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Abstract

In this paper, we address the problem of the simultaneous recovery of the shape and refrac-

tive index of an object from a spectro-polarimetric image captured from a single view. Here,

we focus on the diffuse polarisation process occuring at dielectric surfaces due to subsurface

scattering and transmission from the object surface into the air. The diffuse polarisation of the

reflection process is modelled by the Fresnel transmission theory. We present a method for

estimating the azimuth angle of surface normals from the spectral variation of the phase of

polarisation. Moreover, we estimate the zenith angle of surface normals and index of refrac-

tion simultaneously in a well-posed optimisation framework. We achieve well-posedness by

introducing two additional constraints to the problem, including the surface integrability and

the material dispersion equation. This yields an iterative solution which is computationally

efficient due to the use of closed-form solutions for both the zenith angle and the refractive

index in each iteration. To demonstrate the effectiveness of our approach, we show results of

shape recovery and surface rendering for both real-world and synthetic imagery.
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1 Introduction

Polarisation measures the orientation of the electric field oscillations of light in the plane perpen-

dicular to the direction of propagation. It has been widely utilised to develop powerful measure-

ment and imaging techniques in various branches of physics including astronomy [16], applied

optics [7, 23] and crystallography. Although the human vision system is insensitive to polarisa-

tion, a number of organisms including the Mantis shrimp, naturally possess a polarisation vision

system [24]. In biology, researchers have also observed evidence for biophysical mechanisms of

polarisation coding in various species of fish [18]. With recent advances in camera technology,

polarisation effects can be captured by devices such as polarimeters and more recently, polarisa-

tion cameras [44, 45, 47]. Wolff et al. [44, 45, 47] have developed a liquid crystal polarisation

video camera. The key to this development is to use electro-optically controlled Twisted Nematic

liquid crystals to replace the need for mechanically rotated linear polarisers. The development of

such portable, low-cost and fast polarisation camera sensors potentially extends the applications

of polarisation imaging to areas such as target detection and segmentation [14, 33] and material

property recovery [46].

In image analysis, polarisation provides an important source of information concerning both the

shape and the material composition of the object being observed. Object shape and surface mate-

rial properties such as refractive index, both directly influence the appearance of an object to an

observer. They also determine the polarisation properties of the reflected light. In early work, Tor-

rance, Sparrow and Birkebak [40] measured the specular reflectance distribution of rough surfaces

for different polarisation orientations. The reflectance model attributes polarisation to specular

reflection from a collection of small and randomly disposed mirror-like facets that constitute the

surface. Their model includes a specular reflection component based on the Fresnel reflection

theory together with a microfacet distribution function that accounts for surface roughness. It is

interesting that more recent reflectance models such as the Torrance-Sparrow model [20] and the

Wolffmodel [43] which aim to incorporate more complex surface models, also draw on the Fresnel

reflection theory. As a result, they share the common feature of considering the reflected light as

a combination of polarisation components parallel to and perpendicular to the plane of reflection.

In consequence they can accommodate polarised light sources. One of the common features of

these Fresnel-based models, is that physical properties of the surface material and the geometry of

the reflection process are expressed in a single equation with multiple degrees of freedom. As a
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result, the simultaneous recovery of the photometric parameters and shape information becomes

an underconstrained problem.

To remedy the ill-posedness nature of the problem, Miyazaki et al. [27] has assumed that the

histogram of zenith angles for a given object was similar to that for a sphere. He has used this

property to recover a mapping from the degree of polarisation to the zenith angle. Despite being

effective, their approach is limited to only surfaces with a uniform distribution of surface normal

directions. Moreover, the mapping is not necessarily consistent across different material refrac-

tive indices. The related work in [27] and [26] employed the degree of polarisation in the visible

and far-infrared regions to resolve ambiguities in determining the surface orientation of transpar-

ent objects. The main drawback of the method in [26] is the need for an omni-directional diffuse

illumination source, which limits its applicability in real-world settings. Moreover, the method

requires measurements of the energy emitted in the far-infrared spectrum, which is susceptible to

thermal noise due to heating of the object under study. Using a similar experimental setup in-

volving a spherical optical diffuser, Saito et al. [34] were able to recover the shape of transparent

objects with known refractive index. Rahmann [30] has presented a method for computing the light

source position together with the orientation of rough surfaces through the polarisation informa-

tion conveyed by specular highlights. However, because the method in [30] relies on the existence

of highlights reflected from flat surfaces, it cannot be applied to objects which exhibit purely dif-

fuse reflectance. In a subsequent development, Rahmann [31] employed level sets to reconstruct

the surface of an object from a single polarisation image. This was done under the assumption

of weak perspective camera projection. Atkinson and Hancock [1] have recovered the surface

orientation from the measured diffuse polarisation for smooth dielectric surfaces. However, they

assumed a known refractive index in order to estimate the zenith angle of surface normals from the

degree of polarisation. The available methods for inferring surface orientation using single view-

point polarisation images assume either a known refractive index or a known surface orientation

distribution, or alternatively require a complex instrumental setup.

Despite this progress, the recovery of object shape from a single view still remains a challeng-

ing task due to the presence of photometric artifacts and discontinuities on the object surface. To

overcome these difficulties, several attempts have been made to make use of polarisation images

captured with varying viewpoint and light source direction. Rahmann and Canterakis [32] devel-

oped a polarisation imaging method which recovers the shape of specular surfaces. Their method

has made use of the correspondences between the polarisation phases recovered from multiple
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viewpoints. They showed that three viewpoints were sufficient for surface reconstruction. Atkin-

son and Hancock [4] also made use of the link between the phase and the degree of polarisation for

shape recovery. Using two viewpoints, they developed a method that disambiguates the two can-

didate azimuth angles for each surface normal. They also showed how to resolve the ambiguous

mapping from the degree of specular polarisation to the zenith angle of the surface normal. How-

ever, the method in [4] assumes the homography between the views is known in order to match

points across the imagery. This work was later extended in [5], where robust statistics were used

to refine the correspondence estimates between the two views of an object. Miyazaki et al. [25]

disambiguated the two possible zenith angles which yield the same degree of specular polarisation

by physically tilting the observed object by a small angle.

As an alternative to the use of multiple viewpoints, polarisation imaging can also be combined

with photometric stereo using images of an object from a fixed viewpoint but under different light

source directions. For instance, Drbohlav and Šára [11] showed how to disambiguate surface

orientations from uncalibrated photometric stereo images by altering the polarisation angles of

the incident and emitted light. Their method uses two projections of the object normals onto two

planes perpendicular to both the viewing direction and the illumination direction. When combined

with the surface integrability constraint, this yields a method that can cope with both the bas-

relief [6] and convex/concave ambiguities. Atkinson and Hancock [3] have disambiguated the

surface normal directions by combining polarisation measurements with photometric stereo data

captured with three known light source positions. Thilak et al. [39] presented a nonlinear least-

squares estimation algorithm which can be used to extract both the complex index of refraction

and the zenith angle of the surface normals from multiple images illuminated by unpolarised light

sources. However, their method requires prior knowledge of the light source positions relative

to the observer. Furthermore, it employs a polarimetric Bidirectional Reflectance Distribution

Function (BRDF) of light scattering, and this is limited to the case where the light source direction,

the surface normal direction and the view direction are co-planar.

Polarisation has also proven to be an effective tool in revealing the material properties of surfaces

from images. Early work by Wolff and Boult [46] showed how to classify image regions as belong-

ing to metallic or dielectric materials. In this work, the ratio between the two Fresnel reflection

components, i.e. the so-called Fresnel ratio, was used to characterise the relative electrical con-

ductivity of the surface, and was used as a discriminant feature for classification. Later, the same

authors used a Fresnel reflectance model to predict the magnitude of polarisation for an arbitrary
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orientation in the image plane [41, 42]. Using this model, the Fresnel ratio can be estimated and

used for the classification of dielectrics. More recently, Chen and Wolff [8] employed the phase an-

gle of polarisation for distinguishing conducting metals from dielectric materials. Their approach

hinges on the physical observation that upon reflection from a metal surface the phase difference

between polarisation components is altered [7], whereas this is not the case for dielectrics.

1.1 Contribution

Given the current interest in polarisation vision particularly within the Computer Vision com-

munity, it is somewhat surprising that there is little work on the use of polarisation methods for

the simultaneous estimation of surface orientation and surface properties such as the index of re-

fraction. In fact, most of the shape recovery methods rely on the assumption that the index of

refraction is known [1, 3, 4, 5, 25, 26, 27, 34]. On the other hand, surface material classification

methods [8, 46, 42, 41] have often neglected the wavelength-dependence of the index of refraction.

This is an important omission since, it is well known in physics that refractive index is wavelength

dependent and governed by the material dispersion equations, with concrete examples being pro-

vided by Cauchy and Sellmeier’s equations [7].

In our work, we utilise the wavelength dependence as an additional constraint to render the

recovery problem well-posed. This leads to a novel method that is based on the spectral (wave-

length) variation of spectro-polarimetric images captured from a single viewpoint. In contrast to

alternative methods reported elsewhere in the literature, our work makes use of three distinct model

ingredients, namely a) Fresnel reflection theory, b) the material dispersion equations governing the

wavelength dependence of refractive index and c) the surface integrability constraint. We combine

these three model ingredients so as to estimate both the shape and refractive index simultaneously

from polarisation images acquired from a single viewpoint.

The work presented here assumes minimal knowledge of the illumination conditions, the ma-

terial under study or the object surface orientation. In fact, our method does not assume either a

known illumination direction or a known illuminant power spectrum. This is because the Fresnel

transmission ratio can be computed from the maximal and minimal values of the Transmitted Ra-

diance Sinusoid, without any knowledge of the illumination power spectrum or the illumination

direction. We can then further relate the Fresnel ratio obtained to the zenith angle and the refractive

index. Therefore, our method is different from shape from shading methods that it does not infer
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shading information from the angle between the surface normal and the illumination direction.

To the best of our knowledge, this is the first time a method for estimating both shape and

refractive index from spectro-polarimetric imagery has been proposed in the Computer Vision

literature. Refractive index is an important surface characteristic which can be used to quantify

subsurface structure. Our study makes this information available without the need for carefully

calibrated optical bench measurements. Moreover, we contribute a shape from polarisation method

that requires only information from a single viewpoint. More importantly, the method does not

assume any knowledge of the illumination conditions and the index of refraction for the surface

under study. This is a major advantage of the method over existing approaches which require either

accurate measurements of shape or refractive index, or complicated instrumentmental setups. Here,

we propose an optimisation framework that permits the recovery of shape and refractive index

simultaneously. To do this, we render the problem well-posed by drawing on the integrability

constraint and the physics of both Fresnel reflection theory and material dispersion. This permits

the use of an iterative procedure to find an approximately optimal solution to the above optimisation

problem. Further, our iterative approach is computationally efficient due to the use of closed-form

solutions for the recovery of the zenith angle of surface normals and the refractive index.

The remainder of the paper is organised as follows. In Section 2, we commence by providing

the background on the polarisation of electromagnetic waves. This consists of an introduction

to the polarisation theory for dielectric surfaces and the properties of diffuse polarisation due to

subsurface scattering. The section also introduces the Fresnel transmission ratio and the phase of

polarisation concepts which appear throughout the paper. In Section 3, we present our method for

the recovery of shape and refractive index from a set of spectro-polarimetric images captured from

a single viewpoint. The section begins with a formulation of the polarisation image radiance as a

sinusoidal function. This permits the estimation of the azimuth angle of the surface normals from

the polarisation phase across the wavelength domain. Subsequently, we formulate the recovery of

the zenith angle and the refractive index as an optimisation problem with an integrability constraint

over the surface and a dispersion equation for the material refractive index. In Section 4, we show

how this optimisation problem can be tackled in an elegant and efficient manner. In Section 5, we

illustrate the utility of the method for the purposes of recovering the shape and refractive index

from synthetic and real-world imagery. Finally, in Section 6 we draw conclusions and suggest

directions for future work.
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2 Preliminaries

In this section, we provide the physics background to the theory of the polarisation of electromag-

netic waves. Based on the wave theory, light propagation induces harmonic vibrations within the

transmission medium. As an electromagnetic wave, light is associated with a magnetic field and an

electric field that are mutually orthogonal and vibrate perpendicular to the propagation direction.

