as projectors. Most active vision techniques
either assume a point light source or the scene to be pla-
nar to avoid defocused illumination. Examples are shape re-
covery from structured light 3D scanning, shape from in-
verse light transport (Liu et al. 2010) and analysis of light
transport (Bai et al. 2010; O’Toole and Kutulakos 2010;
Mukaigawa et al. 2010).

Shape Recovery Under Global Light Transport Most ex-
isting shape-from-intensity techniques (Woodham 1980;
Horn 1975; Zhang and Nayar 2006) account for only the
direct component of light transport. One possibility is to
remove the global component a priori using the approach
of Nayar et al. (2006). However, this approach requires
the projector’s illumination to be focused on the entire 3D
scene, making it unamenable for depth recovery using pro-
jector defocus analysis. Nayar et al. (1991) recovered depths
in the presence of inter-reflections for scenes made of a
few Lambertian planar facets. Approaches based on explic-
itly measuring the light transport matrix (Sen et al. 2005;
Garg et al. 2006) can be used to remove inter-reflection from
images (Seitz et al. 2005). Such approaches require measur-
ing a large number of impulse responses of the scene. Our
methods do not require explicit modeling or estimation of
the light transport matrix.

For structured light based techniques, the presence of
sub-surface scattering and inter-reflections hinders the de-
tection of the light sheet intersection with the objects (Godin
et al. 2001). Researchers have used polarization (Chen et
al. 2007), modulation with a high-frequency illumination

pattern (Chen et al. 2008) and fluorescence (Hullin et al.
2008) to mitigate the adverse effects of global illumina-
tion. However, polarization does not reduce the effects of
inter-reflections, and the fluorescence based technique re-
quires submerging the scene in a fluorescent dye. More-
over, as with any triangulation based technique, structured
lighting suffers from the presence of occlusions in com-
plex scenes. Depth from camera focus (DFF) (Nayar and
Nakagawa 1994; Hasinoff and Kutulakos 2006) and depth
from camera defocus (DFD) (Watanabe and Nayar 1998)
techniques can compute complete depth maps,1 but they
rely on scene texture for accurate scene recovery. We use
a co-located camera-projector setup for data acquisition, as
shown in Fig. 2(a). Using this setup prevents shadows due to
occlusions, enabling recovery of complete, hole-free depth-
maps. Also, our techniques can handle scenes with or with-
out textures.

Another class of techniques measure density distribution
of volumetric media using active lighting (Atcheson et al.
2008; Hawkins et al. 2005; Gu et al. 2008). Confocal imag-
ing techniques recover partially transparent volumes by fo-
cusing the illumination and sensor simultaneously on slices
of the volume (Fuchs et al. 2008; Levoy et al. 2004). Morris
and Kutulakos (2007) and Kutulakos and Steger (2008) re-
construct specular and transparent scenes by capturing mul-
tiple images under varying illumination and varying imaging
geometry. The focus of this work is reconstructing opaque
and translucent surfaces. It will be interesting to analyze
the effects of volumetric scattering and transparency on our
techniques in the future.

3 Image Formation Model

Consider a scene being illuminated by a projector with a pe-
riodic high frequency pattern. An example pattern is shown
in Fig. 2(b). The pattern is translated horizontally, one pixel
at a time, and an image is acquired for each translation. In
the following, we show that the temporal radiance profile at
each pixel can be modeled as a convolution of the input pat-
tern with the two blur kernels associated with illumination
defocus and global illumination (see Fig. 1(b)).

Direct Illumination Consider the illustration in Fig. 1(a).
The direct component of the radiance ed

i (t, f ) at the scene

1Although DFD and DFF also suffer from occlusion, the effects are
not as severe due to a much smaller base-line (Schechner and Kiryati
2000).
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Fig. 2 Data acquisition setup.
(a) Co-located camera-projector
setup enables recovery of
hole-free depth maps. (b) The
periodic pattern used to
illuminate the scene. The pattern
is shifted horizontally one pixel
at a time and an image is
captured for each shift.
(c) Temporal profile p(t) of the
incident illumination.
(d) Discrete Fourier transform
P (w) of p(t)

point Si is the convolution of the illumination pattern, pi(t),
and the defocus blur kernel bi(t, f ) at Si :2,3

ed
i (t, f ) = αipi(t) ∗ bi(t, f ), (1)

where t denotes time, and f is the location of the projector
focal plane. The blur kernel bi(t, f ) depends on the depth
of Si and the position of the projector focal plane, f . The
scale factor αi accounts for the BRDF of the scene point,
orientation of the surface with respect to the illumination
source and the sensor, and the intensity fall-off.

Global Illumination Global illumination at a scene point
Si is due to radiance received from other scene points, as
shown in Fig. 1(b). Let mij be the fraction of the direct radi-
ance at the scene point Sj that reaches Si , possibly after mul-
tiple inter-reflections and sub-surface scattering. Then the

2We assume that both incoming and outgoing radiance remain constant
within the small solid angles (<1◦) subtended by the projector and
camera apertures respectively at the scene point.
3We assume that there is no camera defocus. Experimentally, this is
achieved by using a small camera aperture.

global component e
g
i (t, f ) is obtained by adding the contri-

butions from all other scene points:

e
g
i (t, f ) =

∑

Sj ∈Scene,j �=i

mijpj (t) ∗ bj (t, f ). (2)

The total radiance ei(t, f ) at Si is the sum of the direct
and the global components:

ei(t, f ) = ed
i (t, f ) + e

g
i (t, f ). (3)

We compactly write the expression for radiance at scene
point Si using (1), (2) and (3):

ei(t, f ) =
∑

Sj ∈Scene

mijpj (t) ∗ bj (t, f ). (4)

We have implicitly included the αi term with mii . Since
the projector is the only light source illuminating the scene,
there is no ambient illumination. The effects of ambient il-
lumination can be easily accounted for by adding a constant
DC offset to the temporal intensity profile ei(t, f ). Taking
the Fourier transform of (4):

