
ETH Library

Random Forests for Real Time 3D
Face Analysis

Journal Article

Author(s):
Fanelli, Gabriele; Dantone, Matthias; Gall, Juergen; Fossati, Andrea; Van Gool, Luc

Publication date:
2013-02

Permanent link:
https://doi.org/10.3929/ethz-b-000055123

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
International Journal of Computer Vision 101(3), https://doi.org/10.1007/s11263-012-0549-0

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000055123
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s11263-012-0549-0
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Int J Comput Vis (2013) 101:437–458
DOI 10.1007/s11263-012-0549-0

Random Forests for Real Time 3D Face Analysis

Gabriele Fanelli · Matthias Dantone · Juergen Gall ·
Andrea Fossati · Luc Van Gool

Received: 5 December 2011 / Accepted: 16 July 2012 / Published online: 1 August 2012
© Springer Science+Business Media, LLC 2012

Abstract We present a random forest-based framework for
real time head pose estimation from depth images and ex-
tend it to localize a set of facial features in 3D. Our algo-
rithm takes a voting approach, where each patch extracted
from the depth image can directly cast a vote for the head
pose or each of the facial features. Our system proves ca-
pable of handling large rotations, partial occlusions, and the
noisy depth data acquired using commercial sensors. More-
over, the algorithm works on each frame independently and
achieves real time performance without resorting to parallel
computations on a GPU. We present extensive experiments
on publicly available, challenging datasets and present a new
annotated head pose database recorded using a Microsoft
Kinect.

G. Fanelli (�) · M. Dantone · A. Fossati · L. Van Gool
Computer Vision Laboratory, ETH Zurich, Sternwartstrasse 7,
8092 Zurich, Switzerland
e-mail: fanelli@vision.ee.ethz.ch

M. Dantone
e-mail: dantone@vision.ee.ethz.ch

A. Fossati
e-mail: fossati@vision.ee.ethz.ch

L. Van Gool
e-mail: luc.vangool@esat.kuleuven.be

J. Gall
Perceiving Systems Department, Max Planck Institute for
Intelligent Systems, Spemannstrasse 41, 72076 Tübingen,
Germany
e-mail: juergen.gall@tue.mpg.de

L. Van Gool
Department of Electrical Engineering/IBBT, K.U. Leuven,
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

Keywords Random forests · Head pose estimation · 3D
facial features detection · Real time

1 Introduction

Despite recent advances, people still interact with machines
through devices like keyboards and mice, which are not part
of natural human-human communication. As people inter-
act by means of many channels, including body posture and
facial expressions, an important step towards more natural
interfaces is the visual analysis of the user’s movements by
the machine. Besides the interpretation of full body move-
ments, as done by systems like the Kinect for gaming, new
interfaces would highly benefit from automatic analysis of
facial movements, as addressed in this paper.

Recent work has mainly focused on the analysis of stan-
dard images or videos; see the survey of Murphy-Chutorian
and Trivedi (2009) for an overview of head pose estima-
tion from video. The use of 2D imagery is very challenging
though, not least because of the lack of texture in some fa-
cial regions. On the other hand, depth-sensing devices have
recently become affordable (e.g., Microsoft Kinect or Asus
Xtion) and in some cases also accurate (e.g., Weise et al.
2007).

The newly available depth cue is key for solving many of
the problems inherent to 2D video data. Yet, 3D imagery has
mainly been leveraged for face tracking (Breidt et al. 2011;
Cai et al. 2010; Weise et al. 2009a, 2011), often leaving open
issues of drift and (re-)initialization. Tracking-by-detection,
on the other hand, detects the face or its features in each
frame, thereby providing increased robustness.

A typical approach to 3D head pose estimation involves
localizing a specific facial feature point (e.g., one not af-
fected by facial deformations like the nose) and determining

mailto:fanelli@vision.ee.ethz.ch
mailto:dantone@vision.ee.ethz.ch
mailto:fossati@vision.ee.ethz.ch
mailto:luc.vangool@esat.kuleuven.be
mailto:juergen.gall@tue.mpg.de

438 Int J Comput Vis (2013) 101:437–458

the head orientation (e.g., as Euler angles). When 3D data
is used, most methods rely on geometry to localize promi-
nent facial points like the nose tip (Lu and Jain 2006; Chang
et al. 2006; Sun and Yin 2008; Breitenstein et al. 2008, 2009)
and thus becoming sensitive to its occlusion. Moreover, the
available algorithms are either not real time, rely on some as-
sumption for initialization like starting with a frontal pose,
or cannot handle large rotations.

We introduce a voting framework where patches ex-
tracted from the whole depth image can contribute to the
estimation task. As in the Implicit Shape Model (Leibe et al.
2008), the intuition is that patches belonging to different
parts of the image contain valuable information on global
properties of the object which generated it, like pose. Since
all patches can vote for the localization of a specific point of
the object, it can be detected even when that particular point
is occluded.

We propose to use random regression forests for real time
head pose estimation and facial feature localization from
depth images. Random forests (Breiman 2001) (RFs) have
been successful in semantic segmentation (Shotton et al.
2008), keypoint recognition (Lepetit et al. 2005), object de-
tection (Gall and Lempitsky 2009; Gall et al. 2011), action
recognition (Yao et al. 2010; Gall et al. 2011), and real time
human pose estimation (Shotton et al. 2011; Girshick et al.
2011). They are well suited for time-critical applications, be-
ing very fast at both train and test time, lend themselves to
parallelization (Sharp 2008), and are inherently multi-class.
The proposed method does not rely on specific hardware and
can easily trade-off accuracy for speed. We estimate the de-
sired, continuous parameters directly from the depth data,
through a learnt mapping from depth to parameter values.
Our system works in real time, without manual initialization.
In our experiments, we show that it also works for unseen
faces and that it can handle large pose changes, variations in
facial hair, and partial occlusions due to glasses, hands, or
missing parts in the 3D reconstruction. It does not rely on
specific features like the nose tip.

Random forests show their power when using large
datasets, on which they can be trained efficiently. Because
the accuracy of a regressor depends on the amount of anno-
tated training data, the acquisition and labeling of a train-
ing set are key issues. Depending on the expected scenario,
we either synthetically generate annotated depth images by
rendering a face model undergoing large rotations, or record
real sequences using a consumer depth sensor, automatically
annotating them using state-of-the-art tracking methods.

A preliminary version of this work was published in
Fanelli et al. (2011a), where we introduced the use of ran-
dom regression forests for real time head pose estimation
from high quality range scans. In Fanelli et al. (2011b), we
extended the forest to cope with depth images where the
whole body can be visible, i.e., discriminating depth patches

that belong to a head and only using those to predict the
pose, jointly solving the classification and regression prob-
lems involved. In this work, we provide a thorough experi-
mental evaluation and extend the random forest to localize
several facial landmarks on the range scans.

2 Related Work

After a brief overview of the random forest literature, we
present an analysis of related works on head pose estimation
and facial features localization.

2.1 Random Forests

Random forests (Breiman 2001) have become a popular
method in computer vision (Gall and Lempitsky 2009; Gall
et al. 2011; Shotton et al. 2011; Girshick et al. 2011) given
their capability to handle large training datasets, their high
generalization power and speed, and the relative ease of im-
plementation. Recent works showed the power of random
forests in mapping image features to votes in a generalized
Hough space (Gall and Lempitsky 2009) or, in a regression
framework, to real-valued functions (Criminisi et al. 2010).
In the context of real time pose estimation, multi-class ran-
dom forests have been proposed for the real time determina-
tion of head pose from 2D video data (Huang et al. 2010).
In Shotton et al. (2011), random forests have been used for
real time body pose estimation from depth data. Each input
depth pixel is first assigned to a specific body part, using a
classification forest trained on a very large synthetic dataset.
After this step, the location of the body joints is inferred
through a local mode-finding approach based on mean shift.
In Girshick et al. (2011), it has been shown that the body
pose can be more efficiently estimated by using regression
instead of classification forests. Inspired by the works (Gall
and Lempitsky 2009; Criminisi et al. 2010), we have shown
that regression forests can be used for real time head pose
estimation from depth data (Fanelli et al. 2011a, 2011b).

A detailed introduction to decision forests and their ap-
plications in computer vision can be found in Criminisi et al.
(2011).

2.2 Head Pose Estimation

With application ranging from image normalization for
recognition to driver drowsiness detection, automatic head
pose estimation is an important problem. Several approaches
have been proposed in the literature (Murphy-Chutorian and
Trivedi 2009); before introducing 3D approaches, which are
more relevant for this paper, we present a brief overview
of works that take 2D images as input. Methods based on
2D images can be subdivided into appearance-based and

Int J Comput Vis (2013) 101:437–458 439

feature-based classes, depending on whether they analyze
the face as a whole or instead rely on the localization of
some specific facial features.

2D Appearance-Based Methods These methods usually
discretize the head pose space and learn separate detec-
tors for subsets of poses (Jones and Viola 2003). Chen et
al. (2003) and Balasubramanian et al. (2007) present head
pose estimation systems with a specific focus on the map-
ping from the high-dimensional space of facial appearance
to the lower-dimensional manifold of head poses. The latter
paper considers face images with varying poses as lying on
a smooth low-dimensional manifold in a high-dimensional
feature space. The proposed Biased Manifold Embedding
uses the pose angle information of the face images to com-
pute a biased neighborhood of each point in the feature
space, prior to determining the low-dimensional embedding.
In the same vein, Osadchy et al. (2005) instead use a convo-
lutional network to learn the mapping, achieving real time
performance for the face detection problem, while also pro-
viding an estimate of the head pose. A very popular family
of methods use statistical models of the face shape and ap-
pearance, like Active Appearance Models (AAMs) (Cootes
et al. 2001), multi-view AAMs (Ramnath et al. 2008), and
3D Morphable Models (Blanz and Vetter 1999; Storer et al.
2009). Such methods usually focus on tracking facial fea-
tures rather than estimating the head pose, however. In this
context, Martins and Batista (2008) coupled an Active Ap-
pearance Model with the POSIT algorithm for head pose
tracking.

2D Feature-Based Methods These methods rely on some
specific facial features to be visible, and therefore are sen-
sitive to occlusions and to large head rotations. Vatahska et
al. (2007) use a face detector to roughly classify the pose
as frontal, left, or right profile. After this, they detect the
eyes and nose tip using AdaBoost classifiers, and the detec-
tions are fed into a neural network which estimates the head
orientation. Similarly, Whitehill et al. (2008) present a dis-
criminative approach to frame-by-frame head pose estima-
tion. Their algorithm relies on the detection of the nose tip
and both eyes, thereby limiting the recognizable poses to the
ones where both eyes are visible. Morency et al. (2008) pro-
pose a probabilistic framework called Generalized Adaptive
View-based Appearance Model integrating frame-by-frame
head pose estimation, differential registration, and keyframe
tracking.