Such electric and magnetic fields can be represented as field vectors parallel to a plane perpendic-

ular to the propagation direction. According to [7, 19], the polarisation of light characterises the

pattern of vibration of the electric and magnetic field vectors as light propogates across space with

time.

The section introduces a number of concepts relevant to polarisation, diffuse reflection and the

Fresnel transmission theory. For mnemonic purposes, in Figure 1, we provide a list of notation

used in the paper. These are defined in order of appearance. Here, we use a right-handed reference

coordinate system with the origin located at the view point. The positive z–axis coincides with the

propagation direction of the reflected light as observed in the line of sight. The positive x–axis

points towards the right-hand side of the field of view. Within this right-handed reference system,

surface normals can be specified by their azimuth (tilt) and zenith (slant) angles with respect to the

positive x and z axes.

2.1 The Polarisation of Light

Figure 2(a) depicts a circularly polarised illumination flux with its electric field vector E⃗ rotating

in a helicoidal manner about the propagation direction of the reflected light (as observed from the

view-point). In the figure, the direction of propagation is along the z-axis. As shown in Figure 2(a),

the electric field vector can be decomposed into two sinusoidal components E⃗x and E⃗y vibrating

in the x − z and y − z planes. In the figure, the two components have equal magnitudes and E⃗y is

shifted by 1/4-wavelength (π2 ) with respect to E⃗x. As a result, the wavefront of the electric field has

a circular projection on the x−y plane as it propagates with time. Figure 2(b) illustrates the circular

rotation of the electric field, while its x and y components vibrate in their respective planes.

In general, the polarisation of a light wave can range from being unpolarised, to being com-

pletely polarised. When the phase difference between its orthogonal components varies in a ran-

dom manner with respect to time, the resultant electric field is incoherent or unpolarised, producing

an electric field vector rotating isotropically and randomly in the plane perpendicular to the light
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propagation direction. On the other hand, completely polarised light is the result of the coherent

superposition of two orthogonal harmonic components with a fixed-phase difference with respect

to time. In this case, the light wave is elliptically polarised since the wavefront of the electric field

traces out an ellipse whose major and minor axes are determined by the phase difference of the

harmonic components.

Notation Description

Iϑ(u, λ) Transmitted irradiance at a pixel u and a wavelength λ

through a polariser oriented at an angle ϑ

ϕ(u, λ) Phase of polarisation.

Imax(u, λ) Maximum and minimum transmitted radiance

and Imin(u, λ) on the Transmitted Radiance Sinusoid (TRS).

N⃗(u) Surface normal at pixel u.

α(u) and θ(u) Azimuth and zenith angle of the surface normal at pixel u.

η(u, λ) Refractive index at pixel u and wavelength λ.

E⃗i∥ and E⃗i⊥ Parallel and perpendicular components

of the incident light.

Ii∥ and Ii⊥ Irradiance of the parallel and perpendicular components

of the incident light

E⃗T∥ and E⃗T⊥ Parallel and perpendicular components

of the transmitted light.

IT∥ and IT⊥ Radiance of the parallel and perpendicular components

of the transmitted light.

F∥ and F⊥ Parallel and perpendicular Fresnel reflection coefficients.

R(u, λ) Fresnel transmission ratio function (with respect to

the zenith angle θ(u) and the refractive index η(u, λ)).

Cm(u) Dispersion coefficients of Sellmeier’s equations.

Bm(u) and Dm(u) Dispersion coefficients of Sellmeier’s equations.

Figure 1: Notation used throughout the paper.
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2.2 Polarisation Upon Diffuse Reflection

We now focus on the polarisation caused by diffuse reflection from a dielectric surface. Diffuse

polarisation can be caused by a number of physical scattering processes. For instance, it can be

the result of multiple scattering from microfacets [22]. On the other hand, for translucent or multi-

layered materials, diffuse reflection is attributed to incident light penetrating the surface, scattering

within the dielectric body and then refracting back into the transmission medium. Here, we may

assume that after penetrating a surface, light is largely depolarised by the internal scattering process

within the dielectric body. Since the refraction of scattered light from the dielectric body through

the material-air boundary induces polarisation, the following model of diffuse polarisation, which

is subject to Snell’s law of refraction and the Fresnel reflection theory, applies to translucent or

multi-layered materials with subsurface scattering.

Although diffuse polarisation is weaker, and thus, more difficult to measure than specular polar-

isation, it is more prevalent in uncontrolled lighting conditions. In fact, specular polarisation only

occurs where there is strong specular reflection or inter-reflection. The other advantage of diffuse

(a) (b)

Figure 2: The polarisation of an electromagnetic wave. (a) The polarisation of light is caused by the

rotation of its electric field (E⃗) along its propagation direction z. The electric field can be decomposed into

the two orthogonal harmonic components E⃗x and E⃗y with magnitudes E0x and E0y. (b) The projection of the

trajectory for the front of E⃗ as projected onto the x − y plane perpendicular to the propagation direction.
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polarisation is that its degree of polarisation has a one-to-one relationship with the zenith angle,

while the degree of specular polarisation corresponds to two candidates of the zenith angle [1].

Our method also applies to incident light with partial or total polarisation since the assumption that

light becomes depolarised after penetrating the material surface still remains valid. On the other

hand, under polarised incident light, the azimuth angle of the normal cannot be determined from

specular polarisation since it alters the plane of polarisation of the reflected light.

Figure 3 shows a diagram of the diffuse reflection process described above. Here, refraction is

the result of the change of velocity as the internally scattered ray with propagation direction k⃗i

travels from the material body with refractive index η to the air whose refractive index is unity.

Assume that the incident angle of the ray with the surface boundary is θi. After emerging from the

surface, the transmitted ray k⃗T is refracted away from the surface normal N⃗ and forms an emittance

(reflection) angle θ with respect to the surface normal. The propagation direction of the transmitted

ray and the surface normal both lie in the plane of reflection, as shown in Figure 3. Note that θ is

also the zenith angle of the surface normal with respect to the viewing direction.

Note that the electric field vectors associated with the rays k⃗i and k⃗T are always perpendicular

to their propagation directions. Furthermore, the electric field vectors can be decomposed into two

orthogonal harmonic components, i.e. one in the plane of reflection while the other one perpen-

dicular to it. In Figure 3, we denote by E⃗i∥ and E⃗i⊥ the parallel and perpendicular components

of the electric field associated with k⃗i. Similarly, E⃗T∥ and E⃗T⊥ are the parallel and perpendicular

components of the transmitted waves travelling in the direction k⃗T .

2.3 Fresnel Transmission Ratio

We now define two important properties relating to the polarisation of light due to diffuse reflection,

namely the Fresnel transmission ratio and the phase of polarisation. To commence, let us denote

the radiance of the parallel and perpendicular components emitted at the material surface as IT∥ and

IT⊥ respectively. The transmission ratios of these components through the material-air interface are

related to the Fresnel reflection coefficients as follows

IT⊥

Ii⊥
= 1 − F⊥ (1)

IT∥

Ii∥
= 1 − F∥ (2)
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where Ii∥ and Ii⊥ are the parallel and perpendicular components of the incident irradiance, re-

spectively and F⊥ and F∥ are the Fresnel reflection coefficients for the parallel and perpendicular

polarisation components.

Assuming that the light scattered within the dielectric body is unpolarised, we can conclude that

its electric field vector oscillates isotropically over all the directions perpendicular to the propaga-

tion direction with equal energy and probability. This means that the average magnitudes Ei∥ and

Ei⊥ of the perpendicular and parallel components of the internally scattered ray ki are equal, i.e.

⟨Ei∥⟩t = ⟨Ei⊥⟩t. As a result, Ii∥ = Ii⊥ since the radiance is proportional to the mean square of the

Figure 3: Polarisation resulting from diffuse reflection from a dielectric surface with a normal vector N⃗

and refractive index η. The incident light waves penetrate the surface, scattering inside the dielectric body

and are finally refracted back into the air through the material-air boundary. The electric fields of the waves

incident on and transmitted through the material-air interface are represented by vectors rotating in a plane

perpendicular to the propagation direction. These electric field vectors, in turn, can be decomposed into

two orthogonal components which are parallel and perpendicular to the plane of emittance, which contains

both the surface normal and the emittance direction. The vectors E⃗i∥ and E⃗i⊥ are the components of the

internal incident field on the material-air surface boundary before refraction. The vectors E⃗T∥ and ⃗ET⊥ are

the components of the wave emerging from the surface after refraction.
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electric field amplitude, i.e. Ii∥ =
1
2 E2

i∥ and Ii⊥ =
1
2 E2

i⊥. Hence

IT⊥

IT∥
=

1 − F⊥
1 − F∥

(3)

We refer to the right hand side of Equation 3 as the Fresnel transmission ratio, which is a function

of the zenith angle θ and the refractive index.

Since the internal light ray k⃗i in Figure 3 is scattered randomly (depolarised), its orthogonal

components E⃗i∥ and E⃗i⊥ are incoherent, i.e. their phase difference varies randomly over time. For

dielectric materials, the phase of the polarised light is preserved under refraction [7]. Therefore,

the components E⃗T∥ and E⃗T⊥ of the transmitted light are also incoherent after refraction through

the material-air boundary.

3 Shape and Refractive Index Recovery

Building on the results from the theory of diffuse polarisation presented in Section 2, in this section

we develop a method for the recovery of surface orientation and index of refraction from polar-

isation imagery. The technique discussed here is applicable to convex and continuously twice-

differentiable surfaces with material refractive index following the dispersion equation. Further,

the method provided assumes an orthographic camera model. In Section 3.1, we commence by

extracting the phase angle and the maximal and minimal radiance of the Transmitted Radiance

Sinusoid (TRS) from the polarimetric imagery. In Section 3.2.2, we present a method for esti-

mating the azimuth angle of the surface normals from the wavelength-indexed spectrum of phase

angles. In addition, we compute the Fresnel transmission ratio from the maximal and minimal

radiance, from which to estimate the zenith angle of the surface normal and the refractive index.

In Section 3.3, we formulate the estimation as an optimisation problem that takes into account the

data error for the Fresnel transmission ratio, the surface integrability and the dispersion of material

refractive index across the spectrum. Having formulated the objective function, we present the

optimisation process entirely in Section 4.

The steps of shape and refractive index recovery can be summarised as follows.

1. Decomposition of the spectral polarimetric imagery into polarisation components, including

the phase, maximal and minimal radiance of the Transmitted Radiance Sinusoid (TRS), as

described in Section 3.1.
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2. Rough estimation of the azimuth angle from the phase angle for each pixel and wavelength,

allowing a 180-degree ambiguity. The relationship between these two angles is described in

Section 3.2.

3. Joint estimation of the zenith angle and refractive index from the Fresnel transmission ratio,

as presented in Section 3.3.

4. Disambiguation between the two candidates of the azimuth angle using shading information

indicated by the estimated zenith angle, as presented in Section 3.2.1.

5. Re-estimation of the azimuth angle as presented in Section 3.2.2.

6. Integration of the surface normal field to reconstruct the surface depth.

It is noted that the 180-degree ambiguity between the candidates of the azimuth angle resulting

from the Step 2 does not affect the joint estimation of the zenith angle and refractive index in Step 3.

This is because the objective functions involved in this estimation are invariant to the 180-degree

shift in the azimuth angle. As we shall show in Section 3.3.3, the relevant objective function

consists of the square of the cosine and sine of the azimuth angle. Once the zenith angle has

been obtained, we perform disambiguation of the azimuth angle based on the shading information

suggested by the estimated zenith angle.

3.1 Decomposing Polarisation Images

Using the experimental arrangement shown in Figure 3, the polarisation of light reflected from

a surface is measured by mounting a linear polariser in front of the camera optics. By rotating

the polariser, we can analyse the polarisation components oriented at different angles on the plane

orthogonal to the light propagation direction. The analysis in Section 2.1 can be applied directly

to this polarisation imaging system. As a result, the radiance at each point in the scene varies

sinusoidally with respect to the angle of rotation of the polariser. This sinusoid is termed the

Transmitted Radiance Sinusoid (TRS) and is illustrated in Figure 4.

