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Abstract
Transportation-based metrics for comparing images have long been applied to analyze images,
especially where one can interpret the pixel intensities (or derived quantities) as a distribution of
‘mass’ that can be transported without strict geometric constraints. Here we describe a new
transportation-based framework for analyzing sets of images. More specifically, we describe a
new transportation-related distance between pairs of images, which we denote as linear optimal
transportation (LOT). The LOT can be used directly on pixel intensities, and is based on a
linearized version of the Kantorovich-Wasserstein metric (an optimal transportation distance, as is
the earth mover’s distance). The new framework is especially well suited for computing all
pairwise distances for a large database of images efficiently, and thus it can be used for pattern
recognition in sets of images. In addition, the new LOT framework also allows for an isometric
linear embedding, greatly facilitating the ability to visualize discriminant information in different
classes of images. We demonstrate the application of the framework to several tasks such as
discriminating nuclear chromatin patterns in cancer cells, decoding differences in facial
expressions, galaxy morphologies, as well as sub cellular protein distributions.
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1 Introduction
1.1 Background and motivation

Automated image analysis methods are often used for extracting important information from
image databases. Common applications include mining information in sets of microscopy
images [22], understanding mass distribution in celestial objects from telescopic images
[34], as well as analysis of facial expressions [36], for example. We note that the prevalent
technique for quantifying information in such large datasets has been to reduce the entire
information (described by pixel intensity values) contained in each image in the database to
a numerical feature vector (e.g. size, form factor, etc.). Presently, this approach (coupled
with clustering, classification, and other machine learning techniques) remains the prevalent
method through which researchers extract quantitative information about image databases
and cluster important image subgroups [6,44,19].

In addition to feature-based methods, several techniques for analyzing image databases
based on explicit modeling approaches have recently emerged. Examples include contour-
based models [29], medial axis models [8], as well as model-based deconvolution methods
[15]. Moreover, when analyzing images within a particular type (e.g. brain images)
researchers have often used a more geometric approach. Here the entire morphological
exemplar as depicted in an image is viewed as a point in a suitably constructed metric space
(see for example [4]), often facilitating visualization. These approaches have been used to
characterize the statistical variation of a particular object in a given population (or set of
populations) [4,24]. The main idea in these is to understand the variation of similar objects
through analysis of the deformation fields required to warp one object (as depicted in its
image) onto another.

Alternatively, transportation-based metrics have also been used to analyze image data in
problems when pixel intensities (or derived quantities) can be interpreted as ‘mass’ free to
move without strict geometric constraints [32,18,11,16,43]. They are interesting alternatives
to other methods since when applied directly to pixel intensities, they have the potential to
quantify both texture and, to some extent, shape information combined (see for example
[18,43]). In particular, there has been continuing effort to develop fast and reliable methods
for computing transportation related distances [26,20, 35,28,2,3,5,12,17]. While the
computational complexity of these methods ranges from quadratic to linear with respect to
image size (for smooth enough images), the computations are still expensive (time wise), in
particular for rough images (with large gradients), and there are issues with convergence
(e.g. due to local minima in PDE-based variational implementations).

1.2 Overview of our approach and contributions
Our contribution is to develop a linear framework closely related to the optimal
transportation metric (OT) [43] for analyzing sets of images. This framework, which we call
the linear optimal transportation (LOT), not only provides a fast way for computing a metric
(and geodesics) between all pairs in a dataset, permitting one to use pixel intensities directly,
but it also provides an isometric embedding for a set of images. Therefore our method takes
as input a potentially large set of images and outputs an isometric embedding of the dataset
(endowed with the LOT metric) onto the standard Euclidean space. Our approach achieves
this task by utilizing the following series of steps:

• Step 1: compute a template image that will serve as a reference point for analyzing
the given image dataset.
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• Step 2: for each image in the input dataset, as well as the estimated template,
compute a particle approximation that will enable a linear programming-based
computation of the OT distance between it and the template computed in STEP 1.

• Step 3: normalize each particle approximation with respect to translation, rotation,
and coordinate inversions.

• Step 4: compute a quadratic-based OT distance between the particle approximation
of each image and the template.

• Step 5: from the output of STEP 4, compute the LOT distances and embedding.

As compared to previous works that make use of transportation-related metrics in image
analysis, we highlight the following innovations of our approach. The first is that, given a
database of M images, the number of transportation related optimizations required for
computing the distance between all pairs of images is M when utilizing our approach (versus
M(M − 1)/2 when utilizing other approaches). This provides a substantial increase in speed
especially when performing pattern recognition tasks (e.g. classification) in large databases.
Secondly, as mentioned above, our LOT framework also provides an isometric linear
embedding that has a couple of convenient properties. One being that the embedding of an
image newly added to the database can be computed exactly and with one transportation
optimization only. Another being that any point in the embedded space can be visualized as
an image. This includes measured points (existing images in the database) but also any other
point in this space. Below we show how this embedding greatly facilitates the use of
standard geometric data analysis techniques such as principal component analysis (PCA)
and linear discriminant analysis (LDA) for visualizing interesting variations in a set of
images.

1.3 Paper organization
In section 2 we begin by reviewing the mathematical underpinnings of the traditional
optimal transportation framework and then describe its linearized version and some of its
properties. Equation (1) gives the definition of the traditional OT metric, and formulas (2)
and (3) the linearized version of the metric. Then in section 3 we describe our computational
approach in the discrete setting. This includes an algorithm for ‘estimating’ the content of a
relatively sparse image with particles (full details of this algorithm are provided in appendix
A). The definition of the OT distance in the discrete setting is provided in equation (5),
while our approximation of its linearized version in the discrete setting is given in formula
(9). Equations (10) and (11) provide the isometric linear embedding for a given particle
approximation according to a reference point. Section 4 describes how one can utilize the
linear embedding provided in the LOT framework to extract useful information from sets of
images using principal component analysis and linear discriminant analysis. The
applications of LOT towards decoding subcellular protein patterns and organelle
morphology, galaxy morphology as well as facial expression differences are presented in
section 5.