3D Methods In general, approaches relying solely on 2D
images are sensitive to illumination changes and lack of dis-
tinctive features. Moreover, the annotation of head poses
from 2D images is intrinsically problematic. Since 3D sens-
ing devices have become available, computer vision re-
searchers have started to leverage the additional depth in-
formation for solving some of the inherent limitations of

image-based methods. Some of the recent works thus use
depth as primary cue (Breitenstein et al. 2008) or in addi-
tion to 2D images (Cai et al. 2010; Morency et al. 2003;
Seemann et al. 2004).

Seemann et al. (2004) presented a neural network-based
system fusing skin color histograms and depth information.
It tracks at 10 fps but requires the face to be detected in
a frontal pose in the first frame of the sequence. The ap-
proach of Mian et al. (2006) uses head pose estimation only
as a pre-processing step to face recognition, and the low
reported average errors are only calculated on subjects be-
longing to the training set. Still in a tracking framework,
Morency et al. (2003) use instead a intensity and depth input
image to build a prior model of the face using 3D view-based
eigenspaces. Then, they use this model to compute the abso-
lute difference in pose for each new frame. The pose range
is limited and manual cropping is necessary. In Cai et al.
(2010), a 3D face model is aligned to an RGB-depth input
stream for tracking features across frames, taking into ac-
count the very noisy nature of depth measurements coming
from commercial sensors.

Considering instead pure detectors on a frame-by-frame
basis, Lu and Jain (2006) create hypotheses for the nose po-
sition in range images based on directional maxima. For ver-
ification, they compute the nose profile using PCA and a
curvature-based shape index. Breitenstein et al. (2008) pre-
sented a real time system working on range scans provided
by the scanner of Weise et al. (2007). Their system can han-
dle large pose variations, facial expressions, and partial oc-
clusions, as long as the nose remains visible. The method
relies on several candidate nose positions, suggested by a
geometric descriptor. Such hypotheses are all evaluated in
parallel on a GPU, which compares them to renderings of a
generic template with different orientations, finally selecting
the orientation which minimizes a predefined cost function.
Real time performance is only met thanks to the parallel
GPU computations. Unfortunately, GPUs are power-hungry
and might not be available in many scenarios where porta-
bility is important, e.g., for mobile robots. Breitenstein et al.
also collected a dataset of over 10K annotated range scans of
heads. The subjects, both male and female, with and with-
out glasses, were recorded using the scanner of Weise et al.
(2007) while turning their heads around, trying to span all
possible yaw and pitch rotation angles they could. The scans
were automatically annotated, tracking each sequence using
ICP in combination with a personalized face template. The
same authors also extended their system to use lower quality
depth images from a stereo system (Breitenstein et al. 2009).
Yet, the main shortcomings of the original method remain.

2.3 Facial Features Localization

2D Facial Features Facial feature detection from stan-
dard images is a well studied problem, often performed

440 Int J Comput Vis (2013) 101:437–458

as preprocessing for face recognition. Previous contribu-
tions can be classified into two categories, depending on
whether they use global or local features. Holistic methods,
e.g., Active Appearance Models (Cootes et al. 2001, 2002;
Matthews and Baker 2003), use the entire facial texture to
fit a generative model to a test image. They are usually af-
fected by lighting changes and a bias towards the average
face. The complexity of the modeling is an additional issue.
Moreover, these methods perform poorly on unseen iden-
tities (Gross et al. 2005) and cannot handle low-resolution
images well.

In recent years, there has been a shift towards methods
based on independent local feature detectors (Valstar et al.
2010; Amberg and Vetter 2011; Belhumeur et al. 2011).
Such detectors are discriminative models of image patches
centered around the facial landmarks, often ambiguous be-
cause the limited support region cannot cope with the large
appearance variations present in the training samples. To
improve accuracy and reduce the influence of wrong detec-
tions, global models of the facial features configuration like
pictorial structures (Felzenszwalb and Huttenlocher 2005;
Everingham et al. 2006) or Active Shape Models (Cristi-
nacce and Cootes 2008) are needed.

3D Facial Features Similar to the 2D case, methods fo-
cusing on facial feature localization from range data can
be subdivided into categories using global or local informa-
tion. Among the former class, the authors of Mpiperis et al.
(2008) deform a bi-linear face model to match a scan of an
unseen face in different expressions. Yet, the paper’s focus is
not on the localization of facial feature points and real time
performance is not achieved. Also Kakadiaris et al. (2007)
non-rigidly align an annotated model to face meshes. Con-
straints need to be imposed on the initial face orientation,
however. Using high quality range scans, Weise et al.(2009a)
presented a real time system, capable of tracking facial mo-
tion in detail, but using personalized templates. The same
approach has been extended to robustly track head pose and
facial deformations using RGB-depth streams provided by
commercial sensors like the Kinect (Weise et al. 2011).

Most works that try to directly localize specific feature
points from 3D data take advantage of surface curvatures.
For example, Sun and Yin (2008), Segundo et al. (2010),
Chang et al. (2006) all use curvature to roughly localize the
inner corners of the eyes. Such an approach is very sensitive
to missing depth data, particularly for the regions around
the inner eye corners, frequently occluded by shadows. Also
Mehryar et al. (2010) use surface curvatures by first ex-
tracting ridge and valley points, which are then clustered.
The clusters are refined using a geometric model imposing
a set of distance and angle constraints on the arrangement
of candidate landmarks. Colbry et al. (2005) use curvature
in conjunction with the Shape Index proposed by Dorai and

Jain (1997) to locate facial feature points from range scans
of faces. The reported execution time of this anchor point
detector is 15 sec per frame. Wang et al. (2002) use point
signatures (Chua and Jarvis 1997) and Gabor filters to de-
tect some facial feature points from 3D and 2D data. The
method needs all desired landmarks to be visible, thus re-
stricting the range of head poses while being sensitive to oc-
clusions. Yu et al. (2008) use genetic algorithms to combine
several weak classifiers into a 3D facial landmark detector.
Ju et al. (2009) detect the nose tip and the eyes using binary
neural networks, and propose a 3D shape descriptor invari-
ant to pose and expression.

Zhao et al. (2011) propose a 3D Statistical Facial Feature
Model (SFAM), which models both the global variations in
the morphology of the face and the local structures around
the landmarks. The low reported errors for the localization
of 15 points in scans of neutral faces come at the expense of
processing time: over 10 minutes are needed to process one
facial scan. In Nair and Cavallaro (2009), fitting the pro-
posed PCA shape model containing only the upper facial
features, i.e., without the mouth, takes on average 2 minutes
per face.

In general, prior work on facial feature localization from
3D data is either sensitive to occlusions, especially of the
nose, requires prior knowledge of feature map thresholds,
cannot handle large rotations, or does not run in real time.

3 Random Forest Framework for Face Analysis

In Sect. 3.1 we first summarize a general random forest
framework (Breiman 2001), then give specific details for
face analysis based on depth data in Sects. 3.2 and 3.3.

3.1 Random Forest

Decision trees (Breiman et al. 1984) can map complex input
spaces into simpler, discrete or continuous output spaces,
depending on whether they are used for classification of re-
gression purposes. A tree splits the original problem into
smaller ones, solvable with simple predictors, thus achieving
complex, highly non-linear mappings in a very simple man-
ner. A non-leaf node in the tree contains a binary test, guid-
ing a data sample towards the left or the right child node.
The tests are chosen in a supervised-learning framework,
and training a tree boils down to selecting the tests which
cluster the training such as to allow good predictions using
simple models.

Random forests are collections of decision trees, each
trained on a randomly sampled subset of the available data;
this reduces over-fitting in comparison to trees trained on the
whole dataset, as shown by Breiman (2001). Randomness is
introduced by the subset of training examples provided to

Int J Comput Vis (2013) 101:437–458 441

Fig. 1 Example of regression forest for head pose estimation. For each
tree, the tests at the non-leaf nodes direct an input sample towards a
leaf, where a real-valued, multivariate distribution of the output param-
eters is stored. The forest combines the results of all leaves to produce
a probabilistic prediction in the real-valued output space

each tree, but also by a random subset of tests available for
optimization at each node.

Figure 1 illustrates a random regression forest mapping
feature patches extracted from a depth image to a distribu-
tion stored at each leaf. In our framework, these distributions
model the head orientation (Sect. 3.2) or locations of facial
features (Sect. 3.3). In the following, we outline the general
training approach of a random forest and give the applica-
tion specific details in Sects. 3.2 and 3.3.

A tree T in a forest T = {Tt } is built from a set of anno-
tated patches, randomly extracted from the training images:
P = {Pi}, where Ii is the appearance of the patch. Starting
from the root, each tree is built recursively by assigning a
binary test φ(I) → {0,1} to each non-leaf node. Such test
sends each patch (according to its appearance) either to the
left or right child, in this way, the training patches P arriving
at the node are split into two sets, PL(φ) and PR(φ).

The best test φ∗ is chosen from a pool of randomly gener-
ated ones ({φ}): all patches arriving at the node are evaluated
by all tests in the pool and a predefined information gain of
the split IG(φ) is maximized:

φ∗ = arg max
φ

IG(φ) (1)

IG(φ) = H(P) −
∑

i∈{L,R}
wi H

(
Pi (φ)

)
, (2)

where wi = |Pi (φ)|
|P | is the ratio of patches sent to each child

node and H(P) is a measure of the patch cluster P , usu-
ally related to the entropy of the clusters’ labels. The mea-
sure H(P) can have different forms, depending on whether
the goal of the forest is regression, classification, or rather a
combination of the two. The measures that are relevant for
face analysis are discussed in Sects. 3.2 and 3.3. The pro-
cess continues with the left and the right child using the cor-
responding training sets PL(φ∗) and PR(φ∗) until a leaf is
created when either the maximum tree depth is reached, or
less than a minimum number of training samples are left.

In order to employ such a random forest framework for
face analysis from depth data, we have to

– acquire annotated training data P ,
– define binary tests φ,
– define a measure H(P),
– define a distribution model to be stored at the leaves.

These issues are discussed in the following sections.

3.2 Head Pose Estimation

3.2.1 Training Data

Building a forest is a supervised learning problem, i.e., train-
ing data needs to be annotated with labels on the desired out-
put space. In our head pose estimation setup, a training sam-
ple is a depth image containing a head, annotated with the
3D locations of a specific point, i.e., the tip of the nose, and
the head orientation. Fix-sized patches are extracted from a
training image, each annotated with two real-valued vectors:
While θ1 = {θx, θy, θz} is the offset computed between the
3D point falling at the patch center and the nose tip, the head
orientation is encoded as Euler angles, θ2 = {θya, θpi, θro}.
In order for the forest to be more scale-invariant, the size
of the patches can be made dependent on the depth (e.g., at
its center), however, in this work we assume the faces to be
within a relatively narrow range of distances from the sen-
sor.