Let ϑ be the polariser orientation angle and ϕ be the phase angle of the sinusoid. Since we

use polarimetric imaging spectroscopy data, we let λ denote the wavelength index for the spectra

and u denote the pixel index in the collected images. Moreover, assume that the input comprises

J polarimetric spectral images Iϑ1 ,Iϑ2 , . . . ,IϑJ . Each of these images is captured at J discrete
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values of the polariser orientation angle ϑ, which we denote as ϑ j, j = {1, 2, . . . , J}. According to

the TRS Sinusoid, the variation of the image intensity at the pixel u, wavelength λ with polariser

orientation ϑ j is given by

Iϑ j(u, λ) =
Imax + Imin

2
+

Imax − Imin

2
cos(2ϑ j − 2ϕ) (4)

where Imin and Imax are respectively the minimum and maximum radiance at the pixel u and ϕ is the

corresponding phase angle. Note that here, for the sake of brevity, we have omitted the wavelength,

pixel and polarisation angle variables from Imin and Imax.

The recovery of Imin, Imax and ϕ in Equation 4 may be effected in a number of ways. Note

that, by capturing images of the same scene with three or more polariser orientations, one can

fit a sinusoidal curve through the intensity-polariser angle pairs using a numerical nonlinear least

square fitting algorithm. This method is, however, not efficient since the optimisation has to be

performed per pixel.

Alternatively, these parameters can be obtained making use of the method in [44], where three

images are acquired so as to compute the phase, intensity and degree of polarisation. However,

the method in [44] is susceptible to noise corruption since it employs only three images. Here,

we employ an alternative method that yields a stable estimate of the intensity, phase and degree of

polarisation by solving an over-determined linear system of equations. The method is akin to that

described by Nayar et al. in [28]. We commence by rewriting Equation 4 for each pixel-site u and

Figure 4: The transmitted radiance through a linear polariser varies sinusoidally with respect to the polariser

orientation angle.
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wavelength λ in the following vectorial form

Iϑ j(u, λ) =
[
1, cos(2ϑ j), sin(2ϑ j)

] 
Imax+Imin

2

Imax−Imin
2 cos(2ϕ)

Imax−Imin
2 sin(2ϕ)


= a jx (5)

with a j =
[
1, cos(2ϑ j), sin(2ϑ j)

]
and x =


Imax+Imin

2

Imax−Imin
2 cos(2ϕ)

Imax−Imin
2 sin(2ϕ)

.
After collecting J ≥ 3 measurements at three or more polariser orientations, we arrive at the

following over-determined linear system

I = Ax (6)

where I =
[
Iϑ1(u, λ), Iϑ2(u, λ), . . . IϑJ (u, λ)

]T and A =



a1

a2

. . .

aJ


Equation 6 is well-constrained when the number of polariser angles is J ≥ 3. Moreover, the

coefficient matrix A depends solely on the polariser angles and, therefore, allows for an efficient

solution of Equation 6 over all the image pixels and wavelengths simultaneously.

Having obtained the solution x∗ = [x1, x2, x3]T , the maximal and minimal radiance on the sinu-

soid and the phase of polarisation at each pixel u and wavelength λ can be recovered in a straight-

forward manner making use of the following relations

Imax = x1 +

√
x2

2 + x2
3

Imin = x1 −
√

x2
2 + x2

3

ϕ =
1
2

arctan
x3

x2

3.2 Azimuth Angle and Phase of Diffuse Polarisation

We turn our attention to the estimation of the azimuth angle of the surface normals using the

polarisation phase angle ϕ. To determine the relationship between the phase of polarisation ϕ

resulting from subsurface scattering and the surface geometry, we consider the geometry of the

transmitted electric field observed from the camera’s viewpoint.
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Figure 5 illustrates a cross-section of the emitted electric field as viewed from the camera’s

position, where the surface normal N⃗ is aligned with the y axis. In this view, E⃗T∥ vibrations along

the y axis because it is coplanar with N⃗. The perpendicular component E⃗T⊥ lies in the x-axis as

it is orthogonal to E⃗T∥. In the Figure, the polariser transmission axis P⃗ forms an angle ϑ with the

horizontal axis. Here, the y-axis is aligned with the surface normal N⃗. Since the E⃗T∥ component

is in the plane of reflection, it vibrates along the y-axis. On the other hand, the perpendicular

component E⃗T⊥ vibrates in the plane spanned by the x-axis and the line of sight.

Now we consider the polarisation reflectance model developed by Wolff and Boult [41] with an

additional unpolarised component of the light transmitted from the object surface. By including

this term, the transmitted irradiance at the polariser angle ϑ becomes

Iϑ =
1
2

(
Iun + IT⊥ cos2 ϑ + IT∥ sin2 ϑ

)
(7)

where IT∥ and IT⊥ are the radiance of the parallel and perpendicular polarised components, and Iun

is that of the unpolarised component of the emitted light.

In Equation 7, the radiance of a polarisation component oriented at an arbitrary angle is hence

a convex combination of the parallel and perpendicular reflection components. Due to F∥ ≤ F⊥,

Figure 5: The emitted electric field, where the surface normal N⃗ is aligned with the y-axis. E⃗T∥ vibrates

along the y-axis because it is in the plane of reflection. The perpendicular component ⃗ET⊥ lies in the x-axis

and P⃗ is the orientation of the polariser transmission axis.
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Equation 3 implies that the radiance of the parallel component is always larger than or equal to that

of the perpendicular component, i.e. IT⊥ ≤ IT∥. This inequality is derived from the expressions of

the Fresnel reflection coefficients as F∥ = F⊥×
(

a−sin θi tan θi
a+sin θi tan θi

)2
where a =

(
η2 − sin2 θi

) 1
2 , with θi and η

being the incident angle and the material refractive index, respectively [43]. Since |a−sin θi tan θi| ≤

|a + sin θi tan θi|, we obtain F∥ ≤ F⊥.

As a result, the maximal transmitted radiance occurs when the polariser angle ϑ satisfies ϑ =

±π2 (modπ), i.e. when the transmission axis lies in the plane of reflection. Moreover, since the plane

of reflection contains the surface normal vector, this polariser angle indicates the tilt direction of

the surface normal with respect to the viewpoint.

We note the equivalence between this derivation and the Tranmitted Radiance Sinusoid in Equa-

tion 4. Moreover, the TRS in Figure 4 reaches its maximum at the phase angle. Consequently, the

phase angle ϕ must either coincide with the azimuth (tilt) angle α of the surface normal or differ

from it by π radians [1]. In other words, at each pixel u, either α(u) = ϕ or α(u) = ϕ ± π. This

reduces the problem of recovering the azimuth of the surface normal to that of disambiguating the

two possible solutions for α(u).

3.2.1 Disambiguation of the Azimuth Angle

To this end, we assume that the surface under study is convex, i.e. the surface normals point in

the opposite direction to the gradient of surface shading. This assumption allows us to select the

candidate azimuth angle with the closer orientation to the negative gradient direction. The surface

shading at a pixel u is given by cos θ(u), where θ(u) is the zenith angle of the surface normal.

Suppose that the zenith angle has been obtained through the process described in Section 4. By

sorting the zenith angles available, we are able to detect both the boundary and singular points on

the surface and use these to disambiguate the azimuth angles.

The disambiguation process commences by first rotating the azimuth angles by 180◦ where nec-

essary to satisfy the convexity requirement. In addition, for convex objects, the surface normals at

the occluding boundary always point outward from the body of the object. We make use of this

observation to initialise the azimuth angles at the occluding boundary. Also, since diffuse polari-

sation occurs most strongly at the occlusion boundary, the disambiguation of azimuth angle based

on polarisation performs most reliably at these positions. On the other hand, weak polarisation

is often observed at singular points, i.e. where the surface normal is perpendicular to the image
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plane. Therefore, abrupt changes in azimuth angle are permitted near these locations. As a result,

we start smoothing the azimuth angle at the boundary pixels and propagate the operation toward

the singular points of the surface. The smoothing operation proceeds iteratively, aiming to preserve

the directional similarity of the azimuth angle within a neighbourhood.

Note that the disambiguation method above only copes with convex surfaces. To handle shapes

consisting of a mixture of convex and concave parts, we can adopt an approach similar to that

proposed by Zhu and Shi [48]. With the estimated zenith angles, we can detect singular points as

those with a zero zenith angle. The method in [48] disambiguates the convexity/concavity by com-

puting the optimal heights of the singular points so as to satisfy a global integrability constraint.

To encode this constraint, a configuration graph is constructed with vertices corresponding to the

singular points and edges indicating the direction of height differences. With this configuration

graph, the above constraint can be stated as a Max-cut problem. Subsequently, the Max-cut prob-

lem can be converted into a semi-definite programming problem by relaxing the discrete values

of the edges to the real domain. The optimal heights of the singular points can then be found by

means of semi-definite programming. Having obtained the height at singular points, the height of

the whole surface is propagated from these points via the application of fast marching and patch

stitching.

3.2.2 Estimation of the Azimuth Angle

In general, the disambiguation process above provides an estimation of the azimuth angle ϕ∗(u, λ)

at each pixel u and wavelength λ of the spectral imagery. However, the estimated phase angle for

each wavelength may vary widely due to weak polarisation and noise corruption. Hence, we make

use of the weighted mean of the spectral phase of polarisation across the spectrum as an alternative

to the phase angle at any given wavelength. The weights are chosen to reflect the fitting error of the

TRS curve to the intensity-polariser angle pairs at each wavelength. Here, the fitting error ϵ(u, λ)

is quantified using the ℓ2-norm of the residual ϵ(u, λ) for the Equation 6, i.e. ϵ(u, λ) = ∥I − Ax∥2,

where I,A and x have been computed per pixel and wavelength as per the previous section. The

weight w(u, λ) associated with the phase of polarisation at each wavelength is defined via a kernel

weighting function. Here we employ the Epanechnikov kernel, which is a popular choice in the

18



parameter estimation literature. The kernel is given by

w(u, λ) =


1 − ϵ2(u,λ)

h if ϵ
2(u,λ)

h < 1

0 otherwise
(8)

where h is a bandwidth parameter.

Since the azimuth angle is a directional quantity, instead of averaging the disambiguated azimuth

angles ϕ∗(u, λ) directly, we estimate the mean of the sines and cosines of these angles for each

pixel-site as follows

⟨sin(ϕ∗(u))⟩λ =
∑
λ sin(ϕ∗(u, λ))w(u, λ)∑

λ w(u, λ)

⟨cos(ϕ∗(u))⟩λ =
∑
λ cos(ϕ∗(u, λ))w(u, λ)∑

λ w(u, λ)

where ⟨·⟩λ denotes the mean value across wavelengths. Thus, the estimated azimuth angle at pixel

u becomes

α∗(u) =


arctan

( ⟨sin(ϕ∗(u))⟩λ
⟨cos(ϕ∗(u))⟩λ

)
if ⟨cos(ϕ∗(u))⟩λ > 0

arctan
( ⟨sin(ϕ∗(u))⟩λ
⟨cos(ϕ∗(u))⟩λ

)
+ π if ⟨cos(ϕ∗(u))⟩λ < 0

π
2 if ⟨cos(ϕ∗(u))⟩λ = 0

(9)

3.3 Zenith Angle and Refractive Index

Now we aim to estimate the zenith angle of the surface normals with respect to the viewing direc-

tion. Following the previous section, where we showed how the azimuth angle of surface normals

can be estimated from the phase of polarisation, we now provide an account of the joint estimation

of the zenith angle of surface normals and material refractive index from diffuse polarisation.

Previously, in Section 3.2.2, we concluded that for diffuse polarisation, the TRS curve reaches

the minimum Imin when the transmission axis is perpendicular to the plane of reflection. A similar

result can be concluded for the maximal radiance Imax. As a result, we have the equalities Imax = IT∥

and Imin = IT⊥ and obtain the ratio of the recovered minimal and maximal radiance on the TRS

curve as

Imin

Imax
=

IT⊥

IT∥

=
1 − F⊥
1 − F∥

(10)

Following the expressions of the Fresnel reflection coefficients in [43] and Snell’s law of refrac-

tion, we can relate the ratio on the right-hand side of Equation 10 to the zenith angle and refractive
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index through the equation

Imin

Imax
=

cos θ(u)
√
η2(u, λ) − sin2 θ(u) + sin2 θ(u)

η(u, λ)


2

(11)

The right-hand side of Equation 11 is the Fresnel transmission ratio. To simplify computation,

we let R(u, λ) =
√

Imin
Imax

, i.e.

