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Abstract Cascade classifiers are widely used in real-

time object detection. Different from conventional clas-

sifiers that are designed for a low overall classification

error rate, a classifier in each node of the cascade is

required to achieve an extremely high detection rate

and moderate false positive rate. Although there are

a few reported methods addressing this requirement

in the context of object detection, there is no princi-

pled feature selection method that explicitly takes into

account this asymmetric node learning objective. We

provide such an algorithm here. We show that a spe-

cial case of the biased minimax probability machine has

the same formulation as the linear asymmetric classifier

(LAC) of Wu et al. (2005). We then design a new boost-

ing algorithm that directly optimizes the cost function

of LAC. The resulting totally-corrective boosting algo-

rithm is implemented by the column generation tech-
nique in convex optimization. Experimental results on

object detection verify the effectiveness of the proposed

boosting algorithm as a node classifier in cascade ob-

ject detection, and show performance better than that

of the current state-of-the-art.
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1 Introduction

Real-time object detection inherently involves search-

ing a large number of candidate image regions for a

small number of objects. Processing a single image, for

example, can require the interrogation of well over a

million scanned windows in order to uncover a single

correct detection. This imbalance in the data has an

impact on the way that detectors are applied, but also

on the training process. This impact is reflected in the

need to identify discriminative features from within a

large over-complete feature set.

Cascade classifiers have been proposed as a poten-

tial solution to the problem of imbalance in the data

(Viola and Jones 2004; Bi et al. 2006; Dundar and Bi

2007; Brubaker et al. 2008; Wu et al. 2008), and have
received significant attention due to their speed and ac-

curacy. In this work, we propose a principled method

by which to train a boosting-based cascade of classifiers.

The boosting-based cascade approach to object de-

tection was introduced by Viola and Jones (Viola and

Jones 2004; 2002), and has received significant subse-

quent attention (Li and Zhang 2004; Pham and Cham

2007b; Pham et al. 2008; Paisitkriangkrai et al. 2008;

Shen et al. 2008; Paisitkriangkrai et al. 2009). It also

underpins the current state-of-the-art (Wu et al. 2005;

2008).

The Viola and Jones approach uses a cascade of

increasingly complex classifiers, each of which aims to

achieve the best possible classification accuracy while

achieving an extremely low false negative rate. These

classifiers can be seen as forming the nodes of a de-

generate binary tree (see Fig. 1) whereby a negative

result from any single such node classifier terminates

the interrogation of the current patch. Viola and Jones

use AdaBoost to train each node classifier in order to
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achieve the best possible classification accuracy. A low

false negative rate is achieved by subsequently adjust-

ing the decision threshold until the desired false nega-

tive rate is achieved. This process cannot be guaranteed

to produce the best detection performance for a given

false negative rate.

Under the assumption that each node of the cas-

cade classifier makes independent classification errors,

the detection rate and false positive rate of the entire

cascade are: Fdr =
∏N
t=1 dt and Ffp =

∏N
t=1 ft, respec-

tively, where dt represents the detection rate of classi-

fier t, ft the corresponding false positive rate and N the

number of nodes. As pointed out in (Viola and Jones

2004; Wu et al. 2005), these two equations suggest a

node learning objective: Each node should have an ex-

tremely high detection rate dt (e.g., 99.7%) and a mod-

erate false positive rate ft (e.g., 50%). With the above

values of dt and ft, and a cascade of N = 20 nodes,

then Fdr ≈ 94% and Ffp ≈ 10−6, which is a typical

design goal.

One drawback of the standard AdaBoost approach

to boosting is that it does not take advantage of the cas-

cade classifier’s special structure. AdaBoost only mini-

mizes the overall classification error and does not par-

ticularly minimize the number of false negatives. In this

sense, the features selected by AdaBoost are not opti-

mal for the purpose of rejecting as many negative ex-

amples as possible. Viola and Jones proposed a solu-

tion to this problem in AsymBoost (Viola and Jones

2002) (and its variants (Pham and Cham 2007b; Pham

et al. 2008; Wang et al. 2012; Masnadi-Shirazi and Vas-

concelos 2007)) by modifying the loss function so as

to more greatly penalize false negatives. AsymBoost

achieves better detection rates than AdaBoost, but still

addresses the node learning goal indirectly, and cannot

be guaranteed to achieve the optimal solution.

Wu et al. explicitly studied the node learning goal

and proposed to use linear asymmetric classifier (LAC)

and Fisher linear discriminant analysis (LDA) to adjust

the weights on a set of features selected by AdaBoost

or AsymBoost (Wu et al. 2005; 2008). Their experi-

ments indicated that with this post-processing tech-

nique the node learning objective can be better met,

which is translated into improved detection rates. In

Viola and Jones’ framework, boosting is used to select

features and at the same time to train a strong classifier.

Wu et al.’s work separates these two tasks: AdaBoost

or AsymBoost is used to select features; and as a sec-

ond step, LAC or LDA is used to construct a strong

classifier by adjusting the weights of the selected fea-

tures. The node learning objective is only considered at

the second step. At the first step—feature selection—

the node learning objective is not explicitly considered

at all. We conjecture that further improvement may be

gained if the node learning objective is explicitly taken

into account at both steps. We thus propose new boost-

ing algorithms to implement this idea and verify this

conjecture. A preliminary version of this work was pub-

lished in Shen et al. (2010).

Our major contributions are as follows.

1. Starting from the theory of minimax probability

machines (MPMs), we derive a simplified version

of the biased minimax probability machine, which

has the same formulation as the linear asymmet-

ric classifier of Wu et al. (2005). We thus show the

underlying connection between MPM and LAC. Im-

portantly, this new interpretation weakens some of

the restrictions on the acceptable input data distri-

bution imposed by LAC.