2 Optimal transportation framework
Transportation-based metrics are especially suited for quantifying differences between
structures (depicted in quantitative images) that can be interpreted as a distribution of mass
with few strict geometric constraints. More precisely, we utilize the optimal transportation
(Kantorovich-Wasserstein) framework to quantify how much mass, in relative terms, is
distributed in different regions of the images. We begin by describing the mathematics of the
traditional OT framework, and in particular the geometry behind it, which is crucial to our
subsequent introduction of the linearized OT distance.
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2.1 Optimal transportation metric
Let Ω represent the domain (the unit square [0, 1]2, for example) over which images are
defined. To describe images we use the mathematical notion of a measure. While this is
somewhat abstract, it enables us to treat simultaneously the situation when we consider the
image to be a continuous function and when we deal with actual computations and consider
the image as a discrete array of pixels. It is important for us to do so, because many notions
related to optimal transportation are simpler in the continuous setting, and in particular we
can give an intuitive explanation for the LOT distance we introduce. On the other hand the
discrete approximation necessitates considering a more general setting because the mass
(proportional to intensity) from one pixel during transport often needs to be redistributed
over several pixels.

We note that, in the current version of the technique, we normalize all images in a given
dataset so that the intensity of all pixels in each image sums to one. Thus we may interpret
images as probability measures. The assumption is adequate for the purpose of analyzing
shape and texture in the datasets analyzed in this paper. We note that OT-related distances
can be used when masses are not the same [32,27].

Recall that probability measures are nonnegative and that the measure of the whole set Ω is
1: μ(Ω) = ν(Ω) = 1. Let c: Ω × Ω → [0, ∞) be the cost function. That is c(x, y) is the ‘cost’
of transporting unit mass located at x to the location y. The optimal transportation distance
measures the least possible total cost of transporting all of the mass from μ to ν. To make
this precise, consider Π(μ, ν), the set of all couplings between μ and ν. That is consider the
set of all probability measures on Ω × Ω with the first marginal μ and the second marginal ν.
More precisely, if π ∈ Π(μ, ν) then for any measurable set A ⊂ Ω we have π(A × Ω) = μ(A)
and π(O×A) = ν(A). Each coupling describes a transportation plan, that is π(A0 × A1) is
telling one how much ‘mass’ originally in the set A0 is being transported into the set A1.

We consider optimal transportation with quadratic cost c(x, y) = |x−y|2. The optimal
transportation (OT) distance, also known as the Kantorovich-Wasserstein distance, is then
defined by

(1)

It is well known that the above infimum is attained and that the distance defined is indeed a
metric (satisfying the positivity, the symmetry, and the triangle inequality requirements), see
[39]. We denote the set of minimizers π above by ΠOT(μ, ν).

2.2 Geometry of optimal transportation in continuous setting
The construction of the LOT metric which we introduce below, can be best motivated in the
continuous setting. Consider measures μ and ν which have densities α and β, that is

Then the following mathematical facts, available in [39], hold. The OT plan between μ and
ν is unique and furthermore the mass from each point x, is sent to a single location, given as
the value of the function ϕ(x) called the optimal transportation map (see Figure 1). The
relation between ϕ and the optimal transportation plan Π introduced above is that Π(A0 ×
A1) = μ({x ∈ A0 : ϕ(x) ∈ A1}). That is Π is concentrated on the graph of ϕ. We note that ϕ is
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a measure preserving map from μ to ν, that is that for any A, ∫ϕ−1(A)α(x)dx = ∫A β(y)dy.
The Kantorovich-Wasserstein distance is then dW(μ, ν) = ∫ω|ϕ(x) − x|2α(x)dx.

In addition to being a metric space the set of measures is formally a Riemannian manifold
[10], that is at any point there is a tangent space endowed with an inner product. In particular
the tangent space at the measure σ with density γ (i.e. dσ = γ(x)dx) is the set of the
following vector fields Tσ = {v : Ω → ℝd such that ∫Ω|v(x)|2γ(x)dx < ∞} and the inner
product is the weighted L2:

The OT distance is just the length of the shortest curve (geodesic) connecting two measures
[5].

A very useful fact is the geodesics have a form that is simple to understand. Namely if μt, 0
≤ t ≤ 1 is the geodesic connecting μ to ν. Then μt is the measure obtained when mass from

μ is transported by the transportation map x → (1−t)x+tϕ(x). Then .

2.3 Linear optimal transportation metric
Computing a pairwise OT distance matrix is expensive for large datasets. In particular let
TOT be the time it takes to compute the OT distance and T2 the time it takes to compute the
Euclidean distance between two moderately complex images. Using the method described
below, TOT is typically on the order of tens of seconds, while T2 is on the order of
miliseconds. For a dataset with M images, computing the pairwise distances takes time on
the order of M(M − 1)TOT/2. Here we introduce a version of the OT distance that is much
faster to compute. In particular computing the distance matrix takes approximately MTOT +
M (M − 1)T2/2. For a large set of images, in which the number of pixels in each image is
fixed, as the number of images in the set tends to infinity, the dominant term is M2T2.

The distance we compute is motivated by the geometric nature of the OT distance.
Heuristically, instead of computing the geodesic distance on the manifold we compute a
‘projection’ of the manifold to the tangent plane at a fixed point and then compute the
distances on the tangent plane. This is the main reason we use the term linear when naming
the distance. To consider the projection one needs to fix a reference image σ (where the
tangent plane is set). Computing the projection for each image requires computing the OT
plan between the reference image σ and the given image. Once computed, the projection
provides a natural linear embedding of the dataset, which we describe in section 3.5.