R(u, λ) ,
cos θ(u)

√
η2(u, λ) − sin2 θ(u) + sin2 θ(u)

η(u, λ)
(12)

In prior literature, the zenith angle of surface normals and the index of refraction can be recov-

ered from the degree of polarisation [1, 2, 5, 25, 26, 39]. Indeed, all of these methods make use

of the Fresnel reflection theory to arrive at an equation similar to Equation 11. However, the main

limitation to their practical application resides on their reliance upon either known index of refrac-

tion [1, 2, 5, 25, 26], imagery captured from multiple viewpoints [25] or under several known light

source directions [39]. The need for multiple measurements and instrumental setups makes them

impractical for shape and material analysis on real-world data.

The estimation of both the zenith angle and the index of refraction cannot be performed without

additional constraints. This is because the Fresnel theory only provides a single equation per

wavelength relating the zenith angle and index of refraction to the transmission ratio Imin
Imax

. As a

result, the number of variables to be estimated is one more than the number of equations, rendering

the problem ill-posed.

To deal with these limitations, we propose two additional constraints in order to recover the

zenith angle and the refractive index in a well-posed manner. To do this, we make use of both the

surface integrability constraint on the spatial domain and the material dispersion equations. While

the intergrability constraint enforces spatial consistency between neighbouring surface locations,

the dispersion constraint aims to resolve the ill-posedness of the joint estimation of the zenith angle

and refractive index.

3.3.1 Integrability Constraint

We commence by formulating the integrability constraint with respect to the zenith and azimuth

angles of the surface normal. Assume that the surface under study can be represented by a two-

dimensional twice-differentiable function with a continuous second derivative [12]. As a result, its

cross derivatives are the same irrespective of the order of the differentiated variable.
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Using the reference coordinate system previously defined, let the surface height function at the

pixel u beZ(u). By definition, the normalised surface normal at the pixel u is given by

N⃗ =
1√

Z2
x +Z2

y + 1
[−Zx,−Zy, 1]T (13)

whereZx andZy are the surface gradients in the x and y direction of our coordinate system.

The normalised surface normal direction can also be represented with respect to the azimuth and

zenith angles as follows

N⃗ =


cosα(u) sin θ(u)

sinα(u) sin θ(u)

cos θ(u)

 (14)

From Equations 13 and 14, we have

Zx = − cosα(u) tan θ(u) (15)

Zy = − sinα(u) tan θ(u) (16)

Recall that, in Section 3.2, we have obtained an estimation of the azimuth angle α(u) up to an

ambiguity of 180 degree and treat it as a known value in Equations 15 and 16. As a consequence,

the cross derivatives can be rewritten asZxy = − cosα(u)∂ tan θ(u)
∂y andZyx = − sinα(u)∂ tan θ(u)

∂x . Since

the integrability constraint enforces that Zxy = Zyx, we can express it in terms of the zenith and

azimuth angles as

cosα(u)
∂ tan θ(u)
∂y

= sinα(u)
∂ tan θ(u)
∂x

(17)

According to the chain rule, ∂ tan θ(u) = ∂θ(u)
cos2 θ(u) . Therefore, the integrability constraint in Equa-

tion 17 can be rewritten as

cosα(u)θy(u) = sinα(u)θx(u) (18)

with θx(u) and θy(u) being the derivatives of θ(u) with respect to x and y.

3.3.2 Material Dispersion

In order to impose further constraints on the variation of the refractive index in the wavelength do-

main, we note that, for a wide variety of materials, the index of refraction is governed by the mate-

rial dispersion equation [7]. The material dispersion equation models the wavelength-dependence

of the refractive index using a small number of parameters. The number of these parameters is

generally lower than the number of spectral bands. Hence, the implication is that the number of
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variables to be estimated in the spectral domain can be significantly reduced, especially for spectral

images with a high spectral resolution.

Thus, we introduce dispersion equations as a constraint on the refractive index for our opti-

misation scheme. Among several approximating functions of material dispersion in the physics

literature, perhaps Cauchy’s and Sellmeier’s [7] are the most popular. In the former, Cauchy mod-

elled the empirical relationship between the refractive index of a material and the wavelength of

light as follows

η(u, λ) =
M∑

m=1

Cm(u)λ−2(m−1) (19)

where the index of refraction depends solely on the wavelength and the material-specific dispersion

coefficients Cm(u), m ∈ {1, . . . ,M}.

In addition, Sellmeier’s dispersion equation [36] can handle anomalous dispersive regions by

including additional coefficients to represent vacuum wavelengths, i.e. where the wave front moves

across vacuum, and holds for a wide range of wavelengths, including the ultraviolet, visible and

infrared spectrum. Sellmeier’s dispersion equation is given by

η2(u, λ) = 1 +
M∑

m=1

Bm(u)λ2

λ2 − Dm(u)
(20)

where Bm(u) and Dm(u) are the material-specific dispersion coefficients.

The dispersion equations above allow a representation of the index of refraction as a linear

combination of M rational functions of wavelength. With these representations, the estimation of

refractive index can be treated as that of computing the dispersion coefficients. In practice, an

expansion containing up to the sixth term is sufficient to represent a wide range of materials in-

cluding crystals, liquids, glasses, gases and plastics [21]. For spectral imagery comprising more

than seven wavelength-indexed bands, the number of equations relating the Fresnel transmission

ratio to the zenith angle and refractive index exceeds the number of dispersion coefficients, ren-

dering the problem solvable. As a result, the problem becomes a well-constrained one that can be

formulated in a minimisation setting.

3.3.3 Objective Function

Having introduced the integrability and material dispersion constraints in Sections 3.3.1 and 3.3.2,

we now focus on the formulation of an objective function for the estimation of the zenith angle and

refractive index. The rationale behind our cost function lies in the use of the additional constraints,
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including integrability and dispersion equations so as to allow the recovery of the shape and index

of refraction to be performed without prior knowledge or predetermined illumination conditions.

The cost function aims at satisfying Equation 11, which equates the square root of the Fres-

nel transmission ratio defined in Equation 12 to the quantity
√

Imin
Imax

while taking into account the

integrability of the surface and the material dispersion equation. Our objective function is given

by two terms. The first of these accounts for the error of the Fresnel transmission ratio R(u, λ) in

Equation 12 with respect to the ratio r(u, λ) ,
√

Imin
Imax

as computed from the image radiance. The

second term measures the error of the integrability constraint described in Equation 18. Thus, the

cost function is given by

E =

∫
S

∫
W

(R(u, λ) − r(u, λ))2 dλdu

+ β(u)
∫
S

(
cosα(u)θy(u) − sinα(u)θx(u)

)2
du

(21)

subject to the chosen dispersion equation, i.e. Equation 19 or 20, where S is the image spatial

domain andW is the wavelength range.

In Equation 21, we assume to have obtained an estimation of the azimuth angle α(u) up to

a 180-degree ambiguity, as described in Section 3.2, and treat it as a constant in the cost func-

tion. We note that this cost function is invariant to the 180-degree shift in the azimuth angle, i.e.(
cosα(u)θy(u) − sinα(u)θx(u)

)2
=

(
cos(α(u) + π)θy(u) − sin(α(u) + π)θx(u)

)2
. Therefore, we can

utilise the rough estimate of the azimuth angle obtained in Section 3.2 without an adverse effect in

the estimation of the zenith angle and the refractive index.

In addition, the Fresnel transmission ratio R(u, λ) is related to the zenith angle and refractive

through Equation 12. The regularisation parameter β(u) is spatially varying and weighs the rela-

tive importance between the data closeness and surface smoothness imposed by the integrability

constraint. Here, we use the spatial dependence of β(u) on the surface location so as to reflect

the reliability of the azimuth angle α(u) estimated from polarisation information. To quantify the

reliability of the estimate α(u), we employ the degree of polarisation as follows

β(u) = γ
⟨ Imax(u, λ) − Imin(u, λ)

Imax(u, λ) + Imin(u, λ)

⟩
λ

(22)

where γ is a scaling constant that applies over the whole image and ⟨.⟩λ denotes the mean value

over wavelength.
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4 Optimal Zenith Angle and Refractive Index

The joint estimation of the zenith angle and refractive index amounts to solving a non-linear op-

timisation problem with a large number of unknowns. Given a spectro-polarimetric image with

N pixels and K wavelengths, where N ≥ 100000, K = 21, we often employ M = 5 dispersion

coefficients to model real-world material refractive indices. Consequently, the number of unknown

zenith angles and dispersion coefficients is N + NM ≥ 600000. Due to the size of this problem,

the use of global optimisation techniques is computationally impractical. On the other hand, direct

application of local optimisation methods such as gradient descent, conjugate gradient, Levenberg-

Marquardt or the Nelder-Mead simplex method to optimise all the variables at the same time can

easily be trapped in a local minimum. Therefore, we iteratively alternate between the estimation

of the zenith angle and the refractive index until the estimates are stable. This approach effectively

reduces the complexity of each optimisation step in terms of the number of variables. Further, the

approach does not require the tuning of optimisation parameters often associated with numerical

optimisation methods.

We adopt an iterative approach to the recovery of both the zenith angle and the index of refrac-

tion. Algorithm 1 consists of the step sequence of the minimisation strategy. In the first step, we

derive a closed-form solution for the zenith angle {θ(u)|u ∈ S} in each iteration while keeping the

index of refraction fixed. The second step recovers the index of refraction {η(u, λ)|u ∈ S, λ ∈ W}

using the current estimate of the zenith angle. We iterate between these two steps until the change

in the estimates between two successive iterations is below a small threshold.

Our algorithm is an instance of the coordinate search method described by Nocedal and Wright

[29]. The general approach of this method is that it partitions the original set of parameters into

subsets and performs optimisation over each subset at a time. Generally, this method can iterate in-

finitely without reaching a critical point. However, some variants of this method have been proven

to have a global convergence property. One particular strategy is the “back-and-forth” approach,

where the order of variables in which to perform the coordinate search is reversed in successive

iterations. With this strategy, the algorithm is proven to converge to an optimum, as discussed

in [29]. Since we divide the variables involved in the recovery of the zenith angle and refractive

index into two subsets, our strategy of alternating the optimisation between them conforms to the

“back-and-forth” approach and would converge to a local optimum.

The algorithm is initialised with a uniform material refractive index η0 across both the spatial
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Algorithm 1 Estimation of the zenith angle and refractive index from a polarimetric spectral image

with K wavelength-indexed bands.
Require: Fresnel transmission ratio r(u, λ) for each pixel u and band λ ∈ {λ1, . . . λK}.

Ensure: {θ(u), η(u, λ)|u ∈ S, λ ∈ W}, where

θ(u): the zenith angle at the pixel u.

η(u, λ): the refractive index at pixel u and wavelength λ.

1: η(u, λ)← η0∀u ∈ S, λ ∈ W

2: while true do

3: θold(u)← θ(u)

4: ηold(u, λ)← η(u, λ)

5: θ(u)← argminθ(u) E

6: η(u, λ)← argminη(u,λ) E

7: if |θold(u) − θ(u)| < τθ and |ηold(u, λ) − η(u, λ)| < τη,∀u and λ then

8: break

9: end if

10: end while

11: return θ(u), η(u, λ)

and spectral domains, as indicated in Line 1 of Algorithm 1. It terminates once the estimated

parameter values stabilise, i.e. the change between the estimates obtained at successive iterations

falls below a pre-determined threshold τθ for the zenith angle and a threshold τη for the refractive

index. For both, the zenith angle and refractive index, the change is measured as the ℓ1-norm of the

difference between successive estimates. In the following two subsections, we elaborate further on

the details of the optimisation steps above.

4.1 Recovery of the Zenith Angle

Here we derive a solution for the zenith angle while keeping the refractive index fixed in each

iteration. We note that the original cost functional in Equation 21 is complex, involving a non-

linear Fresnel transmission ratio function R(u, λ) with respect to the zenith angle θ(u). To minimise

this cost functional, we need to solve a highly non-linear Euler-Lagrange equation whose analytical

solution cannot be derived in a straightforward manner. To this end, we opt for an equivalent, yet

simpler formulation of the cost functional, which expresses the data error term using the inverse
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function of the Fresnel transmission ratio in Equation 12. Eventually, we reformulate the cost

functional with a quadratic function of the zenith angle θ(u) in the data error term, whose minimum

can be derived analytically.