Ei(w,f ) = P(w)
∑

Sj

mij exp(−Iwφj )Bj (w,f ), (5)
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where, uppercase symbols denote the Fourier transforms of
the corresponding lower-case symbols. The variable w rep-
resents the frequency. Since pj (t) is a shifted version of
pi(t), their Fourier transforms have the same magnitude
P(w) and differ only in the phase term exp(−Iwφj ). Re-
arranging the terms:

Ei(w,f ) = P(w)Bi(w,f )Gi(w,f ), (6)

Gi(w,f ) =
∑

Sj

mij exp(−Iwφj )
Bj (w,f )

Bi(w,f )
. (7)

The term Bi(w,f ) is the Fourier transform of the defo-
cus blur kernel at Si . This term encodes scene depths and is
independent of global illumination. We define Gi(w,f ) as
the Fourier transform of the global illumination blur kernel
at Si . The term Gi(w,f ) encodes the optical interactions
between different scene points via the light transport coef-
ficients mij . Equation (6) states that the observed radiance
profile Ei(w,f ) at Si is the convolution of the input pattern
with the defocus blur kernel Bi(w,f ) and the global illu-
mination blur kernel Gi(w,f ). This is illustrated in Fig. 1.
Note that the above analysis does not make any assumption
on the particular form of the blur kernels.

Modeling the Blur Kernels as Temporal Functions In the
above derivation, both the blur kernels are modeled as tem-
poral functions. This might appear counter-intuitive as both
phenomena are essentially forms of spatial blurring. But the
effect of defocus and global illumination can also be mod-
eled temporally. For each scene point, both phenomena op-
erate on the temporal incident illumination profile (Fig. 2(c))
and result in a blurred temporal radiance profile e(t, f ). This
is shown in Fig. 1(b). The blur kernels B(w,f ) and G(w,f )

model this temporal blurring effect. The temporal and the
spatial blurring effects are strongly related. If the support
of the spatial blur kernel at a scene point is large, the cor-
responding temporal blur kernel has a proportionately large
support as well. The advantage of doing a temporal analysis
over spatial analysis is that it can be done independently for
each pixel, without making strong assumptions on the scene
structure, such as local smoothness of depth.

4 Relationship Between Global Illumination Blur and
Projector Defocus

As shown in the previous section, the observed blur kernel
is the convolution of the blur kernels due to both global il-
lumination and illumination defocus. Since the two kernels
encode different scene properties, it is useful to separate
them. How can the two kernels be separated? Fortunately,
we know that the defocus kernel B(w,f ) can be modulated
by changing the projector focus settings. In this section, we
study the dependence of the global illumination blur kernel
G(w,f ) on the projector focus setting f .

Global Illumination Blur Is Approximately Invariant to Pro-
jector Focus Setting Consider the expression for the global
illumination blur at a scene point Si , as given in (7). Notice
that the form factors mij are a function of the scene geom-
etry and material properties, and do not depend on the pro-
jector focus setting. Similarly, the phase terms depend on
the scene and illumination geometry and illumination fre-
quency, and are independent of the focus setting f .

The only term dependent on f is the ratio
Bj (w,f )

Bi(w,f )
. Con-

sider points Sj which are in a local neighborhood around Si .
Since the corresponding defocus kernels Bj and Bi are
depth dependent, they vary in a similar manner as the focus

setting is changed. Thus, the ratio
Bj (w,f )

Bi(w,f )
remains nearly

constant with changing f . Now consider points Sj which
are in a neighborhood Ndist that is distant from Si . For
these points, the defocus kernels Bj and Bi vary differently
as f is changed. But, in the summation (7), the contribu-
tion from these points is low because the form factors mij

fall rapidly with distance. Moreover, for points Sj within
Ndist , the phase terms vary much more rapidly (between −1
and 1) as compared to the variation in the form factors mij .
Thus, the contributions from these points cancel out among
themselves. Consequently, the global illumination blur ker-
nel Gi(w,f ) is nearly invariant to the projector focus set-
ting.

Dependence of the Invariant on Scene Content and the Il-
lumination Frequency In order to understand the depen-
dence of the invariant on the illumination patterns and the
scene content, it is important to highlight the assumptions
made while deriving the invariant:

– The form factors mij fall rapidly with distance between
points Sj and Si .

– For points Sj within neighborhoods distant from Si , the
phase terms vary much more rapidly as compared to the
variation in the form factors mij .

The first assumption is satisfied by most scenes since the
effect of global light transport phenomena (sub-surface scat-
tering, diffusion and inter-reflections) decreases with dis-
tance due to light attenuation and fall-off. For the second as-
sumption to hold, the frequency of the incident illumination
should be higher than the frequency with which the form
factors vary. For general scenes, it is hard to derive a closed
form expression for the required illumination frequencies as
the form factors are complex functions of scene geometry
and material properties. Intuitively, the smaller the period
of the illumination pattern, the better is the approximation.
A similar argument was used in Nayar et al. (2006) for sep-
arating the direct and global components of light transport.
One scenario that violates these assumptions is the presence
of a distant mirror in the scene. This would result in high-
frequency inter-reflections which are also strong despite be-
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ing distant. In this scenario, the invariance will not hold. An
example scene is shown in Fig. 12.

In the following, we provide empirical validation for the
above observation using scenes exhibiting strong inter re-
flections and sub-surface scattering. In Appendix, we pro-
vide validation using simulations for different distributions
of scene points.

