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Abstract Action recognition and pose estimation are two
closely related topics in understanding human body move-
ments; information from one task can be leveraged to as-
sist the other, yet the two are often treated separately. We
present here a framework for coupled action recognition
and pose estimation by formulating pose estimation as an
optimization over a set of action-specific manifolds. The
framework allows for integration of a 2D appearance-based
action recognition system as a prior for 3D pose estima-
tion and for refinement of the action labels using relational
pose features based on the extracted 3D poses. Our experi-
ments show that our pose estimation system is able to esti-
mate body poses with high degrees of freedom using very
few particles and can achieve state-of-the-art results on the
HumanEva-II benchmark. We also thoroughly investigate
the impact of pose estimation and action recognition accu-
racy on each other on the challenging TUM kitchen dataset.
We demonstrate not only the feasibility of using extracted
3D poses for action recognition, but also improved perfor-
mance in comparison to action recognition using low-level
appearance features.
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1 Introduction

Vision-based human motion analysis attempts to understand
the movements of the human body using computer vision
and machine learning techniques. The movements of the
body can be interpreted on a physical level through pose
estimation, i.e. reconstruction of the 3D articulated mo-
tions, or on a higher, semantic level through action recog-
nition, i.e. understanding the body’s movements over time.
While the objectives of the two tasks differ, they share a
significant information overlap. For instance, poses from a
given action tend to be a constrained subset of all possi-
ble configurations within the space of physiologically possi-
ble poses. Therefore, many state-of-the-art pose estimation
systems use action-specific priors to simplify the pose es-
timation problem, e.g. (Geiger et al. 2009; Li et al. 2010;
Taylor et al. 2010; Lee and Elgammal 2010; Chen et al.
2009). At the same time, pose information can be a very
strong indicator of actions and action labels can be deter-
mined from as little as a single frame (Schindler and Van
Gool 2008; Thurau and Hlavac 2008; Yang et al. 2010;
Maji et al. 2011). However, as neither pose estimation nor
action recognition are trivial tasks, few systems have tried
to couple the two tasks together into a single system. On
the one hand, priors from many state-of-the-art pose es-
timation systems are of a single activity, thereby assum-
ing that the activity is already known, and cannot handle
sequences of multiple activities (Taylor et al. 2010). On
the other hand, action recognition approaches either model
poses implicitly through pose-related descriptors (Thurau
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Fig. 1 Overview of the coupled action recognition and pose estimation
framework. The framework begins with 2D appearance-based action
recognition based on low-level appearance features (a) such as colour,
optical flow and spatio-temporal gradients. Outputs of the 2D action

recognition (b) are used as a prior distribution (c) for the particle-based
optimization for 3D pose estimation (d) (Arrow 1). Finally, 3D pose-
based action recognition (g) is then performed based on pose-based
features (f) extracted from the estimated poses (e) (Arrow 2)

and Hlavac 2008; Kläser et al. 2010; Natarajan et al. 2010;
Yang et al. 2010) or completely bypass the difficulties of
pose estimation and directly classify actions with abstract
and low-level appearance features (Dollar et al. 2005; Efros
et al. 2003; Jhuang et al. 2007; Laptev and Lindeberg 2003;
Schindler and Van Gool 2008; Willems et al. 2009).

Given that human pose estimation and action recogni-
tion are such closely intertwined tasks, information from
one task can be leveraged to assist the other and vice versa.
Therefore, we advocate in this paper the use of information
from action recognition to help with pose estimation and
vice versa for the following reasons. First, using the results
of an action classifier is a simple way to bring together many
single-activity priors for pose estimation in multi-activity
sequences. Secondly, pose-based action recognition has sev-
eral advantages. For example, pose representations suffer lit-
tle of the intra-class variances common in appearance-based

systems; in particular, 3D skeleton poses are viewpoint and
appearance invariant, such that actions vary less from ac-
tor to actor. Furthermore, using pose-based representations
greatly simplifies learning for the action recognition itself,
since the relevant high-level information has already been
extracted.

We introduce a framework which builds upon the re-
sults of action recognition to help with human pose estima-
tion, the results of which are then used to refine the action
label, as illustrated in Fig. 1. Our framework begins with
2D appearance-based action recognition using low-level ap-
pearance features such as colour, optical flow and spatio-
temporal gradients. The outputs of the 2D action recogni-
tion are used as a prior distribution for the particle-based
optimization for 3D pose estimation (Arrow 1 in Fig. 1). Fi-
nally, we perform 3D pose-based action recognition using
pose-based features extracted from the estimated poses (Ar-
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row 2 in Fig. 1). While we acknowledge the difficulties of
both action and pose estimation as individual tasks, we show
that perfect results from either are not necessary to have an
impact. In summary, the contributions of the framework are
twofold:

1. Action recognition helps pose estimation.
We propose a new algorithm that integrates the re-

sults of a 2D action recognition system as a prior distri-
bution for optimization. Low-dimensional manifolds are
often used to simplify 3D pose estimation, but the com-
plexity of the embeddings increases with the number of
actions. Separate, action-specific manifolds seem to be
more practical; here, we adapt a particle-based annealing
optimization scheme (Gall et al. 2008b) to jointly opti-
mize over the action-specific manifolds and the human
poses embedded in each of the manifolds. The approach
scales in the worst case linearly with the number of mani-
folds but can be made much more efficient with an action
prior.

2. Robust pose-based action recognition.
We demonstrate the robustness of using relational

pose features for pose-based action recognition. Because
semantically similar motions which can be grouped into
a single action are not necessarily numerically similar
(Kovar and Gleicher 2004; Müller et al. 2005), previ-
ous works (Thurau and Hlavac 2008; Kläser et al. 2010;
Natarajan et al. 2010; Yang et al. 2010) have encoded
pose implicitly. As such, we also do not directly com-
pare 3D skeleton joints in space and time. Instead, we
use relational pose features, which describe geometric re-
lations between specific joints in a single pose or a short
sequence of poses. Relational pose features, introduced
in Müller et al. (2005), have been used previously for
indexing and retrieval of motion capture data. Here, we
modify a subset of them for action recognition and show
that with these features, it is not necessary to have perfect
poses to perform action recognition.

Preliminary versions of this paper appeared in Gall et al.
(2010b), which described how 2D action recognition could
be used as a prior for improving 3D pose estimation and
in Yao et al. (2011), which classified actions based on 3D
poses. The current paper couples the two into a single frame-
work and contains an extensive experimental section inves-
tigating the impact of pose estimation accuracy on action
recognition and as well as the impact of differently sized
training data.

2 Related Works

As action recognition and 3D pose estimation are both very
active fields of research, there exists a large body of liter-
ature on both topics. We refer the reader to the excellent

reviews (Poppe 2010; Aggarwal and Ryoo 2010) on action
recognition and (Moeslund et al. 2006; Forsyth et al. 2006;
Sigal et al. 2010) on human pose estimation and tracking
for a more complete overview. We focus our discussion here
on a comparison of appearance- versus pose-based action
recognition and pose estimation with priors.

2.1 Action Recognition

Early works in recognising human actions relied on recov-
ering articulated poses from frame to frame and then linking
together either the poses or pose-derived features into se-
quences. Pose information was obtained from motion cap-
ture systems (Campbell and Bobick 1995) or segmentation
(Yacoob and Black 1999; Rao et al. 2002). The sequences
themselves were then classified either through exemplar
matching (Gavrila and Davis 1995; Yacoob and Black 1999;
Rao et al. 2002) or with state-space models such as HMMs
(Campbell and Bobick 1995).

An alternative line of work models the entire body as a
single entity, using silhouettes or visual hulls (Bobick and
Davis 2001; Lv and Nevatia 2007; Weinland et al. 2007;
Weinland and Boyer 2008; Blank et al. 2005). These works
are sometimes called pose-based approaches, in reference
to the extracted silhouettes of the human body; however,
we consider silhouettes to be a specialised appearance fea-
ture, since it offers little interpretation of the individual body
parts, and categorise these works as appearance-based ap-
proaches.

To avoid articulated tracking or segmentation, recent
works have shifted towards the use of local, low-level ap-
pearance features such as Gabor filter responses (Jhuang et
al. 2007; Schindler and Van Gool 2008) and optical flow
(Efros et al. 2003). Lately, spatio-temporal interest points
have become especially popular, e.g. cuboids (Dollar et
al. 2005), 3D Harris corners (Laptev and Lindeberg 2003;
Schuldt et al. 2004) and 3D Hessians (Willems et al. 2009).
Most of these are extensions of their 2D counterparts used
in object detection and their usage follows a traditional ob-
ject detection approach. After interest point detection at
multiple scales, feature descriptors are computed, clustered,
and assigned to a code-book to be used in some bag-of-
words representation (Laptev et al. 2008; Dollar et al. 2005;
Liu et al. 2009). These approaches have shown great suc-
cess in natural and unconstrained videos, such as feature
films (Laptev et al. 2008), broadcast sports (Rodriguez et
al. 2008) and YouTube (Liu et al. 2009). The use of low-
level appearance features requires little to no high-level pre-
processing and is clearly more advantageous in scenarios in
which pose estimation is extremely difficult (e.g. monocular
views) or even impossible (e.g. very low resolutions (Efros
et al. 2003)).
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Despite their success, low-level appearance-based fea-
tures offer little intuition with regards to the actor perform-
ing the action, much less the various poses that constitute
the action itself. In many action recognition applications in
which the scenario is slightly more constrained, it is not only
helpful but natural to infer activity from the actor and his
pose. In an attempt to bring back the “human” to human ac-
tion recognition, works such as (Thurau and Hlavac 2008;
Kläser et al. 2010; Natarajan et al. 2010; Yang et al. 2010)
have tried to couple person detectors with the action recog-
nition task and focus on features which are related to the
human pose. However, the pose is never solved for explic-
itly and is instead handled implicitly by the various models
and/or classifiers.