With the refractive index η(u, λ) fixed, we can invert the Fresnel transmission ratio function in

Equation 12 with respect to the zenith angle θ(u) as follows

sin θ(u) ≡ η(u, λ)
√

1 − R2(u, λ)√
η2(u, λ) − 2R(u, λ)η(u, λ) + 1

(23)

Note that the zenith angle is a geometric variable independent of the wavelength. However,

the above equation provides for wavelength-dependent estimates of the zenith angle. In practice,

these estimates may not be the same across the spectrum due to measurement error and noise

corruption. If the index of refraction is at hand, the value of r(u, λ) computed from the ratio of

maximal and minimal image irradiance can be used as an estimate for the function R(u, λ). This

yields a wavelength-dependent estimate φ(u, λ) for the zenith angle θ(u), which is given by

φ(u, λ) = arcsin

 η(u, λ)
√

1 − r2(u, λ)√
η2(u, λ) − 2r(u, λ)η(u, λ) + 1

 (24)

Note that in Equation 24, we use the notation φ(u, λ) for the wavelength-dependent estimate and

distinguish it from the wavelength-independent zenith angle θ(u). We take advantage of this wave-

length dependency and, instead of directly minimising the original cost functional in Equation 21,

we seek to recover a zenith angle close to the wavelength-dependent estimates in Equation 24

while satisfying the integrability constraint. Thus, we employ the alternative cost functional

E1 =

∫
S

∫
W

(θ(u) − φ(u, λ))2 dλdu + β(u)
∫
S

(
cosα(u)

∂θ(u)
∂y
− sinα(u)

∂θ(u)
∂x

)2

du (25)

as an alternative to that in Equation 21.

Equation 25 poses the minimisation problem in a simpler setting. The merit of the alternative

cost function is that the Fresnel ratio error is quantified as a quadratic form of θ(u). This is im-

portant since this quadratic form is more tractable than the original error term, which contains a

rational function in the expression for R(u, λ). Moreover, we can rewrite Equation 25 as follows

E1 =

∫
S

f (u, θ(u), θx(u), θy(u))du (26)

by letting f (·) be given by

f (u, θ(u), θx(u), θy(u)) ,
∫
W

(θ(u) − φ(u, λ))2 dλ + β(u)
(
cosα(u)θy(u) − sinα(u)θx(u)

)2
(27)
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The function f (·) is important since it permits the use of calculus of variations to recover the

minimiser of the functional in Equation 26. We do this by noting that the minima must satisfy the

following Euler-Lagrange equation

∂ f
∂θ
=
∂

∂x

(
∂ f
∂θx

)
+
∂

∂y

(
∂ f
∂θy

)
(28)

By computing the derivatives of f so as to satisfy the Euler-Lagrange equation above, we arrive

at the following differential equation

θ(u)
∫
W

dλ −
∫
W
φ(u, λ)dλ = β(u) ×

(
sin2 α(u)θxx(u) − sin 2α(u)θxy(u) + cos2 α(u)θyy(u)

)
(29)

where θxx(u), θyy(u) and θxy(u) are the second order and covariant derivatives of θ(u) with respect

to the x and y axes of the coordinate system.

In the discrete case, where the imagery is acquired at K wavelength-indexed bands λ ∈ {λ1, . . . , λK},

we have
∫
W dλ = K. Therefore, θ(u) satisfies the differential equation

θ(u) =
1
K

∫
W
φ(u, λ)dλ +

β(u)
K

(
sin2 α(u)θxx(u) − sin 2α(u)θxy(u) + cos2 α(u)θyy(u)

)
(30)

We note that Equation 30 is a second-order partial differential equation with respect to θ(u).

We further enforce the continuity and differentiability of the spatial domain by assuming that the

function θ(u) is continuously twice-differentiable, i.e. θxy(u) = θyx(u). This assumption permits

the decomposition of θ(u) into an orthogonal basis of integrable two-dimensional functions, in a

similar manner to that in [12]. Since digital images have a limited band of spatial frequencies,

the surface shading can be expressed as a finite linear combinations of the real part of Fourier

basis functions, which are cosine functions. This representation allows an analytical solution to

the functional minimisation problem above. Moreover, we will show later that this representation

also leads to a computationally efficient solution to Equation 30.

Note that the function θ(u) can be viewed as a discrete function on a two-dimensional lattice.

Let the size of the lattice be X × Y , where X and Y are the image width and height, respectively.

Based on the Nyquist–Shannon sampling theorem [37], the zenith angle θ(u) can be reconstructed

using frequency components of up to one-half of the sampling frequency of the image. In image

processing, these sampling frequencies υ, where υ = (υx, υy), are often chosen such that υx =
2πi
X ,

where i = 0, 1, . . . , X − 1, and υy =
2π j
Y , where j = 0, 1, . . . , Y − 1 [13]. With these two-dimensional

frequency components, the function θ(u) can be reconstructed with an orthogonal set of Fourier
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basis functions ei(uT v) = ei(υx xu+υyyu), where i is the imaginary number and u = (xu, yu) is the pixel

location. Formally, this is given by

θ(u) =
∑
υ

κυei(uT v) (31)

Intuitively, Equation 31 means that the shading of the surface can be decomposed into a linear

combination of Fourier components with a range of frequencies matching that of the input imagery.

In the equation, κυ is the coefficient (weight) of the Fourier basis function ei(uT v), which can be

computed making use of the equation

κυ =
1
|S|

∑
u

θ(u)e−i(uT v)

where |S| represents the number of image pixels.

Similarly, the partial derivatives of θ(u) can also be expressed in terms of the Fourier basis, as

follows

θxx(u) = −
∑
υ

κυυ
2
xe

i(uT v) (32)

θxy(u) = −
∑
υ

κυυxυyei(uT v) (33)

θyy(u) = −
∑
υ

κυυ
2
yei(uT v) (34)

Let h(u) = 1
K

∫
W φ(u, λ)dλ. By substituting Equations 31, 32, 33 and 34 into Equation 30, we

obtain

h(u) =
∑
υ

κυei(uT v)
(
1 +
β(u)
K

(
sin2 α(u)υ2

x − sin 2α(u)υxυy + cos2 α(u)υ2
y

))
(35)

Note that Equation 35 applies to every image location u and every spatial frequency υ. By

making use of the expressions for h(u) at every image location and frequency, we can construct

a linear system with respect to the unknown vector U = [κυ]T , which is, effectively, the con-

catenation of all the Fourier coefficients. The recovery of the coefficients κυ can be then ef-

fected by solving the linear system LU = H, with H = [h(u)]T , which is the vectorial con-

catenation of the known function values h(u) for all the image locations u and L is a matrix

with rows and columns indexed to the image pixels and spatial frequencies, respectively. In

other words, the matrix element Lu,υ corresponding to a given pixel u and a given frequency υ

is Lu,υ = ei(uT v)
(
1 + β(u)

K

(
sin2 α(u)υ2

x − sin 2α(u)υxυy + cos2 α(u)υ2
y

))
. With a chosen Fourier basis

and the azimuth angle α(u) obtained as described in Section 3.2.2, the matrix L can be computed in

a straightforward manner. With the coefficients κυ at hand, the zenith angle θ(u) can be recovered

through the application of Equation 31.
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4.2 Recovery of the Refractive Index

With the zenith angle in hand, we now turn our attention to the estimation of the refractive index

at each image location making use of the Fresnel transmission ratio. To derive the refractive index

directly from the Fresnel transmission ratio in Equation 12, we are required to solve a quadratic

equation involving the index of refraction η(u, λ). This expression is given by

(cos2 θ(u) − r2(u, λ)) × η2(u, λ) + 2r(u, λ) sin2 θ(u) × η(u, λ) − sin2 θ(u) = 0 (36)

In general, the quadratic equation above yields no more than two real-valued roots. The choice

of refractive index value depends on the physical plausibility of these roots, i.e. the refractive index

for dielectrics must be a real value greater than one. This choice is straightforward if only one of

the roots is physically plausible.

In the case where the two roots are plausible, we adopt an iterative approach which iteratively

selects the root closer to the refractive index average at the same wavelength within the local spatial

neighbourhood. This approach works under the assumption that there is a single solution to the

refractive index at a number of pixels in the image. Initially, we label these pixels as having their

refractive index uniquely determined. At each iteration, we assign the refractive index of those

pixels with two plausible solutions making use of the regions whose refractive index is already

determined. We do this by selecting the root which is in better accordance with the average of

the refractive indices within its spatial neighbourhood. A pseudocode of this iterative procedure is

illustrated in Algorithm 2.

When neither root is a physically plausible solution to Equation 36, we use an approximation of

the Fresnel transmission ratio that provides a single solution to the refractive index. To this end,

we consider an approximating function that is a product of two separable factors, one of which

depends solely on the refractive index, while the second one depends on the zenith angle. By

adopting a formulation similar to Schlick’s approximation of the Fresnel reflection coefficient [35],

we employ the expression

R∗(u, λ) = d + c (1 − cos θ(u))b (37)

where b, c and d are constants.

Figure 6(a) shows this graph for values of η ranging between 1.2 and 3, with an increment of

0.3. Empirical observations of this graph give rise to a power function with respect to the zenith

angle. At the end-points, R = 1 as θ(u) = 0 and R = 1
η(u,λ) as θ(u) = π2 . To satisfy these conditions,
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Algorithm 2 Refractive Index Selection
Require: η(u, λ): Solutions to the refractive index at pixel u and wavelength λ

Ensure: η∗(u, λ): The uniquely determined refractive index at pixel u and wavelength λ

1: for all wavelength λ do

2: for all pixel u with a single physically plausible refractive index at wavelength λ do

3: determined(u, λ)← true

4: end for

5: while there are pixels with two plausible refractive indices do

6: for all pixel u with two solutions η1(u, λ) and η2(u, λ) do

7: N(u)← the spatial neighbourhood of u

8: η̄(u, λ)← Averagev∈N(u),determined(v,λ)=trueη(v, λ)

9: η∗(u, λ)← ηi(u, λ) which is closer to η̄(u, λ)

10: determined(u, λ)← true

11: end for

12: end while

13: end for

14: return η∗(u, λ) ∀ pixel u and wavelength λ

it is necessary that c = 1
η(u,λ) − 1 and d = 1. Thus, we have

R∗(u, λ) = 1 +
(

1
η(u, λ)

− 1
)

(1 − cos θ(u))b (38)

(a) True Ratio (b) Approximating Ratio

Figure 6: The Fresnel transmission ratio for several refractive indices and zenith angles in the range of

[0, π2 ]. (a)The true Fresnel transmission ratio function. (b) The approximating function.
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In Equation 38, b is a pre-determined power that provides the best fit with respect to the true

Fresnel transmission ratio over a range of parameter values. In this paper, we consider material

refractive indices between 1 and 3 and θ(u) ∈ [0, π2 ]. Using a one-dimensional search for the power

b, we find that b = 1.4 minimises the ℓ1-error between the approximating and the true Fresnel

transmission ratio. In Figure 6(b), we have plotted the approximating Fresnel ratio for b = 1.4 and

noted its similarity to the Fresnel ratio function.

To verify the approximation accuracy for the Fresnel transmission ratio, in Figure 7, we plot

the error function for b = 1.4, where it is represented as a surface with respect to both the zenith

angle and refractive index. From the Figure, we observe that the absolute error is below 0.04 for

all the combinations of zenith angle and refractive index within the considered range. The error is

largest near grazing zenith angles (70◦ ≤ θ(u) < 90◦) for small refractive indices or at around 40◦

for refractive indices larger than 2.3. However, these are extreme cases and, generally, the material

and the geometry under study do not fall into these cases.

Using the approximated Fresnel ratio function, we arrive at a single approximate solution for the

refractive index at each pixel and wavelength. Given the zenith angle θ(u) at the current iteration,

Figure 7: The approximation error for the Fresnel transmission ratio plotted for refractive indices between

1 and 3 and zenith angles in the range of [0, π2 ].
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the index of refraction is estimated to be

η(u, λ) =
(1 − cos θ(u))b

(1 − cos θ(u))b − 1 + r(u, λ)
(39)

Next, we apply the following strategy to ensure the physical plausibility of the approximating

solution in Equation 39. We note that the approximating refractive index is physically plausible,

i.e. η(u, λ) >= 1 if (1−cos θ(u))b−1+ r(u, λ) > 0 and r(u, λ) < 1. In the case where r(u, λ) = 1, we

can conclude that θ(u) = 0 as can be observed in Figure 6(a). However, in this case, the refractive

index value can be arbitrary. Otherwise, when r(u, λ) < 1, i.e. θ(u) , 0, we can guarantee the

physical plausibility of the solution in Equation 39 by scaling the zenith angles at all the image

pixels such that cos θ(u) < 1 − (1 − r(u, λ))
1
b for all u and λ.