In order to deal with background like hair and other body
parts, fixed-sized patches are not only sampled from faces
but also from regions around them. A class label ci is thus
assigned to each patch Pi , where ci = 1 if it is sampled from
the face and 0 otherwise. The set of training patches is there-
fore given by P = {Pi = (Ii , ci , θ i)}, where θ = (θ1, θ2). Ii

represents the image features I f
i computed from a patch Pi .

Such features include the original depth values plus, option-
ally, the geometric normals, i.e., for a depth pixel d(u, v),
the average of the normals of the planes passing through
d(u, v) and pairs of its 4-connected neighbors. The x, y, and
z coordinates of the normals are treated as separate feature
channels.

3.2.2 Binary Tests

Our binary tests φf,F1,F2,τ (I) are defined as:

|F1|−1
∑

q∈F1

I f (q) − |F2|−1
∑

q∈F2

I f (q) > τ, (3)

where f is the feature channel’s index, F1 and F2 are two
asymmetric rectangles defined within the patch, and τ is a
threshold. We use the difference between the average values
of two rectangular areas as in Fanelli et al. (2011a), Cri-
minisi et al. (2010), rather than single pixel differences as

442 Int J Comput Vis (2013) 101:437–458

Fig. 2 Example of a training patch (larger, red rectangle) with its
associated offset vector (arrow) between the 3D point falling at the
patch’s center (red dot) and the ground truth location of the nose
(marked in green). The two rectangles F1 and F2 represent a possi-
ble choice for the regions over which to compute a binary test, i.e., the
difference between the average values computed over the two boxes
(Color figure online)

in Gall et al. (2011) in order to be less sensitive to noise;
the additional computation is negligible when integral im-
ages (Viola and Jones 2004) are used. Tests defined as (3)
represent a generalization of the widely-used Haar-like fea-
tures (Papageorgiou et al. 1998). An example test is shown
in Fig. 2: a patch is marked in red, containing the two re-
gions F1 and F2 defining the test (in black); the arrow repre-
sents the 3D offset vector (θ1) between the 3D patch center
(in red) and the ground truth location of a feature point, the
nose tip in this case (green).

3.2.3 Goodness of Split

A regression forest can be applied to head pose estima-
tion from depth images containing only faces (Fanelli et al.
2011a); in this case, all training patches are positive (ci =
1 ∀i) and the measure H(P) is defined as the entropy of the
continuous patch labels. Assuming θn, where n ∈ {1,2}, to
be realizations of 3-variate Gaussians, we can represent the
labels in a set P as p(θn) = N (θn; θn,Σn), and thus com-
pute the differential entropy H(P)n for n:

H(P)n = 1

2
log

(
(2πe)3

∣∣Σn
∣∣). (4)

We thus define the regression measure:

Hr (P) =
∑

n

log
(∣∣Σn

∣∣) ∝
∑

n

H(P)n. (5)

Substituting (5) into (2) and maximizing it actually favors
splits which minimize the covariances of the Gaussian dis-
tributions computed over all label vectors θn at the children
nodes, thus intuitively decreasing the regression uncertainty.

Goal of the forest, however, is not only to map image
patches into probabilistic votes in a continuous space, but,
as in Fanelli et al. (2011b), also to decide which patches
are actually allowed to cast such votes. In order to include
a measure of the classification uncertainty in the informa-

tion gain defined by (2), we use the measure Hc(P) of the
cluster’s class uncertainty, defined as the entropy:

Hc(P) = −
K∑

k=0

p(c = k|P) log
(
p(c = k|P)

)
, (6)

where K = 1. The class probability p(c = k|P) is approx-
imated by the ratio of patches with class label k in the set
P .

The two measures (5) and (6) can be combined in differ-
ent ways. One approach, as in the work of Gall et al. (2011),
is to randomly select one or the other at each node of the
trees, denoted in the following as the interleaved method.
A second approach (linear) was proposed by Okada (2009),
i.e., a weighted sum of the two measures:

Hc(P) + α max
(
p(c = 1| P) − tp,0

)
Hr (P). (7)

When minimizing (7), the optimization is steered by the
classification term alone until the purity of positive patches
reaches the activation threshold tp . From that point on,
the regression term starts to play an ever important role,
weighted by the constant α, until the purity reaches 1. In
this case, Hc = 0 and the optimization is driven only by the
regression measure Hr .

In Fanelli et al. (2011b), we proposed a third approach,
where the two measures are weighted by an exponential
function of the depth:

Hc(P) + (
1 − e− d

λ
)

Hr (P), (8)

where d is the depth of the node in the tree. In this way, the
regression measure is given increasingly higher weight as
we descend deeper in the tree towards the leaves, with the
parameter λ specifying the steepness of the change.

Note that, when only positive patches are available, Hc =
0, i.e., (7) and (8) are both proportional to the regression
measure Hr alone, and both lead to the same selected test
φ∗, according to (1).

In our experiments (see Sect. 4.2.2), we evaluate the three
possibilities for combining the classification measure Hc

and the regression measure Hr for training.

3.2.4 Leaves

For each leaf, the class probabilities p(c = k| P) and the dis-
tributions of the continuous head pose parameters p(θ1) =
N (θ1; θ1,Σ1) and p(θ2) = N (θ2; θ2,Σ2) are stored. The
distributions are estimated from the training patches that ar-
rive at the leaf and are used for estimating the head pose as
explained in the following section.

3.2.5 Testing

When presented with a test depth image, patches are densely
sampled from the whole image and sent down through all

Int J Comput Vis (2013) 101:437–458 443

Fig. 3 (a) Example votes, cast by different patches extracted from a
Kinecht depth image. The green, red, and blue patch are classified as
positives and therefore cast votes for the nose position (correspond-
ingly colored spheres). On the other hand, the black patch at the shoul-
der is classified as negative and does not vote. (b) Example high res-

olution test image: the green spheres represent the votes selected after
outliers (blue spheres) are filtered out by mean shift. The large green
cylinder stretches from the final estimate of the nose center in the esti-
mated face direction (Color figure online)

trees in the forest. Each patch is guided by the binary tests
stored at the nodes, as illustrated in Fig. 1. A stride param-
eter controls how densely patches are extracted, thus easily
steering speed and accuracy of the regression.

The probability p(c = k| P) stored at the leaf judges how
informative the test patch is for class k. This probability
value tells whether the patch belongs to the head or other
body parts. Since collecting all relevant negative examples
is harder than collecting many positive examples, we only
consider leaves with p(c = k| P) = 1. For efficiency and ac-
curacy reasons, we also filter out leaves with a high vari-
ance, which are less informative for the regression, i.e., all
leaves with tr(Σ1) greater than a threshold maxv . The cur-
rently employed threshold (maxv = 400) has been set based
on a validation set. Although the two criteria seem to be very
restrictive, the amount of sampled patches and leaves is large
enough to obtain reliable estimates.

The remaining distributions are used to estimate θ1 by

adding the mean offsets θ1 to the patch center θ1(P):

N
(
θ1; θ1(P) + θ1,Σ1). (9)

The corresponding means for the position of the nose tip
are illustrated in Fig. 3. The votes are then clustered, and the
clusters are further refined by mean shift in order to remove
additional outliers. As kernel for the mean shift, we use a
sphere with a radius defined as one sixth of the radius of the
average face in the model of Paysan et al. (2009). A cluster
is declared as a head if it contains a large enough number of
votes. Because the number of votes is directly proportional
to the number of trees in the forest (a tree can contribute up
to one vote for each test patch), and because the number of

patches sampled is inversely proportional to the square of
the stride, we use the following threshold:

β
#trees

stride2
. (10)

For our experiments, we use β = 300.
For each cluster left, i.e., each head detected, the distri-

butions in it are averaged, where the mean gives an estimate
for the position of the nose tip θ1 and the head orientation
θ2 and the covariance measures the uncertainty of the esti-
mates.

3.3 Facial Features Localization

Since the framework for head pose estimation is very gen-
eral and can be used in principle for predicting any con-
tinuous parameter of the face, the modifications for local-
izing facial features are straightforward. Instead of having
only two classes as in Sect. 3.2.1, we have K + 1 classes,
where K is the number of facial feature points we wish to
localize. The set of training patches is therefore given by
P = {Pi = (Ii , ci , θ i)}, where θ i = {θ1

i , θ
2
i , . . . θ

K
i } are the

offsets between the patch center and the 3D locations of each
of the K feature points. Accordingly, (5) is computed for the
K fiducials and (6) is computed for the K +1 classes, where
c = 0 is the label for the background patches.

The testing, however, slightly differs. In Sect. 3.2.5, all
patches are allowed to predict the location of the nose tip
and the head orientation. While this works for nearly rigid
transformations of the head, the location of the facial fea-
tures depends also on local deformations of the face, e.g.,
the mouth shape. In order to avoid a bias towards the aver-
age face due to long distance votes that do not capture local
deformations, we reduce the influence of patches that are

444 Int J Comput Vis (2013) 101:437–458

more distant to the fiducial. We measure the confidence of a
patch P for the location of a feature point n by

exp

(
−‖θn‖2

γ

)
, (11)

where γ = 0.2 and θn is the average offset relative to point
n, stored at the leaf where the patch P ends. Allowing a
patch to vote only for feature points with a high confidence,
i.e., above a feature-specific threshold, our algorithm can
handle local deformations better, as our experiments show.
The final 3D facial feature points’ locations are obtained by
performing mean-shift for each point n.

4 Evaluation

In this section, we thoroughly evaluate the proposed random
forest framework for the tasks of head pose estimation from
high quality range scans (Sect. 4.1), head pose estimation
from low quality depth images (Sect. 4.2), and 3D facial
features localization from high resolution scans (Sect. 4.3).
Since the acquisition of annotated training data is an impor-
tant step and a challenge task itself, we first present the used
databases1 in each subsection.

4.1 Head Pose Estimation—High Resolution

4.1.1 Dataset

The easiest way to generate an abundance of training data
with perfect ground truth is to synthesize head poses. To
this end, we synthetically generated a very large training set
of 640 × 480 range images of faces by rendering the 3D
morphable model of Paysan et al. (2009). We made such
model undergo 50K different rotations, uniformly sampled
from ±95◦ yaw, ±50◦ pitch, and ±20◦ roll. We also ran-
domly varied the model’s distance from the camera and fur-
ther perturbed the first 30 modes of the PCA shape model
sampling uniformly within ±2 standard deviation, thus in-
troducing variations also in identity.2

Such a dataset was automatically annotated with the 3D
coordinates of the nose tip and the applied rotations, repre-
sented as Euler angles. Figure 4 shows a few of the training
faces, with the red cylinder pointing out from the nose indi-
cating the annotation in terms of nose position and head di-
rection. Note that the shape model captures only faces with
neutral expression and closed mouth. Furthermore, impor-
tant parts of the head like hair or the full neck are missing.