2. We develop new boosting-like algorithms by directly

minimizing the objective function of the linear asym-

metric classifier, which results in an algorithm that

we label LACBoost. We also propose FisherBoost

on the basis of Fisher LDA rather than LAC. Both

methods may be used to identify the feature set

that optimally achieves the node learning goal when

training a cascade classifier. To our knowledge, this

is the first attempt to design such a feature selection

method.

3. LACBoost and FisherBoost share similarities with

LPBoost (Demiriz et al. 2002) in the sense that both

use column generation—a technique originally pro-

posed for large-scale linear programming (LP). Typ-

ically, the Lagrange dual problem is solved at each

iteration in column generation. We instead solve

the primal quadratic programming (QP) problem,
which has a special structure and entropic gradient

(EG) can be used to solve the problem very effi-

ciently. Compared with general interior-point based

QP solvers, EG is much faster.

4. We apply LACBoost and FisherBoost to object de-

tection and better performance is observed over oth-

er methods (Wu et al. 2005; 2008; Maji et al. 2008).

In particular on pedestrian detection, FisherBoost

achieves the state-of-the-art, comparing with meth-

ods listed in (Dollár et al. 2012) on three bench-

mark datasets. The results confirm our conjecture

and show the effectiveness of LACBoost and Fisher-

Boost. These methods can be immediately applied

to other asymmetric classification problems.

Moreover, we analyze the condition that makes the

validity of LAC, and show that the multi-exit cascade

might be more suitable for applying LAC learning of

Wu et al. (2005) and Wu et al. (2008) (and our LAC-

Boost) rather than Viola-Jones’ conventional cascade.
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As observed in Wu et al. (2008), in many cases, LDA

even performs better than LAC. In our experiments, we

have also observed similar phenomena. Paisitkriangkrai

et al. (2009) empirically showed that LDA’s criterion

can be used to achieve better detection results. An ex-

planation of why LDA works so well for object detection

is missing in the literature. Here we demonstrate that

in the context of object detection, LDA can be seen as

a regularized version of LAC in approximation.

The proposed LACBoost/FisherBoost algorithm dif-

fers from traditional boosting algorithms in that it does

not minimize a loss function. This opens new possibil-

ities for designing boosting-like algorithms for special

purposes. We have also extended column generation for

optimizing nonlinear optimization problems. Next we

review related work in the context of real-time object

detection using cascade classifiers.

1.1 Related Work

The field of object detection has made a significant

progress over the last decade, especially after the sem-

inal work of Viola and Jones. Three key components

that contribute to their first robust real-time object de-

tection framework are:

1. The cascade classifier, which efficiently filters out

negative patches in early nodes while maintaining a

very high detection rate;

2. AdaBoost that selects informative features and at

the same time trains a strong classifier;

3. The use of integral images, which makes the com-

putation of Haar features extremely fast.

This approach has received significant subsequent at-

tention. A number of alternative cascades have been de-

veloped including the soft cascade (Bourdev and Brandt

2005), WaldBoost (Sochman and Matas 2005), the dy-

namic cascade (Xiao et al. 2007), the AND-OR cascade

(Dundar and Bi 2007), the multi-exit cascade (Pham

et al. 2008), the joint cascade (Lefakis and Fleuret 2010)

and recently proposed, the rate constraint embedded

cascade (RCECBoost) (Saberian and Vasconcelos 2012).

In this work we have adopted the multi-exit cascade of

Pham et al. due to its effectiveness and efficiency as

demonstrated in Pham et al. (2008). The multi-exit cas-

cade improves classification performance by using the

results of all of the weak classifiers applied to a patch

so far in reaching a decision at each node of the tree

(see Fig. 1). Thus the n-th node classifier uses the re-

sults of the weak classifiers associated with node n, but

also those associated with the previous n−1 node clas-

sifiers in the cascade. We show below that LAC post-

processing can enhance the multi-exit cascade, and that

the multi-exit cascade more accurately fulfills the LAC

requirement that the margin be drawn from a Gaussian

distribution.

In addition to improving the cascade structure, a

number of improvements have been made on the learn-

ing algorithm for building node classifiers in a cascade.

Wu et al., for example, use fast forward feature selection

to accelerate the training procedure (Wu et al. 2003).

Wu et al. (2005) also showed that LAC may be used

to deliver better classification performance. Pham and

Cham recently proposed online asymmetric boosting

that considerably reduces the training time required

(Pham and Cham 2007b). By exploiting the feature

statistics, Pham and Cham (2007a) have also designed

a fast method to train weak classifiers. Li and Zhang

(2004) proposed FloatBoost, which discards redundant

weak classifiers during AdaBoost’s greedy selection pro-

cedure. Masnadi-Shirazi and Vasconcelos (2011) pro-

posed cost-sensitive boosting algorithms which can be

applied to different cost-sensitive losses by means of

gradient descent. Liu and Shum (2003) also proposed

KLBoost, aiming to select features that maximize the

projected Kullback-Leibler divergence and select fea-

ture weights by minimizing the classification error. Pro-

mising results have also been reported by LogitBoost

(Tuzel et al. 2008) that employs the logistic regression

loss, and GentleBoost (Torralba et al. 2007) that uses

adaptive Newton steps to fit the additive model. Multi-

instance boosting has been introduced to object detec-

tion (Viola et al. 2005; Dollár et al. 2008; Lin et al.

2009), which does not require precisely labeled loca-

tions of the targets in training data.

New features have also been designed for improv-

ing the detection performance. Viola and Jones’ Haar

features are not sufficiently discriminative for detecting

more complex objects like pedestrians, or multi-view

faces. Covariance features (Tuzel et al. 2008) and his-

togram of oriented gradients (HOG) (Dalal and Triggs

2005) have been proposed in this context, and efficient

implementation approaches (along the lines of integral

images) are developed for each. Shape context, which

can also exploit integral images (Aldavert et al. 2010),

was applied to human detection in thermal images (Wa-

ng et al. 2010). The local binary pattern (LBP) descrip-

tor and its variants have been shown promising per-

formance on human detection (Mu et al. 2008; Zheng

et al. 2010). Recently, effort has been spent on com-

bining complementary features, including: simple con-

catenation of HOG and LBP (Wang et al. 2007), com-

bination of heterogeneous local features in a boosted

cascade classifier (Wu and Nevatia 2008), and Bayesian

integration of intensity, depth and motion features in a

mixture-of-experts model (Enzweiler et al. 2010).
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Fig. 1: Cascade classifiers. The first one is the standard cascade of Viola and Jones (2004). The second one is the

multi-exit cascade proposed in Pham et al. (2008). Only those classified as true detection by all nodes will be true

targets.