2.2 Pose Estimation

One of the most popular ways to reduce the complexity of
the human pose estimation problem is to use a prior model
learned from motion capture databases. The most basic ap-
proaches rely on database matching, where the previously
estimated poses in the sequence are used as a query to search
for the most similar motion exemplar in a database. Ap-
proaches can be either on-line, to predict the pose for the
next frame (Sidenbladh et al. 2002; Rosenhahn et al. 2007),
or offline, to refine the tracked poses (Baak et al. 2009).

Since exemplar-based models do not generalise well, sev-
eral methods have been proposed to model priors in low-
dimensional spaces. Among the simplest are those based on
PCA (Baumberg and Hogg 1994; Sidenbladh et al. 2000;
Urtasun et al. 2005). More complex priors include those
generated from dimensionality reduction techniques such as
Isomap (Tenenbaum et al. 2000) (see Gall et al. 2010b),
LLE (Roweis and Saul 2000) (see Elgammal and Lee 2004;
Jaeggli et al. 2009; Lee and Elgammal 2010) and Lapla-
cian Eigenmaps (Belkin and Niyogi 2002) (see Sminchis-
escu and Jepson 2004) or probabilistic latent variable mod-
els such as the commonly used GPLVM (Lawrence 2005)
and GPDM (Wang et al. 2008) (see Urtasun et al. 2006;
Moon and Pavlovic 2006; Hou et al. 2007; Geiger et al.
2009; Ukita et al. 2009). More recently, Taylor et al. (2010)
introduced the use of Conditional Restricted Boltzmann Ma-
chines, composed of large collections of discrete latent vari-
ables.

Instead of building priors based on poses or motion mod-
els, other approaches learn a mapping between the image
space and the pose space. These approaches recover the
pose directly from silhouettes and image features (Rosales
and Sclaroff 2001; Agarwal and Triggs 2006; Sminchisescu
et al. 2007; Bo and Sminchisescu 2010). In Taycher et al.
(2006), for instance, pose estimation is formulated as infer-
ence in a conditional random field model where the observa-
tion potential function is learned from a large set of training
data.

2.3 Integrated Action Recognition and Pose Estimation

Using pose information for labeling actions is not new. As
previously discussed in Sect. 2.1, some of the earliest works
in action recognition focused on tracking body parts and
classifying the joint movements. More recent approaches
which follow this line of work include (Yilmaz and Shah
2005; Ali et al. 2007; Husz et al. 2011), though they all as-
sume that poses are readily available, either from hand la-
beling (Yilmaz and Shah 2005; Ali et al. 2007) or from an
independent tracker (Husz et al. 2011). In the context of ges-
ture and sign language recognition, as well as facial expres-
sion recognition, a common model is to first track the hands
and or face and then perform classification based on the es-
timated pose parameters. Gesture recognition is beyond the
scope of the present work and we refer the readers to the
review article (Mitra and Acharya 2007).

Little work, however, has been done to leverage action
labels for pose estimation, as much of the previous work in
pose estimation has been focused on sequences of single ac-
tion classes rather than longer multi-activity sequences. In
Raskin et al. (2011), an annealed particle filter (Deutscher
and Reid 2005) was used for tracking in a single low dimen-
sional space trained on a few basic actions; action classifi-
cation was then performed on the tracked poses. A similar
approach was proposed in Darby et al. (2010) where PCA
was used for dimensionality reduction and a hidden Markov
model for modeling dynamics, but in contrast to (Raskin et
al. 2011), transitions between different actions are modeled
explicitly. Finally, in Jenkins et al. (2007), multiple particle
filters were used in parallel in activity-specific latent spaces;
pose likelihoods from each of the particle filters were then
combined and normalized into a pseudo-distribution from
which the individual pose and action label are selected,
based on the highest probability.

Since complexity increases with the number of actions
and many dimensionality reduction techniques struggle to
establish useful embeddings for a high number of actions,
mixture models (Lin et al. 2006; Li et al. 2007, 2010) or
switching models (Pavlovic et al. 2000; Jaeggli et al. 2009;
Chen et al. 2009) that rely on action-specific manifolds have
been shown to be more flexible. We also follow the concept
of action-specific manifolds. However, we do not need to
observe transitions between actions for training since we do
not model pose estimation as a filtering problem over time
but as an optimization problem over the manifolds for each
frame.

3 Overview

As illustrated in Fig. 1, our framework begins with 2D
appearance-based action recognition based on low-level ap-
pearance features (Sect. 4.2). The confidence measure of the
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action labels are then used to distribute the particles in the
particle-based optimization scheme over the action-specific
manifolds and the pose is estimated by an optimization over
the entire set of manifolds (Sect. 5). Finally, we perform 3D
pose-based action recognition based on pose-based features
extracted from the estimated poses (Sect. 4.3).

4 Action Recognition

4.1 Hough Forest Classifier

For classifying the actions, we use the Hough-transform vot-
ing method of Yao et al. (2010), which can be easily adapted
to use both appearance features as well as pose-based fea-
tures. A random forest, i.e. a Hough forest (Gall et al. 2011),
is trained to learn a mapping between features extracted
from the data (either from appearance or pose) and a corre-
sponding vote in an action Hough space. Each tree T in the
Hough forest is constructed from a set of annotated features
P = {(Fi , ai , di)}. Fi , feature i, can be either appearance-
based or pose based; ai is the action label (ai ∈ A) and d i is
the temporal displacement of the feature center with respect
to the action center in the sequence.

Trees are built recursively, starting with the entire collec-
tion of features at the root. At each non-leaf node, a large
pool of binary tests t associated with the feature values are
randomly generated to split the annotated features P into
two subsets, PL(t) and PR(t). The optimal binary test t�

maximizes the gain �H(t), where

�H(t) = H(P ) −
∑

S∈{L,R}

|PS(t)|
|P | · H (

PS(t)
)
. (1)

Depending on the measure H used, nodes can be either clas-
sification or regression nodes. For classification, entropy

H(P ) = −
∑

a∈A
p(a|P ) logp(a|P ) (2)

is used, where p(a|P ) is given by the percentage of samples
with class label a in the set A. For regression, the sum-of-
squared-differences is used as an objective function:

H(P ) = 1

|P |
∑

a∈A

∑

i:ai=a

‖di − da‖2
2, (3)

where da is the mean of the temporal displacement vectors
for class a. The t� found is stored at the node and the sets
PL(t�) and PR(t�) are passed to the left and right child
node. The tree grows until some stopping criterion is met,
i.e. the child node is of a maximum depth, or there are less
than a minimum number of patches remaining. When train-
ing is complete, the leaves store the proportion of features

per action label which reached the leaf L (pL
a ) and the fea-

tures’ respective displacement vectors (DL
a ).

At classification time, features are densely extracted from
the test track and passed through all trees in the forest. The
features are split according to the binary tests stored in the
non-leaf nodes and, depending on the reached leaf L, cast
votes proportional to pL

a for the action label a and the asso-
ciated temporal center.

4.2 Appearance Features

When using appearance features with Hough forests, Fi is a
spatio-temporal cuboid (15 × 15 × 5 pixels) extracted from
feature channels such as spatial gradients or optical flow,
i.e. Fi = (I 1

i , . . . , I
f
i , . . . , IF

i ), where each I
f
i is channel f

at patch i and F is the total number of channels. We use
the same low-level appearance features as (Yao et al. 2010):
colour, dense optical flow (Brox et al. 2004) and spatio-
temporal gradients. The binary tests at each node are com-
parisons of two pixels at locations p ∈ R

3 and q ∈ R
3 in

feature channel f with some offset τ :

t (f ;p,q; τ) =
{

0 if If (p) − If (q) < τ,

1 otherwise
(4)

where p, q , f and τ are learned during training by optimiz-
ing (1).

4.3 Pose Features

For encoding pose information, we have adopted the rela-
tional features introduced by Müller et al. (2005). These fea-
tures describe geometric relations between specific joints in
a single pose or a short sequence of poses (e.g. the distance
between the shoulder and the wrist, (see Fig. 2(a)) or the
distance of the wrist with respect to a plane formed by the
shoulder and hip joints (see Fig. 2(b)).

Given multiple instances of an action, relational features
are more robust to spatial variations than the poses them-
selves (Müller et al. 2005). Previous works have also shown
that semantically similar motions belonging to the same ac-
tion are not necessarily numerically similar (Kovar and Gle-
icher 2004; Müller et al. 2005); by encoding the pose in
a relative manner, it is easier to capture semantic similar-
ity (Müller et al. 2005). While Müller et al. (2005) hand-
tuned the features for indexing and retrieval of motion cap-
ture data, the Hough Forest framework selects the optimal
features during training.