1Most of the datasets are publicly available at http://www.vision.ee.
ethz.ch/datasets.
2Because of the proprietary license for Paysan et al. (2009), we cannot
share the above database. The PCA model, however, can be obtained
from the University of Basel.

Fig. 4 Sample images from our synthetically generated training set.
The heads show large 3D rotations and variations in the distance to
the camera and also in identity. The red cylinder attached to the nose
represents the ground truth face orientation (Color figure online)

This will be an issue in Sect. 4.2, where we discuss the lim-
itations of synthetic training data.

For testing, we use the real sequences of the ETH Face
Pose Range Image Data Set (Breitenstein et al. 2008). The
database contains over 10K range images of 20 people (3 fe-
males, 6 subjects recorded twice, with and without glasses)
recorded using the scanner of Weise et al. (2007) while turn-
ing their head around, trying to cover all pitch and yaw ro-
tations. The images have a resolution of 640 × 480 pixels,
and a face typically consists of around 150 × 200 pixels.
The heads undergo rotations of about ±90◦ yaw and ±45◦
pitch, while no roll is present. The data was annotated us-
ing person-specific templates and ICP tracking, in a similar
fashion as what will be later described in Sect. 4.2.1 and
shown in Fig. 15. The provided ground truth contains the
3D coordinates of the nose tip and the vector pointing from
the nose towards the facing direction.

4.1.2 Experiments

In this section, we assume a face to be the prominent object
in the image. That means that all leaves in a tree contain
a probability p(c = 1|P) = 1 and thus all patches extracted
from the depth image will be allowed to vote, no matter their
appearance.

Training a forest involves the choice of several parame-
ters. In the following, we always stop growing a tree when
the depth reaches 15, or if there are less than 20 patches left
for training. Moreover, we randomly generate 20K tests for
optimization at each node, i.e., 2K different combinations of
f , F1, and F2 in (3), each with 10 different thresholds τ .
Other parameters include the number of randomly selected
training images, the number of patches extracted from each
image (fixed to 20), the patch size, and the maximum size
of the sub-patches defining the areas F1 and F2 in the tests
(set to be half the size of the patch). Also the number of
feature channels available is an important parameter; in the

http://www.vision.ee.ethz.ch/datasets
http://www.vision.ee.ethz.ch/datasets

Int J Comput Vis (2013) 101:437–458 445

Fig. 5 (a) Success rate of the system depending on the patch size
(when using 1000 training samples), overlaid to the missed detection
rate. (b) Success and missed detection rate depending on the number
of training data (for 100 × 100 patches). Success is defined for a nose
error below 20 mm and angular error below 15 degrees

following, we use all features (depth plus normals) unless
otherwise specified.

A pair of crucial test-time parameters are the number of
trees loaded in the forest and the stride controlling the spatial
sampling of the patches from an input image. Such values
can be intuitively tuned to find the desired trade-off between
accuracy and temporal efficiency of the estimation process,
making the algorithm adaptive to the constraints of different
applications.

In all the following experiments, we use the Euclidean
distance in millimeters as the nose localization error. For
what concerns the orientation estimation, the ETH database
does not contain large roll variations, and in fact these rota-
tions are not encoded in the directional vector provided as
ground truth. We therefore evaluated our orientation estima-
tion performance computing the head direction vector from
our estimates of the yaw and pitch angles and report the an-
gular error in degrees with the ground truth vector.

Figure 5 describes the performance of the algorithm
when we varied the size of the training patches and the num-
ber of samples used for training each tree. In Fig. 5(a), the
blue, continuous line shows the percentage of correctly clas-
sified images as a function of the patch size, when 1000
training images are used. Success is declared if the nose
error is smaller than 20 mm and the angular error is be-
low 15 degrees. Although this measure might be too gen-
erous for some applications, it reflects the relative estima-
tion performance of the approach and is therefore a useful
measure for comparing different settings of the proposed
approach. The red, dashed line shows instead the percent-
age of false positives, i.e., missed detections, again vary-
ing with the size of the patch. The plot shows that a min-
imum size for the patches is critical since small patches can
not capture enough information to reliably predict the head
pose. However, there is also a slight performance loss for
large patches. In this case, the trees become more sensitive
to occlusions and strong artifacts like holes since the patches
cover a larger region and overlap more. Having a patch size
between 80 × 80 and 100 × 100 pixels seems to be a good

Fig. 6 Processing time: (a) Regression time as a function of the num-
ber of trees in the forest when the stride is fixed to 10 pixels. (b) Run
time for a forest of 20 trees as a function of the stride parameter

choice where the patches are discriminative enough to esti-
mate the head pose, but they are still small enough such that
an occlusion affects only a subset of patches. Figure 5(b)
also shows accuracy and missed detections rate, this time
for 100 × 100 patches, as a function of the number of train-
ing images. It can be noted that the performance increases
with more training data, but it also saturates for training sets
containing more than 2K images. For the following experi-
ments, we trained on 3000 images, extracting 20 patches of
size 100 × 100 pixels from each of them.

In all the following graphs, red circular markers con-
sistently represent the performance of the system when all
available feature channels are used (i.e., depth plus geo-
metric normals), while the blue crosses refer to the results
achieved employing only the depth channel.

The plots in Fig. 6 show the time in milliseconds needed
to process one frame, once loaded in the RAM. The val-
ues are reported as a function of the number of trees used
and of the stride parameter. The numbers were computed
over the whole ETH database, using an Intel Core i7 CPU
@ 2.67 GHz processor, without resorting to multithread-
ing. Figure 6(a) plots the average run time for a stride fixed
to 10 pixels, as a function of the number of trees, while
in Fig. 6(b) 20 trees are loaded and the stride parameter
changes instead. For strides equal to 10 and greater, the sys-
tem always performs in real time. Unless otherwise speci-
fied, we use these settings in all the following experiments.
Obviously, having to compute the normals (done on the CPU
using a 4-neighborhood) increases processing time, but, for
the high-quality scans we are dealing with, the boost in ac-
curacy justifies the loss in terms of speed, as can be seen in
the next plots.

Figure 7(a) shows the average errors in the nose localiza-
tion task, plotted as a function of the number of trees when
the stride is fixed to 10, while in Fig. 7(b) 20 trees are loaded
and the stride is changed. Similarly, the plots in Figs. 8(a)
and 8(b) present the average errors in the estimation of the
head orientation. When comparing Figs. 6, 7, and 8, we can
conclude that it is better to increase the stride than reducing
the number of trees when the processing time needs to be

446 Int J Comput Vis (2013) 101:437–458

reduced. Using normals in addition also improves the detec-
tion performance more than increasing the number of trees.
In particular, using depth and normals with a stride of 10
gives a good trade-off between accuracy and processing time
for our experimental settings.

In Fig. 9, the plots show the accuracy of the system com-
puted over the whole ETH database, when both depth and
geometric normals are used as features. Specifically, the
curves in Fig. 9(a) and 9(b) represent the percentage of cor-
rectly estimated depth images as functions of the success
threshold set for the nose localization error, respectively for
the angular error. Using all the available feature channels
performs consistently better than relying only on the depth
information. The plots show also the success rate of the

Fig. 7 Mean errors (in millimeters) for the nose localization task, as a
function of the number of trees in the forest (a) and of the stride (b)

Fig. 8 Mean errors (degrees) for the orientation estimation task, as a
function of the number of trees in the forest (a) and of the stride (b)

method of Breitenstein et al. (2008), applied to the same
data;3 their algorithm uses information about the normals
to generate nose candidates, but not for refining the pose
estimation on the GPU, where a measure based on the nor-
malized sum of squared depth differences between reference
and input range image is used.

Our approach proves better at both the tasks of nose tip
detection and head orientation estimation. We improve over
the state-of-the-art especially at low thresholds, which are
also the most relevant. In particular, for a threshold of 10 mm
on the nose localization error, our improvement is of about
10 % (from 63.2 % to 73.0 %), and even better for a thresh-
old of 10 degrees on the angular error: Our system suc-
ceeded in 94.7 %, compared to 76.3 % of Breitenstein et
al.

Table 1 reports mean and standard deviation of the er-
rors, compared to the ones of Breitenstein et al. (2008). The
first columns show mean and standard deviation for the Eu-
clidean error in the nose tip localization task, the orientation
estimation task, and for the yaw and pitch estimation errors
taken singularly. The last two columns give the percentages
of correctly estimated images for a threshold on the angu-
lar error of 10 degrees, and on the nose localization error of
10 millimeters. The average errors were computed from the
ETH database, where our system did not return (i.e., no clus-
ter of votes large enough was found) an estimate in 0.4 % of
the cases, while the approach of Breitenstein failed 1.6 %
of the time; only faces where both the systems returned an
estimate were used to compute the average and standard de-
viation values.

Figure 10 shows the success rate of the system applied to
the ETH database (using 20 trees and a stride of 10) for an
angular error threshold of 15◦ and a nose error threshold of
20 mm. The heat map shows the database divided in 15◦ ×
15◦ bins depending on the head’s pitch and yaw angles. The
color encodes the amount of images in each bin, according

3We used the source code provided by the authors.

Fig. 9 Accuracy: (a) Percentage of correctly estimated poses as a
function of the nose error threshold. (b) Accuracy plotted against the
angle error threshold. The additional information coming from the nor-

mals (red curves) consistently boosts the performance. The black curve
represents the accuracy of Breitenstein et al. (2008) on the same dataset
(Color figure online)

Int J Comput Vis (2013) 101:437–458 447

Table 1 Comparison of our results with the ones of Breitenstein et al.
(2008). Mean and standard deviation are given for the errors on nose
localization, direction estimation, and singularly for yaw and pitch an-
gles. The values in the last two columns are the percentages of correctly

estimated images for a threshold on the angular error of 10 degrees, and
on the nose localization error of 10 millimeters. We used a forest with
20 trees, leveraging both depth and normals as features, testing with a
stride of 10 pixels

Nose error Direction error Yaw error Pitch error Dir. (≤10◦) Nose (≤10 mm)

Random Forests 9.6 ± 13.4 mm 5.7 ± 8.6◦ 4.4 ± 2.7◦ 3.2 ± 2.7◦ 94.7 % 73.0 %

Breitenstein 08 10.3 ± 17.5 mm 9.1 ± 12.6◦ 7.0 ± 13.4◦ 4.8 ± 4.9◦ 76.3 % 63.2 %

Fig. 10 Normalized success rates of the estimation, equivalent of
Fig. 10 in Breitenstein et al. (2008). The database was discretized in
15 ◦ × 15 ◦ areas and the accuracy computed for each range of angles
separately. The color encodes the number of images falling in each re-
gion, as explained by the side bar. Success is declared when the nose
error is below 20 mm and the angular error is below 15 degrees (Color
figure online)

to the side color bar. The results are 100 % or close to 100 %
for most of the bins, especially in the central region of the
map, which is where most of the images fall. Our results are
comparable or superior to the equivalent plot in Breitenstein
et al. (2008).