The rest of the paper is organized as follows. We

briefly review the concept of minimax probability ma-

chine and derive the new simplified version of biased

minimax probability machine in Section 2. Linear asym-

metric classification and its connection to the minimax

probability machine is discussed in Section 3. In Sec-

tion 4, we show how to design new boosting algorithms

(LACBoost and FisherBoost) by rewriting the opti-

mization formulations of LAC and Fisher LDA. The

new boosting algorithms are applied to object detec-

tion in Section 5 and we conclude the paper in Section

6.

1.2 Notation

The following notation is used. A matrix is denoted by a

bold upper-case letter (X); a column vector is denoted

by a bold lower-case letter (x). The ith row of X is

denoted by Xi: and the ith column X:i. The identity

matrix is I and its size should be clear from the context.

1 and 0 are column vectors of 1’s and 0’s, respectively.

We use <,4 to denote component-wise inequalities.

Let T = {(xi, yi)}i=1,··· ,m be the set of training

data, where xi ∈ X and yi ∈ {−1,+1}, ∀i. The train-

ing set consists of m1 positive training points and m2

negative ones; m1 + m2 = m. Let h(·) ∈ H be a weak

classifier that projects an input vector x into {−1,+1}.
Note that here we consider only classifiers with discrete

outputs although the developed methods can use real-

valued weak classifiers too. We assume that H, the set

from which h(·) is selected, is finite and has n elements.

Define the matrix HZ ∈ Rm×n such that the (i, j)

entry HZij = hj(xi) is the label predicted by weak clas-

sifier hj(·) for the datum xi, where xi the ith element of

the set Z. In order to simplify the notation we eliminate

the superscript when Z is the training set, so HZ = H.

Therefore, each column H:j of the matrix H consists

of the output of weak classifier hj(·) on all the train-

ing data; while each row Hi: contains the outputs of all

weak classifiers on the training datum xi. Define simi-

larly the matrix A ∈ Rm×n such that Aij = yihj(xi).

Note that boosting algorithms entirely depends on the

matrix A and do not directly interact with the train-

ing examples. Our following discussion will thus largely
focus on the matrix A. We write the vector obtained

by multiplying a matrix A with a vector w as Aw and

its ith entry as (Aw)i. If we let w represent the co-

efficients of a selected weak classifier then the margin

of the training datum xi is ρi = Ai:w = (Aw)i and

the vector of such margins for all of the training data

is ρ = Aw.

2 Minimax Probability Machines

Before we introduce our boosting algorithm, let us briefly

review the concept of minimax probability machines

(MPM) (Lanckriet et al. 2002) first.

2.1 Minimax Probability Classifiers

Let x1 ∈ Rn and x2 ∈ Rn denote two random vectors

drawn from two distributions with means and covari-
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ances (µ1,Σ1) and (µ2,Σ2), respectively. Here µ1,µ2 ∈
Rn andΣ1,Σ2 ∈ Rn×n. We define the class labels of x1

and x2 as +1 and −1, w.l.o.g. The minimax probability

machine (MPM) seeks a robust separation hyperplane

that can separate the two classes of data with the max-

imal probability. The hyperplane can be expressed as

w>x = b with w ∈ Rn\{0} and b ∈ R. The problem of

identifying the optimal hyperplane may then be formu-

lated as

max
w,b,γ

γ s.t.

[
inf

x1∼(µ1,Σ1)
Pr{w>x1 ≥ b}

]
≥ γ, (1)[

inf
x2∼(µ2,Σ2)

Pr{w>x2 ≤ b}
]
≥ γ.

Here γ is the lower bound of the classification accuracy

(or the worst-case accuracy) on test data. This problem

can be transformed into a convex problem, more specif-

ically a second-order cone program (SOCP) (Boyd and

Vandenberghe 2004) and thus can be solved efficiently

(Lanckriet et al. 2002).

2.2 Biased Minimax Probability Machines

The formulation (1) assumes that the classification prob-

lem is balanced. It attempts to achieve a high recog-

nition accuracy, which assumes that the losses associ-

ated with all mis-classifications are identical. However,

in many applications this is not the case.

Huang et al. (2004) proposed a biased version of

MPM through a slight modification of (1), which may

be formulated as

max
w,b,γ

γ s.t.

[
inf

x1∼(µ1,Σ1)
Pr{w>x1 ≥ b}

]
≥ γ, (2)[

inf
x2∼(µ2,Σ2)

Pr{w>x2 ≤ b}
]
≥ γ◦.

Here γ◦ ∈ (0, 1) is a prescribed constant, which is the

acceptable classification accuracy for the less important

class. The resulting decision hyperplane prioritizes the

classification of the important class x1 over that of the

less important class x2. Biased MPM is thus expected

to perform better in biased classification applications.

Huang et al. showed that (2) can be iteratively solved

via solving a sequence of SOCPs using the fractional

programming (FP) technique. Clearly it is significantly

more computationally demanding to solve (2) than (1).

Next we show how to re-formulate (2) into a simpler

quadratic program (QP) based on the recent theoretical

results in (Yu et al. 2009).

2.3 Simplified Biased Minimax Probability Machines

In this section, we are interested in simplifying the prob-

lem of (2) for a special case of γ◦ = 0.5, due to its

important application in object detection (Viola and

Jones 2004; Wu et al. 2005). In the following discus-

sion, for simplicity, we only consider γ◦ = 0.5 although

some algorithms developed may also apply to γ◦ < 0.5.