4.1 Validation Using Real Experiments

For the purpose of validation, we measure G(w,f ) for a
wide range of projector focus settings f . For a scene point
Si , we can compute Gi(w,f ) up to a constant scale factor
by identifying another scene point Sj which does not receive
any global illumination, and has the same depth as Si . Using
(6) and noting that Bi(f ) = Bj (f ):

Gi(f )

αj

= Ei(f )

Ej (f )
. (8)

Experimental Setup We use a co-located camera-projector
system as shown in Fig. 2(a). Our system consists of a Sony
Cineza 3-LCD video projector and a Lumenera Lu165C 12-
bit camera. The projector focus setting is changed by ro-
tating the focus ring manually. Markings were made on the
focus ring to be able to replicate the focus settings. As men-
tioned in the previous section, for the invariant to hold, it is
important to use an illumination pattern with a small period
(high-frequency). We use the pattern shown in Fig. 2(b) to
illuminate the scene. This pattern has a period of 24 pixels in
the horizontal direction (Zhang and Nayar 2006). For each
focus setting, we acquire 24 images as the pattern is trans-
lated horizontally, one pixel at a time. From these images,
we measure the temporal radiance profiles ei(t, f ). The total
number of images acquired is 24 × F , where F is the num-
ber of focus settings used. The acquisition time is approxi-
mately 1 minute per focus setting. We compute Ei(w,f ) by
taking the Discrete Fourier Transform of the observed radi-
ance profiles ei(t, f ).

Validation Results We design experiments to establish
the invariant for both sub-surface scattering and inter-
reflections. For inter-reflections, we construct a V-groove
using two diffuse planes, as shown in Fig. 3(a). Fig-
ures 3(b–d) show sample input images for three out of six
focus settings. We compute E(w,f ) at different focus set-
tings for the scene point B , which receives global illumina-
tion due to inter-reflections. We repeat the experiment for the
same set of focus settings by removing the right red colored
plane (Fig. 3(e)). In this case, the scene point A does not re-
ceive any global illumination. Figures 3(i–j) show temporal
intensity profiles at Point A and B respectively. The profiles
at B are more blurred than the profiles at A due to the addi-
tional global illumination blur. Figures 3(k–l) show discrete-
time Fourier transform E(ω,f ) of (i) and (j). Figure 3(m)

shows the plot of E(3, f ) for points A (no global illumi-
nation) and B (with global illumination). The global illumi-
nation blur G(w,f ) is computed by taking the point-wise
ratio of the two curves, according to (8). Figure 3(n) shows
the plot of scaled G(w,f ) for w = 1,2,3,4 at point B.
Figures 3(o–p) show global illumination blur kernels and
defocus blur kernels computed at different focus settings.

Two observations can be made from the plots. First,
as shown in Fig. 3(n), the total variation in G(w,f ) for
w = 1,2,3 is less than 5% over the entire range of focal
plane positions (0.3 m–2.5 m).4 Figures 3(o–p) illustrate the
global illumination blur kernels and the defocus blur ker-
nels at different focus settings, computed using the first three
DFT coefficients. The global illumination kernels remain
nearly constant, while the defocus kernels show significant
variation. This validates that the global illumination blur re-
sulting from inter-reflections is insensitive to the projector
focus setting. Second, we observe that the plots for E(w,f ),
with and without global illumination, achieve maxima at the
same focal plane position, as shown in Fig. 3(m).

For sub-surface scattering, we use a wax candle with the
top and the bottom part covered with diffuse reflective paper,
leaving the center exposed, as shown in Fig. 4(a). The bot-
tom (green) part of the candle also receives inter-reflections
from the base on which the candle is kept. We choose a
point B on the exposed part which receives global illumi-
nation in the form of sub-surface scattering. Point A, on the
same vertical column and lying on the diffuse paper, is at
the same depth as B but receives no global illumination. We
plot E(w,f ) for A and B in Fig. 4(i). As before, G(w,f )

at B is computed by taking the point-wise ratio of the two
curves. We observe similar results as in the case of inter-
reflections: the low frequency components of the global illu-
mination blur kernel remain nearly constant as the projector
focus setting is changed significantly.

From a practical point of view, since the first three co-
efficients remain nearly constant with changing focus set-
ting, any function of these can be used as a defocus invari-
ant measure of the global illumination blur. For our tech-
niques, we use the third coefficient of the DFT (w = 3).
In the rest of the paper, for brevity, we drop the argument
w, i.e. E(w,f ),G(w,f ) and B(w,f ) will be denoted as
E(f ),G(f ) and B(f ) respectively.

4For coefficients corresponding to higher frequencies (w ≥ 4), the vari-
ation in G(w,f ) is large. This can be explained from the fact that the
global illumination blur kernel is defined in terms of ratios of defo-
cus blur kernels (7). Since defocus blur kernels are low pass-filters,
they suppress large frequencies. This can be observed in the DFT plots
of the intensity profiles (Fig. 3 (k–l)). The amplitude is nearly zero for
w ≥ 4. Consequently, the estimation of G(w,f ) is unstable and unreli-
able for w ≥ 4. While it is possible to estimate G(w,f ) for higher fre-
quencies by using coded apertures for projectors and designing broad-
band defocus blur kernels, currently it is beyond the scope of this paper.
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Fig. 3 Experiments to show the invariance of global illumination blur
(due to inter-reflections) to the projector focus setting. (a) A V-groove
constructed by placing two planes. (b–d) Sample input images for three
out of six focus settings. (e) A single plane after removing the right,
red colored plane from the V-Groove. (f–h) Sample input images for
three out of six focus settings. (i–j) Temporal intensity profiles at Point
A and B respectively for one out of six focus settings. (k–l) Discrete-
time Fourier transform E(ω,f ) of (i) and (j). (m) Plot of E(3, f ) for

Points A (no global illumination) and B (with global illumination).
(n) Plot of scaled G(w,f ) for w = 1,2,3,4 at point B. The relative
variation in G(w,f ) is less than 5% for w = 1,2,3. (o) Global illu-
mination blur kernels computed at different focus settings using the
first three frequency components. (p) Defocus blur kernels at different
focus settings. The global illumination kernels remain nearly constant,
while the defocus kernels show significant variation
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Fig. 4 Experiments to show the invariance of global illumination blur
(due to sub-surface scattering) to the projector focus setting. (a) Can-
dle scene. (b–d) Sample input images for three out of eight focus set-
tings. (e–f) Temporal intensity profiles at Point A and B respectively
for one out of six focus settings. (g–h) Discrete-time Fourier transform
E(ω,f ) of (e) and (f). (i) Plot of E(3, f ) for Points A (no global illu-
mination) and B (with global illumination). (j) Plot of scaled G(w,f )

at point B for w = 1,2,3,4. This is computed by taking the ratio of
the two curves in (i) as in (8). The relative variation in G(w,f ) is less
than 7% for w = 1,2,3. (k) Global illumination blur kernels computed
at different focus settings using the first three frequency components.
(l) Defocus blur kernels at different focus settings. The global illumi-
nation kernels remain nearly constant, while the defocus kernels show
significant variation