Figure 11 shows some successfully processed frames
from the ETH database. The red ellipse is placed on the
estimated nose tip location and scaled according to the co-
variance output of the regression forest. The green cylinder
stretches from the nose tip along the estimated head direc-
tion. Our system is robust to large rotations and partial facial
occlusions (note the girl at the bottom right, with most of the
face covered by hair, which is not reconstructed by the scan-
ner). Additional results are shown in Fig. 12, demonstrating
how the proposed algorithm can handle a certain degree of
facial expression and occlusion, maintaining an acceptable
accuracy of the estimate.

We ran our real time system on a Intel Core 2 Duo com-
puter @ 2 GHz, equipped with 2 GB of RAM, which was si-
multaneously used to acquire the range data as explained in
Weise et al. (2007). Figure 14 shows some example frames
from the video.4 Our method successfully estimates the head

4www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html.

Fig. 11 Correctly estimated poses from the ETH database. Large ro-
tations, glasses, and facial hair do not pose major problems in most of
the cases. The green cylinder represents the estimated head rotation,
while the red ellipse is centered on the estimated 3D nose position and
scaled according to the covariance provided by the forest (scaled by a
factor of 10 to ease the visualization) (Color figure online)

Fig. 12 Example frames from a sequence acquired with the 3D scan-
ner of Weise et al. (2007). Occlusions (even of the nose) and facial
expressions can be handled by our system

pose even when the nose is totally occluded and thus most
of the other approaches based on 3D (e.g., Breitenstein et al.
2008) would completely fail. Some degree of facial dynam-
ics also does not seem to cause problems to the regression in
many cases, even though the synthetic training dataset con-
tains only neutral faces; only very large mouth movements
like yawning result in a loss of accuracy.

Some example failures are rendered in Fig. 13. Note how
the red ellipse is usually large, indicating a high uncertainty

http://www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html

448 Int J Comput Vis (2013) 101:437–458

of the estimate. These kind of results are usually caused by
a combination of large rotations and missing parts in the re-
construction, e.g., because of hair or occlusions; in those cir-
cumstances, clusters of votes can appear in the wrong loca-
tions and if the number of votes in them is high enough, they
might be erroneously selected as the nose tip.

4.2 Head Pose Estimation—Low Resolution

4.2.1 Dataset

To train and test our head pose estimation system on low
quality depth images coming from a commercial sensor like
the Kinect, synthesizing a database is not an easy task. First
of all, such a consumer depth camera is built specifically for
being used in a living-room environment, i.e., capturing hu-
mans with their full body. This means that heads are always

Fig. 13 Example failure images from the ETH database. The large
ellipse denotes a high variance for the estimate of the nose location

present in the image together with other body parts, usually
the torso and the arms. Because regions of the depth image
different than the head are not informative about the head
pose, we need examples of negative patches, e.g., coming
from the body, together with positive patches extracted from
the face region. Lacking the human body model and MoCap
trajectories employed by Shotton et al. (2011), we resorted
to record a new database using a Kinect. The dataset com-
prises 24 sequences of 20 different subjects (14 men and 6
women, 4 people with glasses) recorded while sitting about
one meter away from the sensor. All subjects rotated their
heads trying to span all possible ranges of yaw and pitch
angles, but also some roll is present in the data.

To label the sequences with the position of the head and
its orientation, we processed the data off-line with a state-
of-the-art template-based head tracker (Weise et al. 2011),5

as illustrated in Fig. 15. A generic template was deformed to
match each person’s identity as follows. First, a sequence of
scans of the users’ neutral face recorded from different view-
points were registered and fused into one 3D point cloud
as described by Weise et al. (2009b). Then, the 3D mor-
phable model of Paysan et al. (2009) was used, together
with graph-based non-rigid ICP (Li et al. 2009), to adapt the
generic face template to the point cloud. Each sequence was
thus tracked with the subject’s template using ICP (Besl and
McKay 1992), obtaining as output for each frame the 3D lo-
cation of the head (and thus of the nose tip) and the rotation
angles.

Using such automatic method to acquire the ground truth
for our database allowed us to annotate over 15K frames in a

5Commercially available: http://www.faceshift.com.

Fig. 14 Example frames from our real time head pose estimation system, showing how the regression works even in the presence of partial
occlusions, notably of the nose. Facial expressions also can be handled to a certain degree, even though we trained only on neutral faces

Fig. 15 Automatic pose
labeling: A user turns the head
in front of the depth sensor, the
scans are integrated into a point
cloud model and a generic
template is fit to it. The
personalized template is used
for accurate rigid tracking

http://www.faceshift.com

Int J Comput Vis (2013) 101:437–458 449

Fig. 16 Example frames from the Biwi Kinect Head Pose Database.
Both depth and RGB images are present in the dataset, annotated with
head poses. In this paper, we only use the depth images for the head
pose estimation algorithm

matter of minutes. Moreover, we found that the mean trans-
lation and rotation errors were around 1 mm and 1 degree
respectively. Please note that such personalized face model
is only needed for labeling the training data: Our head pose
estimation system does not assume any initialization phase
nor person-specific training, and works on a frame-by-frame
basis.

The resulting Biwi Kinect Head Pose Database contains
head rotations in the range of around ±75◦ for yaw, ±60◦
for pitch, and ±50◦ for roll. Faces are 90×110 pixels in size
on average. Besides the depth data which we used for our al-
gorithm, the corresponding RGB images are also available,
as shown in Fig. 16.

4.2.2 Experiments

Training patches must now be distinguished between pos-
itives (extracted from the head region) and negatives (be-
longing to other body parts). When we randomly extracted
patches from the Biwi Kinect Head Pose Database, we la-
beled them as positive only if the Euclidean distance be-
tween the 3D point falling at the center of the patch and
the closest point on the face model used for annotation was
below 10 millimeters. In this way, negative patches were ex-
tracted not only from the torso and the arms, but also from
the hair. Figure 17 shows this process.

In the following experiments, unless explicitly mentioned
otherwise, all training and testing parameters are kept the
same as in the previous evaluation done on high resolution
scans. We only reduce the size of the patches to 80 × 80
because the heads are smaller in the Kinect images than in
the 3D scans. Furthermore, we extract 20 negative patches
per training image in addition to the 20 positive patches.
For testing, patches ending in a leaf with p(c| P) < 1 and
tr(Σ1) ≥ maxv are discarded. Given the much lower quality
of the depth reconstruction, using the geometric normals as
additional features does not bring any improvement to the
estimation, therefore we only use the depth channel in this
section. Because the database does not contain a uniform
distribution of head poses, but has a sharp peak around the

Fig. 17 Training patches extracted from the annotated depth images of
the Biwi Kinect Head Pose Database acquired with a Microsoft Kinect.
The green box represents a positive patch, while the red one is an exam-
ple of a negative patch. The dark dots on the face represent the model’s
vertices used to define the patch label: Only if the center of the patch
falls near such vertices, the patch is considered as positive

frontal face configuration, as can be noted from Fig. 21, we
bin the space of yaw and pitch angles and cap the number of
images for each bin.

In Sect. 3.2.3, we described different ways to train forests
capable of classifying depth patches into head or body and
at the same time estimating the head pose from the positive
patches. In order to compare the discussed training strate-
gies (interleaved, linear, and exponential), we divided the
database into a testing and training set of respectively 2 (per-
sons number 1 and 12) and 18 subjects.

Depending on the method used to combine the classifica-
tion and regression measures, additional parameters might
be needed. In the interleaved setting (Gall et al. 2011), each
measure is chosen with uniform probability, except at the
two deepest levels of the trees where the regression measure
is always used. For the linear weighting approach (Equa-
tion (7)), we set α and tp as suggested by Okada (2009),
namely to 1.0 and 0.8. For the exponential weighting func-
tion based on the tree depth (Equation (8)), we used λ equal
to 2, 5, and 10. All comparisons were done with a forest of
20 trees and a stride of 10.

Results are plotted in Figs. 18 and 19. The success rate of
the algorithm is shown in Fig. 18(a), as the maxv parameter
increases, i.e., as more and more leaves are allowed to vote.
Success means that the detected nose tip is within 20 mm
from the ground truth location, and that the angular error is
below 15◦. Figure 18(b) shows, again as a function of the
maximum leaves’ variance, the percentage of missed detec-
tions. In general, low values of the parameter maxv have a
negative impact on the performance, as the number of votes
left can become too small. However, reducing the maximum
variance makes only the most certain votes pass, produc-
ing better estimates if there are many votes available, e.g.,
when the face is covering a large part of the image; more-
over, reducing maxv can also be used to speed up the es-
timation time. The parameter shows how well the different
schemes minimize the classification and regression uncer-
tainty. Because only the leaves with low uncertainties are

450 Int J Comput Vis (2013) 101:437–458

used for voting, trees with a large percentage of leaves with
a high uncertainty will yield a high missed detection rate, as
shown in Fig. 18(b). In this regards, all tested methods ap-
pear to behave similarly, except for the interleaved scenario,
which consistently performs worse, indicating that the trees
produced using such method had leaves with higher uncer-
tainty. We also note that the exponential weighting scheme
with λ = 5 returns the lowest number of missed detections.

The plots in Figs. 19(a) and 19(b) show the success rate as
function of a threshold on the nose error, respectively on the
orientation error. We note again the lower accuracy achieved
by the interleaving scheme, while the other methods perform
similarly.

Fig. 18 Accuracy (a) of the tested methods as a function of the max-
imum variance parameter, used to prune less informative leaves in the
forest. Success is defined when the nose estimation error is below
20 mm and the thresholds for the orientation estimation error is set to
15 degrees. The plots in (b) show the percentage of images where the
system did not return an estimate (false negatives), again as a function
of the maximum variance. It can be noted that the evaluated methods
perform rather similarly and the differences are small, except for the
interleaved scenario, which consistently performs worse

Fig. 19 Accuracy for the nose tip estimation error (a), respectively
the angle error (b) of the tested methods. The curves are plotted for
different values of the threshold defining success

We performed a 4-fold, subject-independent cross-valid-
ation on the Biwi Kinect Head Pose Database, using an ex-
ponential weighting scheme with λ set to 5. All other param-
eters were kept as described earlier. The results are given in
Table 2, where mean and standard deviation of the nose tip
localization, face orientation estimation, yaw, pitch and roll
errors are shown together with the percentage of missed de-
tections and the average time necessary to process an image,
depending on the stride parameter. It can be noted that the
system performs beyond real time for strides greater than or
equal to 10 (needing less than 20 ms to process a frame on a
2.67 GHz Intel Core i7 CPU, i.e., running at over 50 frames
per second), still maintaining a small number of missed de-
tections and low errors. Some examples of successful esti-
mations are given in Fig. 20, where the green cylinder en-
codes the estimated head pose, while the red one represents
the ground truth.