Theoretical results in (Yu et al. 2009) show that, the

worst-case constraint in (2) can be written in different

forms when x follows arbitrary, symmetric, symmetric

unimodal or Gaussian distributions (see Appendix A).

Both the MPM (Lanckriet et al. 2002) and the biased

MPM (Huang et al. 2004) are based the most general

form of the four cases shown in Appendix A, i.e., Equa-

tion (27) for arbitrary distributions, as they do not im-

pose constraints upon the distributions of x1 and x2.

However, one may take advantage of structural in-

formation whenever available. For example, it is shown

in (Wu et al. 2005) that, for the face detection problem,

weak classifier outputs can be well approximated by the

Gaussian distribution. In other words, the constraint for

arbitrary distributions does not utilize any type of a

priori information, and hence, for many problems, con-

sidering arbitrary distributions for simplifying (1) and

(2) is too conservative. Since both the MPM (Lanckriet

et al. 2002) and the biased MPM (Huang et al. 2004) do

not assume any constraints on the distribution family,

they fail to exploit this structural information.

Let us consider the special case of γ◦ = 0.5. It is easy

to see that the worst-case constraint in (2) becomes a

simple linear constraint for symmetric, symmetric uni-

modal, as well as Gaussian distributions (see Appendix

A). As pointed out in (Yu et al. 2009), such a result

is the immediate consequence of symmetry because the

worst-case distributions are forced to put probability

mass arbitrarily far away on both sides of the mean.

In such case, any information about the covariance is

neglected.

We now apply this result to the biased MPM as

represented by (2). Our main result is the following

theorem.

Theorem 1 With γ◦ = 0.5, the biased minimax prob-

lem (2) can be formulated as an unconstrained problem:

max
w

w>(µ1 − µ2)√
w>Σ1w

, (3)

under the assumption that x2 follows a symmetric dis-

tribution. The optimal b can be obtained through:

b = w>µ2. (4)
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The worst-case classification accuracy for the first class,

γ?, is obtained by solving

ϕ(γ?) =
−b? + a?>µ1√

w?>Σ1w?
, (5)

where

ϕ(γ) =



√
γ

1−γ if x1 ∼ (µ1, Σ1),√
1

2(1−γ) if x1 ∼ (µ1, Σ1)S,

2
3

√
1

2(1−γ) if x1 ∼ (µ1, Σ1)SU,

φ−1(γ) if x1 ∼ G(µ1, Σ1).

(6)

and {w?, b?} is the optimal solution of (3) and (4).

Please refer to Appendix A for the proof of Theorem 1.

We have derived the biased MPM algorithm from a

different perspective. We reveal that only the assump-

tion of symmetric distributions is needed to arrive at a

simple unconstrained formulation. Compared with the

approach in (Huang et al. 2004), we have used more

information to simply the optimization problem. More

importantly, as will be shown in the next section, this

unconstrained formulation enables us to design a new

boosting algorithm.

There is a close connection between our algorithm

and the linear asymmetric classifier (LAC) in (Wu et al.

2005). The resulting problem (3) is exactly the same as

LAC in (Wu et al. 2005). Removing the inequality in

this constraint leads to a problem solvable by eigen-

decomposition. We have thus shown that the results of

Wu et al. may be generalized from the Gaussian dis-

tributions assumed in (Wu et al. 2005) to symmetric

distributions.

3 Linear Asymmetric Classification

We have shown that starting from the biased minimax

probability machine, we are able to obtain the same

optimization formulation as shown in Wu et al. (2005),

while much weakening the underlying assumption (sym-

metric distributions versus Gaussian distributions). Be-

fore we propose our LACBoost and FisherBoost, how-

ever, we provide a brief overview of LAC.

Wu et al. (2008) proposed linear asymmetric clas-

sification (LAC) as a post-processing step for training

nodes in the cascade framework. In (Wu et al. 2008), it

is stated that LAC is guaranteed to reach an optimal

solution under the assumption of Gaussian data distri-

butions. We now know that this Gaussianality condition

may be relaxed.

Suppose that we have a linear classifier

f(x) = sign(w>x− b).

We seek a {w, b} pair with a very high accuracy on the

positive data x1 and a moderate accuracy on the nega-

tive x2. This can be expressed as the following problem:

max
w 6=0,b

Pr
x1∼(µ1,Σ1)

{w>x1 ≥ b},

s.t. Pr
x2∼(µ2,Σ2)

{w>x2 ≤ b} = λ. (7)

In (Wu et al. 2005), λ is set to 0.5 and it is assumed

that for any w, w>x1 is Gaussian and w>x2 is sym-

metric, (7) can be approximated by (3). Again, these

assumptions may be relaxed as we have shown in the

last section. Problem (3) is similar to LDA’s optimiza-

tion problem

max
w 6=0

w>(µ1 − µ2)√
w>(Σ1 +Σ2)w

. (8)

Problem (3) can be solved by eigen-decomposition and

a closed-form solution can be derived:

w? = Σ−11 (µ1 − µ2), b? = w?>µ2. (9)

On the other hand, each node in cascaded boosting clas-

sifiers has the following form:

f(x) = sign(w>H(x)− b). (10)

We override the symbol H(x) here, which denotes the

output vector of all weak classifiers over the datum x.

We can cast each node as a linear classifier over the

feature space constructed by the binary outputs of all

weak classifiers. For each node in a cascade classifier, we

wish to maximize the detection rate while maintaining

the false positive rate at a moderate level (for example,

around 50.0%). That is to say, the problem (3) repre-

sents the node learning goal. Boosting algorithms such

as AdaBoost can be used as feature selection methods,

and LAC is used to learn a linear classifier over those bi-

nary features chosen by boosting as in Wu et al. (2005).

The advantage of this approach is that LAC considers

the asymmetric node learning explicitly.