5 Depth Recovery Under Global Illumination

Based on the invariant derived in the previous section, we
present two algorithms for recovering depths in the pres-
ence of global light transport. The first algorithm (Sect. 5.1)
requires a sweep of the focal plane across the scene, ac-
quiring images at multiple focus settings. Recall that the
blur in the intensity profile measured at a single focal plane
setting is a convolution of the defocus blur and the global
illumination blur, both of which are unknown. Thus, we
need intensity profiles for at least two focal settings in or-
der to separate the two blur kernels. The second algorithm

(Sect. 5.2) requires capturing images at only two focus set-
tings.

5.1 Depth from Multiple Projector Focal Planes

In this algorithm, the DFT coefficients E(f ) are computed
for multiple (≥3) focal plane positions f spanning the
depth-range of the scene. Assuming that the defocus blur
kernel B(f ) is unimodal, the plot of B(f ) attains a unique
maximum at the focal plane position f , when the corre-
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Fig. 5 Mappings between
(a) scene depths and the focus
measure f , (b) scene depths and
the defocus measure Ω

sponding scene point is the best in focus.5 Since the global
illumination blur G(f ) is invariant to f , the plot of E(f ) re-
flects the behavior of the defocus blur B(f ) (see (6)). Con-
sequently, E(f ) and B(f ) attain a unique maximum at the
same focal plane location f . It follows that the plots of E(f )

for two different scene points at the same depth but receiv-
ing different amounts of global illumination share the same
maximum location. Two examples are shown in Figs. 3(m)
and 4(i). This suggests the maximum location f i as a global-
illumination invariant depth measure:

f i = arg max
f

Ei(f ). (9)

The resolution of the above depth measure is limited by
the number of focal settings used. The resolution can be im-
proved by assuming that the blur kernel is smooth and that
it can be well approximated with a Gaussian. Then, the dis-
crete focus measure values Ei(f ) can be interpolated by fit-
ting a Gaussian (Nayar and Nakagawa 1994). As a one time
calibration step, we compute a one-to-one mapping between
scene depths and f i using a planar, diffuse reflective board,
whose depths are known a priori (see Fig. 5(a)). This map-
ping, along with the estimates of f , is used to compute the
actual depths. This algorithm can be considered a dual to the
shape-from-camera-focus technique, where depths are com-
puted by sweeping the camera focal plane across the scene.

5.2 Depth from Two Projector Focal Planes

In this algorithm, we estimate depths as a function of a de-
focus measure defined using only two focal positions f1

and f2. Since Gi(f ) is invariant to f , Gi(f1) = Gi(f2).
Using (6), we define the following ratio measure which is
invariant to global illumination:

Ωi = Ei(f2)

Ei(f1)
= Bi(f2)

Bi(f1)
. (10)

5If the projector has a coded aperture (Levin et al. 2007), the defo-
cus blur kernel might be multi-modal and B(f ) might attain multiple
maxima. In this paper, we consider unimodal defocus blur kernels.

We compute a mapping between scene depths and Ωi us-
ing a planar calibration board, as shown in Fig. 5(b). This
mapping, along with the estimates of Ω is used to estimate
the actual depths for a given scene.

5.3 Results

Figure 6 shows results of our techniques for the V-groove
and the candle scenes. The single focal plane algorithm
(Zhang and Nayar 2006) over-estimates the defocus blur re-
sulting in incorrect depth estimates near the concavity of the
V-groove (inter-reflections), for the middle (exposed) part
of the candle (sub-surface scattering) and for the bottom
(green) part of the candle (inter-reflections from the base).
Our depth from two planes (Sect. 5.2) and multiple planes
(Sect. 5.1) algorithms significantly mitigate the errors. The
residual errors on the middle (exposed) part and the bottom
(green) part of the candle are due to the approximate nature
of the invariant. The relative RMS error for both our algo-
rithms is ∼1% for the V-groove and ∼5% for the candle.

Theoretically, 3 focal planes are sufficient for the multi-
ple focal planes algorithm. For robustness, we used 6 to 8 fo-
cal plane positions. Since we compute depths independently
at every pixel, fine details such as the wick of the candle
are reconstructed as well. The ground truth depths in Fig. 6
were acquired using a calibration plane with pre-measured
depths. In the following, we demonstrate our algorithms on
a variety of scenes with complex shapes and material prop-
erties, and significant global illumination.

Candle and Marble Scene (Fig. 7) This scene consists of a
wax candle inside a white pot closest to the projector, a mar-
ble statue of Atlas, a V-groove and a polyresin bust, in this
depth order. The single focal plane algorithm (Zhang and
Nayar 2006) does not account for global light transport ef-
fects. Notice the incorrect depths, most noticeably on the
candle and inside the V-groove concavity. The apparent de-
tails on the two statues are also spurious; they appear due
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Fig. 6 (Color online) Comparison of the three depth recovery tech-
niques for the V-groove (Fig. 3) and the candle (Fig. 4) scenes. The
single focal plane algorithm (Zhang and Nayar 2006) over-estimates
the defocus blur in the presence of inter-reflections and sub-surface
scattering. This results in incorrect depth estimates near the concavity
of the V-groove (inter-reflections), for the middle (exposed) part of the

candle (sub-surface scattering) and for the bottom (green) part of the
candle (inter-reflections from the base). On the other hand, the relative
RMS error for our algorithms is less than 1% for the V-groove and less
than 5% for the candle. The ground truth depths were acquired using a
calibration inclined plane with pre-measured depths

to inter-reflections between the folds on the statues. In con-
trast, on the depth maps computed using our techniques, the
errors due to global illumination are significantly reduced.6