We first describe the LOT distance in the continuous setting. Let σ be a probability measure
with density γ. We introduce the identification (‘projection’), P, of the manifold with the
tangent space at σ. Given a measure μ, consider the optimal transportation map ψ between
σ and μ. Then

Note that v ∈ Tσ and that P is a mapping from the manifold to the tangent space. See Figure
2 for a visualization. Also P(σ) = 0 and

, were  is defined
to be 〈v, v〉σ. So the mapping preserves distances to σ. Let us mention that in cartography
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such projection is known as the equidistant azimuthal projection. In differential geometry
this would be the inverse of the exponential map. We define the LOT as:

(2)

When σ is not absolutely continuous with respect to the Labesgue measure the situation is
more complicated. The purely discrete setting (when the measures are made of particles) is
the one relevant for computations and we discuss it in detail in section 3.3. In the general
setting, the proper extension of the LOT distance above is the shortest generalized geodesic
(as defined in [1]) connecting μ and ν. More precisely, given a reference measure σ, and
measures μ and ν, with transportation plans πμ ∈ ΠOT(σ, μ) and πν ∈ ΠOT(σ, ν), let Π(σ,
μ, ν) be the set of all measures on the product Ω × Ω × Ω such that the projection to first two
co-ordinates is πμ and the projection to the first and the third is πν. The linearized version
of the OT distance between μ and ν is given by:

(3)

2.4 Translation and Rotation normalization
It is important to note that the OT metric defined in equation (1) is not invariant under
translations or rotations. It can be rendered translation invariant by simply aligning all
measures in a dataset μ1, ···, μN by setting their center of mass to a common coordinate.
This is based on the fact that if μ is a measure on Ω with center of mass

and ν a measure of the same mass, then among all translates of the measure ν, νx(A) = ν(A
− x), the one that minimizes the distance to μ is the one with the center of mass xμ.

From now on, we will always assume that the measures are centered at the origin (the
implementation of this normalization step is given below). The Euclidean-transformation
invariant Kantorovich-Wasserstein distance is then defined in the following way. Given a
measure μ and an orthogonal matrix T, define μT by μT(A) = μ(T−1 A). Then the invariant
distance is defined by d(μ, ν) = minT∈O(n) dW(μT, ν). In two dimensions we have
developed an algorithm for finding the minimum above. However we know of no reasonable
algorithm for computing the rotation invariant linearized OT distance (dLOT). Below we
present an algorithm that greatly reduces the effect of rotation, but does not eliminate it
completely.

3 Computing LOT distances from image data
To compute the LOT distance for a set of images we need to first compute the OT distance
from a template image to each of the images. There exist several approaches for computing
OT distances. Perhaps the most direct idea is to discretize the problem defined in (1). This
results in a linear programming problem (see (5) below). While this approach is very robust
and leads to the global minimizer, it is computationally expensive (the fastest strongly
polynomial algorithm for this case is the Hungrian algorithm with time complexity of O(n3)
with n the number of pixels in an image). Other approaches are based on continuum ideas,
where PDEs and variational techniques are often used [2,3,5,12,17]. Some of them achieve
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close to linear scaling with the number of pixels. On the other hand, their performance can
deteriorate as one considers images that lack regularity (are not smooth, have large
gradients). A particular difficulty with some of the approaches that are not based on linear
programing is that they may not converge to the global solution if they arrive at a local
minimum first.

Our approach is based on combining linear programming with a particle approximation of
the images. It is a refinement of the algorithm we used in [43]. That is, each image is first
carefully approximated by a particle measure (a convex combination of delta masses) that
has much fewer particles than there are pixels in the image. This significantly reduces the
complexity of the problem. Furthermore it takes advantage of the fact that many images we
consider are relatively sparse. Then one needs fewer particles for accurate approximation of
the image which accelerates the computation. In addition, as the number of particles
approaches the number of pixels in the image, the approximation error tends to zero. We
now present the details of the algorithm. In particular, we give a description of the particle
approximation, and detailed algorithms for translation and rotation normalization, and the
computation of the LOT distance. The full details pertaining to the particle approximation
algorithm, which is more involved, are presented in Appendix A.

3.1 Particle approximation
The first step in our computational approach is to represent each image as a weighted
combination of ‘particles’ each with mass (intensity) mi and location xi:

(4)

with Nμ being the number of masses used to represent the measure (image) μ. Since the
images are digital, each image could be represented exactly using the model above by
selecting mi to be the pixel intensity values and δxi the pixel coordinate grid. Given that
images can contain a potentially large number of pixels, and that the cost of a linear

programing solution for computing the OT is generally , we do not represent each
image exactly and instead choose to approximate them.

The goal of the algorithm is to use at most, approximately, N particles to approximate each
image, while maintaining a similar approximation error (by approximation error we mean
the OT distance between the image and the particle approximation) for all images of a given
dataset. For a dataset of M images, our algorithm requires the user to specify a number N for
the approximate number of particles that could be used to approximate any image, and
consists of these four steps:

• Step 1: use a weighted K-means algorithm [21] to approximate each image, with
the number of clusters set to the chosen N. As we describe in the appendix, the
weighted K-means is an optimal local step for reducing the OT error between a
given particle approximation and an image.

• Step 2: improve the approximation of each image by investigating regions where
each image is not approximated well, and add particles to those regions to improve
the approximation locally. Details are provided in Appendix A.

• Step 3: compute the OT distance between each digital image and the
approximation of each image. For images not well approximated by the current
algorithm (details provided in Appendix A), add particles to improve the
approximation.
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• Step 4: For images where the approximation error is significantly smaller than the
average error (for the entire dataset) remove (merge) particles until the error
between the digital image and its approximation is more similar to the other
images. (This reduces the time to compute the distances, while it does not increase
the typical error.)

The algorithm above was chosen based on mathematical observations pertaining to the OT
metric. These observations, including a careful description of each of the steps above, are
provided in Appendix A. We have experimented with several variations of the steps above,
and through this experience we have converged on the algorithm presented. A few of the
details of the algorithm could be improved further, though we view further improvements to
be beyond the scope of this paper. We emphasize that this particle approximation algorithm
works particularly well for relatively sparse images, and less so for non-sparse (e.g. flat)
images. Bellow we demonstrate, however, that the algorithm can nonetheless be used to
extract meaningful quantitative information for datasets of images which are not sparse.

Translation and rotation normalization—In two dimensions, it suffices to consider
translation, rotation, and mirror symmetry. To achieve that we simply align the center of
mass of each particle approximation to a fixed coordinate, and rotate each particle
approximation to a standard reference frame according to a principal axis (Hotteling)
transform. Each particle approximation is then flipped left to right, and up and down, simply
by reversing their coordinates, until the skewness (the third standardized moment) of the
coordinates of each sample have the same sign.

3.2 OT distance in particle setting
We start by explaining how the general framework of section 2 applies to particle measures
(such as particle approximations obtained above). A particle probability measure, μ, which

approximates the image is given as  where xi ∈ Ω, mi ∈ (0, 1], .

We note that for A ⊂ Ω, μ(A) = Σi:xi ∈ Ami. An integral with respect to measure μ is ∫A
f(x)dμ(x) = Σi:xi ∈ A f(xi)mi.