However, there is a precondition on the validity of

LAC that for any w, w>x1 is a Gaussian and w>x2 is

symmetric. In the case of boosting classifiers, w>x1 and

w>x2 can be expressed as the margin of positive data

and negative data, respectively. Empirically Wu et al.

(2008) verified that w>x is approximately Gaussian for

a cascade face detector. We discuss this issue in more

detail in Section 5. Shen and Li (2010b) theoretically

proved that under the assumption that weak classifiers

are independent, the margin of AdaBoost follows the

Gaussian distribution, as long as the number of weak

classifiers is sufficiently large. In Section 5 we verify this

theoretical result by performing the normality test on

nodes with different number of weak classifiers.
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4 Constructing Boosting Algorithms from LDA

and LAC

In kernel methods, the original data are nonlinearly

mapped to a feature space by a mapping function Ψ(·).
The function need not be known, however, as rather

than being applied to the data directly, it acts instead

through the inner product Ψ(xi)
>Ψ(xj). In boosting

(Rätsch et al. 2002), however, the mapping function

can be seen as being explicitly known, as Ψ(x) : x 7→
[h1(x), . . . , hn(x)]. Let us consider the Fisher LDA case

first because the solution to LDA will generalize to LAC

straightforwardly, by looking at the similarity between

(3) and (8).

Fisher LDA maximizes the between-class variance

and minimizes the within-class variance. In the binary-

class case, the more general formulation in (8) can be

expressed as

max
w

(µ1 − µ2)2

σ1 + σ2
=

w>Cbw

w>Cww
, (11)

where Cb and Cw are the between-class and within-

class scatter matrices; µ1 and µ2 are the projected

centers of the two classes. The above problem can be

equivalently reformulated as

min
w

w>Cww − θ(µ1 − µ2), (12)

for some certain constant θ and under the assumption

that µ1 − µ2 ≥ 0.1 Now in the feature space, our data

are Ψ(xi), i = 1 . . .m. Define the vectors e, e1, e2 ∈ Rm
such that e = e1 + e2, the i-th entry of e1 is 1/m1 if

yi = +1 and 0 otherwise, and the i-th entry of e2 is

1/m2 if yi = −1 and 0 otherwise. We then see that

µ1 =
1

m1
w>

∑
yi=1

Ψ(xi) =
1

m1

∑
yi=1

Ai:w

=
1

m1

∑
yi=1

(Aw)i = e>1Aw, (13)

and

µ2 =
1

m2
w>

∑
yi=−1

Ψ(xi) =
1

m2

∑
yi=−1

Hi:w = −e>2Aw,

(14)

For ease of exposition we order the training data ac-

cording to their labels so the vector e ∈ Rm:

e = [1/m1, · · · , 1/m2, · · · ]>, (15)

and the first m1 components of ρ correspond to the pos-

itive training data and the remaining ones correspond

1 In our object detection experiment, we found that this
assumption can always be satisfied.

to the m2 negative data. We now see that µ1 − µ2 =

e>ρ, Cw = m1/m · Σ1 + m2/m · Σ2 with Σ1,2 the

covariance matrices. Noting that

w>Σ1,2w =
1

m1,2(m1,2 − 1)

∑
i>k,yi=yk=±1

(ρi − ρk)2,

we can easily rewrite the original problem (11) (and

(12)) into:

min
w,ρ

1
2ρ
>Qρ− θe>ρ,

s.t. w < 0,1>w = 1,

ρi = (Aw)i, i = 1, · · · ,m. (16)

Here Q =

[
Q1 0

0 Q2

]
is a block matrix with

Q1 =


1
m − 1

m(m1−1) . . . −
1

m(m1−1)
− 1
m(m1−1)

1
m . . . − 1

m(m1−1)
...

...
. . .

...

− 1
m(m1−1) −

1
m(m1−1) . . .

1
m

 ,

and Q2 is similarly defined by replacing m1 with m2 in

Q1:

Q2 =


1
m − 1

m(m2−1) . . . −
1

m(m2−1)
− 1
m(m2−1)

1
m . . . − 1

m(m2−1)
...

...
. . .

...

− 1
m(m2−1) −

1
m(m2−1) . . .

1
m

 .

Also note that we have introduced a constant 1
2 before

the quadratic term for convenience. The normalization

constraint 1>w = 1 removes the scale ambiguity of w.

Without it the problem is ill-posed.

We see from the form of (3) that the covariance of

the negative data is not involved in LAC and thus that if

we set Q =

[
Q1 0

0 0

]
then (16) becomes the optimization

problem of LAC.

At this stage, it remains unclear about how to solve

the problem (16) because we do not know all the weak

classifiers. There may be extremely (or even infinitely)

many weak classifiers in H, the set from which h(·) is

selected, meaning that the dimension of the optimiza-

tion variable w may also be extremely large. So (16)

is a semi-infinite quadratic program (SIQP). We show

how column generation can be used to solve this prob-

lem. To make column generation applicable, we need to

derive a specific Lagrange dual of the primal problem.



8 Chunhua Shen et al.

4.1 The Lagrange Dual Problem

We now derive the Lagrange dual of the quadratic prob-

lem (16). Although we are only interested in the vari-

able w, we need to keep the auxiliary variable ρ in order

to obtain a meaningful dual problem. The Lagrangian

of (16) is

L( w,ρ︸︷︷︸
primal

, u, r︸︷︷︸
dual

) = 1
2ρ
>Qρ− θe>ρ+ u>(ρ−Aw)− q>w

+ r(1>w − 1), (17)

with q < 0. supu,r infw,ρ L(w,ρ,u, r) gives the follow-

ing Lagrange dual:

max
u,r

− r −

regularization︷ ︸︸ ︷
1
2 (u− θe)>Q−1(u− θe),

s.t.
m∑
i=1

uiAi: 4 r1
>. (18)

In our case, Q is rank-deficient and its inverse does

not exist (for both LDA and LAC). Actually for both

Q1 and Q2, they have a zero eigenvalue with the cor-

responding eigenvector being all ones. This is easy to

see because for Q1 and Q2, the sum of each row (or

each column) is zero. We can simply regularize Q with

Q + δ̃I with δ̃ a small positive constant. Actually, Q is

a diagonally dominant matrix but not strict diagonal

dominance. So Q + δ̃I with any δ̃ > 0 is strict diago-

nal dominance and by the Gershgorin circle theorem, a

strictly diagonally dominant matrix must be invertible.