Synthetic Materials Scene (Fig. 8) This scene consists of
objects with complex and anisotropic BRDF’s (metal, vel-
vet and fur) and intricate shapes. The single focal plane al-
gorithm computes incorrect depths at the base of the objects

6The striped artifacts visible in the depth maps are due to aliasing of the
illumination pattern resulting from limited spatial resolution and non-
ideal optics of the projector. The aliasing is mitigated by pre-filtering
the pattern before projection.

due to inter-reflections. Notice the sharp variation in depth
at the base of the red-cylinder. The correct depth map should
have a smooth depth transition, as can be noticed on depth
maps computed using our techniques. Similarly, in the scene
consisting of various industrial parts (Fig. 11), the depth
map computed using the single focal plane algorithm has
errors due to sharp inter-reflections and different material
properties. In the depth map computed using our technique,
the errors are significantly reduced.

Real and Fake Materials Scene (Fig. 9) This scene consists
of real and fake flowers, real and fake fruits and milk with
different fat content. Objects present in this scene exhibit
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Fig. 7 Depth computation for the ‘Candle and Marble’ scene. (a) This
scene consists of a wax candle inside a white pot closest to the projec-
tor, a marble statue, a V-groove and a polyresin bust, in this depth order.
There is significant global light transport in form of sub-surface scat-
tering (candle and the marble statue) and inter-reflections (inside the
v-groove and between the folds on the statues). (b) Depth map using
the single plane algorithm (Zhang and Nayar 2006). Notice the incor-

rect depths, most noticeably on the candle and inside the V-groove con-
cavity. The apparent details on the two statues are also spurious; they
appear due to inter-reflections between the folds on the statues. (c, d)
Depth maps using our two focal planes and multiple focal planes al-
gorithms respectively. The errors due to global illumination are signifi-
cantly reduced. (e–f) Texture-mapped 3D model of the scene computed
using (d)

varying degrees of sub-surface scattering due to different

material properties. The single focal plane algorithm does

not account for different material properties, thus computing

incorrect depths. For instance, in the correct depth map, the

two milk glasses should have the same depths, which is the

case with our results.7 Similar effect can be noticed in the

7Points on the boundary of the lemons are in attached shadow as the
normals face away from the illumination direction. This results in in-
correct depth estimates and the bright ‘halos’.
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Fig. 8 (Color online) Depth computation for the ‘Synthetic materials’
scene. (a) This scene consists of objects with complex and anisotropic
BRDF’s (metal, velvet and fur) and intricate shapes. (b) The single
focal plane algorithm computes incorrect depths at the base of the ob-

jects due to inter-reflections. Notice the sharp variation in depth at the
base of the red-cylinder. The correct depth map should have a smooth
depth transition. (c, d) Depth maps computed using our techniques

candles and soaps scene (Fig. 10), where all the objects are
placed at roughly the same depth. However, the single fo-
cal plane algorithm computed significantly different depths
due to different material properties. In comparison, the depth
variation in the results computed by our algorithms is signif-
icantly smaller.

Failure Case As mentioned in Sect. 4, the presence of a
distant mirror in a scene violates the assumptions that are
made to derive the invariance of the global illumination blur
to projector defocus. An example is illustrated in Fig. 12.
The pot receives strong, specular inter-reflections from a dis-
tant mirror (not visible in the image). Consider a point Si on
the pot which receives inter-reflections from a point Sj on
the mirror. In the following, we analyze the global illumina-
tion blur kernel at Si using (7).

For Si and Sj , the defocus kernels Bi and Bj vary dif-
ferently as the projector focus setting f is changed. Conse-

quently, the ratio
Bj (w,f )

Bi(w,f )
varies as the projector focus setting

f is changed. Since the inter-reflections are from a mirror
surface, the form factor mij is not negligible despite the dis-
tance between Si and Sj being large. Thus, in the summation

(7), the contribution from Sj is significant. Finally, the fre-
quency with which the form factors mij vary in a neighbor-
hood around Sj is much more than the frequency of the in-
cident illumination. Thus, the contributions of points within
a neighborhood around Sj do not cancel out among them-
selves. As a result, the global illumination blur kernel at Si

is not invariant to f .
In this case, our techniques fail to completely account for

the errors due to global illumination. Depth computed using
the single focal plane method is incorrect for points on the
pot which receive specular inter-reflections. Although the er-
rors in the depth maps computed using our techniques are
mitigated, they are not completely removed. Note that the
projector and camera were not co-located in this experiment
and depth computation was not performed in the shadow re-
gions.

6 Direct-Global Separation Under Defocus

The algorithm proposed in Nayar et al. (2006) separates the
direct and global components of light transport with a sin-
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Fig. 9 Depth computation for the ‘Real and fake materials’ scene.
(a) This scene consists of real and fake flowers, real and fake fruits and
milk with different fat content. Materials present in this scene exhibit
varying degrees of translucency. (b) The single focal plane algorithm

does not account for different material properties, thus computing in-
correct depths. In the correct depth map, the two milk glasses should
have the same depths. (c, d) Depth maps computed using our tech-
niques

Fig. 10 Depth computation for the ‘Candles and soaps’ scene.
(a) This scene consists of soaps and candles with different material
properties. (b) Depth map computed using the single focal plane algo-

rithm has significant errors; in the correct depth map, all the soaps and
candles should have the same depths. (c) Depth map computed using
our technique

gle projector focal plane position. This technique, however,
does not take into account the effects of defocused illumina-
tion. In the presence of defocus blur, a single focal plane is
not sufficient to recover the correct separation. Such a situa-
tion would arise if the depth range of the scene is larger than
the depth of field of the projector. In this section, we present
two algorithms for separating the direct and global compo-
nents of radiance in the presence of defocus blur. The first

algorithm uses multiple focal planes, and the second uses a
single focal plane in addition to a depth map of the scene,
which can be recovered using approaches of the previous
section.