Now we turn to our main goal of the section: obtaining the OT distance. For 

and  the set of couplings Π(μ, ν) is given by a set of Nμ × Nν matrices, as
follows:

Since it is clear from the context we will make no distinction between measures in Π(μ, ν)
and matrices f = [fi,j] that satisfy the conditions above.

The optimal transportation distance between μ and ν defined in (1) is the solution to the
following linear programing problem:

(5)
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See Figure 3 for a visualization. For convenience, we utilize Matlab’s implementation of a
variation of Mehrotras dual interior point method [23] to solve the linear program. We note
however that better suited alternatives, which take advantage of the special structure of the
linear programming problem, exist and could be used [26,32] to increase the computational
efficiency of the method even further. The solution of the linear program above is relatively
expensive [43], with typical computation times being around 30 seconds (with 500 particles
per image) on an Apple laptop with a 2.2GHz intel dual core processor and 2GB of RAM.

For datasets containing tens of thousands of images this is practical only if we need to
compute a single OT distance per image (the one to the reference image), and is prohibitive
if we need the pairwise distance between all images. This is the reason we introduce the
linear optimal transportation framework to compute a related distance between μ and ν.

3.3 LOT distance in particle setting
Computing the linear optimal transportation (LOT) distance requires setting a reference

template σ, which we also choose to be a particle measure  (how the reference
template is computed is described in section 3.4). The distance between μ and ν given by
(3) in a discrete setting becomes:

(6)

We remark that the sets of optimal transportation plans, ΠOT(σ, μ) and ΠOT(σ, ν), typically
have only one element, so there is only one possibility for f, and g. See Figure 4 for a
visualization. Usually there is more than one possibility for h, in the case of particle
measures.

We now introduce the ‘distance’ which is an approximation of the one above (hence we
denote it as daLOT) and which is used in most computations in this paper. Namely, given OT
plans f and g, as indicated in Figure 5, we replace the f-image of the particle at zk, namely
the measure Σi fk,iδxi, by one particle at the center of mass, namely the measure qkδx̂k. We
recall from Section 2.2 that if σ, μ and ν were measures which had a density function (and
hence no particles) then there exists an optimal transportation map and the image of any z is
just a single x. On the discrete level we have an approximation of that situation and typically
the f-image of the particle at zk is spread over a few nearby particles. Thus the error made by
replacing the f image by a single particle at the images center of mass is typically small.

To precisely define the new distance, let f be an optimal transportation plan between

 and  obtained in (5), and g is an optimal transportation plan

between  and . Then

(7)

are the centroids of the forward image of the particle qkδzk by the transportation plans f and
g respectively (see Figure 5). We define
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(8)

We clarify that computing (8) in practice does not require a minimization over f and g, since
f and g are unique with probability one. The reason for that is that in the discrete case the
condition for optimality of transportation plans can be formulated in terms of cyclic
monotonicity (see [40]). The nonuniuqueness of the OT plan can only happen if the
inequalities in some cyclic monotonicity conditions become equalities, which means that the
coordinates of particles satisfy an algebraic equation. And this can only happen with
probability zero. For example, if both measures have exactly two particles of the same mass
then the condition for nonuniqueness is that |x1 − y1|2 + |x2 − y2|2 = |x2 − y1|2 + |x1 − y2|2.

Thus we compute

(9)

One should notice that the daLOT,σ distance between two particle measures may be zero.
This is related to the ‘resolution’ achieved by the base measure σ. In particular if σ has more
particles then it is less likely that daLOT,σ(μ, ν) = 0 for μ ≠ ν. It is worth observing that
daLOT,σ(μ, ν)2 computed in (9) is always less than or equal to dLOT,σ(μ, ν)2 introduced in
equation (6).

Furthermore if we consider measures with continuous density σ, μ, and ν and approximate
them by particle measures σn, μn, and νn, then as the number of particles goes to infinity
dLOT,σn(μn, νn) → dLOT,σ (μ, ν) where the latter object is defined in (2). This follows from
the stability of optimal transport [40].

Let us also remark that, while we use the linear programming problem as described in (5) to
compute the optimal transportation plan, other methods can be used as well. In particular the
LOT distance is applicable even when a different approach to computing the OT plan is
used.

3.4 Template selection
Selecting the template (reference) σ above is important since, in our experience, a template
that is distant from all images (particle approximations) is likely to increase the difference
between dW and daLOT. In the results presented below, we use a reference template
computed from the ‘average’ image. To compute such average image, we first align all
images to remove translation, rotation, and horizontal and vertical flips, as described in
Section 3.3. All images are then averaged, and the particle approximation algorithm
described above is used to obtain a particle representation of the average image. We denote
this template as σ and note that it will contain Nσ particles. Once the particle approximation
for the template is computed, it is also normalized to a standard position and orientation as
described above.

3.5 Isometric linear embedding
When applying our approach to a given a set of images (measures) I1, ···, IM, we first
compute the particle approximation for each image with the algorithm described in section
3.1. We then compute a template σ as described in section 3.4 and compute the OT distance
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(5) between a template σ (also chosen to be a particle measure) and the particle
approximation of each image. Once these are computed, the LOT distance between any two
particle sets is given by (9).

The lower bound of the linear optimal transportation distance daLOT,σ defined in equation
(9) provides a method to map a sample measure νn (estimated from image In) into a linear

space. Let  and recall that the reference measure is . The linear
embedding is obtained by applying the discrete transportation map between the reference
measure σ and νn to the coordinates yj via

(10)

where ak is the centroid of the forward image of the particle qkδkk by the optimal
transportation plan, gk,j, between images σ and νn:

(11)

This results in an Nσ-tuple of points in ℝ2 which we call the linear embedding xn of νn. That
is, xn ∈ ℝNσ×2. We note that the embedding is interpretable in the sense that any point in
this space can be visualized by simply plotting the vector coordinates (each in ℝ2) in the
image space Ω.