Some typical failure cases are shown in Fig. 22, with ex-
amples of missed detections, wrong detections, and a case
of a false positive (the magenta cylinder on the hand). Apart
from very large rotations, common issues of the current sys-
tem include long hair covering part of the head, and distract-
ing objects like hands or clothing. Adding more negatives
samples to the training set (e.g., of hands) would alleviate
some of these problems.

Figure 21 is the equivalent of Fig. 10, i.e., the results of
the cross-validation (stride 10) are given as ratios of success-
fully estimated frames for each 15×15 degrees bin. Success
is again declared for nose localization errors ≤20 mm and
angular errors ≤15◦. The map is colored according to the
number of images present in each bin. It can be noted how
the central areas contain a lot more frames than the border
ones, thus the necessity of binning the database before ran-
dom sampling for training.

As a last experiment, we rendered depth images of the
face templates which were used to annotate the database; see
Fig. 15. We simulated a Kinect by using the same intrinsics
camera matrix. In this way, we created a dataset of synthetic
depth images of heads, undergoing the same global move-
ments as the original data. Also the identity of the templates
are consistent with the recorded dataset. We thus extracted
the positive patches from the synthetic data, while using the

Table 2 Mean and standard deviation of the errors for the nose posi-
tion and Euler angles estimation, together with rate of false negatives
and average runtime, as functions of the stride. The values are com-

puted by 4-fold, subject independent cross validation on the entire Biwi
Kinect Head Pose Database

Stride Nose (mm) Direction (◦) Yaw (◦) Pitch (◦) Roll (◦) Missed (%) Time (ms)

5 12.2 ± 22.8 5.9 ± 8.1 3.8 ± 6.5 3.5 ± 5.8 5.4 ± 6.0 6.6 44.7

10 12.6 ± 23.4 6.1 ± 8.8 4.0 ± 7.1 3.6 ± 6.0 5.5 ± 6.2 6.5 17.8

15 13.4 ± 26.9 6.4 ± 9.4 4.2 ± 7.8 3.8 ± 6.4 5.5 ± 6.2 6.5 10.7

Int J Comput Vis (2013) 101:437–458 451

Fig. 20 Examples of successfully estimated depth images out of our Kinect database. The green cylinder represents the estimated head pose,
while the red one encodes the ground truth (Color figure online)

Table 3 Results of the cross-validation experiments, when synthetic data was used to extract positive training patches

Stride Nose (mm) Direction (◦) Yaw (◦) Pitch (◦) Roll (◦) Missed (%) Time (ms)

5 19.7 ± 46.5 8.5 ± 12.9 6.0 ± 11.5 4.8 ± 7.1 5.8 ± 6.8 9.3 44.0

10 20.2 ± 47.3 8.7 ± 13.1 6.2 ± 11.8 4.9 ± 7.3 5.8 ± 6.8 9.2 15.3

15 21.7 ± 50.7 9.3 ± 14.0 6.6 ± 12.6 5.2 ± 7.7 6.0 ± 7.1 8.7 10.0

Fig. 21 Equivalent of Fig. 10: Normalized success rates of the estima-
tion, where success means nose error below 20 mm and angular error
below 15 degrees. The database was discretized in 15◦ × 15◦ areas and
the accuracy computed for each range of angles separately. The color
encodes the number of images falling in each region, as explained by
the side bar (Color figure online)

original depth data to sample negatives. Using the same set-
tings as for Table 2, we achieved the results presented in
Table 3. All errors are higher, in particular the ones related
to the nose tip.

The plots in Fig. 23 compare the accuracy of the sys-
tem when trained on real data and when using the synthe-
sized heads as positive samples. The continuous lines are
the results obtained using real data, while the dashed lines
represent the accuracy of the system when trained on syn-
thetic positive samples (and tested on real data). Specifically,
Fig. 23(a) plots the success rate as a function of the orien-
tation estimation error, while Fig. 23(b) as a function of the
nose error.

Fig. 22 Some typical failure cases of the algorithm, showing a missed
detection and two false positives. The estimated head pose is shown
in green, the ground truth is in red. The magenta cylinder indicates a
(wrong) second detection (Color figure online)

Using the synthetic heads decreased the performance,
though not in a very incisive manner. The loss in perfor-
mance can be explained by the incomplete head model that
does not include hair and anything below the neck as shown
in Fig. 15. Model incompleteness seems to be indeed a lim-
itation of synthetic training data generation. Another source
for the performance loss is the missing sensor noise in the
synthetic data.

452 Int J Comput Vis (2013) 101:437–458

Fig. 23 Percentage of correctly estimated images (4-fold cross vali-
dation) depending on the (a) head localization and (b) angular error
thresholds. The continuous lines represent the performance when real
data is used for training, while the dashed lines are the results of the
forests trained on positive patches extracted from synthetically gener-
ated heads. The whole Kinect dataset is always used for testing

Fig. 24 Example frame from the B3D(AC)2 database. High quality
range scans come together with RGB texture (not used in this paper)
and a high definition generic template deformed to match the facial
expression in each frame

4.3 Facial Features Localization

4.3.1 Datasets

When extending the random forest framework for the pur-
pose of facial features localization, once again a large
dataset of annotated range images of faces is needed.

As a first dataset, we chose B3D(AC)2 (Fanelli et al.
2010). This is a relatively naturalistic and large set of high
quality, dynamic facial scans, with subjects recorded using
the 3D scanner of Weise et al. (2007) while pronouncing a
set of 40 predefined sentences both in a neutral and in an
induced emotional state. The dataset includes 14 subjects,
8 females and 6 males, and a total of over 1100 sequences,
4.67 seconds long on average, for over 120K depth images.
Figure 24 shows an example frame: Depth and RGB im-
ages come together with a template of over 23K vertices,
deformed to fit the specific expression. Thanks to such an-
notation, we could select a set of 14 facial features on the
generic template and automatically extract their 3D loca-
tions from all frames in the dataset. In our facial features
detection algorithm, we only use the depth images from the
above database, i.e., we do not rely on the RGB data.

As a second dataset, we used BU3DFE (Yin et al.
2006), which contains a larger number of subjects (100,
56 females and 44 males), and stronger facial deformations.

Each subject performed the six basic expressions plus neu-
tral in front of a 3D face scanner. Each of the six proto-
typic expressions (happiness, disgust, fear, angry, surprise
and sadness) includes four levels of intensity, i.e., there are
25 static 3D expression models for each subject, resulting
in a total of 2500 faces. Because the dataset comes in form
of 2.5 face models, we could render them into depth images,
first without rotations, then with randomly varying the pitch,
yaw, and roll angles, sampling uniformly between ±20 de-
grees. All models come with manually annotated 83 facial
features locations in 3D, from which we extracted the 14
fiducial which interested us: Eye, nose, and mouth corners,
plus outer midpoints on the lips and the two extremes of the
eyebrows.

4.3.2 Experiments

When building a forest for localizing facial features from
range scans, we sample training patches both from the inside
and the outside of the face region. A patch is considered as
a positive training sample for facial feature k if the norm of
the corresponding offset vector is below a threshold, i.e., if
‖θk‖ ≤ 0.2r where r is the radius of the average face. Since
the definition of the class c = k already localizes patches in
a neighborhood of each feature, we use only the classifica-
tion measure (6) for training. Using an additional regression
measure did not change the performance in this setting.

Since facial features depend more on local deformations
of the face compared to the head pose, we use smaller
patches of size 40 × 40 pixels. Since we have also more
classes, we increased the depth of the trees to 20 and also the
number of sampled patches for training. Each tree is built
from 5000 randomly sampled images, each contributing
with 50 patches, 30 extracted from within the face bound-
ary (i.e., the bounding box defined by the ground truth facial
feature locations) and 20 from outside the face. During test-
ing, each patch reaching a leaf votes for feature point k if
P(c = k|P) ≥ 0.5, tr(Σk) < maxk

v , and the confidence (11)
is above a threshold. The threshold and the values maxk

v for
each facial feature point k are estimated by grid search over
a validation set. In particular, we extract patches from 2000
randomly selected training images out of the BA3D(AC)2

database. We only use the depth channel, without resorting
to additional features like the geometric normals.

We experimentally evaluated the influence of the number
of trees in the random forest, the stride, and the maximum
depth of the trees. For these experiments, we trained on 12
of the subjects of the B3D(AC)2 database and tested on the
remaining two subjects, one man and one woman. As shown
in Fig. 25, increasing the number of trees, letting them grow
deeper, and reducing the stride, all have positive effects on
the quality of the results. The plots show the mean Euclidean
error, in millimeters, averaged over all the feature points and

Int J Comput Vis (2013) 101:437–458 453

Fig. 25 (a) Average Euclidean error for the localization of all the fidu-
cials in millimeters depending on the number of trees, for a stride fixed
to 10 and maximum depth set to 20. (b) Error depending on the stride

parameter, with 15 trees in the forest and depth 20. (c) Error depending
on the depth of the trees, with 15 trees in the forest and stride 10. For
most of the configurations, the average error is below 5 mm

Fig. 26 Estimation time for all the 14 feature points, averaged over
500 randomly selected frames. As can be noted, the values are low and
our system runs at frame rates higher than 25 fps for most of the config-
urations. (a) Processing time depending on the number of trees, when

the stride is fixed to 10. (b) Run time depending on the stride, having
fixed the number of trees to 15. (c) Time in ms needed to process a
frame, depending on the maximum depth which the trees are allowed
to grow

all the frames in the test set. For most of the configurations
shown, the average error is below 5 millimeters. However,
increased accuracy comes at the cost of a higher computa-
tion time. Figure 26 shows the time in milliseconds needed
to process a test image once loaded into memory (the values
are averaged over 500 randomly selected frames), as a func-
tion of the number of trees, stride, and maximum depth of
trees. As can be seen, for a stride of 10 pixels, we achieve
real time performance, i.e., frame rates above 25 fps, when
loading up to 15 trees of depth 20. In all the following ex-
periments, we thus use a forest of 15 trees, each with a max-
imum depth of 20 and set the stride to 10 pixels.

We further performed 5-fold, subject-independent cross
validations on the B3D(AC)2 database (Fanelli et al. 2010),
and the BU3DFE database rendered both in frontal pose
and with random rotations added. Table 4 shows mean and
standard deviation of the errors in millimeters for all the
analyzed facial features. Moreover, the success rates (for
all feature points on the whole database) are given for two
conservative thresholds of 10 and 5 millimeters. The outer
brow corners are the points most often misplaced; this is

not surprising, as the brows present limited variation in
the depth channel. For the BU3DFE database, where the
mouth deforms more, the lower lip midpoint is also some-
times wrongly estimated.