First, we derive the separation equations in the presence
of defocus blur. Suppose we use a high-frequency pattern
pi(t) with an equal number of on and off pixels to illu-
minate the scene. Then, following Nayar et al. (2006), the
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Fig. 11 Depth computation for the ‘Industrial parts’ scene. (a) This
scene consists of different industrial parts. (b) Depth map computed
using the single focal plane algorithm has errors due to sharp inter-

reflections and different material properties. (c) In the depth map
computed using our technique, the errors are significantly reduced

Fig. 12 Illustration of failure case: Top row: Control scene. In the ab-
sence of global light transport, all three techniques compute accurate
depth maps. Bottom row: Failure case scene. The pot receives strong,
specular inter-reflections from a distant mirror (not visible in the im-
age). Depth map computed using the single focal plane method has

errors on scene points which receive specular inter-reflections. In this
case, because of significant light transport among distant scene points,
the global illumination blur is not invariant to the projector focus set-
ting. Consequently, although the errors in the depth maps computed
using our techniques are mitigated, they are not completely removed

max-image, e+(f ), computed by taking pixel-wise maxi-
mum, receives approximately half the global component. In
the presence of defocus blur, the illumination pattern gets
blurred. However, since the period of the pattern remains
the same, this approximation still holds. Thus, using (1) and
(3), we write the expression for e+(f ) in the presence of
defocus:

e+
i (f ) = β+

i (f )ed
i + 0.5e

g
i , (11)

β+
i (f ) = maxt {pi(t) ∗ bi(t, f )}, (12)

where αi = ed
i . Note that ed

i and e
g
i are the direct and global

components respectively at Si when the scene is fully illu-
minated. Similarly, we compute the min-image, e−(f ):

e−
i (f ) = β−

i (f )ed
i + 0.5e

g
i , where (13)

β−
i (f ) = mint {pi(t) ∗ bi(t, f )}. (14)

These equations are generalizations of the separation
equations given in Nayar et al. (2006), as they account for
defocus blur as well. The coefficients β+

i (f ) and β−
i (f ) de-

pend on the defocus blur kernel bi(t, f ) at Si . If Si is in per-
fect focus at the focus setting f , β+

i (f ) = 1 and β−
i (f ) = 0.

Removing the Effects of Illumination Defocus The effects
of defocus in the illumination space are different from the
effects of defocus in the camera space. In the camera space,
the support of the blur kernel for a camera pixel lies on a set
of scene points, which can potentially be non-planar. Since
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Fig. 13 (a) Separation using
multiple focal planes. We
compute the extrema values of
e+
i (f ) and e−

i (f ) and use them
for separation in (15) and (16).
(b) Separation using one focal
plane. Mapping between
β+

i (f ) − β−
i (f ) and scene

depths. Given a depth map of
the scene, this mapping is used
to recover the correct separation
using (17) and (18)

the scene’s in-focus intensities are unknown, the blur kernel
can not be computed a priori. In contrast, in the illumina-
tion space, the support of the blur kernel for a scene point
lies on the planar image plane of the projector (Fig. 1). In
the context of direct-global separation, the effect of illumi-
nation defocus can be expressed by only two scalars, β+

i (f )

and β−
i (f ). Additionally, these scalars depend only on the

depth of Si , and not on other scene points. Thus, β+
i (f )

and β−
i (f ) can be computed a priori as a function of scene

depths. This makes it significantly simpler to remove the ef-
fects of defocus in the illumination space as compared to the
camera space.

The two separation techniques that we present are dif-
ferent in the following important way. In the first approach,
we compute an image of the scene as if the entire scene is
receiving focused illumination. This requires sweeping the
projector focal plane across the depth of the scene. This is
dual to computing an all-in-focus image from a focal stack
in the camera space. Once the all-in-focus images are com-
puted, we simply apply the standard separation techniques
as in Nayar et al. (2006). In the second approach, we ex-
ploit the fact that the effects of illumination defocus depend
only on the scene depths, and thus can be pre-computed.
Then, given a depth-map of the scene, the effects of defocus
are calculated for each scene point individually, and then re-
moved.

6.1 Separation Using Multiple Focal Planes

In this section, we present a separation technique using mul-
tiple focal plane positions. We use a checker-board illumi-
nation pattern as in Nayar et al. (2006). Input images (about
25)8 are acquired at different focus settings. Figure 15 shows
sample input images for the V-groove scene for 3 out of 6

8Theoretically, only 2 images are required. For robustness, we acquire
multiple images.

focus settings. For a point Si , we compute e+
i (f ) and e−

i (f )

at each focus setting. As in the previous section, we assume
that the defocus blur kernel is smooth and unimodal. Then
the curve for e+

i (f ) attains a unique maximum, while the
curve for e−

i (f ) attains a unique minimum. An example plot
for a point on the candle is shown in Fig. 13(a). Also, we
can use Gaussian interpolation to compute e+

i and e−
i , the

extrema values of e+
i (f ) and e−

i (f ) respectively. The com-
puted images e+

i and e−
i are the max and min image respec-

tively as if the scene is in perfect focus. Thus, we can write
the separation equations as:

e+
i = ed

i + 0.5e
g
i , (15)

e−
i = 0.5e

g
i . (16)

The direct and global components can then be computed,
respectively, as ed

i = e+
i − e−

i and e
g
i = 2e−

i .

Accuracy of the Multiple Focal Plane Algorithm vs. the Sam-
pling of the Focal Planes The accuracy of the multiple
focal plane algorithm is a function of the illumination fre-
quency (period) and the sampling of the focal plane space.
We consider two cases. First, when the sampling of the fo-
cal planes is sufficiently fine so that for each scene point, the
minimum defocus kernel support9 is smaller than half the il-
lumination period (i.e., the defocus kernel lies completely
within one square of the checkerboard pattern). In this case,
β+

i (f ) = 1 and β−
i (f ) = 0 ((11) and (13)), and e+

i and e−
i

are the max and min intensities respectively as if Si is in fo-
cus. Thus, the separation computed using the multiple focal
planes algorithm is the same as the ground-truth separation
(the ground-truth direct-global separation is when the scene
is in focus).