4 Statistical analysis
When a linear embedding for the data can be assumed, standard geometric data processing
techniques such as principal component analysis (PCA) can be used to extract and visualize
major trends of variation in morphology [8,33,38]. Briefly, given a set of data points xn, for

n = 1, ···, M, we can compute the covariance matrix , with

 representing center of the entire data set. PCA is a method for computing the
major trends (directions over which the projection of the data has largest variance) of a
dataset via the solution of the following optimization problem:

(12)

The problem above can be solved via eigenvalue and eigenvector decomposition, with each
eigenvector corresponding to a major mode of variation in the dataset (it’s corresponding
eigenvalue is the variance of the data projected over that direction).

In addition to visualizing the main modes of variation for a given dataset, important
applications involve visualizing the modes of variation that best discriminate between two or
more separate populations (e.g. as in control vs. effect studies). To that end, we apply the
methodology we developed in [41], based on the well known Fisher linear discriminant
analysis (FLDA) technique [14]. As explained in [41], simply applying the FLDA technique
in morphometry visualization problems can lead to erroneous interpretations, since the
directions computed by the FLDA technique are not constrained to pass through the data. To

Wang et al. Page 11

Int J Comput Vis. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



alleviate this effect we modified the method as follows. Briefly, given a set of data points xn,
for n = 1, ···, N, with each index n belonging to class c, we modified the original FLDA by
adding a least squares-type representation penalty in the function to be optimized. The
representation constrained optimization can then be reduced to

(13)

where ST = Σn (xn − x̂)(xn − x̂)T represents the ‘total scatter matrix’, SW = Σc Σn∈c (xn − x̂c)
(xn − x̂c)T represents the ‘within class scatter matrix’, x̂c is the center of class c. The solution
for the problem above is given by the well-known generalized eigenvalue decomposition ST
w = λ(SW + αI) w [7]. In short, the penalized LDA method above seeks to find the direction
w that has both a low reconstruction error, but that best discriminates between two
populations. We use the method described in [41] to select the penalty weight α.

5 Computational results
In this section, we describe results of applying the LOT method to quantify the statistical
variation of three types of datasets. We analyze (sub) cellular protein patterns and organelles
from microscopy images, visualize the variation of shape and brightness in a galaxy image
database and characterize the variation of expressions in a facial image database. We begin
by introducing the datasets used. For the cellular image datasets, we then show results that
1) evaluate the particle approximation algorithm described earlier, 2) evaluate how well the
LOT distance approximates the OT distance, 3) evaluate the discrimination power of the
LOT distance (in comparison to more traditional feature-based methods), and 4) use the
linear embedding provided by the LOT to visualize the geometry (summarizing trends),
including discrimination properties. For both the galaxy and facial images, we evaluate the
performance of the particle approximation and discrimination power of the LOT metric, and
visualize the discriminating information. For the facial image dataset, we also visualize the
summarizing trends of variation of facial expressions. In the case of facial expressions, the
results show that LOT obtains similar quantification of expression as the original paper [36],
yet LOT has the disinct advantage of being landmark free.

5.1 Datasets and pre-processing
The biological imaging dataset has two sub-datasets. The nuclear chromatin patterns were
extracted from histopathology images obtained from tissue sections. Tissue for imaging was
obtained from the tissue archives of the Children’s Hospital of Pittsburgh of the University
of Pittsburgh Medical Center. The extraction process included a semi-automatic level set-
based segmentation, together with a color to gray scale conversion and pixel normalization.
The complete details related to this dataset are available in our previous work [43], [42]. The
dataset we use in this paper consists of five human cases of liver hepatoblastoma (HB), a
liver tumor in children, each containing adjacent normal liver tissue (NL). In total, 100
nuclei were extracted from each case (50 NL, 50 HB). The second sub dataset we use are
fluorescent images of 2 golgi proteins: giantin and GPP130. The dataset is described in
detail in [9]. In total, we utilize 81 GPP and 66 giantin protein patterns. The galaxy dataset
we use contain two types of galaxy images including 225 Elliptical galaxies and 223 Spiral
galaxies. The dataset is described in [34]. The facial expression dataset is the same as
described in [36]. We use only the normal and smiling expressions, with each expression
containing 40 images. Sample images for the nuclear chromatin, golgi, galaxy and facial
expression datasets are show in Figure 6(A), (B), (C) and (D) respectively.
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5.2 Particle approximation error
Here we quantify how well our particle-based algorithm described above can approximate
the different datasets we use in this paper. Instead of an absolute figure, of interest is the OT
error between each image and its particle approximation, relative to the OT distances that
are present in a dataset. Figure 7(A) can give us some indication of the relative (in
percentage) error for the particle approximation of each image in each dataset. For each

image in a dataset, we compute the error , where di,j is the OT distance
computed through equation (5), and ϕi is the upper bound on the OT distance between the
particle approximation of image i and the image i (defined in equation (16) in the appendix).
The computation is repeated for M images chosen randomly from a given dataset. Figure
7(A) contains the histogram of the errors for all the datasets. The x-axis represents the
relative error in percentage, and the y-axis represents the portion of samples that has the
corresponding relative error. Though, by definition, we can always reduce the
approximation errors by adding more particles, considering the computational cost, we use
500 initial particles for the nuclei, golgi and galaxy data sets, and 2000 initial particles for
the face data set. The data shows that the average errors were 14.1% for the nuclear
chromatin dataset, 3.2% for the golgi protein dataset, 13.1% for the galaxy image dataset
and 18.5% for the face data set.

5.3 Difference between OT and LOT
We compare the LOT distance given in equation (9) with the OT distance, defined in
equation (5). To that end, we compute the full OT distance matrix (all pairwise distances)

for both biological image datasets and compare it to the LOT distance via: .
Figure 7(B) contains the relative error for the nuclear chromatin and golgi. The average
absolute error for the nuclear chromatin data is eOT,LOT = 2.94%, and eOT,LOT = 3.28% for
the golgi dataset.

5.4 Discrimination power
In [43], we have shown that the OT metric can be used to capture the nuclear morphological
information to classify different classes of liver and thyroid cancers. We now show that the
linear OT approximation we propose above can be used for discrimination purposes with
little or no loss in accuracy when compared to traditional feature-based approaches. To test
classification accuracy we use a standard implementation of the support vector machine
method [7] with a radial basis function (RBF) kernel.