Let pji,t ∈ R
3 and vji ,t ∈ R

3 be the 3D location and ve-
locity of joint ji at time t . The joint distance feature Fjd

(see Fig. 2(a)) is defined as the Euclidean distance between
joints j1 and j2 at times t1 and t2 respectively:

Fjd(j1, j2; t1, t2) = ‖pj1,t1 − pj2,t2‖. (5)
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Fig. 2 Pose-based features used in the 3D pose-based action recogni-
tion. (a) Euclidean distance between two joints (red). (b) Plane feature:
distance between a joint (red) and a plane (defined by three joints—
black). (c) Normal plane feature: same as plane feature, but the plane is
defined by its normal direction of two joints (black squares) centered at

a third joint (black circle). (d) Velocity feature: velocity component of
a joint (red) in the direction of two joints (black). (e) Normal velocity
feature: velocity component of a joint in normal direction of the plane
defined by three other joints (black)

If t1 = t2, then Fjd is the distance between two joints in
a single pose; if t1 �= t2, then Fjd would encode distances
between joints separated by time.

The plane feature Fpl (see Fig. 2(b)) is defined as

Fpl(j1, j2, j3, j4; t1, t2)
= dist

(
pj1,t1, 〈pj2,t2 ,pj3,t2 ,pj4,t2〉

)
, (6)

where 〈pj2,pj3 ,pj4〉 indicates the plane spanned by pj2 ,
pj3 , pj4 , and dist(pj , 〈·〉) is the Euclidean distance from
point pj to the plane 〈·〉. Similarly, the normal plane fea-
ture Fnp (see Fig. 2(c)) is defined as

Fnp(j1, j2, j3, j4; t1, t2)
= dist

(
pj1,t1, 〈pj2,t2 ,pj3,t2 ,pj4,t2〉n

)
, (7)

where 〈pj2 ,pj3,pj4〉n indicates the plane with normal vec-
tor pj2 − pj3 passing through pj4 .

The velocity feature Fve (see Fig. 2(d)) is defined as the
component of vj1,t1 along the direction of pj2 − pj3 at time
t2:

Fve(j1, j2, j3; t1, t2) = vj1,t1 · (pj2,t2 − pj3,t2)

‖(pj2,t2 − pj3,t2)‖
. (8)

Similarly, the normal velocity feature Fnv (see Fig. 2(e))
is defined as the component of vj1,t1 in the direction of the
normal vector of the plane spanned by pj2 , pj3 and pj4 at
time t2:

Fnv(j1, j2, j3, j4; t1, t2) = vj1,t1 · n̂〈pj2,t2 ,pj3,t2 ,pj4,t2 〉, (9)

where n̂〈·〉 is the unit normal vector of the plane 〈·〉.
Binary tests for the pose features can be defined as fol-

lows:

t (f ; j1, . . . , jn; t1, t2; τ)

=
{

0 if Ff (j1, . . . , jn; t1, t2) < τ,

1 otherwise,
(10)

where f , j1, . . . , jn, t1, t2, τ are pose-based feature types,
joints, times and thresholds respectively.1 The parameters
of the binary tests are selected during training as for the ap-
pearance features.

4.4 Multiview Action Recognition

For 2D action recognition, a separate classifier is trained for
each of the cameras in the multi-view setup; results from
the individual classifiers are then combined with standard
classifier ensemble methods. Motivation for fusing the sin-
gle views is based on the assumption that actions which are
ambiguous in one view, e.g. due to self-occlusion, may be
more distinguishable from another view.

In Yao et al. (2010), the action recognition problem is
broken down into an initial localization stage, which gen-
erates tracks of the individual performing the action, and
a subsequent classification stage, which assigns action la-
bels to the tracks. In scenarios where the cameras are fixed,
it is not necessary to build the tracks with a tracking-by-
detection technique as presented in Yao et al. (2010). In-
stead, background subtraction is used to generate silhouettes
of the person performing the action (see Fig. 1). Bounding
boxes are then extrapolated around the silhouette and the
trajectory of the bounding boxes is smoothed to build the
track.

The output of the classification stage is a confidence
score of each action class over time, normalized such that
the confidences over all classes at any time point sum up
to 1. As classifier combination strategy, the max-rule is used
to fuse the outputs from the multiple cameras (Kittler et al.
1998) (see Fig. 3).

1We have kept all planes to be defined by joints at t2, though planes can
in theory be defined in space-time by joints at different time points.
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Fig. 3 Normalized action confidences for 2D appearance-based ac-
tion recognition. Two camera views as well as the fused confidences of
all four camera views are shown for frames 500-900 of episode 0-11.
Action confidences are generally higher after fusion, i.e. higher peaks

5 3D Human Pose Estimation

5.1 Optimizing Over a Set of Manifolds

Having a skeleton and a surface model of the human,
the human pose is represented by the joint angles Θ =
θ1, . . . , θD ∈ EΘ where each joint has between 1 and 3
degrees-of-freedom (DOF). For instance, the skeleton pro-
vided for the TUM kitchen dataset (Tenorth et al. 2009)
comprised 26 joints, where the number of angles associ-
ated with each joint is 3 (D = 78). The global rotation r

and translation t define the position of the root, which is the
middle of the pelvis. This yields a D + 6 dimensional state
space denoted by E. In this paper, we formulate pose estima-
tion as an optimization problem over E for a given positive
energy function V , i.e. minx∈E V (x).

We use the negative log-likelihood based on edge and sil-
houette features in Shaheen et al. (2009), as the energy func-
tion:

V (x) = λedge · Vedge(x) + λsilh · Vsilh(x). (11)

λedge and λsilh controls the influence of the edge and sil-
houette terms respectively. Vedge and Vsilh are determined
by comparing the edges and silhouettes in the observed im-
age versus that which is generated by projecting the human
model according to the pose encoded in x. More precisely,

Vedge = |EP (x) /∈ EI |
|EP (x)| , (12)

i.e., the fraction of pixels observed in EP (x), the projected
edge map from the model, which do not overlap with EI , the
edge map observed in image I by applying a Sobel operator.
Similarly,

Vsilh = |SP (x) /∈ SI |
2 · |SP (x)| + |SI /∈ SP (x)|

2 · |SI | , (13)

Algorithm 1 Interacting Simulated Annealing over E

For k = 1, . . . , It
• Selection

– ∀si ∈ Sk−1: wi = exp(−βk · V (ri, t i ,Θi))

– ∀si ∈ Sk−1: wi = wi/
∑

sj ∈Sk−1
wj

– Sk = ∅; ∀si ∈ Sk−1 draw u from U [0,1]:
If u ≤ wi/maxsj ∈Sk−1

wj then

• Sk = Sk ∪ {si}
Otherwise
• Sk = Sk ∪ {sj }, where sj is selected with prob-

ability wj

• Mutation
– μ = 1

|Sk |
∑

sj ∈Sk
(rj , tj ,Θj )

Σ = αΣ|Sk |−1 (ρ I+
∑

sj ∈Sk
((rj , tj ,Θj ) − μ) ((rj , tj ,Θj ) − μ)T )

– ∀si ∈ Sk sample (ri , t i ,Θi) from N ((ri , t i ,Θi),Σ)

i.e., the fraction of pixels in SP (x), the projected silhouette
from the model, which do not overlap with SI , the silhou-
ette observed in image I by applying background subtrac-
tion and vice versa. Note that edges and silhouettes are not
optimal features for human pose estimation, since edges are
sensitive to background clutter, clothing textures and wrin-
kles, while silhouettes are sensitive to occlusions and back-
ground changes. However, the associated energy function is
fast to compute and therefore fixed for all our experiments.

As a baseline, we implemented Interacting Simulated
Annealing (ISA), a particle-based annealing optimization
scheme over E (Algorithm 1). ISA has been used previously
in the multi-layer pose estimation framework in Gall et al.
(2010a). The optimization scheme, based on the theory of
Feynman-Kac models (Del Moral 2004), iterates over a se-
lection and mutation step, and is also the underlying princi-
ple of the annealed particle filter (Deutscher and Reid 2005).

In the following, we briefly describe the notations used in
Algorithm 1 and throughout the paper. The set of particles is
denoted by S . When optimizing over E, a particle is given
by si = (ri , t i ,Θi) and an estimate of the pose is given by
the weighted mean of the particles after the last iteration,
i.e. x̂ = ∑

si∈S (wi · si). Although the weighted mean may
not be the optimal choice for a multi-modal distribution, the
annealing emphasizes the dominant mode and justifies the
use of the weighted mean (Gall et al. 2008b).

In our experiments, we use a polynomial annealing
scheme:

βk = (k + 1)b, (14)

where βk is the annealing temperature, k is the iteration and
b = 0.7. The mutation step is implemented with the scaling
factor αΣ = 0.4 and the positive constant ρ = 0.0001. The
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Fig. 4 Overview of the particle-based optimization scheme for pose
estimation. For each action class a, we learn an embedding in a low-
dimensional manifold Ma . The manifolds are indicated by the small
circles and the high-dimensional state space E is indicated by the large
circle. Having estimated the pose xt−1, a set of particles is selected
from the previous particle sets (Select p1). To this end, the particles in
E are mapped by fa to Ma where each particle is associated to one of
the manifolds. This process is steered by a prior distribution on the ac-
tions obtained by a 2D action recognition system. Since the manifolds

are action-specific, the pose for the next frame can be predicted by
the function ha . The first optimization step, Optimization A, optimizes
jointly over the manifolds and the human poses embedded in the man-
ifolds. Since our manifolds do not cover transitions between actions,
we run a second optimization step, Optimization B , over the particles
mapped back to the state space E by ga . Before the optimization, the
particle set is augmented by making use of the embedding error of the
previous pose xt−1 (Select p2)

uniform distribution and the normal distribution are denoted
by U [0,1] and N (μ,Σ), respectively.