The plot in Fig. 27 shows the percentage of correctly es-
timated points for all the tested databases, as a function of
the threshold defining success. For the B3D(AC)2 dataset,
we localized the feature points with an error below or equal
to 5 mm in 87.7 % of the cases, which becomes 98.2 %
for a threshold of 10 mm. For the BU3DFE database in
its frontal renderings, we correctly localized 76.8 % of the
points for a 5 mm threshold and 96.9 % for a 10 mm one;
such accuracies are lower for the database with synthetically
introduced rotations, namely 62.4 % and 92.2 %.

Some examples of successful detections of the 14 fa-
cial feature points on range images from the test datasets
are shown in Fig. 28. The three images on the left side
come from the B3D(AC)2 database and depict people talk-
ing, while the ones on the right side are renderings of the
BU3DFE database, with larger facial deformations due to
posed expressions. Some failure examples, where not all

454 Int J Comput Vis (2013) 101:437–458

Table 4 Summary of the performance of our method, applied to a 5-
fold cross validation on all the tested databases, for each fiducial. To-
gether with mean and standard deviation of the Euclidean errors, the

success rates for conservative thresholds of 5, respectively 10 millime-
ters are shown

Fiducial B3D(AC)2 BU-3DFE BU-3DFE with rotations

Succ. % (5/10 mm) Mean ± std Succ. % (5/10 mm) Mean ± std Suc. % (5/10mm) Mean ± std

outEyeL 85.37/98.67 3.29 ± 3.56 81.20/99.35 3.36 ± 2.09 66.01/95.93 4.66 ± 3.39

innEyeL 97.12/99.19 2.58 ± 2.94 97.72/99.95 2.32 ± 1.28 92.12/99.83 2.87 ± 1.71

innEyeR 95.20/98.83 3.41 ± 2.87 97.68/99.95 2.44 ± 1.47 91.43/99.83 2.94 ± 1.72

outEyeR 72.86/96.89 4.69 ± 6.42 83.55/99.26 3.32 ± 2.32 64.14/94.27 4.77 ± 4.69

noseL 96.80/99.88 2.41 ± 1.52 88.34/99.87 3.11 ± 1.58 81.03/99.55 3.48 ± 1.84

noseR 94.53/99.30 2.60 ± 2.47 87.45/99.75 3.24 ± 1.67 81.52/99.43 3.56 ± 1.92

mouthL 88.88/98.97 3.04 ± 2.15 69.38/95.53 4.46 ± 3.25 55.70/87.77 6.04 ± 5.44

mouthR 85.13/98.54 3.38 ± 3.38 69.95/95.93 4.41 ± 3.21 54.20/88.55 5.82 ± 4.77

upLip 94.55/99.85 2.95 ± 1.46 87.33/99.30 3.10 ± 2.09 73.04/98.05 4.05 ± 2.44

lowLip 86.17/98.34 3.38 ± 2.61 75.76/95.41 4.52 ± 5.39 49.61/89.52 6.45 ± 6.68

outBrowL 68.31/95.56 4.50 ± 3.66 49.49/88.10 5.90 ± 3.64 32.48/77.46 7.37 ± 4.22

innBrowL 93.95/98.39 2.86 ± 3.85 71.29/98.45 4.42 ± 2.56 51.23/92.89 5.42 ± 2.95

innBrowR 92.50/97.83 3.34 ± 4.16 68.77/97.68 4.59 ± 2.74 49.00/92.28 5.61 ± 3.08

outBrowR 77.01/94.66 4.99 ± 7.05 47.86/88.46 6.10 ± 3.93 32.19/75.39 7.71 ± 4.59

Fig. 27 Accuracy of the algorithm on the full database (5-fold cross
validation), as the threshold defining success changes. The accuracy is
the percentage of correctly estimated facial feature points

fiducials were correctly localized, are shown in Fig. 32.
Most errors occur around the mouth regions due to the large
deformations and the noisy reconstruction of the teeth and
oral cavity.

As a last experiment, in order to test the performance with
regard to partial occlusions and missing reconstructions, we
tested our system on synthetically corrupted range images.
First, we randomly selected parts of the depth images in the
B3D(AC)2 database and set them to zero, then, we ren-
dered a hand model in front of the faces from the BU3DFE

dataset, in order to simulate more realistic occlusions. In
both cases, we trained on the original data and tested on the
corrupted images, in a 5-fold cross-validation experiment.

Figure 29 shows the mean error, averaged over all the
facial feature points, as a function of the amount of synthet-
ically removed reconstructions on the B3D(AC)2 corpus.
The extent of missing data is measured as the percentage of
the area covered by the face bounding box, i.e., the small-
est rectangle enclosing all projections on the depth image of
the facial feature points ground truth locations, enlarged by
the patch size (40 pixels) on both dimensions. The occluding
patches are required to fall within the face bounding box and
sample test faces are rendered over the curve to ease visual-
ization. As can be seen from the plot, the proposed method
is robust to such missing reconstructions: Even when 50 %
of the data was missing, we still obtained an average error
below 8 mm.

Figures 30 and 31 relate to the artificially occluded
BU3DFE data. In particular, in Fig. 30, the success rate
(averaged over all feature points) is plotted against the per-
centage of occlusion. The blue, continuous line, relates to a
threshold of 10 mm, while the red, dashed line correspond
to a threshold of 5 mm. The amount of occlusion is calcu-
lated as the ratio of pixels in the face which are covered by
the hand. Similarly, Fig. 31 shows the average error in the
localization, as the occlusion increases. As our system was
trained only on positive patches coming from depth images
of faces, this experiment proved more challenging than the
previous one, and the errors grow faster as the hand occludes
a higher percentage of the face surface.

Some examples of successful detections on corrupted
images are shown in Fig. 34. On the left, the missing re-
constructions in the B3D(AC)2 database, on the right, the
hand-occluded renderings of the BU3DFE dataset.

Int J Comput Vis (2013) 101:437–458 455

Fig. 28 Successfully localized facial features localization on some test scans from the B3D(AC)2 database (left) and the BU3DFE dataset
(right)

Fig. 29 Mean errors (averaged over all the feature points) as a func-
tion of the amount of synthetically removed reconstruction from the
B3D(AC)2 database, measured as % of the bounding box enclosing
the ground truth locations of the fiducials. Example image are overlaid
on the plot, more examples are shown in Fig. 34, left

Fig. 30 Success rate, for a threshold of 10, respectively 5 mm, for the
facial features localization task. The curves are plotted as functions of
the percentage of face pixels occluded by the hand, in the renderings
of the BU3DFE dataset. Examples are shown in Fig. 34, right

In order to qualitatively evaluate the performance of our
algorithm, we also tested it on new subjects, directly as they
were scanned by the structured light scanner of Weise et al.
(2007). We used a forest trained on the full B3D(AC)2

Fig. 31 Average errors for the facial features localization task, applied
to the synthetically occluded images from the BU3DFE dataset. The
curve is a functions of the percentage of face pixels occluded by the
hand. Examples are shown in Fig. 34, right

Fig. 32 Examples failure cases for the facial feature detector. The
mouth feature points and the brow’s endpoints are the fiducial most
often misplaced

database. We asked the subjects to perform different mo-
tions, also partly occluding their face with their hands or
sunglasses. As shown in Fig. 33, the results are robust to
such occlusions. The video also shows how the algorithm
is able to run in real time, at around 15 frames per second
on a computer equipped with a 2 GHz processor and 2 GB

456 Int J Comput Vis (2013) 101:437–458

Fig. 33 Qualitative results, on subjects not present in the dataset, of the system running in real time

Fig. 34 Some badly occluded test images where our algorithm still manages to predict plausible locations of the feature points

of RAM, acquiring the range scans while estimating the 3D
locations of the facial features.

5 Conclusions

We have proposed a fast and robust framework based on
random forests for real time head movement analysis. In-
tuitive parameters like number of trees and sampling stride
provide straight-forward tools for adapting the system to dif-
ferent levels of computing power availability. We described
in details its application for head pose estimation using both
high quality range scans and low resolution depth images,
and for 3D facial features localization. Our method runs on
a frame-to-frame basis and therefore does not suffer from
the usual shortcomings of tracking approaches, lending it-
self as a valuable tool for (re-)initialization of such meth-
ods.

We have demonstrated the accuracy and robustness of
the proposed method on challenging and realistic datasets
which are available to the community. Moreover, for our
experiments on real time head pose estimation from con-
sumer depth cameras, we acquired and annotated a new
database containing different subjects rotating their heads,
recorded using a Microsoft Kinect, which we made avail-
able for download.

Our framework relies on the abundance of annotated
training depth data. New and more realistic training data-
bases are required, covering all the scenarios which should
be expected at test time. In our future work, we intend to
train on full upper body models instead of isolated faces in
order to better handle hair and other non-face body parts.
Synthesis of such databases is very challenging due to the
need of generating different hair styles, facial expressions,
and head-wears. On the other hand, acquiring and annotat-
ing real-life scenes, to be used for testing new algorithms,
would probably prove even more challenging.

The use of depth data solves many of the inherent prob-
lems of standard images, however, is bounded by the avail-
ability of such sensors. Even though prices have recently
dropped, the distribution of depth cameras is still limited
compared to standard video recording devices and most have
problems in outdoor scenarios. Our recent work (Dantone
et al. 2012) shows how to join real time head pose estima-
tion and facial features localization for 2D images of faces
acquired “in the wild”.

Acknowledgements We thank Thibaut Weise for useful code and
discussions. We acknowledge financial support from EU projects
RADHAR (FP7-ICT-248873) and TANGO (FP7-ICT-249858), and
from the SNF project Vision-supported Speech-based Human Machine
Interaction (200021-130224).

Int J Comput Vis (2013) 101:437–458 457

References

Amberg, B., & Vetter, T. (2011). Optimal landmark detection using
shape models and branch and bound slides. In International con-
ference on computer vision.

Balasubramanian, V. N., Ye, J., & Panchanathan, S. (2007). Biased
manifold embedding: A framework for person-independent head
pose estimation. In IEEE conference on computer vision and pat-
tern recognition.

Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J., & Kumar, N. (2011).
Localizing parts of faces using a consensus of exemplars. In IEEE
conference on computer vision and pattern recognition.

Besl, P., & McKay, N. (1992). A method for registration of 3-d shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2), 239–256.

Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of
3d faces. In ACM international conference on computer graphics
and interactive techniques (SIGGRAPH) (pp. 187–194).

Breidt, M., Buelthoff, H., & Curio, C. (2011). Robust semantic analysis
by synthesis of 3d facial motion. In Automatic face and gesture
recognition.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classifica-

tion and regression trees. Monterey: Wadsworth and Brooks.
Breitenstein, M. D., Jensen, J., Hoilund, C., Moeslund, T. B., & Van

Gool, L. (2009). Head pose estimation from passive stereo im-
ages. In Scandinavian conference on image analysis.

Breitenstein, M. D., Kuettel, D., Weise, T., Van Gool, L., & Pfister, H.
(2008). Real-time face pose estimation from single range images.
In IEEE conference on computer vision and pattern recognition.