Finally, to satisfy the material dispersion constraint, we fit the refractive index spectrum ob-

tained for each surface location to either of the dispersion equations in Equation 19 or 20. For

Cauchy’s dispersion equation, coefficients are given by the least-square solution to the following

linear system

n(u) = ΛC(u) (40)

where n(u) =


η(u, λ1)

. . .

η(u, λK)

, C(u) =


C1(u)

. . .

CM(u)

, and Λ =



1 λ−2
1 . . . λ−2(M−1)

1

1 λ−2
2 . . . λ−2(M−1)

2

· · ·

1 λ−2
K . . . λ−2(M−1)

K


. where M is the

number of dispersion coefficients used.

Since n(u) and Λ are known, the system is over-determined if the number of dispersion coef-

ficients is chosen such that M ≤ K, where K is the number of wavelength indexed bands in the

imagery.

For Sellmeier’s equation (Equation 20), the fitting task can be posed as a non-linear least-squares

optimisation problem. If the number of dispersion coefficients M is chosen such that M ≤ K then

the non-linear least-squares problem above becomes well-constrained and can be solved numeri-

cally by standard line-search or trust-region techniques.

5 Experiments

In this section, we perform experiments to illustrate the utility of our method for the purpose of

recovering the shape and refractive index of objects in a scene. To this end, we report results
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on synthetic and real-world spectro-polarimetric images. The use of synthetic data permits us to

effect a quantitative analysis where the accuracy of the estimated parameters can be compared to

the ground-truth. On the other hand, the use of real-world images allows us to illustrate the utility

of the recovered surface orientation and index of refraction for the purpose of generating views

under novel lighting conditions and view points.

For all our experiments, we employed the Cauchy’s dispersion equation as a constraint on the

refractive index to estimate the optimal parameters of the cost functional in Equation 21. Here,

we consider the eighth-order Cauchy’s dispersion equation consisting of five terms. The fitting

of refractive index spectra to this dispersion equation was performed via constrained linear least-

squares [9].

5.1 Synthetic Data

We commence by performing experiments on a synthetic dataset. Our dataset comprises spectro-

polarimetric images of eight 3D surfaces rendered with the Wolff diffuse reflectance model for

dielectrics [43]. To generate our dataset, we render these synthetic surfaces with the refractive in-

dex of the 19 plastic and liquid materials reported in [21], and the spectral reflectance of Polyvinyl

Chloride (PVC) under five illumination directions. These amount to a total of 1520 combinations

of shape and photometric parameters. For each combination, five polarisation images were gener-

ated corresponding to five polariser orientations at 0◦, 30◦, 45◦, 60◦ and 90◦ in the anti-clockwise

direction with respect to the horizontal axis of the rendering context, i.e. the image coordinate sys-

tem. All the multispectral images in this dataset are 30 bands in length, spanning the 430 − 720nm

range, with a 10nm step between successive bands. In this experiment, we have set the bandwidth h

of the Epanechnikov kernel in Section 3.2.2 to unity and the scaling constant γ of the integrability

term in Equation 22 to 0.05.

The different illumination conditions simulated in our dataset are described as follows. Each

of the illuminants assumes the power spectrum of sunlight, which we acquired using a StellarNet

spectrometer. Each illuminant direction is in the horizontal ground plane that contain the viewing

direction and points towards the surface under study. We have used five light source directions,

which we denoted L1, L2, L3, L4 and L5. These form angles of −26.5◦, −14◦, 0◦, 14◦ and 26.5◦

with respect to the viewing direction, where a negative angle means the light direction is on the

left-hand side with respect to the view point and a positive angle means otherwise.
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Illumination direction L3 (frontal)

Illumination direction L4 (14◦ to the right)

Illumination direction L5 (26.5◦ to the right)

Illumination direction L2 + L4

Illumination direction L1 + L5

Dome Ridge Torus Two domes Mozart Vase Duck Tea pot

Figure 8: Synthetic images of our test shapes rendered with the refractive index of Polystyrene under

five different illumination conditions. The rows, from top to bottom, correspond to the combinations of

illumination directions L3, L4, L5, L2 + L4 and L1 + L5. The images are rendered in pseudo trichromatic

colours synthesized from the multispectral radiance of the polarisation component oriented at 45◦ with

respect to the horizontal axis of the image coordinate system.
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0◦

30◦

45◦

60◦

90◦

Dome Ridge Torus Two domes Mozart Vase Duck Tea pot

Figure 9: Pseudo trichromatic rendering of synthetic spectral-polarimetric images of eight shapes synthe-

sized with the refractive index of Polystyrene under the frontal light source direction. Each row, from top to

bottom, shows the polarisation component oriented at 0◦ , 30◦, 45◦, 60◦, 90◦.
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In Figure 8, we show the variation of shading with respect to the illumination direction. In the

Figure, we show the shapes in our datasets. The first three rows include synthetic images under

three instances of single illumination directions, which are L3, L4 and L5, and the last two are

instances of two simultaneous illuminant directions, which are L2 + L4 and L1 + L5. The images

are rendered in pseudo trichromatic colours synthesized from the multispectral radiance of the 45◦

polarisation component, using the Stiles and Burch colour matching functions [38].

Similarly, Figure 9 shows the variation of shading with respect to the angle of polarisation. Each

row, from top to bottom, respectively shows the polarisation component oriented at 0◦ , 30◦, 45◦,

60◦, 90◦. The images of the above components have been synthesized with the refractive index of

Polystyrene under the frontal illumination direction. As before, we have employed the Stiles and

Burch colour matching functions [38] in order to generate the pseudo trichromatic colours.

In Figure 10, we present the needle maps estimated by our method for the synthetic shapes under

the frontal light direction L3, and the oblique light directions originating from the right-hand side

of the viewing position, at angles of 14◦ (L4) and 26.5◦ (L5). The top row shows the ground-truth

needle maps corresponding to the surface normals of the synthetic shapes. The second, fourth

and sixth rows respectively show the needle-maps recovered from the images rendered under the

illuminant directions L3, L4 and L5. In addition, we show the corresponding angular error of the

estimated normal fields for the above illumination conditions in the third, fifth and seventh rows.

The error maps in these rows are depicted in grayscale values indicating the dot products between

the normalised estimated surface normals and the ground truth.

We note that, for the Dome, Ridge, Torus, Two-Domes, Vase and Tea pot, the surface nor-

mal orientation has been successfully recovered almost everywhere except for regions with strong

shadowing. This observation applies to the shapes above regardless of the illumination direction

and shading variations. The low estimation errors for the surface normals of these shapes can be

verified visually by inspecting the error maps in the third, fifth and seventh rows. The strategy

of smoothing the azimuth angles we described in Section 3.2.1 tends to be effective on convex

surfaces, but breaks down at non-convex parts for shapes consisting of a mixture of concave and

convex surfaces, such as the Mozart and the Duck. Here, the horizontal symmetry of the recovered

surface normals for a number of shapes, such as the Dome, Ridge, Torus, Two-Domes and Vase,

indicates that our estimation method relies on polarisation rather than shading to reveal the surface

geometry. The results also imply that our method is insensitive to changes in the illuminant power

spectrum and direction.
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Ground-truth needle maps

Estimated needle maps for images under L3

Errors of the estimated surface normals for images under L3

Estimated needle maps for images under L4

Errors of the estimated surface normals for images under L4

Estimated needle maps for images under L5

Errors of the estimated surface normals for images under L5

Figure 10: The estimated needle maps of eight different shapes as compared to the corresponding

groundtruth. First row: ground truth needle maps. Second, fourth and sixth rows: The needle maps re-

covered from images illuminated under the illumination directions L3, L4 and L5, respectively. Third, fifth

and seventh rows: The error of the estimated needle maps for the illumination directions L3, L4 and L5,

respectively.
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With surface normal estimates in hand, we reconstruct the surface depth by means of surface

normal field integration. To this end, we make use of the surface integration method introduced by

Frankot and Chellappa [12] for the purpose of surface reconstruction. In the first row of Figure 11,

we present the surface rendering for each of the shapes in the dataset. The subsequent rows show

rendering of the recovered surfaces when the input surfaces are illuminated from several different

illumination directions, including L3, L4 and L5. Each of the surfaces is rendered under the same

novel lighting direction. As shown, the reconstruction of most of the shapes except the Mozart

bust and the toy Duck is almost perfect with respect to the groundtruth. This result is consistent

with the qualitative results in Figure 10 . Here, we also note that strong shadows caused by the

oblique illumination directions L4 and L5 do not convey any information, and therefore, do not

assist surface reconstruction within these regions. The effect of the dark regions on the results of

reconstruction can be observed in the rendering of the Ridge, the Two-Domed shape and the toy

Duck in the third and fourth rows. However, the reconstruction of the non-shadowed parts still

exhibits the curvature of the original shapes.

We now perform a quantitative set of experiments to measure the accuracy of our method. In

Table 1, we show the accuracy of the recovered needle map, which is quantified as the Euclidean

angular difference, in degrees, between the estimated surface normal direction and the correspond-

ing ground truth, averaged over the pixels of each image studied. In columns 2–6, we report the

mean and standard deviation of the angular error for each combination of shape and illuminant

condition. Similarly, in Table 2, we report the surface height reconstruction error as the mean ab-

solute difference between the estimated and the ground-truth depth, averaged over the image pixels.

For the purpose of comparison, we have normalised both the reconstructed and ground-truth depth

maps so that the height varies in the range between 0 and 1.

The numerical results in Table 1 show that the surface normals were recovered at a high level of

accuracy, being lower or equal to 3.4 degrees for most of the shapes, except for the Mozart bust and

the toy Duck. The error outliers for the Mozart and Duck shapes are understandable since they are

more complex than the other shapes, being composed of both convex and concave regions. Overall,

the quantitative results are largely consistent with the needle maps and error maps in Figure 10.

Likewise, Table 2 shows negligible surface reconstruction error for most of the shapes except for

the Mozart bust and the toy Duck. Of these shapes, the highest error is observed for the Ridge, at

i.e. approximately 3%–6% of the maximal depth value. As before, the higher depth reconstruction

error for the Mozart bust and the toy Duck is due to the complexity introduced by the combination
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Ground-truth depth maps

Estimated depth maps for images under L3

Estimated depth maps for images under L4

Estimated depth maps for images under L5

Figure 11: The estimated surface depths of eight different shapes as compared to the corresponding

groundtruth. First row: The ground truth depth. From the second to the fourth row: The depth maps

recovered from images illuminated under the illumination directions L3, L4 and L5, respectively.
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Surface normal error (degrees)

L3 L4 L5 L2 + L4 L1 + L5

Dome 2.9311 ± 2.5470 3.0990 ± 2.6147 2.9042 ± 2.5147 2.9311 ± 2.5470 2.9312 ± 2.5470

Ridge 2.3102 ± 0.5731 2.3102 ± 0.5731 3.5714 ± 0.4945 2.3102 ± 0.5731 2.3102 ± 0.5731

Torus 2.4112 ± 1.6977 2.4178 ± 1.7084 2.4369 ± 1.6915 2.4144 ± 1.7056 2.4118 ± 1.7036

Test shape 2.9270 ± 2.3648 3.4837 ± 2.1826 5.9983 ± 1.8518 2.9271 ± 2.3649 2.9271 ± 2.3648

Mozart 14.8964 ± 1.1588 15.1172 ± 1.1909 15.3956 ± 1.1347 14.9276 ± 1.1671 14.9181 ± 1.0614

Vase 2.5177 ± 2.1209 2.7918 ± 2.0990 3.6414 ± 1.9563 2.5177 ± 2.1209 2.5177 ± 2.1209

Duck 6.5573 ± 2.3130 11.2253 ± 1.7184 12.9258 ± 1.7877 6.5547 ± 2.3268 6.1266 ± 2.3304

Teapot 2.6371 ± 1.7283 2.6371 ± 1.7283 2.7051 ± 1.7134 2.6371 ± 1.7283 2.6371 ± 1.7283

Table 1: The accuracy of the recovered surface normals for several illumination directions computed as the

average absolute angular difference (in degrees) between the estimated surface normal directions and the

ground truth.