One of the KKT optimality conditions between the

dual and primal is

ρ? = −Q−1(u? − θe), (19)

which can be used to establish the connection between

the dual optimum and the primal optimum. This is ob-

tained by the fact that the gradient of L w.r.t. ρ must

vanish at the optimum, ∂L/∂ρi = 0, ∀i = 1 · · ·n.

Problem (18) can be viewed as a regularized LP-

Boost problem. Compared with the hard-margin LP-

Boost (Demiriz et al. 2002), the only difference is the

regularization term in the cost function. The duality

gap between the primal (16) and the dual (18) is zero.

In other words, the solutions of (16) and (18) coincide.

Instead of solving (16) directly, one calculates the most

violated constraint in (18) iteratively for the current

solution and adds this constraint to the optimization

problem. In theory, any column that violates dual fea-

sibility can be added. To speed up the convergence, we

add the most violated constraint by solving the follow-

ing problem:

h′(·) = argmaxh(·)

m∑
i=1

uiyih(xi). (20)

This is exactly the same as the one that standard Ad-

aBoost and LPBoost use for producing the best weak

classifier at each iteration. That is to say, to find the

weak classifier that has the minimum weighted train-

ing error. We summarize the LACBoost/FisherBoost

algorithm in Algorithm 1. By simply changing Q2, Al-

gorithm 1 can be used to train either LACBoost or

FisherBoost. Note that to obtain an actual strong clas-

sifier, one may need to include an offset b, i.e. the final

classifier is
∑n
j=1 hj(x)− b because from the cost func-

tion of our algorithm (12), we can see that the cost

function itself does not minimize any classification er-

ror. It only finds a projection direction in which the

data can be maximally separated. A simple line search

can find an optimal b. Moreover, when training a cas-

cade, we need to tune this offset anyway as shown in

(10).

The convergence of Algorithm 1 is guaranteed by

general column generation or cutting-plane algorithms,

which is easy to establish:

Theorem 2 The column generation procedure decreases

the objective value of problem (16) at each iteration and

hence in the limit it solves the problem (16) globally to

a desired accuracy.

The proof is deferred to Appendix B. In short, when

a new h′(·) that violates dual feasibility is added, the

new optimal value of the dual problem (maximization)

would decrease. Accordingly, the optimal value of its

primal problem decreases too because they have the

same optimal value due to zero duality gap. Moreover

the primal cost function is convex, therefore in the end

it converges to the global minimum.

At each iteration of column generation, in theory,

we can solve either the dual (18) or the primal problem

(16). Here we choose to solve an equivalent variant of

the primal problem (16):

min
w

1
2w>(A>QA)w − (θe>A)w, s.t. w ∈ ∆n, (21)

where ∆n is the unit simplex, which is defined as {w ∈
Rn : 1>w = 1,w < 0}.

In practice, it could be much faster to solve (21)

since

1. Generally, the primal problem has a smaller size,

hence faster to solve. The number of variables of

(18) is m at each iteration, while the number of

variables is the number of iterations for the primal
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Algorithm 1 Column generation for SIQP.

Input: Labeled training data (xi, yi), i = 1 · · ·m; termina-
tion threshold ε > 0; regularization parameter θ;
maximum number of iterations nmax.

Initialization: m = 0; w = 0; and ui = 1
m

, i = 1· · ·m.1

for iteration = 1 : nmax do2

− Check for the optimality:3

if iteration > 1 and
∑m

i=1 uiyih
′(xi) < r + ε,

then

break; and the problem is solved;
− Add h′(·) to the restricted master problem, which4

corresponds to a new constraint in the dual;
− Solve the dual problem (18) (or the primal problem5

(16)) and update r and ui (i = 1 · · ·m).
− Increment the number of weak classifiers n = n+1.6

Output: The selected features are h1, h2, . . . , hn. The fi-
nal strong classifier is: F (x) =

∑n
j=1 wjhj(x)−b.

Here the offset b can be learned by a simple line
search.

problem. For example, in Viola-Jones’ face detection

framework, the number of training data m = 10, 000

and nmax = 200. In other words, the primal problem

has at most 200 variables in this case;

2. The dual problem (18) is a standard QP problem.

It has no special structure to exploit. As we will

show, the primal problem (21) belongs to a special

class of problems and can be efficiently solved us-

ing entropic/exponentiated gradient descent (EG)

(Beck and Teboulle 2003; Collins et al. 2008). See

Appendix C for details of the EG algorithm.

A fast QP solver is extremely important for training

our object detector since we need to solve a few

thousand QP problems. Compared with standard

QP solvers like Mosek (MOSEK 2010), EG is much

faster. EG makes it possible to train a detector using

almost the same amount of time as using standard

AdaBoost because the majority of time is spent on

weak classifier training and bootstrapping.

We can recover both of the dual variables u?, r? eas-

ily from the primal variable w?,ρ?:

u? = −Qρ? + θe; (22)

r? = max
j=1...n

{∑m
i=1 u

?
iAij

}
. (23)

The second equation is obtained by the fact that in

the dual problem’s constraints, at optimum, there must

exist at least one u?i such that the equality holds. That

is to say, r? is the largest edge over all weak classifiers.

In summary, when using EG to solve the primal

problem, Line 5 of Algorithm 1 is:

− Solve the primal problem (21) using EG, and up-

date the dual variables u with (22), and r with (23).
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Fig. 2: Decision boundaries of AdaBoost (top) and

FisherBoost (bottom) on 2D artificial data generated

from the Gaussian distribution (positive data repre-

sented by �’s and negative data by ×’s). Weak classi-

fiers are vertical and horizontal decision stumps. Fisher-

Boost emphasizes more on positive samples than neg-

ative samples. As a result, the decision boundary of

FisherBoost is more similar to the Gaussian distribu-

tion than the decision boundary of AdaBoost.