For the nuclear chromatin in the liver cancer dataset we followed the same leave one case
out cross validation approach described in [43]. The classification results are listed in Table
1. For comparison, we also computed classification results using a numerical feature
approach where the same 125 numerical features (including shape parameters, Haralick
features, and multi-resolution-type features) as described in [43], were used. Stepwise
discriminant analysis was used to select the significant features for classification (12 of them
were consequently selected). In addition, we also provide classification accuracies utilizing
the method described in [28], which we denote here as EMD-L1. The EMD-L1 in this case
was applied to measure the L1 weighted earth mover’s distance (EMD) between image pairs.
The radius above which pixels displacements were not computed was set to 15 for fast
computation. When using the EMD-L1 method, each image was downsampled by four, after
Gaussian filtering, to allow for the computations to be performed in a reasonable time frame
(see discussion section for a comparison and discussion of computation times).

Classification results are shown in Table 1. We note that because we used a kernel-based
SVM method, the only difference between all implementations were the pairwise distances
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computed (OT vs. LOT vs. EMD-L1 vs. feature-based). In Table 1, each row corresponds to
a test case, and the numbers correspond to the average classification accuracy (per nucleus)
for normal liver and liver cancer. The first column contains the classification accuracy for
the feature-based approach, the second column the accuracy for the OT metric, the third
column the accuracy for the LOT metric, and the final column contains the computations
utilizing the EMD-L1 approach [28]. We followed a similar approach for comparing
classification accuracies in the golgi protein dataset. In this case we utilized the feature set
described in [9]. This feature set was specifically designed for classification tasks of this
type. A five fold cross validation strategy was used. Results are shown in Tables 2 and 3.

We also computed the LOT metric for the galaxy and facial expression datasets and applied
the same support vector machine (SVM) strategy. In the galaxy case we utilized the feature
set described in [34]. A five fold cross validation accuracy was used. Compared with the
accuracy of the feature-based approach (93.6%), the classification accuracy of LOT metric
was 87.7%. For the facial expression data set, the classification was performed based on
SVM with the LOT metric, and a 90% classification accuracy was obtained.

5.5 Visualizing summarizing trends and discriminating information
We applied the PCA technique as described in section 4 to the nuclei and facial expression
data sets. The first three modes of variation for the nuclear chromatin datasets (containing
both normal and cancerous cells) are displayed in Figure 8(A). The first three modes of
variation for the facial expression dataset are shown in Figure 8(B). For both datasets, the
first three modes of variation correspond to over 99% of the variance of the data. The modes
of variation are displayed from the mean to plus and minus four times times the standard
deviation of each corresponding mode. For the chromatin dataset we can visually detect size
(first mode), elongation (second mode), and differences in chromatin concentration, from
the center to the periphery of the nucleus (third mode). In the face dataset, since we did not
normalize for size of the face, one can detect variations in size (first mode), facial hair
texture (second mode), as well as face shape (third mode). The variations detected from the
second and third modes are similar to the results reported in [36].

We also applied the method described in Section 4 to visualize the most significant
differences between the two classes in each dataset. The most discriminating modes for the
nuclear chromatin dataset, golgi dataset, galaxy and the facial expression dataset are shown
in Figure 9(A,B,C,D), respectively. In the nuclear chromatin case, the normal tissue cells
tend to look more like the images on the left, while the cancerous ones tend to look more
like the images on the right. In this case we can see that the most discriminating effect seems
to be related to differences in chromatin placement (near periphery vs. concentrated at the
center). The p value for this direction was 0.019. For the golgi protein dataset, the
discriminating direction (p = 0.049) shows that the giantin golgi protein tends to be more
scattered than the gpp protein, which tends to be more elongated in its spatial distribution.
For the galaxy dataset, the discriminant direction (p = 0.021) seems to vary from a spiral
structure to a bright dense disk. For the facial expression dataset, the discriminating
direction (p = 0.011) shows a trend from a smiling face to a serious or neutral facial
expression.

6 Summary and Discussion
We described a new method for quantifying and visualizing morphological differences in a
set of images. Our approach called the LOT is based on the optimal transportation
framework with quadratic cost, and we utilize a linearized approximation based on a tangent
space representation to make the method amenable to large datasets. Our current
implementation is based on a discrete ‘particle’ approximation of each pattern, with
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subsequent linear programming optimization, and is therefore best suited for images which
are sparse. We evaluated the efficacy of our methods in several aspects. As our results show,
the error between an image and its particle approximation, relative to the distances in the
dataset, are relatively small for a moderate number of particles when the images are sparse
(e.g. golgi protein images), and can be made small for general images if more time is
allowed for computation. We also showed that the LOT distance closely approximates the
standard OT distance between particle measures, with absolute percentage errors on the
order of a few percent in the datasets we used. In experiments not shown, we also evaluated
the reproducibility of our particle-based LOT computation with respect to the random
particle initializations required by algorithm. These experiments revealed that the average
coefficient of variation was on the order of a couple of percent. Finally, we also evaluated
how well the LOT distance described can perform in classifying sets of images in
comparison to standard feature-based methods, the traditional OT distance [43], and the
EMD-L1 method of [28]. Overall, considering all classification tests, no significant loss of
accuracy was detected.

A major advantage of the LOT framework is the reduced cost of computing the LOT
distance between all image pairs in a dataset. For a database of M images, section 2.3
explains that the number of transportation related optimization problems that need to be
solved for computing all pairwise distances is M. In comparison, to our knowledge, the
number of transportation related optimizations necessary for this purpose of all other
available methods is M(M − 1)/2. In concrete terms, if all computations were to be
performed using a single Apple laptop computer with 2GB or RAM and a dual processor of
2.2GHz, the total computation time for producing all pairwise distances for computing the
results shown in Table 1 of our paper, for example, would be approximately 4.1 hours for
the LOT method, 15.6 hours for the EMD-L1 method [28], and 1200 hours for the OT
method described in [43]. We clarify that in order to utilize the EMD-L1 method images had
to be downsampled to allow the computations to be performed in reasonable times. The time
quoted above (and results shown in Tables 1, and 3) was computed by downsampling each
image by a factor of four (after spatial filtering). We clarify again, however, that we have
used a generic linear programming package for solving the OT optimizations associated
with our LOT framework. The computation times for the LOT framework could be
decreased further by utilizing linear programming techniques more suitable for this problem.