Normalised depth error

L3 L4 L5 L2 + L4 L1 + L5

Dome 0.0043 ± 0.0056 0.0073 ± 0.0101 0.0038 ± 0.0033 0.0043 ± 0.0056 0.0043 ± 0.0056

Ridge 0.0321 ± 0.0035 0.0321 ± 0.0035 0.0626 ± 0.0093 0.0321 ± 0.0035 0.0321 ± 0.0035

Torus 0.0049 ± 0.0026 0.0048 ± 0.0026 0.0057 ± 0.0028 0.0048 ± 0.0025 0.0049 ± 0.0026

Test shape 0.0074 ± 0.0056 0.0455 ± 0.0173 0.0910 ± 0.0160 0.0074 ± 0.0056 0.0074 ± 0.0056

Mozart 0.0927 ± 0.0399 0.0849 ± 0.0216 0.1005 ± 0.0205 0.0910 ± 0.0402 0.0903 ± 0.0400

Vase 0.0101 ± 0.0078 0.0146 ± 0.0078 0.0413 ± 0.0060 0.0101 ± 0.0078 0.0101 ± 0.0078

Duck 0.0940 ± 0.0349 0.1531 ± 0.0216 0.1509 ± 0.0213 0.0946 ± 0.0348 0.0919 ± 0.0345

Teapot 0.0122 ± 0.0026 0.0122 ± 0.0026 0.0126 ± 0.0031 0.0122 ± 0.0026 0.0122 ± 0.0026

Table 2: The accuracy of surface depth reconstruction for several illumination directions. The depth error

is computed as the mean absolute difference between the estimated and the ground-truth depth, with both

the depth maps being normalised to the range [0, 1].
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Refractive index error (degrees)

L3 L4 L5 L2 + L4 L1 + L5

Dome 0.0443 ± 0.0583 0.0443 ± 0.0583 0.0444 ± 0.0584 0.0443 ± 0.0583 0.0443 ± 0.0583

Ridge 0.0488 ± 0.0640 0.0488 ± 0.0640 0.0488 ± 0.0640 0.0488 ± 0.0640 0.0488 ± 0.0640

Torus 0.0470 ± 0.0618 0.0470 ± 0.0618 0.0470 ± 0.0618 0.0470 ± 0.0618 0.0470 ± 0.0618

Test shape 0.0503 ± 0.0610 0.0494 ± 0.0590 0.0529 ± 0.0549 0.0503 ± 0.0610 0.0503 ± 0.0610

Mozart 0.0458 ± 0.0593 0.0460 ± 0.0582 0.0458 ± 0.0566 0.0458 ± 0.0593 0.0458 ± 0.0593

Vase 0.0474 ± 0.0601 0.0473 ± 0.0600 0.0467 ± 0.0559 0.0474 ± 0.0601 0.0474 ± 0.0601

Duck 0.0528 ± 0.0475 0.0628 ± 0.0578 0.0687 ± 0.0632 0.0528 ± 0.0475 0.0528 ± 0.0475

Teapot 0.0481 ± 0.0621 0.0481 ± 0.0621 0.0479 ± 0.0612 0.0481 ± 0.0621 0.0481 ± 0.0621

Table 3: Means and standard deviations of the angular difference (in degrees) between the estimated refrac-

tive index spectra and the ground truth, across all the reported materials.

of convex and concave regions. Further, the depth error for the Duck can be partly attributed to

shadowed regions in the input images when synthesized under the oblique light source directions

(L3 and L4).

We note that the errors in Tables 1 and 2 often vary only slightly with respect to illuminant

direction. In some cases, the errors for images under the frontal and the combined illuminant

directions (L2 + L4 and L1 + L5) are lower than those for images under the oblique illuminant

directions. The increase in error for the oblique lighting directions is partly due to the shadowed

image regions in the input imagery. In fact, the variation of the surface normal error is within one

degree and that of the depth error is within 0.03 when the illuminant shifts from the frontal direction

to the most oblique direction (at an angle of 26.5◦ from the camera axis). Moreover, the standard

deviations of the surface normal error and depth error in Tables 1 and 2 are negligible, peaking

at 1.8689 degrees and 0.0402, respectively. This means that the recovered shape is substantially

insensitive to the material refractive indices used in our experiment. These observations, again,

support the claim that polarisation is a good cue to surface orientation because it is robust to

changes in illumination direction and material refractive index. As such, this differentiates Shape

from Polarisation from both Shape from Shading and Photometric Stereo methods, which attribute

geometric cues to image shading.

Next, we turn our attention to the accuracy of the recovered refractive index. In Table 3, we
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report the Euclidean angular difference, in degrees, between the average estimated refractive index

spectra over all the pixels in an image and the ground truth refractive index used for synthesizing

that image. The angular error measure is meaningful because our method aims at recovering a

scalar multiple of the actual refractive index spectra. Furthermore, for the purpose of recognition,

the spectral variation of refractive index is of higher importance than its absolute value. The

low angular errors reported in Table 3, peaking at 0.0551 degrees, show that we can recover the

refractive index with a high level of accuracy. Moreover, the refractive index estimate is largely

consistent across all the illumination directions for each shape. In fact, the change in lighting

direction hardly affects the resulting refractive index. This observation is consistent with the shape

recovery results, demonstrating that the recovered refractive index is robust against changes in

illumination conditions.

Now we turn our attention to evaluating the effectiveness of the surface integrability constraint.

In Tables 4, 5 and 6, we present the errors in the surface normals, the normalised surface depth

and the refractive index spectra recovered by optimising the cost function in Equation 21 without

the integrability constraint. In other words, we set the weight β(u) = 0 for all the pixels u and

optimised the cost function per pixel with the refractive index subject to the Cauchy dispersion

equation.

As observed in Tables 4, 5 and 6, the mean errors resulted from the alternative optimisation

approach are significantly larger than those shown in Tables 1, 2 and 3, which have been produced

with the surface integrability taken into account. This trend is consistent across most of the pre-

sented shapes and lighting directions. With the integrability constraint added, the improvement in

the errors is at least several standard deviations compared to the alternative method. This improve-

ment could be explained by the role of the integrability constraint in enforcing spatial consistency

across the image. In the absence of this constraint, the optimisation of the zenith angle and refrac-

tive index can only be performed independently for each individual pixel. The comparison above

again confirms the importance of the integrability constraint in our framework and justifies the

enforcement of this constraint.

Finally, we evaluate the robustness of our method to the initial choice of the refractive index η0

as specified in Algorithm 1. To this end, we have estimated the shape and refractive index from

the synthetic dataset with starting values of η0 varying between 1.1 and 1.8 in increments of 0.1.

In Figure 12, we show the variation of the surface normal error, the normalised depth error and

spectral angle error of the refractive index, averaged over all the synthetic images. From the figure,
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Surface normal error (degrees)

L3 L4 L5 L2 + L4 L1 + L5

Dome 4.3168 ± 1.6151 4.3234 ± 1.5150 4.4600 ± 1.6298 4.3197 ± 1.5134 4.3001 ± 1.5575

Ridge 0.6792 ± 0.4496 0.6792 ± 0.4588 1.9701 ± 0.3950 0.6792 ± 0.4588 0.6792 ± 0.3849

Torus 6.0059 ± 2.7435 6.1787 ± 2.8280 8.2153 ± 3.2483 6.0127 ± 2.7473 6.0121 ± 2.1863

Test shape 3.6110 ± 0.7431 3.4253 ± 0.7302 3.1528 ± 0.6604 3.5857 ± 0.7523 3.5757 ± 0.7709

Mozart 17.7184 ± 1.4330 18.2380 ± 0.9583 19.1064 ± 0.5824 17.7863 ± 1.2256 17.6490 ± 0.6599

Vase 2.2294 ± 0.5856 2.2331 ± 0.5638 2.3704 ± 0.5033 2.2296 ± 0.5826 2.2289 ± 0.4926

Duck 27.6443 ± 2.7751 28.0286 ± 1.9848 27.0117 ± 2.1032 27.4962 ± 2.7953 26.1977 ± 3.1813

Teapot 16.1288 ± 0.6596 16.8396 ± 0.7417 19.8454 ± 0.3913 16.0351 ± 0.8332 16.7656 ± 0.7711

Table 4: The accuracy of the recovered surface normals for several illumination directions with no integra-

bility constraint enforced. The errors are quantified as the average absolute angular difference (in degrees)

between the estimated surface normal directions and the ground truth.

we can observe that the normal and depth errors reach their minima when η0 is between 1.4 and

1.6 and the refractive index error is lowest when η0 = 1.5. This is also the case for the standard

deviations of the error measures above. This is not surprising since the ground truth value for the

refractive index of the materials used in our simulation are in the range [1.31, 1.68]. Nonetheless,

initial refractive index values outside this range cause the final results to drift away from the true

value, the error for the estimated shape and refractive index are low for initial values greater than

the ground truth ones. Thus, in practice, although our algorithm may be trapped in local minima,

low estimation errors can be achieved by setting η0 to a value corresponding to the upper end of

those which are physically plausible for the refractive index.

5.2 Real-world Imagery

In this section, we report experimental results on real-world multispectral images acquired in-

house. To acquire the imagery, we have used a benchtop hyperspectral camera equipped with an

Acousto-Optical Tunable Filter (AOTF) which selects wavelengths in the range of 450− 650nm at

a spectral resolution of 10nm. By applying radio-frequency acoustic waves to compress and relax

an optically anisotropic crystal [10, 15, 17], the incoming light is diffracted into an ordinary and

an extraordinary component polarised in different directions. In our camera system, the filter only
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Normalised depth error

L3 L4 L5 L2 + L4 L1 + L5

Dome 0.0274 ± 0.0064 0.0274 ± 0.0064 0.0300 ± 0.0077 0.0274 ± 0.0064 0.0275 ± 0.0065

Ridge 0.0116 ± 0.0053 0.0116 ± 0.0052 0.0784 ± 0.0031 0.0116 ± 0.0052 0.0116 ± 0.0053

Torus 0.0668 ± 0.0284 0.0654 ± 0.0277 0.1125 ± 0.0510 0.0668 ± 0.0284 0.0668 ± 0.0286

Test shape 0.0356 ± 0.0005 0.0629 ± 0.0006 0.1078 ± 0.0004 0.0352 ± 0.0005 0.0354 ± 0.0006

Mozart 0.1118 ± 0.0102 0.1044 ± 0.0027 0.1151 ± 0.0045 0.1127 ± 0.0105 0.1106 ± 0.0083

Vase 0.0318 ± 0.0004 0.0358 ± 0.0003 0.0450 ± 0.0004 0.0318 ± 0.0004 0.0318 ± 0.0003

Duck 0.1268 ± 0.0035 0.1448 ± 0.0036 0.1492 ± 0.0040 0.1267 ± 0.0039 0.1298 ± 0.0028

Teapot 0.1284 ± 0.0048 0.1324 ± 0.0084 0.1580 ± 0.0039 0.1274 ± 0.0067 0.1329 ± 0.0074

Table 5: The accuracy of surface depth reconstruction for several illumination directions with no integra-

bility constraint enforced. The errors are quantified as the mean absolute difference between the estimated

and the ground-truth depth, with both the depth maps being normalised to the range between 0 and 1.

Refractive index error (degrees)

L3 L4 L5 L2 + L4 L1 + L5

Dome 0.7962 ± 0.0788 0.7962 ± 0.0788 0.7962 ± 0.0788 0.7962 ± 0.0788 0.7962 ± 0.0788

Ridge 0.1107 ± 0.0564 0.1107 ± 0.0564 0.1107 ± 0.0564 0.1107 ± 0.0564 0.1107 ± 0.0564

Torus 0.2907 ± 0.0356 0.2907 ± 0.0356 0.2907 ± 0.0356 0.2907 ± 0.0356 0.2907 ± 0.0356

Test shape 1.7606 ± 0.1737 1.6583 ± 0.1644 1.4570 ± 0.1425 1.7606 ± 0.1737 1.7606 ± 0.1737

Mozart 0.6979 ± 0.1290 0.5528 ± 0.0881 0.5054 ± 0.0833 0.6979 ± 0.1290 0.6979 ± 0.1290

Vase 0.7782 ± 0.0657 0.7262 ± 0.0616 0.5914 ± 0.0502 0.7782 ± 0.0657 0.7782 ± 0.0657

Duck 4.4762 ± 0.6824 4.1360 ± 0.5846 4.1432 ± 0.5963 4.4762 ± 0.6824 4.4762 ± 0.6824

Teapot 0.4012 ± 0.0385 0.4012 ± 0.0385 0.3904 ± 0.0380 0.4012 ± 0.0385 0.4012 ± 0.0385

Table 6: Means and standard deviations of the angular difference (in degrees) between the estimated refrac-

tive index spectra and the ground truth, across all the reported materials. These results have been produced

with no integrability constraint enforced.
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(a) Surface normal error (b) Normalised depth error

(c) Spectral angle error of the refractive index

Figure 12: The variation of the mean and standard deviation of the surface normal error, the normalised

depth error and spectral angle error of the refractive index with respect to the initial refractive index value

when performing our algorithm on the synthetic dataset.

transmits the ordinary ray while blocking the extraordinary ray using total internal reflection. By

rotating the camera box about its optical axis, we effectively selected the plane of polarisation of

the polarised light at each wavelength.