5 Experiments

In this section, we perform our experiments on both

synthetic and challenging real-world data sets, e.g., face

and pedestrian detection.

5.1 Synthetic Testing

We first illustrate the performance of FisherBoost on

an asymmetrical synthetic data set where there are a

large number of negative samples compared to the pos-

itive ones. Fig. 2 demonstrates the subtle difference in

classification boundaries between AdaBoost and Fisher-

Boost. It can be observed that FisherBoost places more
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emphasis on positive samples than negative samples to

ensure these positive samples would be classified cor-

rectly. AdaBoost, on the other hand, treat both posi-

tive and negative samples equally. This might be due to

the fact that AdaBoost only optimizes the overall clas-

sification accuracy. This finding is consistent with our

results reported earlier in (Paisitkriangkrai et al. 2009;

Shen et al. 2011).

5.2 Comparison With Other Asymmetric Boosting

In this experiment, FisherBoost and LACBoost are com-

pared against several asymmetric boosting algorithms,

namely, AdaBoost with LAC or Fisher LDA post-pro-

cessing (Wu et al. 2008), AsymBoost (Viola and Jones

2002), cost-sensitive AdaBoost (CS-ADA) (Masnadi-

Shirazi and Vasconcelos 2011) and rate constrained boo-

sting (RCBoost) (Saberian and Vasconcelos 2012). The

results of AdaBoost are also presented as the baseline.

For each algorithm, we train a strong classifier consist-

ing of 100 weak classifiers along with their coefficients.

The threshold was determined such that the false pos-

itive rate of test set is 50%. For every method, the ex-

periment is repeated 5 times and the average detec-

tion rate on positive class is reported. For FisherBoost

and LACBoost, the parameter θ is chosen from {1/10,

1/12, 1/15, 1/20} by cross-validation. For AsymBoost,

we choose k (asymmetric factor) from {20.1, 20.2, · · · ,
20.5} by cross-validation. For CS-ADA, we set the cost

for misclassifying positive and negative data as follows.

We assign the asymmetric factor k = C1/C2 and re-

strict 0.5(C1 + C2) = 1. We choose k from {1.2, 1.65,

2.1, 2.55, 3} by cross-validation. For RCBoost, we con-

duct two experiments. In the first experiment, we use

the same training set to enforce the target detection

rate, while in the second experiment; we use 75% of the

training data to train the model and the other 25% to

enforce the target detection rate. We set the target de-

tection rate, DT , to 99.5%, the barrier coefficient, γ, to

2 and the number of iterations before halving γ, Nd, to

10.

We tested the performance of all algorithms on five

real-world data sets, including both machine learning

(USPS) and vision data sets (cars, faces, pedestrians,

scenes). We categorized USPS data sets into two classes:

even digits and odd digits. For faces, we use face data

sets from (Viola and Jones 2004) and randomly ex-

tract 5000 negative patches from background images.

We apply principle component analysis (PCA) to pre-

serve 95% total variation. The new data set has a di-

mension of 93. For UIUC car (Agarwal et al. 2004), we

downsize the original image from 40×100 pixels to 20×
50 pixels and apply PCA. The projected data capture

95% total variation and has a final dimension of 228.

For Daimler-Chrysler pedestrian data sets (Munder and

Gavrila 2006), we apply PCA to the original 18×36 pix-

els. The projected data capture 95% variation and has

a final dimension of 139. For indoor/outdoor scene, we

divide the 15-scene data set used in (Lazebnik et al.

2006) into 2 groups: indoor and outdoor scenes. We

use CENTRIST as our feature descriptors and build

50 visual code words using the histogram intersection

kernel (Wu and Rehg 2011). Each image is represented

in a spatial hierarchy manner. Each image consists of

31 sub-windows. In total, there are 1550 feature dimen-

sions per image. All 5 classifiers are trained to remove

50% of the negative data, while retaining almost all pos-

itive data. We compare their detection rates in Table 1.

From our experiments, FisherBoost demonstrates the

best performance on most data sets. However, LAC-

Boost does not perform as well as expected. We sus-

pect that the poor performance might partially due to

numerical issues, which can cause overfitting. We will

discuss this in more detail in Section 5.6.

5.3 Face Detection Using a Cascade Classifier

In this experiments, eight asymmetric boosting meth-

ods are evaluated with the multi-exit cascade (Pham

et al. 2008), which are FisherBoost/LACBoost, Ad-

aBoost alone or with LDA/LAC post-processing (Wu

et al. 2008), AsymBoost alone or with LDA/LAC post-

processing. We have also implemented Viola-Jones’ face

detector (AdaBoost with the conventional cascade) as

the baseline (Viola and Jones 2004). Furthermore, our

face detector is also compared with state-of-the-art in-

cluding some cascade design methods, i.e., WaldBoost

(Sochman and Matas 2005), FloatBoost (Li and Zhang

2004), Boosting Chain (Xiao et al. 2003) and the exten-

sion of (Saberian and Vasconcelos 2010), RCECBoost

(Saberian and Vasconcelos 2012). The algorithm for

training a multi-exit cascade is summarized in Algo-

rithm 2.