We modify the baseline algorithm to optimize over a set
of manifolds instead of a single state space. To this end,
we learn for each class a an action-specific low-dimensional
manifold Ma ⊂ R

da with da � D. We assume that the fol-
lowing mappings are available:

fa : EΘ → Ma, ga : Ma → EΘ, ha : Ma → Ma,

(15)

where fa denotes the mapping from the state space to the
low-dimensional manifolds, ga the projection back to the
state space, and ha the prediction within an action-specific
manifold. Since the manifolds encode only the space of joint
angles, a low-dimensional representation of the full pose is
denoted by ya = (r, t,Θa) with Θa = fa(Θ). When opti-
mizing over the set of manifolds Ma , a particle si = (yi

a, a
i)

stores the corresponding manifold label ai in addition to the
vector yi

a = (ri , t i ,Θi
a). Our algorithm operates both in the

state space as well as in the manifolds. An overview of the
algorithm is given in Fig. 4.

5.2 Action-Specific Manifolds

Each of the action-specific low-dimensional manifolds, Ma ,
is learned from the joint angles Θ in motion capture data
using Isomap (Tenenbaum et al. 2000), a non-linear di-
mensionality reduction technique. As Isomap does not pro-
vide mappings between the high- and low-dimensional pose
spaces, we learn two separate Gaussian Process (GP) re-
gressions (Rasmussen and Williams 2006), fa (16) and
ga (17), to map from the high-dimensional space to the low-
dimensional space and back, respectively, where m(·) and
k(·) denote the mean and covariance functions.

y = fa(x) ∼ G P
(
m(x), k(x, x′)

)
, (16)

x = ga(y) ∼ G P
(
m(y), k(y, y′)

)
. (17)

In addition, a third GP regression, ha , is learned to model
temporal transitions between successive poses within each
action-specific manifold:

yt = ha(yt−1) ∼ G P
(
m(yt−1), k(yt−1, y

′
t−1)

)
. (18)

While we have chosen Isomap for dimensionality reduction
and GP regression to learn the mappings, other dimension-
ality reduction and regression techniques are also suitable.

5.3 Theoretical Discussion

As mentioned in Sect. 5.1, one seeks the solution of the min-
imization problem minx∈E V (x). When optimizing over a
set of manifolds, the problem becomes

min
a∈A

(
min
y∈Ma

V
(
ga(y)

))
. (19)

Minimizing the problem this way, i.e. searching for the
global minimum in each of the manifolds Ma and then tak-
ing the best solution mapped back to the state space, does not
scale well with the number of manifolds. Hence, we propose
to optimize over all manifolds jointly:

(ŷ, â) = argmin
a∈A,y∈Ma

V
(
ga(y)

)
. (20)

The optimization over the manifolds (20), however, does
not provide the same solution as the original optimization
problem over the state space since a low-dimensional man-
ifold cannot represent the high dimensional poses exactly.
Furthermore, the data used for learning the manifolds Ma

might not contain the correct pose at all. Therefore, we per-
form a second optimization over the full state space starting
with the solution of (20), x0 = gâ(ŷ), as initial point:

x̂ = argmin
x∈E

V (x). (21)
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Fig. 5 HumanEva-II. Action recognition prior from camera C1 (a).
The curves show the action confidence per frame. Note the smooth
transitions between the actions around frame 800 for subject S4. After
jogging, the subject walks a few steps before balancing. At the end
of the sequence, the person walks away, as recognized by the action

recognition system. The distribution of the particles among the action-
specific manifolds after Optimization A is shown by the area plot. The
particles move to the correct manifold for nearly all frames. Pose esti-
mate for jogging (b) and balancing (c)

Since ISA converges to the global optimum in the proba-
bilistic sense (Gall et al. 2008b), the original problem is
solved. While ISA can be directly used to optimize (21)
without using the solution of (20) (baseline), we will show
that the two-step optimization will drastically reduce the
pose estimation error if the number of iterations and par-
ticles for ISA are limited. A more detailed description of the
two optimization steps is given Sect. 5.4.

Note that the solution of (20), â, is not unique since there
is usually an overlap of poses between the manifolds. If the
manifolds do not overlap much, the optimization of the pose
propagates the particles into the “right” manifold, i.e. the
correct action, as plotted in Fig. 5.

5.4 Algorithm

The proposed algorithm at a glance is outlined as Algo-
rithms 2 and 3 and illustrated in Fig. 4. The different steps
Optimization A, Select p2, Optimization B and Select p1 are
described in the following:

Optimization A: Since ISA (Algorithm 1) is not directly
applicable for optimizing over a set of manifolds, we have to
modify the algorithm. For the weighting, the particles si =
(ri , t i ,Θi

a, a
i) with Θi

a ∈ Mai are mapped back to the full
space in order to evaluate the energy function V :

wi = exp
(−βk · V (

ri , t i , gai

(
Θi

a

)))
, (22)

where k is the iteration parameter of the optimization. The
weights of all particles are normalized such that

∑
si wi = 1.

Note that the normalization does not take the label of the
manifold ai into account. As a result, particles in a certain
manifold might have higher weights than particles in another
manifold since their poses fit the image data better. Since

particles with higher weights are more likely to be selected,
the distribution of the particles among the manifolds Ma

changes after the selection step. This is desirable since the
particles should migrate to the most likely manifold to get a
better estimate within this manifold. While the selection is
performed as in Algorithm 1, the mutation step needs to be
adapted since the particles are spread in different spaces. To
this end, we use |A| mutation kernels Ka , one for each man-
ifold, and an additional kernel K0 for the global position and
orientation. In our implementation, we use Gaussian kernels
with covariance matrices Σa proportional to the sample co-
variance within a manifold, i.e. Sa = {si ∈ S : ai = a}:

Σa = αΣ

|Sa | − 1

(
ρI +

∑

si∈Sa

(
Θi

a − μa

)(
Θi

a − μa

)T
)

, (23)

μa = 1

|Sa |
∑

si∈Sa

Θi
a. (24)

The scaling factor αΣ = 0.4 and the positive constant ρ =
0.0001, which ensures that the covariance does not become
singular, are fixed for all kernels. The kernel K0 for rotation
and translation is computed over the full set of particles S :

Σ0 = αΣ

|S| − 1

(
ρI +

∑

si∈S

((
ri , t i

)−μ
)((

ri , t i
) − μ

)T
)

,

(25)

μ = 1

|S|
∑

si∈S

(
ri , t i

)
. (26)

Since we compute the extra kernel K0 instead of taking (r, t)

as additional dimensions for the kernels Ka , the correlation
between (r, t) and Θa is not taken into account. However,
the number of particles per manifold can be very small, such
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Algorithm 2 Optimizing over Ma

Optimization A:

For k = 1, . . . , ItA
• Selection

– ∀si ∈ S M

k−1: wi = exp(−βk · V (ri, t i , gai (Θi
a)))

– ∀si ∈ S M

k−1: wi = wi/
∑

sj ∈S M

k−1
wj

– S M

k = ∅; ∀si ∈ S M

k−1 draw u from U [0,1]:
If u ≤ wi/maxsj ∈S M

k−1
wj then

• S M

k = S M

k ∪ {si}
Otherwise
• S M

k = S M

k ∪ {sj }, where sj is selected with
probability wj

• Mutation
– ∀a ∈ A: μa = 1

|Sa |
∑

sj ∈Sa
Θ

j
a

with Sa = {si ∈ S M

k : ai = a}
∀a ∈ A: Σa = αΣ|Sa |−1 (ρ I+

∑
sj ∈Sa

(Θ
j
a − μa) (Θ

j
a − μa)

T )

μ0 = 1
|S M

k |
∑

sj ∈S M

k
(rj , tj )

Σ0 = αΣ

|S M

k |−1
(ρ I+

∑
sj ∈S M

k
((rj , tj ) − μ0) ((rj , tj ) − μ0)

T )

– ∀si ∈ S M

k sample Θi
a from N (Θi

a,Σai ) and (ri , t i)

from N ((ri , t i),Σ0)

Select p2:

• â = argmina∈A ‖Θ̂t−1 − ga(fa(Θ̂t−1))‖
(Σâ)ii = |Θ̂t−1−gâ(fâ(Θ̂t−1))|i

3
• S E

I tA
= ∅; ∀si ∈ S M

I tA
draw u from U [0,1]:

If u < p2 then
• S E

I tA
= S E

I tA
∪ {(ri , t i , gai (Θi

a))}
Otherwise
• S E

I tA
= S E

I tA
∪ {(ri , t i , Θ̂)}, where Θ̂ is sampled

from N (Θ̂t−1,Σâ)

Optimization B:

For k = ItA + 1, . . . , ItB
• Selection

– ∀si ∈ S E

k−1: wi = exp(−βk · V (ri, t i ,Θi))

– ∀si ∈ S E

k−1: wi = wi/
∑

sj ∈S E

k−1
wj

– S E

k = ∅; ∀si ∈ S E

k−1 draw u from U [0,1]:
If u ≤ wi/maxsj ∈S E

k−1
wj then

• S E

k = S E

k ∪ {si}
Otherwise
• S E

k = S E

k ∪{sj }, where sj is selected with prob-
ability wj

• Mutation
– μ = 1

|S E

k |
∑

sj ∈S E

k
(rj , tj ,Θj )

Σ = αΣ

|S E

k |−1
(ρ I+

∑
sj ∈S E

k
((rj , tj ,Θj ) − μ) ((rj , tj ,Θj ) − μ)T )

– ∀si ∈ S E

k sample (ri , t i ,Θi) from N ((ri , t i ,Θi),Σ)

Algorithm 3 Select p1

• S M = ∅; ∀si ∈ S M

I tA
draw u from U [0,1]:

If u < p1 then
• S M = S M ∪ {si}
Otherwise
• S M = S M ∪ {(rj , tj , faj (Θj ), aj )},

where (rj , tj ,Θj ) ∈ S E

I tB
and aj is selected with

probability p(A |T = t, I)

that K0 computed over all particles provides a better esti-
mate of the correlation between the global pose parameters
(r, t).