We acquired multispectral images of five different objects made of matte plastic and porcelain.

In our experiment, the object size was significantly smaller than its distance from the camera cen-

tre. Therefore, the projection of the object surfaces onto the image plane can be assumed to be

orthographic. To measure polarisation, we captured images of these objects when the polariser

transmission axis is oriented at each of seven different angles given by 45◦, 60◦, 75◦, 90◦, 105◦,

120◦ and 135◦ in the clock-wise direction with respect to the vertical axis of the camera. Theo-
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retically, it is sufficient to perform decomposition step in Section 3.1 with only three polarisation

angles. However, we have performed experiments on images captured under seven angles to min-

imise the effect of noise on the shift of the phase angle. The imagery was captured using two

unpolarised artificial sunlights as illuminants. These simultaneously illuminated the left and right

hand side of the objects under study. Note that the algorithm does not require prior knowledge of

the illuminant power spectrum and direction. Here, we used two illuminants to ensure that there

were no dark shadows in the captured images. To synthesize the surface, as presented later in the

section, we estimated the material reflectance from unpolarised multispectral images of the same

objects captured under an illuminant direction aligned to the viewing direction.

Recall that our method delivers the surface orientation and the index of refraction of the surface

materials from input polarisation images. To recover the reflectance, we assume that the light pen-

etrating the object sub-surface does not scatter over a significant distance and is therefore emitted

at the location of the incident point. Under this assumption, the incidence and reflection angles

can be assumed to be identical. This is important since it allows the use of the illuminant power

spectrum and the Wolff reflectance model [43] to estimate the material reflectance (albedo), after

both the surface orientation and the index of refraction have been recovered by our algorithm.

Figure 13 shows sample input images of the five objects under study, which we name here-

after Bear, Statue, Pig, Dinosaur and Pine Tree. The images in the left-most column show the

trichromatic pseudocolour of the input multispectral images, simulated with the Stiles and Burch

colour matching functions [38]. These correspond to the images of the objects with the polariser

transmission axis at an angle of 45◦ with respect to the vertical axis of the camera. The second

and third columns show the recovered needle-maps and shading maps of the objects in the first

column. Note that the needle maps show clear overall surface contours, capturing the surface nor-

mal orientation along occlusion boundaries. The shading maps are qualitatively consistent with

the shape of the objects, with minor distortions at the boundaries of regions of different material

composition. This is due to the fact that our method is based solely on polarisation information.

Therefore, the changes at these boundaries have been interpreted by our algorithm as variations in

object geometry.

Having obtained the surface orientation and surface material properties of the objects under

study, we generate novel views of the original objects under novel illuminants. For this purpose,

we again reconstructed the surface height from surface orientation using the integration method

introduced by Frankot and Chellappa [12]. For validation, we captured the ground truth images of
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Input images Needle maps Shading maps Left stereo view Right stereo view

Figure 13: Shape estimation and rendering for real-world images. First column: The 45◦ polarisation

component images rendered in trichromatic pseudo-colours. Second column: Needle maps. Third column:

Shading maps. Fourth and fifth columns: Two-view stereo rendering of the input shapes under L3. In the

fourth row, the view direction is 10◦ to the left of the original view. In the fifth row, the view direction forms

an angle of 10◦ to the right of the original view.
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Figure 14: Depth maps of the objects shown in Figure 13.

these objects under incandescent lights with directions coplanar to the horizontal axis of the image

plane. Specifically, from left to right, these light source directions point towards the illuminated

object, forming angles of −45◦, −30◦, 0◦, 30◦ and 45◦ with the viewing direction, where a negative

angle means the light is located to the left-hand side of the camera and positive to the right. We

denote these light directions L1, L2, L3, L4 and L5, respectively, so as to be consistent with the

synthetic dataset.

In the fourth and fifth columns of Figure 13, we show a pair of stereo images of the original ob-

jects rendered under the frontal illumination direction L3. The left and right images were generated

for two viewing directions displaced 10◦ to the left and to the right of the original viewing direc-

tion. The novel views reveal the object shapes near the left and right occlusion boundaries. This

points to potential applications in the three-dimensional visualisation of objects using single-view

images.

In Figure 14, we present the depth maps recovered from the real-world imagery. These maps

have been produced in such a way that the gray level corresponds to the surface height. We note that

the three-dimensional structure of the reconstructed shapes is, in general, perceptually consistent

with their original input images and the corresponding stereo pairs in Figure 13. We also note that

the distortions across material boundaries are particularly visible in the reconstructed shapes for

the bear and the dinosaur. This is because the variation of polarisation across materials has been

interpreted as a result of the variation in surface geometry.

To provide a quantitative analysis of the rendering results, we proceed to render the objects under

the power spectrum of an incandescent light. In Table 7, we show the rendering accuracy under

the novel lighting directions. The error is measured as the angular difference between the rendered

image reflectance spectra and their ground-truth on a per-pixel basis. It is worth stressing that, our

error measures are obtained from the multi-spectral images rather than the RGB values yielded

by the color matching functions. Recall that we estimate the image reflectance spectra from the

rendering equation of the Wolff reflectance model [43]. The numerical results reported in Table 7
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L3 L4 L5 L1 + L5 L2 + L4

Bear 11.63 ± 2.90 12.22 ± 3.67 12.94 ± 5.95 12.65 ± 4.71 11.48 ± 3.17

Statue 12.32 ± 3.43 14.11 ± 3.24 14.18 ± 4.02 15.75 ± 4.03 13.46 ± 2.90

Pig 10.70 ± 3.40 11.78 ± 3.47 12.94 ± 4.14 12.87 ± 4.43 10.53 ± 2.91

Dinosaur 10.67 ± 3.76 12.19 ± 6.94 14.01 ± 8.15 9.02 ± 3.94 8.27 ± 3.60

Pine Tree 10.82 ± 2.69 11.33 ± 3.51 14.92 ± 4.81 13.05 ± 3.94 10.35 ± 3.99

Table 7: The angular deviation (in degrees) between the spectral reflectance images rendered for the frontal

viewing direction and the ground truth images. The mean and standard deviation of these errors across pixels

are reported for each image.

are the mean and standard deviation across pixels in each image. The results here are consistent

with the qualitative results presented previously in the sense that the rendering quality is better for

the cases of the frontal illuminant and the two simultaneous illuminants. This is due to the fact that

in such conditions, the objects are fully illuminated and the rendered image has a smooth shading

variation. On the other hand, the lower rendering accuracy for the oblique illuminant directions

is due to non-smooth shading where cast shadows occur across material boundaries. Nonetheless,

our method can produce rendering results that are in good accordance with the ground truth. In

addition, the method delivers shading maps which accord well with the geometry of the object

under study, based solely on polarisation information. This is an important characteristic of our

method since it does not employ shading or chrominance as a cue.

We present qualitative results for refractive index estimated from the real-world imagery. In

Figure 15, we show the mean refractive index recovered from the input spectro-polarimetric im-

ages, whose 45◦ polarisation components are shown in pseudocolour in the left-most column. The

second, third and fourth columns in the figure correspond to the refractive index corresponding to

the wavelengths of 450, 550 and 650nm, respectively. In these, for purposes of visualisation, pure

white corresponds to a refractive index of 3, whereas 1
3 corresponds to a refractive index of 1. Note

the refractive index not only varies with respect to the wavelength but also spatially. Moreover,

the spatial variation of the refractive index values at the wavelengths 450 and 650nm reflect the

differences between materials in the input images.

Finally, in Figure 16, we plot the mean refractive index as a function of the wavelength for

two sample regions in each image. The top row shows the 45◦ polarisation image component
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Input Images 450nm 550nm 650nm

Figure 15: The variation of the refractive index with respect to the wavelength. First column: The 45◦

polarisation component of the input images, rendered in trichromatic pseudocolour. The second to fourth

columns respectively show the estimated refractive index at the wavelengths of 450, 550 and 650nm. The

refractive index value is linearly scaled to the range between 0 and 1, with pure white corresponding to a

refractive index of 3 and 1
3 corresponding to a refractive index of 1.
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Figure 16: Mean refractive index spectra of a number of selected regions in the input images. First row:

The 45◦ polarisation component images rendered in pseudocolour, with the selected regions indicated by

rectangular bounding boxes. Second and third rows: The mean of the estimated refractive index spectra

over the pixels in each selected region, fitted to the Cauchy dispersion equation. These spectra are plotted

as solid lines with colours matching those of the region boundaries depicted in the first row.

rendered in pseudocolour, with the selected regions indicated by rectangular bounding boxes. The

remaining rows show the mean estimated refractive index spectrum for each selected region as a

result of fitting to the Cauchy dispersion equation. Note that the refractive index spectra are plotted

in colours that match those of the bounding boxes of the selected regions in the input images. In

the figure, the regions selected in the image of each object, except for the Statue, are made of

different materials. This results in the difference between the estimated refractive index spectra

between the two regions in each of these images. Since the Statue is composed of almost the

same material across its surface, the dispersion of the refractive index over the wavelength does

not vary significantly across both of the selected regions. Furthermore, the refractive index values

can provide a hint at the roughness of the surface. For example, the surface of region 1 in the Bear

image consists of several ridges and valleys and is rougher than that of region 2. This observation

is consistent with the ranges of refractive index values estimated by our method, which are between
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1.45–1.55 for region 1 and 1.38–1.46 for region 2.

6 Conclusions

This paper has focused on shape and refractive index recovery based on the polarisation informa-

tion in a multispectral or hyperspectral image acquired from a single-view. Departing from the

theory of polarisation in the electromagnetic spectrum, the method hinges on the analysis of po-

larisation upon diffuse reflection from dielectric surfaces. By capturing the polarisation of light

emitted from these surfaces, we observe the variation of the spectral radiance with respect to the

polariser angle along a Transmitted Radiance Sinusoidal (TRS) curve. The recovery process com-

mences with the decomposition of the input imagery into the components of the TRS, i.e. its phase,

minimal and maximal radiance values. We have provided a link between the azimuth angle of sur-

face normal and the phase of polarisation. Moreover, we have shown how to disambiguate the

azimuth angle of surface normals from the wavelength-indexed spectrum of the phase angles. We

have also drawn upon the Fresnel transmission ratio between the minimal and maximal radiance on

the TRS to jointly recover the zenith angle of the surface normal and the refractive index. To make

the recovery problem well-posed, we have enforced integrability on the surface and employed the

material dispersion as a constraint on the refractive index. We solve the estimation problem us-

ing an iterative optimisation approach and derive a closed-form solution for the zenith angle and

the refractive index in each iteration. Lastly, we have demonstrated the merit of our method for

the purpose of shape and refractive index recovery from synthetic and real-world imagery. The

experimental results demonstrate the utility of the method for applications involving non-contact

measurement of refractive indices of dielectrics.

There are several strategies to extend the current work. While diffuse polarisation is often due

to the penetration, subsurface scattering and back refraction of light at the surface boundary, spec-

ular polarisation may occur as light is directly reflected at the air-material interface. In the work

presented here, we have dealt with materials that diffusely polarise light. In the future, there is

potential research in developing a reflection model that accounts for the air-material interaction.

Other possibility is to exploit the utility of polarisation information as a useful cue for the recovery

of the object shape near the grazing angle between the viewing direction and the surface normal,

where the surface orientation induces a strong degree of polarisation. Future research can benefit

from this property by combining shape recovery results near the occluding boundaries of objects
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captured from multiple views so as to enhance the quality of shape reconstruction.
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