In addition to fast computation, a significant innovation of the LOT approach is the
convenient isometric linear embedding it provides. In contrast to other methods that also
obtain linear embeddings, see for example [31,37], the embedding LOT space allows for one
to synthesize and visualize any point in the linear space as an image. Therefore the LOT
embedding can facilitate visualization of the data distribution (via PCA) as well as
differences between distributions (via penalized LDA). Hence, it allows for the automatic
visualization of differences in both shape and texture in different classes of images. In
biological applications, such meaningful visualizations can be important in helping elucidate
effects and mechanisms automatically from the image data. For example, the results with the
nuclear chromatin dataset suggest that, in this disease, cancer cells tend to have their
chromatin more evenly spread (euchromatin) throughout the nucleus, whereas normal cells
tend to have their chromatin in more compact form (heterochromatin). This suggests that the
loss of heterochromatin is associated with the cancer phenotype in this disease. This finding
is corroborated by earlier studies [42,43] (which used different methodology), as well as
other literature which suggests that cancer progression is associated with loss of
heterochromatin [25, 13].

We note that the use of the quadratic cost in (1) allows for a Riemannian geometric
interpretation for the space of images. With this point of view, the LOT framework we
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describe can be viewed as a tangent plane approximation of the OT manifold. Thus the
linear embedding we mentioned above can be viewed as a projection onto the tangent plane.
While computing theoretical bounds for the difference between the OT and LOT distances is
difficult since it would depend on the curvature of the OT manifold (which we have no way
of estimating for a real distribution of images), several important facts about this
approximation are worth noting. Firstly, we note that the LOT is a proper mathematical
distance on its own, even when the tangent plane approximation is poor. Secondly, the
projection is a one to one mapping. Thus information cannot be lost by projecting two
images onto the same point. Finally, we note that utilizing the LOT distances (instead of the
OT ones) results in no significant loss in classification accuracy. This suggests, that for these
datasets, no evidence is available to prefer the OT space versus the LOT one.

As mentioned above, the LOT embedding obtained via the tangent space approximation can
facilitate the application of geometric data analysis methods such as PCA to enable one to
visualize interesting variations in texture and shape in the dataset. As compared to applying
the PCA method directly on pixel intensities (data not shown for brevity), the PCA method
applied with the use of the LOT method yields sharper and easier to interpret variations,
since it can account for both texture and shape variations via the transportation of mass. As
already noted above, several other graph-based methods also exist for the same purpose
[31,37]. However, in contrast to our LOT method, these are not analytical meaning that only
measured images can be visualized. Moreover, the LOT distances we provide here can be
used as ‘local’ distances, based on which such graphs can be constructed. Thus both classes
of methods could be used jointly, for even better performance (one example is provided in
[30]).

The LOT framework presented here depends on a ‘particle’ approximation of the input
images. The advantage of such a particle approximation is that the underlying OT
optimization becomes a linear program whose global optimum can be solved exactly with
standard methods. Drawbacks include the fact that such approach can become
computationally intensive for non sparse images. We investigated the average classification
accuracy for the experiments encountered in the previous section as a function of the
number of particles used to approximate each image. For the experiment involving nuclear
chromatin patterns, for example, the average classification accuracy for the LOT method
using 300, 500, and 900 particles was 79%, 83.3%, and 83.4%, respectively. We note that
for the golgi protein dataset, utilizing the LOT with 100 particles produced nearly the same
accuracy as the ones reported in Table 2. These results, together with the already provided
comparison to other methods, suggest the particle approximation was sufficient to classify
these datasets.

Finally, we wish to point out several limitations inherent in the approach we describe here.
First, as already noted, the particle approximation is best able to handle images which are
sparse. For images that are not sparse, many more particles are needed to approximate the
image well, thus increasing significantly the computational cost of the method. In addition,
like all transportation related distances, our approach is not able to handle transport
problems which include boundaries. Instead the approach is best suited for analyzing images
whose intensities can be viewed as a distribution of mass that is ‘free’ to move about the
image. In addition, we note that transportation-type distances are not good at telling the
difference between smooth versus punctate patterns. For this specific task, other approaches
(such as Fourier analysis, for example), may be more fruitful. Finally, we note that for some
types of images, the traditional OT and the LOT can yield very different distances. This
could occur when the images to be compared have very sharp transitions, of high frequency,
and if the phase of these transitions are mismatched. We note that this is rarely the case in
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the images we analyze in this paper. These and other aspects of our current LOT framework
will be the subject of future work.
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Appendix: Particle approximation algorithm
Here we present the details of the particle approximation algorithm outlined in section 3.1.
The goal of the algorithm is to approximate the given probability measure, μ on Ω by a
particle measure with approximately N particles, where N is given. For images where the
estimated error of the initial approximation is much larger than the typical error over the
given dataset the number of particles is increased to reduce the error, while for images
where the error is much smaller than typical the number of particles is reduced in order to
save time when computing the OT distance. The precise criterion and implementation of
adjusting the number of particles is described in step 8 below.

In our application the measure μ represents the image. It too can be thought as a particle

measure particle measure itself  where Nμ is the number of pixels, yj the
coordinates of the pixel centers, and mj the intensity values. Our goal however is to
approximate it with a particle measure with a lot fewer particles. Below we use the fact that

the restriction of the measure μ to a set V is defined as . The backbone of
the algorithm rests on the following mathematical observations.

Observation 1. The best approximation for fixed particle locations
Assume that x1, …, xN are fixed. Consider the Voronoi diagram with centers x1, …, xN. Let
Vi be the cell of the Voronoi diagram that correspond to the center xi. Then among all

probability measures of the form  the one that approximates μ the best is

(14)

Let us remark that if μ is a particle measure as above then μ(Vi) is just the sum of intensities
of all pixels whose centers lie in Vi.

Given a measure μ supported on Ω we define the center of mass to be

(15)

Observation 2. The best local ‘recentering’ of particles
It is easy to prove that among all one-particle measures the one that approximates μ the best
is the one set at the center of mass of μ:
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We can apply this to ‘recenter’ the delta measures in each Voronoi cell:

Here μ|Vi is the restriction of measure μ to the set Vi. More precisely, for A ⊂ Ω, μ|Vi(A) =
μ(A ∩ Vi).