Select p2: Before continuing with the optimization in the
full state, the set of particles S needs to be mapped from
the manifolds Ma to E, where the particles build the ini-
tial distribution for the next optimization step. However, it
can happen that the true pose is not well represented by any
of the manifolds. This is typical of transitions from one ac-
tion to another, which are not modeled in our setting. As
shown in Fig. 8(b), it is useful to use the previous estimate
x̂t−1 = (r̂t−1, t̂t−1, Θ̂t−1) to augment the initial particle set.
To measure the discrepancy between the last estimated pose
and the poses modeled by the manifolds, we compute Σâ

based on the reconstruction error for x̂t−1:

â = argmin
a∈A

∥∥Θ̂t−1 − ga

(
fa(Θ̂t−1)

)∥∥, (27)

σâ,i = |Θ̂t−1 − gâ(fâ(Θ̂t−1))|i
3

. (28)

We create a new set of particles by sampling from the normal
distribution N (Θ̂t−1,Σâ), where Σâ is the diagonal matrix
with σâ,i as entries. According to the 3σ rule, this means
that nearly all samples are within the distance of the recon-
struction error. The selection process between the two par-
ticle sets is controlled by the parameter p2 ∈ [0,1]. For all
si ∈ S , we draw u from the uniform distribution U [0,1]. If
u < p2, si = (ri , t i ,Θi) is added to the new set; otherwise
the particle (ri , t i , Θ̂) is added to the set, where Θ̂ is sam-
pled from N (Θ̂t−1,Σâ).

Optimization B: The second optimization step eventually
runs ISA (Algorithm 1) on the full state space. However,
we do not start from the beginning but continue with the
optimization, i.e. when ItA is the number of iterations used
for Optimization A, we continue with βItA+1 instead of β1.

Select p1: After Optimization A, all the particles may
aggregate into one single manifold, so we distribute the
particles again amongst the manifolds Ma when moving
to the next frame It ; otherwise, we get stuck in a single
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action class. Similar to the previous selection, we make
use of two particle sets; the particles S M in the mani-
folds Ma after Optimization A and the particles in the
state space S E after Optimization B . The selection is con-
trolled by the parameter p1 ∈ [0,1] (Algorithm 3). For all
si ∈ S M, we draw u from the uniform distribution U [0,1].
If u < p1, si is added to the new set; otherwise the parti-
cle (ri , t i ,Θi) ∈ S E is mapped to one of the manifolds and
added to the set. The manifold Mai is selected according
to the probability p(A = a|T = t, I), yielding the mapped
particle (ri , t i , fai (Θi), ai). In our experiments, we use two
choices for p(A|T = t, I):

p(A = a |T = t, I) = 1

|A| , (29)

p(A = a |T = t, I) = p(A = a | It−l · · · It+l). (30)

The first prior (29) is a uniform prior that is independent of
the current frame and results in a joint optimization over the
manifolds Ma∈A and poses y ∈ Ma . The second prior (30) is
termed action prior. It distributes the particles to manifolds
that are more likely a-priori based on the 2D action recogni-
tion results. Since a manifold Ma cannot be explored when
p(A = a|T = t, I) = 0 and {si ∈ S M : ai = a} = ∅, we use
the particle set S M to increase the robustness to temporary
errors in the action prior as demonstrated in Fig. 8(a). Note
that a zero-probability error for the true manifold over many
frames cannot be compensated. In our framework (Fig. 1),
p(A|It−l · · · It+l ) is obtained by the Hough-transform vot-
ing method described in Sect. 4 using appearance features.

Finally, we want to emphasize that the proposed method
for optimizing over the manifolds relates to other sampling
strategies like stratified sampling. While the manifolds can
be regarded as subsets of the full state space, the action prior
distributes the samples over the subspaces. In contrast to
stratified sampling, however, the subsets are not assumed to
be disjoint and to cover the full space.

6 Experiments

For the action prior-based pose estimation system, we test on
both HumanEva-II (Sigal et al. 2010) and the TUM kitchen
dataset (Tenorth et al. 2009). We also illustrate the complete
framework on the TUM kitchen dataset and run two sets of
experiments, one with multi-subject training data (full train-
ing set) and one with a single subject (S1 training set) for
training to test the generalization capabilities of the frame-
work.

6.1 Datasets

HumanEva-II The HumanEva-II (Sigal et al. 2010) dataset
is a standard benchmark on 3D human pose estimation. It

contains two sequences, one for each subject, S2 and S4;
each sequence has three actions (see Fig. 5). The dataset
provides a model for subject S4, which we also use for sub-
ject S2 despite differences in body shape. The human pose
is represented by 28 parameters (13 joints, D = 22) (Gall et
al. 2010a). We perform two trials: training on S2 and testing
on S4 and vice versa. For learning the action-specific man-
ifolds, we use the tracking results of the multi-layer tracker
(Gall et al. 2010a).2 We split the data into the three action
classes and discard the transitions between the actions.

TUM Kitchen The TUM kitchen dataset (Tenorth et al.
2009) is a more challenging dataset than HumanEva-II. The
dataset contains 20 episodes of recordings from 4 views of
4 subjects setting a table. In each episode, a subject moves
back and forth between the kitchen and a dining table, each
time fetching objects such as cutlery, plates and cups and
then transporting them to the table. The dataset is particu-
larly challenging for both action recognition as well as pose
estimation, as the actions are more subtle than standard ac-
tion recognition benchmarks such as KTH (Schuldt et al.
2004) and Weizmann (Blank et al. 2005) and parts of the
body are often occluded by objects such as drawers, cup-
board doors and tables (see Fig. 1). Sample images of the
actions can be seen in Fig. 13. The pose is represented by the
provided model with 84 parameters (26 joints,3 D = 78).

Testing was done on episodes 0-2, 0-4, 0-6, 0-8, 0-10,
0-11, and 1-6. We use two sets of training data, a full set
(i.e. all episodes in the dataset except those used for test-
ing) as well as a limited set on episodes 1-0 to 1-5, recorded
only from subject 1, to test generalization capabilities of the
framework. For the action recognition, we use the 9 labels
that are annotated for the ‘left hand’ (Tenorth et al. 2009).
Since these labels are determined by the activity of the arms
and we would like the manifolds to be representative of the
entire body, we further split the idle/carry class according to
whether the subject is walking or standing.

6.2 2D Appearance-Based Action Recognition

HumanEva-II We do not quantitatively evaluate the 2D ac-
tion recognition on the HumanEva-II sequences as the ac-
tions are very simple and the system correctly identifies
each of the actions. Examples of the action confidences from
camera C1 are shown in Fig. 5(a).

2We have used tracking results to create the training data since the mo-
tion capture data for HumanEva II is withheld for evaluation purposes.
Note that training data from markerless tracking approaches is in gen-
eral noisier and less accurate than data from marker-based systems.
3The original model has 28 joints but we do not consider the gaze since
it has 0 DOF. The root joint is represented by the global orientation and
position (6 DOF).
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Table 1 Individual camera and fused action recognition performance
for subjects 1–4; fused performance is higher than any individual cam-
era view for each subject. While the average performance from each

camera view using the S1 training set is less than using the full training
set, fusing each of the camera views makes up for the difference, such
that the average fused performance is equal

S1 training set full training set

C1 C2 C3 C4 Fused C1 C2 C3 C4 Fused

S1 0.60 0.54 0.62 0.61 0.63 0.59 0.63 0.62 0.61 0.63

S2 0.58 0.55 0.45 0.61 0.65 0.63 0.62 0.60 0.53 0.66

S3 0.72 0.75 0.68 0.69 0.77 0.76 0.80 0.78 0.79 0.79

S4 0.68 0.57 0.66 0.67 0.78 0.73 0.73 0.71 0.69 0.75

average 0.65 0.60 0.60 0.64 0.71 0.68 0.70 0.68 0.65 0.71

TUM Kitchen For each camera view, we trained a forest
of 15 trees of depth 17 each with 50000 random tests gen-
erated at all the nodes. Results of the appearance-based ac-
tion recognition for each individual camera view and for the
two different training sets are shown in Table 1. We report
here the classification rate from a frame-by-frame basis, av-
eraged over the different action classes. For each sequence,
we disregard a time window of 4 frames on either side of
a transition from one action to another. Action recognition
performance does not vary much from camera to camera,
though there is a significant variation between subjects, i.e.
for both training sets, S3 and S4 are easier to classify than
S1 and S2.