9For a scene point, the size of the blur kernel support is the smallest for
the focal plane position closest to the scene point.
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Fig. 14 Accuracy of the
multiple focal planes algorithm
for direct-global separation vs.
the number of focal planes. The
average RMS error for the
direct-global components
computed using different
number of focal plane positions.
Direct-global separation
computed using 7 focal plane
positions is considered the
ground truth

Fig. 15 Input images for direct-global separation. The multiple focal
planes algorithm (Sect. 6.1) requires images captured at multiple (at-
least 3) focus settings. Shown above are sample input images at 3 out

of 6 different focus settings. The single focal plane + depth map algo-
rithm (Sect. 6.2) requires images captured only at a single focal plane,
and a depth map of the scene

Let N
f ocal
b be the number of evenly placed focal plane

positions required to ensure that for each point, the mini-
mum blur kernel support lies within half the illumination
period. Let N

f ocal
f be the number of focal plane positions re-

quired to ensure that each point is perfectly in focus for some
focal position. Then, N

f ocal
b < N

f ocal
f . Suppose Dscene is

the depth of the scene and Ddof is the depth of field of the

projector, then N
f ocal
b < N

f ocal
f = Dscene

Ddof
. For example, if

the depth of the scene is 150 cms and the depth of field of
the projector is 30 cms, 5 focal plane positions are sufficient
to achieve ground-truth separation.

The second case is when the focal plane sampling is
coarse, i.e., the minimum support of the blur kernel is larger
than half the illumination period. In this case, direct-global
components are approximated by interpolation. The approx-
imation error depends on the sampling frequency and how
well the blur kernel fits the interpolation model. Since defo-
cus blur kernels are frequently approximated with a Gaus-
sian model, we used Gaussian interpolation.

Figure 18 shows the separation results computed using
different number of focal plane samples. Qualitatively, all
the results look similar, and are different from the result ob-
tained using only a single focal plane (Fig. 17). Figure 14
shows a quantitative comparison—the average RMS error
for the direct-global components computed using different
number of focal plane positions. The depth of the scene is
approximately 150 cms and the depth of field of the projec-
tor is approximately 30 cms. Direct-global separation com-
puted using 7 focal plane positions is taken as the ground
truth. As expected, the error falls sharply from 1 to 3 planes,
and plateaus after 5 planes.

6.2 Separation Using One Plane and a Depth Map

Here, we present an algorithm to compute separation in the
presence of defocus blur using a single focal plane and a
depth map of the scene computed using the techniques pre-
sented in Sect. 5. For a scene point Si , the direct and the
global component are given using (11) and (13):
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Fig. 16 Comparison of the three direct-global separation techniques.
The technique in Nayar et al. (2006) does not account for illumination
defocus and incorrectly estimates the direct and global components.
The direct component is underestimated and the global component is
over-estimated on the planes of the V-groove and on the background

plane in the candle scene. Our techniques account for defocus while
computing the direct-global separation. Notice the color-bleeding due
to inter-reflections inside the V-groove and large global component on
the exposed parts of the candle due to sub-surface scattering

Fig. 17 Direct-Global separation using the technique in Nayar et al.
(2006) for the marbles and candle scene. The depth of the scene is ap-
proximately 150 cms, larger than the depth of field of projectors (∼30
cms). Thus, illuminating this scene with a projector results in defo-

cused illumination. Because of defocus, the technique in Nayar et al.
(2006) incorrectly produces different direct-global separation for dif-
ferent focus settings. At each focus setting, correct separation is pro-
duced only for the scene points which are in focus
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Fig. 18 Direct-Global separation using our multiple focal plane al-
gorithm (Sect. 6.1) for the marbles and candle scene. The multiple
focal plane algorithm mitigates the errors due to defocus by computing
all-in-focus images. The accuracy of the algorithm increases with the
number of focal planes used. In this example, direct-global separation

computed using 7 focal plane positions is taken as the ground truth.
Notice the large global component on the candle due to sub-surface
scattering and inside the V-groove due to inter-reflections. Figure 14
shows a quantitative comparison

Fig. 19 Direct-Global separation using the single focal plane + depth map algorithm (Sect. 6.2) for the marbles and candle scene

ed
i = e+

i (f ) − e−
i (f )

β+
i (f ) − β−

i (f )
, (17)

e
g
i = ei − ed

i , (18)

where ei is the observed intensity when the scene is fully
lit. The denominator in (17) encodes the effects of de-
focus blur, and needs to be eliminated in order to re-
cover the direct and global components. To this end, we
build a mapping between (β+

i (f ) − β−
i (f )) and scene

depths using a flat diffuse inclined plane with known
depths and no global illumination, as shown in Fig. 13(b).

For a point Sr on the inclined plane, we compute the
max and the min images, e+

r (f ) and e−
r (f ) respectively.

Then:

β+
r (f ) − β−

r (f ) = e+
r (f ) − e−

r (f )

er

, (19)

where er is the intensity at Sr when the plane is fully lit. If
Sr and Si are at the same depth, we can substitute for the de-
nominator in (17) with (19), to recover the direct and global
components.
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Fig. 20 Direct-Global separation for different scenes computed using
the multiple focal planes algorithm (Sect. 6.1). The depth range of all
the scenes is larger than 150 cms, more than the depth of field of pro-

jectors (∼30 cms). For large depth scenes, it is critical to account for
illumination defocus to compute the correct direct-global separation.
See the project web-page (see footnote 10) for more results

Experiments and Results for Direct-Global Separation For
direct-global separation, we use the same setup as for depth
estimation. We illuminate the scene with a checkerboard pat-
tern with checkers of size 8 × 8 pixels. The pattern is shifted
5 times by 3 pixels in both dimensions to acquire a total of
25 images per focal setting. The max-image and min-image

are computed by simply taking the pixel-wise maximum and
minimum respectively.