Observation 3. The error for the current approximation is easy to estimate
Given a particle approximation as above one can compute a good upper bound on the error.
In particular

(16)

If  the upper bound on the right-hand side becomes 

where . We should also note that the estimate on the right-
hand side gives us very useful information on ‘local’ error in each cell Vi. This enables us to
determine which cells need to be refined when needed.

Based on these observations, we use the following ‘weighted Lloyd’ algorithm to produce a
particle approximation to measure μ. The idea is to use enough particles to approximate
each image well (according to the transport criterion), but not more than necessary given a
chosen accuracy. The steps of our algorithm are:

1. Distribute N particles (with N an arbitrarily chosen number), x1, … xN, over the
domain Ω by weighted random sampling (without replacement) the measure μ with
respect to the intensity values of the image.

2. Compute the Voronoi diagram for centers xi, …, xk. Based on Observation 1, set mi

= μ(Vi). The measure  is the current approximation.

3. Using Observation 2, we recenter the cells by setting xi,new = x(μ|Vi) (the center of
mass of μ restricted to cell Vi).

4. Repeat steps 2. and 3. until the algorithm stabilizes. (the change of error upper
bound is less than 0.5% in the sequential steps).

5. Repeat the steps 1 to 4 10 times for each image and choose the approximation with
lowest error.

6. We then seek to improve the approximation in regions in the image which have not
been well approximated by the step above. We do so by introducing more particles
in the Voronoi cells Vi where the cost of transporting the intensities in that cell to
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its center of mass exceed a certain threshold. To do so, we compute the
transportation error erri = dW(μ|Vi, μ(Vi)δxi) in cell i. Let err be the average
transportation error. We add particles to all cells where erri > 1.7err. More precisely
if there are any cells where erri > 1.7err then we split the cell with the largest error
into two cells Vi1, Vi2, and then recompute the Voronoi diagram to determine the
centers mi1 = μ(Vi1), mi2 = μ(Vi2) of these two new cells. We repeat this splitting
process until all the Voronoi cells have error less than 1.7erri. The choice of 1.7
was based on emperical evaluation with several datasets.

7. In order to reduce the number of particles in areas in each image where many
particles are not needed, we merge nearby particles. Two particles are merged if, by
merging them, the theoretical upper bound defined in (16) is lowered. When
particles of mass m1 and m2 and locations x1 and x2 are merged to a single particle

of mass m = m1 + m2 located at the center of mass  the error in the
m1+m2 distance squared is bounded by:

We merge the particles that add the smallest error first and then continue merging
until dW(μN, μmerged) < 0.15dW(μN, μ). This has the overall effect of shifting the
histogram (taken over all images) of the approximation error to the right, where the
inequality is used in the sense of the available upper bound on the distance
(Observation 3 and the estimate above) and not the actual distance. This ensures
that the final error for each image after merging is around 1.15dW(μN, μ).

8. Finally, while the two steps above seek to find a good particle approximation for
each image, with N particles or more, the final step is designed to make the particle
approximation error more uniform for all images in a given dataset. For a set of
images I1, I2, …, IM, we estimate the average transportation error, Eavg, between
each digital image and its approximation, as well as standard deviation t of the
errors. We set Esmall = Eavg − 0.5 * τ and Ebig = Eavg + 0.5 * τ.

• For images that have bigger error than Ebig, we split the particles as in
Step 6 until the error for those images are less than Ebig.

• For images that have smaller error than Esmall, we merge nearby particles
instead as in Step 7. The procedure we apply is to merge the particles that
add the smallest error first and then continue merging until dW (μ,
μmerged) = Esmall.
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Fig. 1.
Optimal transport map ϕ between measures μ and ν whose supports are outlined.
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Fig. 2.
The identification of the manifold with the tangent plane. Distances to σ as well as angles at
σ are preserved.
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Fig. 3.
When measures are discrete as in (4), then finding the transportation plan which minimizes
the transportation cost, (5), necessitates splitting the particles. The arrows are drawn only for
positive fi,j.
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Fig. 4.
Given f and g in (6), for each k fixed, hk,i,j gives the optimal transportation plan between the
‘f-image’ and the ‘g-image’ of the particle at zk. Arrows are drawn only for positive
coefficients, and only for the particle at zk.
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Fig. 5.
For the LOT distance we replace the full f-image and the g-image of the particle at zk by
their centers of mass x̂k and ŷk, (7). When there are many particles the images of particle at
zk tend to be concentrated on a few nearby particles. Thus the error introduced by replacing
them by their center of mass is small.
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Fig. 6.
Sample images for the two data sets. A: Sample images from the liver nuclear chromatin
data set. B: Sample images from the Golgi protein data set. C: Sample images from galaxy
image data set. D: Sample image from facial expression data set.
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Fig. 7.
Histograms of particle approximation error and LOT error. A: The histogram of relative
error generated during the particle approximation process. The x-axis represents the relative
error in percentage, and the y-axis represents the portion of samples that has the
corresponding relative error. B: The histogram of relative errors between LOT and OT for
nuclei and golgi data sets. The x-axis represents the relative error in percentage, and the y-
axis represents the portion of samples that has the corresponding relative error. The dotted
line represents the relative errors for the liver nuclear chromatin dataset, and the solid line
represents relative errors for the Golgi dataset.
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Fig. 8.
The modes of variation given by the PCA method combined with the LOT framework, for
nuclear chromatin (A) and facial expression (B) datasets. Each row corresponds to a mode
of variation, starting from the first PCA mode (top).
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Fig. 9.
Modes of discrimination computed using the penalized LDA method in combination with
the LOT framework. Each row contains the mode of variation that best discriminates the two
classes in each dataset. Parts (A),(B),(C),(D) refer to discrimination modes in nuclear
morphology, golgi proteins, galaxy morphology, and facial expression datasets, respectively.
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Table 1

Average classification accuracy in liver data

Feature OT LOT EMD-L1

Case 1 89% 87% 86% 84%

Case 2 92% 88% 89% 86%

Case 3 94% 91% 90% 87%

Case 4 80% 87% 85% 84%

Case 5 71% 76% 74% 76%

Average 85.2% 85.8% 84.8% 83.4%
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Table 3

Average classification accuracy for EMD-L1 in golgi protein data

EMD-L1

gia gpp

gia 85.8% 14.2%

gpp 31.3% 68.7%
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