For classifier fusion, we used the max-rule, which gave
the best performance in comparison to other standard en-
semble methods (Kittler et al. 1998). The classifier fusion
has a greater effect on the S1 training set (increased perfor-
mances of up to 21 %) than on the full training set (increased
performances of up to 13 %), so that even with lower aver-
age performance on the individual cameras, the fused per-
formance is still equal (0.71). A sample of the normalized
classifier output for cameras 1 and 3 as well as the the fused
results are shown in Fig. 3.

We show a confusion matrix of the fused results for the
S1 training set in Fig. 6(a); results for the full training set
are similar in trend. The most difficult actions to identify
are “idle/carry (still)”, “take object” and “release grasp”.
In particular, “take object” and “release grasp” are transi-
tion actions;4 such high-level movements may be difficult to
define based on low-level features alone.

6.3 3D Pose Estimation

For evaluating the pose estimation, we measure the absolute
3D error of the estimated joint positions and report the mean

4“Take object” always occurs between “reach” and “idle/carry” while
“release grasp” always occurs before “idle/carry”, after interacting
with an object, the drawer or the cupboard.

Fig. 6 Confusion matrices for fused action outputs of 2D appear-
ance-based action recognition using (a) the S1 training set and (b) the
full training set. Average performance over all classes is 0.71 for both
training sets
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Fig. 7 3D pose estimation error with respect to number of particles.
The proposed approach performs significantly better than the direct
optimization in the state space E (baseline), particularly for a small
number of particles. The discrepancy between the uniform prior and
the prior obtained from 2D action recognition gets larger for fewer
particles. In this case, the number of particles per manifold becomes
very small for a uniform distribution. Note that competitive results are
still achieved with only 25 particles. Timings are given in Table 4

error and standard deviation over frames. We perform only
one run for each sequence and method, but we use the same
random generator with the same seed for all experiments.
The standard deviation over several runs will be reported
for the TUM kitchen dataset. The methods are initialized
with the ground-truth pose, but the initial pose can be also
recovered from the silhouettes as in Gall et al. (2010a).

HumanEva For comparison, we report the results for op-
timizing over the state space E (baseline), i.e. Algorithm 1,
and the proposed algorithm with a uniform prior and an ac-
tion prior, where the action prior is computed as described
in Sect. 4. For evaluation, we use 5 iterations for Optimiza-
tion A, and 10 iterations for Optimization B unless other-
wise specified. For the baseline, we run Algorithm 1 with
15 iterations. Sample pose estimates using the action prior
are shown in Fig. 5(b) and (c).

According to (Gall et al. 2010a; Sigal et al. 2010), pose
estimation requires usually at least 200–250 particles to
achieve good results on this dataset. We perform the opti-
mization of the 28 parameters with 200 down to 25 particles
as plotted in Fig. 7. Unsurprisingly, the error for the baseline
increases significantly when the number of particles drops
below 100. When optimizing over the manifolds and the
poses embedded in the manifolds, the error increases gen-
tly with a decreasing number of particles. Since the dataset
contains only 3 action classes, the uniform prior performs
very well and differences between the two priors become
prominent only when using very few particles per action
class. This indicates that the action prior scales better with a
large number of classes since this basically limits the num-
ber of particles per action class. In general, the uniform prior
describes the scenario where the action recognition is not
better than a random guess.5 Timings and mean errors are

5Note that the worst-case scenario would be if the action recognition is
biased and always misclassified certain actions as others.

given in Table 4. It is interesting to note that the errors for
subject S2 is either comparable or even lower than for S4,
suggesting that having a perfect body model is not essential
to achieve reasonable pose estimates.

In Fig. 8, we plot the impact of the parameters on the
pose estimation error. The results clearly support our design
decisions for the algorithm (Sect. 5.4).

In Fig. 9 and Table 2, we show the pose estimation error
with respect to number of camera views using 200 particles.
Again, the proposed approach significantly outperforms the
baseline. At first glance, the uniform prior and the action
prior seem to perform similarly, due to the scaling of the plot
from the large error of the baseline, though the action prior
actually reduces the error on average by 4 %. The benefit of
the action prior is more evident when less particles are used,
as shown in Fig. 7, since this results in even fewer particles
being distributed to each action class.

We also evaluated the impact of smoothing the estimated
joint estimates over time. Since the pose estimates are ob-
tained by computing the mean of a high-dimensional dis-
tribution approximated by as few as 200 particles, the es-
timates are very noisy. Therefore, we filtered the 3D joint
positions with a low pass filter. In our experiments, we pro-
cessed the data by 3 passes of a moving average with a span
of 5 frames. As the results in Table 3 show, the smoothing
reduces the average error by about 4–6 %.

In Table 5, we compare our approach to state-of-the-art
methods reporting results for HumanEva-II. Although the
methods are often not directly comparable, since they rely
on different assumptions, the results show that the proposed
method achieves state-of-the-art performance with respect
to accuracy and run time. Though the multi-layer frame-
work (Gall et al. 2010a) does achieve a higher accuracy on
the full dataset, it is much slower (124 seconds per frame)
than the proposed method (4 seconds per frame) since it
uses more expensive image features and a second layer for
segmentation-based pose refinement.

TUM Kitchen Based on the fused results of the action
recognition, we also evaluate the pose estimation. For the
TUM kitchen dataset, we use the provided models with 84
parameters. The large errors for the baseline in Fig. 10 show
that 200 particles are not enough to optimize over a 84 di-
mensional search space. Note that we do not make use of
any joint limits or geometric information about the kitchen
and use only the images as input. The proposed approach
estimates the sequences with an accuracy comparable to
HumanEva-II, although the dimensions of the state space
increased from 28 to 84, the number of action classes from
3 to 8 (the ‘open’ and ‘close’ actions are embedded in one
manifold), and the silhouette quality is much worse due to
truncations and occlusions. Compared to the uniform prior,
the action prior reduces the error in average by 9–11 % de-
pending on the different training setups.
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Fig. 8 Evaluation of optimization parameters for pose estimation.
(a) Select p1: The best result is obtained by p1 = 0.5, which shows
the benefit of taking both particle sets S M and S E into account. For
p1 = 1, the particles S E from Optimization B are discarded. (b) Se-
lect p2: The best results are achieved with p2 ∈ [0.25,0.5]. It shows

the benefit of taking the reconstruction error for x̂t−1 into account.
(c) Number of iterations for Optimization A (ItA) and Optimization B

(15-ItA). The total number of iterations was fixed to 15. Without a sec-
ond optimization step (ItA = 15), the error is significantly higher than
for the optimal setting (ItA = 5)

Fig. 9 3D pose estimation error with respect to number of views for
HumanEva-II. For the setting with two views, cameras C1 and C2 are
taken. The reduced number of views results in more ambiguities. The
proposed approach handles these ambiguities better than the direct op-
timization in the state space E (baseline). The mean errors are also
given in Table 2

Table 2 3D pose estimation error (mean ± standard deviation over
frames) of the optimization with respect to number of views (camera).
ap: action prior; up: uniform prior

seq. cameras ap (mm) up (mm)

S2 C1-C2 54.6 ± 20.8 54.7 ± 21.5

S2 C1-C4 44.9 ± 9.5 49.4 ± 19.0

S4 C1-C2 56.9 ± 29.0 60.9 ± 32.5

S4 C1-C4 45.2 ± 13.4 45.2 ± 11.8

Table 3 Impact of smoothing

seq. smoothing ap (mm) up (mm)

S2 no 44.9 ± 9.5 49.4 ± 19.0

S2 yes 42.4 ± 8.9 47.0 ± 18.5

S4 no 45.2 ± 13.4 45.2 ± 11.8

S4 yes 42.4 ± 13.0 42.4 ± 11.0

The detailed results in Tables 6 and 7 show that the
smoothing reduces the error by 7–8 % for the uniform prior
as well as the action prior. Since the training data may influ-

ence not only the action prior but also the learned manifolds
Ma , we evaluated the method for both training sets. Even
when the system is trained only on one subject (S1 training
set), the human poses are well estimated; showing that the
method generalises well across subjects.

To give an idea of the standard deviation over sev-
eral runs, we performed 5 runs with different seeds for
episode 0-2 using the action prior; see Table 7. Depend-
ing on smoothing, the standard deviation over runs is 1 mm
and 1.2 mm.

Using the full training set, we also evaluated the pose es-
timation error with 300 particles and provide the results in
Table 8. Similar to HumanEva-II, the differences between
the action prior and the uniform prior become marginal with
an increasing number of particles (see Fig. 7). Increasing the
particles from 200 to 300 reduces the error by 11 % for the
uniform prior, whereas the error is only reduced by 2–3 %
for the action prior. The error reduction is independent of
the smoothing, which reduces the error on average by 8 %
in both cases, as with 200 particles. This shows that the ac-
tion prior is only beneficial when the number of particles
per manifold is very small. Otherwise, the pose estimation
efficiently allocates most of the particles to the relevant man-
ifolds and achieves accurate pose estimates even with a uni-
form prior.