Figure 16 shows the direct-global separation results for
the candle and the V-groove scene. The focal plane was
placed in front of the scene so that the objects are not in
focus. The technique in Nayar et al. (2006) does not account
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for illumination defocus and incorrectly estimates the direct
and global components. The direct component is underes-
timated and the global component is over-estimated on the
planes of the V-groove and on the background plane in the
candle scene. In contrast, our techniques account for defo-
cus while computing the direct-global separation. Notice the
color-bleeding due to inter-reflections inside the V-groove
and large global component on the exposed parts of the can-
dle due to sub-surface scattering.

We also consider scenes with large depth variations
(0.3 m–2 m), significantly more than the depth of field of the
projector, as shown in Figs. 17–19. The technique in Nayar
et al. (2006) produces different direct-global separation for
different projector focus settings. This is incorrect since the
direct-global separation is inherent to the scene, and should
not depend on the projector focus setting. Our separation al-
gorithms account for the defocus blur, and recover the cor-
rect direct and global components. Notice the large global
component on the candle due to sub-surface scattering and
inside the V-groove due to inter-reflections.

Figure 20 shows results for more scenes containing ob-
jects with a variety of material properties and different
geometries. The depth range of all the scenes is larger
than 150 cms, more than the depth of field of projectors
(∼30 cms). For more results and comparison, see the project
web-page.10

7 Discussion and Limitations

We have studied the interplay between defocused illumina-
tion and global illumination and derived an invariant which
can be used to separate the two effects for scene recovery.
Based on the invariant, we have shown two applications:
First, accurate depth recovery in the presence of global illu-
mination (sub-surface scattering and inter-reflections). Sec-
ond, factoring out the effects of defocus for correct direct-
global separation in large depth scenes. We now discuss
some limitations of our approaches.

We have discussed defocused illumination in the con-
text of projectors. However, illumination defocus is a more
general effect which can be observed wherever area light
sources are used. For example, in outdoor settings where sun
is the illumination source, a vertical pole casts a shadow on
the ground which is sharp near the base and gets blurred
as we move away. This effect is similar to defocus observed
with projectors. This suggests that sun can be used as an area
light source for recovering outdoor scene properties. Sun has
previously been used for outdoor scene recovery (Bouguet
and Perona 1998; Nayar et al. 2006). However, illumination

10Webpage: http://graphics.cs.cmu.edu/projects/DefocusGlobal/.

defocus effects have not been considered, thus requiring the
occluder to be very close to the scene.

We now discuss some limitations of our approaches. Our
approaches do not handle perfectly mirrored objects due to
high frequency global illumination. In the presence of spec-
ular reflections from mirrored objects, a scene point may re-
ceive global illumination from distant scene points. In this
case, the global illumination blur is not invariant to the pro-
jector focus setting. As a result, our techniques do not fully
account for the effects of global illumination, as shown in
Fig. 12.

The striped artifacts visible in the depth maps are due
to aliasing of the illumination pattern resulting from limited
spatial resolution and non-ideal optics of the projector. The
aliasing is mitigated by pre-filtering the pattern before pro-
jection.

Another challenging problem is to analyze the effects of
volumetric scattering and transparency on our techniques.
Currently, the data acquisition process for our algorithms
is not real-time. An avenue of future work is to extend our
techniques for dynamic scenes. Finally, it will be interest-
ing to account for camera defocus to combine the advan-
tages of our techniques with those of shape from camera
focus/defocus.
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Appendix: Validation Using Simulations

In this section, we verify the invariance of global illumi-
nation blur to projector focus settings using simulations in
MATLAB. We compute G(f ) according to (7). To account
for intensity fall-off (Hardy 1967), occlusions and multiple
bounces, we assume that the transfer coefficients mij be-
tween two points Si and Sj to be inversely proportional to
D2

ij , the square-distance between them. Thus:

mij ∝ 1

D2
ij

. (20)

For sub-surface scattering, the term mij encodes the ad-
ditional exponential decay due to attenuation (Narasimhan
and Nayar 2002):

mij ∝ 1

D2
ij

exp(−Dij ). (21)

For diffusion, we use the following expression for the
form factor:

mij ∝ 1

Dij

exp(−Dij ). (22)

http://graphics.cs.cmu.edu/projects/DefocusGlobal/


166 Int J Comput Vis (2012) 98:146–167

Fig. 21 (Color online)
Simulation result for symmetric
case. The first row is for the first
DFT coefficient (w = π/12 in
our setup). The second row is
for the second DFT coefficient
(w = π/6). For each row, the
first column is the defocus
kernel at that frequency, the
second column is average global
illumination blur over 100
simulations. Blue curve is for
inter-reflection, black for
sub-surface scattering and red
for diffusion

Fig. 22 Asymmetric case. See
the caption of Fig. 21 for labels.
The variation of geometry blur
is higher than symmetric case,
yet it still remains nearly
constant over a large range of f
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The scene is modeled as a 2D symmetric uniform distri-
bution of points around point Si , which is assumed to be at
the origin. We assume a Gaussian model for defocus blur.
The spread of the gaussian is given by the distance between
the scene point and the focal plane. We sample 100000 scene
points from the distribution over 100 trials. We compute the
average global illumination blur over all the scene points for
different focal plane positions.

Results Figure 21 shows our simulation result. The global
illumination blur has far less variation (∼0.5% for the inter-
reflection case for the second DFT component) over f as
compared to the defocus kernel (25–40 % variation). The
variation is even lesser for sub-surface scattering and diffu-
sion. This is because the form-factors for sub-surface scat-
tering and diffusion fall-off much more rapidly with distance
as compared to inter-reflections. Figure 22 shows results for
a non-symmetric scene distribution. In this case, the plots
are not symmetric around the origin. However, Gi(w,f )

still remains nearly constant over a large range of f .
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