Cai, Q., Gallup, D., Zhang, C., & Zhang, Z. (2010). 3d deformable face
tracking with a commodity depth camera. In European conference
on computer vision.

Chang, K. I., Bowyer, K. W., & Flynn, P. J. (2006). Multiple nose re-
gion matching for 3d face recognition under varying facial expres-
sion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(10), 1695–1700.

Chen, L., Zhang, L., Hu, Y., Li, M., & Zhang, H. (2003). Head pose es-
timation using fisher manifold learning. In Analysis and modeling
of faces and gestures.

Chua, C. S., & Jarvis, R. (1997). Point signatures: A new representa-
tion for 3d object recognition. International Journal of Computer
Vision, 25, 63–85.

Colbry, D., Stockman, G., & Jain, A. (2005). Detection of anchor
points for 3d face verification. In IEEE conference on computer
vision and pattern recognition.

Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance
models. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 23, 681–685.

Cootes, T. F., Wheeler, G. V., Walker, K. N., & Taylor, C. J. (2002).
View-based active appearance models. Image and Vision Com-
puting, 20(9–10), 657–664.

Criminisi, A., Shotton, J., & Konukoglu, E. (2011). Decision forests
for classification, regression, density estimation, manifold learn-
ing and semi-supervised learning. Tech. Rep. TR-2011-114, Mi-
crosoft Research.

Criminisi, A., Shotton, J., Robertson, D., & Konukoglu, E. (2010). Re-
gression forests for efficient anatomy detection and localization in
ct studies. In Recognition techniques and applications in medical
imaging.

Cristinacce, D., & Cootes, T. (2008). Automatic feature localisation
with constrained local models. Journal of Pattern Recognition,
41(10), 3054–3067.

Dantone, M., Gall, J., Fanelli, G., & Van Gool, L. (2012). Real-time fa-
cial feature detection using conditional regression forests. In IEEE
conference on computer vision and pattern recognition.

Dorai, C., & Jain, A. K. (1997). COSMOS—A representation scheme
for 3D Free-Form objects. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(10), 1115–1130.

Everingham, M., Sivic, J., & Zisserman, A. (2006). Hello! my name
is. . . buffy—automatic naming of characters in tv video. In British
machine vision conference.

Fanelli, G., Gall, J., Romsdorfer, H., Weise, T., & Van Gool, L. (2010).
A 3-d audio-visual corpus of affective communication. IEEE
Transactions on Multimedia, 12(6), 591–598.

Fanelli, G., Gall, J., & Van Gool, L. (2011a). Real time head pose es-
timation with random regression forests. In IEEE conference on
computer vision and pattern recognition.

Fanelli, G., Weise, T., Gall, J., & Van Gool, L. (2011b). Real time head
pose estimation from consumer depth cameras. In German asso-
ciation for pattern recognition.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2005). Pictorial structures
for object recognition. International Journal of Computer Vision,
61(1), 55–79.

Gall, J., & Lempitsky, V. (2009). Class-specic hough forests for ob-
ject detection. In IEEE conference on computer vision and pattern
recognition.

Gall, J., Yao, A., Razavi, N., Van Gool, L., & Lempitsky, V. (2011).
Hough forests for object detection, tracking, and action recogni-
tion. In IEEE transactions on pattern analysis and machine intel-
ligence.

Girshick, R., Shotton, J., Kohli, P., Criminisi, A., & Fitzgibbon, A.
(2011). Efficient regression of general-activity human poses from
depth images. In International conference on computer vision.

Gross, R., Matthews, I., & Baker, S. (2005). Generic vs. person specific
active appearance models. Image and Vision Computing, 23(12),
1080–2093.

Huang, C., Ding, X., & Fang, C. (2010). Head pose estimation based
on random forests for multiclass classification. In International
conference on pattern recognition.

Jones, M., & Viola, P. (2003). Fast multi-view face detection. Tech.
Rep. TR2003-096, Mitsubishi Electric Research Laboratories.

Ju, Q., O’keefe, S., & Austin, J. (2009). Binary neural network based
3d facial feature localization. In International joint conference on
neural networks.

Kakadiaris, I. A., Passalis, G., Toderici, G., Murtuza, M. N., Lu, Y.,
Karampatziakis, N., & Theoharis, T. (2007). Three-dimensional
face recognition in the presence of facial expressions: an anno-
tated deformable model approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(4), 640–649.

Leibe, B., Leonardis, A., & Schiele, B. (2008). Robust object detection
with interleaved categorization and segmentation. International
Journal of Computer Vision, 77(1–3), 259–289.

Lepetit, V., Lagger, P., & Fua, P. (2005). Randomized trees for real-
time keypoint recognition. In IEEE conference on computer vision
and pattern recognition.

Li, H., Adams, B., Guibas, L. J., & Pauly, M. (2009). Robust single-
view geometry and motion reconstruction. ACM Transactions on
Graphics (Proceedings SIGGRAPH Asia), 28(5). 2009.

Lu, X., & Jain, A. K. (2006). Automatic feature extraction for multi-
view 3d face recognition. In Automatic face and gesture recogni-
tion.

Martins, P., & Batista, J. (2008). Accurate single view model-based
head pose estimation. In Automatic face and gesture recognition.

Matthews, I., & Baker, S. (2003). Active appearance models revisited.
International Journal of Computer Vision, 60(2), 135–164.

Mehryar, S., Martin, K., Plataniotis, K., & Stergiopoulos, S. (2010).
Automatic landmark detection for 3d face image processing. In
Evolutionary computation.

Mian, A., Bennamoun, M., & Owens, R. (2006). Automatic 3d face
detection, normalization and recognition. In 3D data processing,
visualization, and transmission.

458 Int J Comput Vis (2013) 101:437–458

Morency, L. P., Sundberg, P., & Darrell, T. (2003). Pose estimation
using 3d view-based eigenspaces. In Automatic face and gesture
recognition.

Morency, L. P., Whitehill, J., & Movellan, J. R. (2008). Generalized
adaptive view-based appearance model: integrated framework for
monocular head pose estimation. In Automatic face and gesture
recognition.

Mpiperis, I., Malassiotis, S., & Strintzis, M. (2008). Bilinear models
for 3-d face and facial expression recognition. IEEE Transactions
on Information Forensics and Security, 3(3), 498–511.

Murphy-Chutorian, E., & Trivedi, M. (2009). Head pose estimation in
computer vision: A survey. Transactions on Pattern Analysis and
Machine Intelligence, 31(4), 607–626.

Nair, P., & Cavallaro, A. (2009). 3-d face detection, landmark local-
ization, and registration using a point distribution model. IEEE
Transactions on Multimedia, 11(4), 611–623.

Okada, R. (2009). Discriminative generalized hough transform for ob-
ject detection. In International conference on computer vision.

Osadchy, M., Miller, M. L., & LeCun, Y. (2005). Synergistic face de-
tection and pose estimation with energy-based models. In Neural
information processing systems.

Papageorgiou, C., Oren, M., & Poggio, T. (1998). A general framework
for object detection. In International conference on computer vi-
sion.

Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009).
A 3d face model for pose and illumination invariant face recogni-
tion. In Advanced video and signal based surveillance.

Ramnath, K., Koterba, S., Xiao, J., Hu, C., Matthews, I., Baker, S.,
Cohn, J., & Kanade, T. (2008). Multi-view aam fitting and con-
struction. International Journal of Computer Vision, 76(2), 183–
204.

Seemann, E., Nickel, K., & Stiefelhagen, R. (2004). Head pose estima-
tion using stereo vision for human-robot interaction. In Automatic
face and gesture recognition.

Segundo, M., Silva, L., Bellon, O., & Queirolo, C. (2010). Automatic
face segmentation and facial landmark detection in range images.
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 40(5), 1319–1330.

Sharp, T. (2008). Implementing decision trees and forests on a GPU.
In European conference on computer vision.

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore,
R., Kipman, A., & Blake, A. (2011). Real-time human pose recog-
nition in parts from single depth images. In IEEE conference on
computer vision and pattern recognition.

Shotton, J., Johnson, M., & Cipolla, R. (2008). Semantic texton forests
for image categorization and segmentation. In IEEE conference
on computer vision and pattern recognition.

Storer, M., Urschler, M., & Bischof, H. (2009). 3d-mam: 3d morphable
appearance model for efficient fine head pose estimation from still
images. In Workshop on subspace methods.

Sun, Y., & Yin, L. (2008). Automatic pose estimation of 3d facial mod-
els. In International conference on pattern recognition.

Valstar, M., Martinez, B., Binefa, X., & Pantic, M. (2010). Facial point
detection using boosted regression and graph models. In IEEE
conference on computer vision and pattern recognition.

Vatahska, T., Bennewitz, M., & Behnke, S. (2007). Feature-based head
pose estimation from images. In International conference on hu-
manoid robots.

Viola, P., & Jones, M. (2004). Robust real-time face detection. Inter-
national Journal of Computer Vision, 57(2), 137–154.

Wang, Y., Chua, C., & Ho, Y. (2002). Facial feature detection and face
recognition from 2d and 3d images. Pattern Recognition Letters,
10(23), 1191–1202.

Weise, T., Bouaziz, S., Li, H., & Pauly, M. (2011). Realtime
performance-based facial animation. In ACM international con-
ference on computer graphics and interactive techniques (SIG-
GRAPH).

Weise, T., Leibe, B., & Van Gool, L. (2007). Fast 3d scanning with
automatic motion compensation. In IEEE conference on computer
vision and pattern recognition.

Weise, T., Li, H., Van Gool, L., & Pauly, M. (2009a). Face/off live
facial puppetry. In Symposium on computer animation.

Weise, T., Wismer, T., Leibe, B., & Van Gool, L. (2009b). In-hand
scanning with online loop closure. In 3-D digital imaging and
modeling.

Whitehill, J., & Movellan, J. R. (2008). A discriminative approach to
frame-by-frame head pose tracking. In Automatic face and gesture
recognition.

Yao, A., Gall, J., & Van Gool, L. (2010). A hough transform-based
voting framework for action recognition. In IEEE conference on
computer vision and pattern recognition.

Yin, L., Wei, X., Sun, Y., Wang, J., & Rosato, M. J. (2006). A 3d fa-
cial expression database for facial behavior research. In Face and
gesture recognition.

Yu, T. H., & Moon, Y. S. (2008). A novel genetic algorithm for 3d
facial landmark localization. In Biometrics: theory, applications
and systems.

Zhao, X., Dellandréa, E., Chen, L., & Kakadiaris, I. (2011). Accurate
landmarking of three-dimensional facial data in the presence of
facial expressions and occlusions using a three-dimensional sta-
tistical facial feature model. IEEE Transactions on Systems, Man,
and Cybernetics, part B: Cybernetics, 41(5), 1417–1428.