We have chosen to use Isomap, a non-linear embedding
technique for creating the action-specific manifolds, though
any dimensionality reduction method can be used. As a com-
parison, we perform pose estimation with the action prior
using manifolds created by PCA instead of Isomap. PCA
has an advantage over Isomap in that it does not require ad-
ditional mappings for transitioning to and from the high and
low-dimensional spaces. However, it is linear and less ex-
pressive than Isomap; we had to use a 20 dimensional PCA
space in order to retain 90 % of the data variance. Tran-
sitions between successive poses were modeled with a GP
regression in the same manner as the Isomap embeddings as
described in Sect. 5.2. Pose estimation errors are shown in
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Table 4 Computation time per frame and 3D estimation error (mean
± standard deviation over frames) of the optimization with respect to
number of particles. The 2D action recognition takes additional 0.4

seconds for each frame consisting of 4 images, which is roughly the
computation time for 20 particles. ap: action prior; up: uniform prior;
base: baseline

n Time (sec.) S2 Error (mm) S4 Error (mm)

ap, up base ap up base ap up base

200 3.89 3.80 44.9 ± 9.5 49.4 ± 19.0 62.9 ± 24.4 45.2 ± 13.4 45.2 ± 11.8 73.1 ± 70.7

100 1.96 1.92 48.2 ± 12.7 55.4 ± 37.8 71.7 ± 25.7 51.9 ± 20.9 51.0 ± 21.3 54.7 ± 25.0

50 0.98 0.96 50.2 ± 13.4 78.7 ± 72.4 98.0 ± 61.1 56.4 ± 19.2 57.6 ± 19.2 98.3 ± 67.4

25 0.5 0.49 69.3 ± 51.1 72.3 ± 51.2 100.5 ± 40.4 61.3 ± 21.2 71.8 ± 29.3 114.3 ± 85.4

Table 5 Comparison of pose
estimation errors to
state-of-the-art for
HumanEva-II. Note that the
methods are often not directly
comparable since they rely on
different assumptions. For
instance, several methods have
been applied only to a subset of
frames (frames), e.g. only the
walking activity (up to frame
350) or only every 20th frame.
The number of cameras (cam)
also varies. The error (error) is
the average 3D error in mm and
the approximate computational
time (time) is measured in
seconds per frame

method frames time cam error(S2) error(S4)

(Baak et al. 2009) 28 4 – 48

(Andriluka et al. 2010) −350 28 1 101 –

(Sigal et al. 2010) 250 4 83 78

(Peursum et al. 2010) −380 36 4 107 92

(Gall et al. 2010a) 124 4 38 32

(Bergtholdt et al. 2010) 20th – 4 207 292

(Brubaker et al. 2010) −350 – 2 53 54

(Corazza et al. 2010) −150 – 4 78 80

(Schmaltz et al. 2011) 15 4 – 49

(Gall et al. 2008a) −400 30 4 – 36

(Gall et al. 2009) 9 4 – 50

(Darby et al. 2010) 15–20 2–3 97 93

ap + sm 4 4 42 42

up + sm 4 4 47 42

Fig. 10 3D pose estimation
error for the TUM kitchen
dataset using a limited S1
training set and a full training
set. The proposed approach
using a 2D action recognition
prior performs significantly
better than the direct
optimization in the state space E

(baseline). Impact of the
different training sets, however,
is small. Mean and standard
deviation are provided in
Tables 6 and 7

Table 9. Using PCA, the error is only 3–4 % higher, empha-
sizing the fact that the specific manifold being used is not
essential.

In Sect. 5.3, we have pointed out that the solution of the
action â is not unique when the manifolds share poses. Since
this is not the case for HumanEva as shown in Fig. 5, we
evaluated the estimated manifold for action recognition on
the TUM kitchen dataset. The estimate â is given by the
manifold that contains most particles after Optimization A

(see Sect. 5.4).6 Depending on the prior used and the num-
ber of particles, â corresponds only in 30–33 % the cases
to the manifold of the action label. This shows that the esti-
mated manifold cannot be used for action recognition when
the manifolds overlap since the particles might end up in any
of the manifolds that contain the right pose.

6This is equivalent to summing the weights of the particles before re-
sampling.
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Table 6 3D pose estimation error for the TUM kitchen dataset in mm (using S1 training set). ap: action prior; up: uniform prior; base: baseline

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap 47.8 ± 18.1 60.6 ± 20.7 69.1 ± 29.3 46.9 ± 18.9 60.2 ± 18.4 74.0 ± 33.5 80.2 ± 35.7

up 48.2 ± 17.6 61.5 ± 22.6 71.1 ± 37.1 49.6 ± 20.0 64.7 ± 32.4 159.2 ± 98.0 84.7 ± 35.9

base 116.5 ± 45.1 181.9 ± 70.6 174.8 ± 61.2 183.0 ± 61.4 229.4 ± 85.0 190.6 ± 65.0 155.4 ± 70.4

ap+smooth 43.1 ± 16.5 55.7 ± 19.4 64.1 ± 27.3 41.7 ± 16.5 55.0 ± 16.3 70.0 ± 32.7 76.4 ± 34.4

up+smooth 43.4 ± 15.6 56.6 ± 20.9 66.0 ± 35.1 44.5 ± 18.3 59.3 ± 30.6 153.6 ± 95.9 80.6 ± 34.3

base+smooth 114.3 ± 45.0 179.3 ± 70.7 172.1 ± 61.1 180.3 ± 61.4 227.4 ± 85.1 188.4 ± 64.7 153.3 ± 70.7

Table 7 3D pose estimation error for the TUM kitchen dataset in mm (using full training set). ap: action prior; up: uniform prior; base: baseline

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap 48.1 ± 22.4 58.4 ± 27.1 64.6 ± 30.4 45.8 ± 27.8 69.3 ± 39.9 68.7 ± 31.6 75.9 ± 36.5

up 50.3 ± 25.4 57.2 ± 25.5 61.9 ± 27.4 49.0 ± 25.7 67.2 ± 36.9 167.1 ± 114.0 78.6 ± 40.4

base 116.5 ± 45.1 181.9 ± 70.6 174.8 ± 61.2 183.0 ± 61.4 229.4 ± 85.0 190.6 ± 65.0 155.4 ± 70.4

ap+smooth 43.5 ± 21.3 53.2 ± 25.7 59.2 ± 28.8 41.0 ± 26.7 63.8 ± 38.5 64.8 ± 30.8 71.6 ± 35.2

up+smooth 45.6 ± 24.3 51.9 ± 22.9 56.7 ± 25.9 43.7 ± 23.6 61.5 ± 35.0 161.3 ± 109.7 74.5 ± 39.3

base+smooth 114.3 ± 45.0 179.3 ± 70.7 172.1 ± 61.1 180.3 ± 61.4 227.4 ± 85.1 188.4 ± 64.7 153.3 ± 70.7

Table 8 3D pose estimation error for the TUM kitchen dataset in mm (using full training set and 300 particles). ap: action prior; up: uniform
prior

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap 46.9 ± 23.0 57.4 ± 28.6 59.5 ± 27.3 49.2 ± 33.8 63.2 ± 36.0 66.6 ± 32.2 74.3 ± 37.0

up 47.5 ± 24.0 56.2 ± 23.4 61.9 ± 31.6 47.8 ± 35.0 65.7 ± 41.7 67.4 ± 33.0 72.1 ± 34.6

ap+smooth 42.4 ± 22.1 52.4 ± 26.1 54.4 ± 26.1 44.6 ± 33.1 58.1 ± 35.2 63.1 ± 31.0 70.4 ± 35.9

up+smooth 43.0 ± 22.7 51.1 ± 21.3 56.5 ± 27.4 43.1 ± 34.3 60.4 ± 40.0 63.5 ± 31.9 68.1 ± 33.0

Table 9 3D pose estimation error for the TUM kitchen dataset in mm (using full training set)

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap(Isomap) 48.1 ± 22.4 58.4 ± 27.1 64.6 ± 30.4 45.8 ± 27.8 69.3 ± 39.9 68.7 ± 31.6 75.9 ± 36.5

ap(PCA) 46.3 ± 15.9 60.6 ± 35.9 65.6 ± 32.2 50.1 ± 22.3 79.2 ± 61.5 66.2 ± 29.8 74.4 ± 32.3

ap(Isomap)+smooth 43.5 ± 21.3 53.2 ± 25.7 59.2 ± 28.8 41.0 ± 26.7 63.8 ± 38.5 64.8 ± 30.8 71.6 ± 35.2

ap(PCA)+smooth 41.9 ± 14.7 55.7 ± 34.0 60.7 ± 30.6 45.5 ± 20.4 74.4 ± 60.7 62.6 ± 28.9 70.7 ± 30.8

6.4 3D action recognition

TUM Kitchen From the estimated 3D poses, we perform
3D action recognition using the pose features described in
Sect. 4.3. For each type of feature, we trained a forest of 15
trees of depth 157 each with 20000 random tests generated

7We use a lower depth than the trees trained for 2D appearance-based
features since the possible number of unique Fi for pose-based features
is much smaller than that of appearance-based features.

at all the nodes. We train on the 3D joint positions provided
in the TUM dataset; note that these poses were determined
by a markerless motion capture system where large errors
were manually corrected. We test using the “ground truth”
poses, i.e. the poses provided in the dataset TUM as well
as the estimated poses using our action prior, uniform prior
and baseline. As per the 3D pose estimation, we compare
two different training sets (S1 training set vs. full training
set) and also look at the effects of smoothing the poses over
time.
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Table 10 Action recognition performance for different relational pose
features extracted from the ground truth, action prior, uniform prior and
baseline pose estimates. For the action prior, uniform prior and base-

line, we report two values to indicate the effects of smoothing on the ac-
tion recognition performance (unsmoothed/smoothed). TUM: ground
truth; ap: action prior; up: uniform prior; base: baseline

particles S1 training set full training set

joint dist. plane velocity combined joint dist. plane velocity combined

TUM – 0.59 0.68 0.68 0.70 0.76 0.79 0.81 0.81

ap 200 0.55/0.54 0.56/0.57 0.31/0.54 0.54/0.57 0.67/0.67 0.70/0.68 0.46/0.73 0.73/0.74

up 200 0.52/0.52 0.51/0.50 0.30/0.49 0.54/0.55 0.67/0.65 0.64/0.62 0.41/0.68 0.66/0.68

base 200 0.19/0.19 0.20/0.20 0.13/0.23 0.25/0.24 0.28/0.28 0.27/0.27 0.21/0.36 0.29/0.28

ap 300 0.68/0.68 0.72/0.72 0.52/0.77 0.75/0.75

up 300 0.69/0.69 0.71/0.69 0.52/0.76 0.73/0.73

We show the action recognition performance in Table 10.
Unlike the fused 2D action recognition, there is about 10 %
performance drop from the full training set to using only the
S1 training set. A similar drop in performance does occur
for 2D action recognition in the single view case (Table 1),
though the classifier fusion scheme compensates for the loss
in performance in the 2D case. In contrast to the pose es-
timation, the action recognition clearly benefits from more
training data.

When testing with the TUM poses, there is little differ-
ence between the joint distance, plane features and velocity
features; combining the three different types of features does
not improve the action recognition and average classifica-
tion remains at 0.81. When using the poses estimated from
the action prior with 200 particles, there is a 7–10 % per-
formance drop from the TUM poses; the best performance
is achieved using the combined features (0.74) though the
velocity features on the smoothed poses are similar (0.73).
When using the poses estimated from the uniform prior,
there is a further 5 % drop; again, the best performance is
achieved using either the combined features or the velocity
features from the smoothed poses (both 0.68). The poses es-
timated from the baseline algorithm are too poor to be used
for action recognition, indicating that a pose estimation er-
ror over 100 mm is to much for reliable pose-based action
recognition.

While temporal smoothing has no effect on the joint dis-
tance features and the plane features, it is essential for the
velocity features, which are by definition more sensitive to
noise. This effect was also observed in the synthetic exper-
iments of Yao et al. (2011) when the TUM poses were cor-
rupted by additive Gaussian noise. If we use the poses esti-
mated with 300 particles, which are on average 2–3 % (ac-
tion prior) or 11 % (uniform prior) lower in 3D error in
comparison to poses estimated with 200 particles, then the
action recognition performance is about 4 % higher. Since
the pose estimates with (action prior) and (uniform prior)

Fig. 11 Normalized action confidences for the 2D appearance-based
action recognition and 3D pose-based action recognition from the two
training sets for frames 200-700 of episode 0-8. In general, the action
confidences are higher for the 3D pose features than the 2D appearance
features, i.e. higher peaks

become similar with more particles, the action recognition
performance becomes similar as well.

In comparison to the 2D action recognition performance
(Table 1), using the poses from the action prior (0.77)
or uniform prior (0.76) with the full training set and 300
particles is better than the fused results (0.71). Using the
S1 training set and 200 particles, however, performance is
about 10 % worse. Comparing the action confidence out-
puts shown in Fig. 11, confidences for the 3D pose-based
action recognition is higher than the 2D appearance-based
recognition. Using the full training versus the S1 training
set also results in slightly higher confidences, though this ef-
fect is more pronounced in the 2D appearance-based outputs
than the 3D pose-based outputs. When looking at the confu-
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Table 11 3D pose estimation error for the TUM kitchen dataset in mm (using full training set and 300 particles). ap(2D): action prior from 2D
action recognition (Table 1); ap(3D): action prior from 3D action recognition (Table 10)

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6

ap(2D) 46.9 ± 23.0 57.4 ± 28.6 59.5 ± 27.3 49.2 ± 33.8 63.2 ± 36.0 66.6 ± 32.2 74.3 ± 37.0

ap(3D) 44.1 ± 15.7 58.7 ± 26.7 58.3 ± 23.9 46.6 ± 31.5 61.0 ± 30.0 68.1 ± 34.8 68.5 ± 31.1

ap(2D)+smooth 42.4 ± 22.1 52.4 ± 26.1 54.4 ± 26.1 44.6 ± 33.1 58.1 ± 35.2 63.1 ± 31.0 70.4 ± 35.9

ap(3D)+smooth 39.3 ± 13.9 53.7 ± 24.9 53.0 ± 21.9 42.0 ± 30.6 55.8 ± 28.6 64.4 ± 34.0 64.6 ± 29.9

Fig. 12 Confusion matrix for the 3D pose-based action recognition us-
ing the full training set with velocity features extracted from smoothed
pose estimates, estimated with 300 particles

sion matrix (Fig. 12), one sees that the most difficult classes
are again the ambiguous actions such as “release grasp”
and “take object”, though performance is better than the 2D
appearance-based system (Fig. 6).

We finally remark that the pose estimation with the uni-
form prior already provides reliable estimates for pose-
based action recognition (0.76) and performs better than
appearance-based action recognition (0.71), although there
is room for further improvement to match the performance
with the “ground truth” (TUM) poses (0.81). This is partic-
ularly relevant for scenarios when view- and environment-
dependent training data is difficult to acquire and only Mo-
Cap training data is available.

6.5 Closing the Loop

In our system, we transition from an action label to pose
estimates and then back to actions again. One can continue
and re-estimate the pose based on the 3D pose-based action
labels; based on the re-estimated poses, one can again solve

for the action labels. In a subsequent iteration, the pose es-
timation error is reduced by about 3 % (see Table 11) and
the action recognition by 1 % error (using velocity features
from smoothed poses, we improve from 0.77 to 0.78). These
results highlight that for both action recognition and pose es-
timation, the more accurate the information being leveraged,
the better the results.

7 Conclusion

We have presented a system for coupling the closely inter-
twined tasks of action recognition and pose estimation. The
success of the proposed method for pose estimation which
achieves state-of-the art performance builds on the ability
to jointly optimize over several low-dimensional spaces that
represent poses of various activities. Beyond that, unob-
served pose variations or unobserved transitions between
actions are resolved by continuing the optimization in the
high-dimensional space of all human poses. Our experi-
ments have shown that this combination is superior com-
pared to optimization in either space individually. On the
one hand, the full human pose has too many degrees of free-
dom to be optimized efficiently. On the other hand, learned
low-dimensional embeddings can be poor at generalization,
such that poses which are not present in the training data can
not be well estimated. The proposed method benefits from
the efficiency of low-dimensional embeddings but also over-
comes the problem of generalization. Our experiments have
also shown that an action prior improves the pose estima-
tion when the number of particles for optimization are lim-
ited. The benefit of the action prior compared to a uniform
prior, however, becomes smaller with an increasing number
of particles.

Within our proposed action recognition system, 3D pose-
based features have been shown to be more successful at
classifying the actions than 2D appearance-based features.
The same has been shown to be true even when the pose-
based features were extracted from the estimated poses of
our pose estimation system, indicating that the quality of es-
timated poses with an average error between 42–70 mm is
sufficient enough for reliable action recognition. Since 3D
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Fig. 13 Cropped images and
pose estimates for the actions of
TUM kitchen dataset, shown for
cameras 1 and 3; Close
cupboard and close drawer are
not shown
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pose-based features are, in contrast to 2D appearance fea-
tures, view-independent, it is easier to acquire training data
from other datasets. In this way, the pose estimation system
with a uniform prior and the pose-based action recognition
method can be easily set-up at any location without requir-
ing additional view-specific training data.

In our system, we have shown the advantages of using
action recognition for pose estimation and the advantages
of using pose estimation for action recognition. The selec-
tion of priors for pose estimation, be it the action prior or
the uniform prior, is related to the amount of computational
resources available at hand, i.e. the number of particles to
be used and hence the amount of time required for the pose
estimation algorithm. The less the resources, the more ben-
efit there is to be gained from using action information, e.g.
at 200 particles, the action prior outperforms the uniform
prior. With more resources, e.g. at 300 particles, differences
between the action prior and the uniform prior are no longer
distinguishable. Given unlimited resources, however, even
the baseline algorithm which does not make use of any ac-
tion information is expected to perform reasonably well.
Performance of the pose-based action recognition, while tol-
erant of errors, is directly related to the pose accuracy. As
such, we envision two possible settings to use the current
system. If one has more computational resources for pose
estimation, then it is preferable to use the uniform prior and
bypass the initial 2D action recognition stage, since the ben-
efits of the action prior for pose estimation is no longer dis-
tinguishable from the uniform prior. On the other hand, with
more limited resources and a focus on pose estimation, it
is more preferable to keep the 2D action recognition to im-
prove the accuracy of the pose estimates.

To advance vision-based human motion analysis beyond
isolated actions and poses, one should integrate contextual
information, either from the environment or objects. Envi-
ronmental context, e.g. the type of scene or even specific
locations within a scene can provide strong indicators to
the types of actions and therefore poses which can be ex-
pected. Furthermore, interactions with objects can often be
the defining characteristic of an action and having a better
understanding of human-object interactions would lead to
improved recognition on high-level actions such as “take
object” or “release grasp”. Future work will be focused on
methods of encoding the contextual information so that it
can be efficiently integrated into coupled action recognition
and pose estimation systems.
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