We first illustrate the validity of adopting LAC and

Fisher LDA post-processing to improve the node learn-

ing objective in the cascade classifier. As described abo-

ve, LAC and LDA assume that the margin of the train-

ing data associated with the node classifier in such a

cascade exhibits a Gaussian distribution. We demon-

strate this assumption on the face detection task in

Fig. 3. Fig. 3 shows the normal probability plot of the

margins of the positive training data for the first three

node classifiers in the multi-exit LAC classifier. The fig-

ure reveals that the larger the number of weak classifiers

used the more closely the margins follow the Gaussian
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AdaBoost LAC FLDA AsymBoost CS-ADA RCBoost1 RCBoost2 LACBoost FisherBoost

Digits 99.30 (0.10) 99.30 (0.21) 99.37 (0.08) 99.40 (0.11) 99.37 (0.09) 99.36 (0.17) 99.27 (0.15) 99.12 (0.07) 99.40 (0.13)
Faces 98.70 (0.14) 98.78 (0.42) 98.86 (0.22) 98.73 (0.14) 98.71 (0.20) 98.75 (0.18) 98.66 (0.23) 98.63 (0.29) 98.89 (0.15)
Cars 97.02 (1.55) 97.07 (1.34) 97.02 (1.50) 97.11 (1.36) 97.47 (1.31) 96.84 (0.87) 96.62 (1.08) 96.80 (1.47) 97.78 (1.27)

Pedestrians 98.54 (0.34) 98.59 (0.71) 98.69 (0.28) 98.55 (0.45) 98.51 (0.36) 98.67 (0.29) 98.65 (0.39) 99.12 (0.35) 98.73 (0.33)
Scenes 99.59 (0.10) 99.54 (0.21) 99.57 (0.12) 99.66 (0.12) 99.68 (0.10) 99.61 (0.19) 99.62 (0.16) 97.50 (1.07) 99.66 (0.10)

Average 98.63 98.66 98.70 98.69 98.75 98.64 98.56 98.23 98.89

Table 1: Test errors (%) on five real-world data sets. All experiments are run 5 times with 100 boosting iterations.

The average detection rate and standard deviation (in percentage) at 50% false positives are reported. Best average

detection rate is shown in boldface.
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Fig. 3: Normality test (normal probability plot) for the face data’s margin distribution of nodes 1, 2, 3. The 3

nodes contains 7, 22, 52 weak classifiers respectively. The data are plotted against a theoretical normal distribution

such that the data which follows the normal distribution model should form a straight line. Curves deviated from

the straight line (the red line) indicate departures from normality. The larger the number of weak classifiers, the

more closely the margin follow the Gaussian distribution.

distribution. From this, we infer that LAC/LDA post-

processing and thus LACBoost and FisherBoost, can

be expected to achieve a better performance when a

larger number of weak classifiers are used. We there-

fore apply LAC/LDA only within the later nodes (for

example, 9 onwards) of a multi-exit cascade as these

nodes contain more weak classifiers. We choose multi-

exit due to its property2 and effectiveness as reported

in (Pham et al. 2008). We have compared the multi-

exit cascade with LDA/LAC post-processing against

the conventional cascade with LDA/LAC post-proce-

ssing in (Wu et al. 2008) and performance improvement

has been observed.

As in (Wu et al. 2008), five basic types of Haar-like

features are calculated, resulting in a 162, 336 dimen-

sional over-complete feature set on an image of 24× 24

pixels. To speed up the weak classifier training, as in

(Wu et al. 2008), we uniformly sample 10% of features

for training weak classifiers (decision stumps). The face

data set consists of 9, 832 mirrored 24× 24 images (Vi-

ola and Jones 2004) (5, 000 images used for training and

4, 832 imaged used for validation) and 7, 323 larger res-

olution background images, as used in (Wu et al. 2008).

2 Since the multi-exit cascade makes use of all previous
weak classifiers in earlier nodes, it would meet the Gaussianity
requirement better than the conventional cascade classifier.

Several multi-exit cascades are trained with var-

ious algorithms described above. In order to ensure

a fair comparison, we have used the same number of

multi-exit stages and the same number of weak classi-

fiers. Each multi-exit cascade consists of 22 exits and

2, 923 weak classifiers. The indices of exit nodes are pre-

determined to simplify the training procedure.

For our FisherBoost and LACBoost, we have an im-

portant parameter θ, which is chosen from { 1
10 ,

1
12 ,

1
15 ,

1
20 ,

1
25 ,

1
30 ,

1
40 ,

1
50}. We have not carefully tuned this pa-

rameter using cross-validation. Instead, we train a 10-

node cascade for each candidate θ, and choose the one

with the best training accuracy.3 At each exit, nega-

tive examples misclassified by current cascade are dis-

carded, and new negative examples are bootstrapped

from the background images pool. In total, billions of

negative examples are extracted from the pool. The

positive training data and validation data keep unchang-

ed during the training process.

Our experiments are performed on a workstation

with 8 Intel Xeon E5520 CPUs and 32GB RAM. It

takes about 3 hours to train the multi-exit cascade with

AdaBoost or AsymBoost. For FisherBoost and LAC-

Boost, it takes less than 4 hours to train a complete

3 To train a complete 22-node cascade and choose the best
θ on cross-validation data may give better detection rates.
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(b) Comparison with some state-of-the-art

Fig. 4: Our face detectors are compared with other asymmetric boosting methods (a) and some state-of-the-

art including cascade design methods (b) on MIT+CMU frontal face test data using ROC curves (number of

false positives versus detection rate). “Ada” and “Asym” mean that features are selected using AdaBoost and

AsymBoost, respectively. “VJ” implements Viola and Jones’ cascade using AdaBoost (Viola and Jones 2004).

“MultiExit” means the multi-exit cascade (Pham et al. 2008). The ROC curves of compared methods in (b) are

quoted from their original papers (Sochman and Matas 2005; Li and Zhang 2004; Xiao et al. 2003; Saberian and

Vasconcelos 2012). Compared methods are ranked in the legend, based on the average of detection rates.

multi-exit cascade.4 In other words, our EG algorithm

takes less than 1 hour to solve the primal QP problem

(we need to solve a QP at each iteration). As an esti-

mation of the computational complexity, suppose that

the number of training examples is m, number of weak

classifiers is n. At each iteration of the cascade train-

ing, the complexity of solving the primal QP using EG

is O(mn + kn2) with k the iterations needed for EG’s

convergence. The complexity for training the weak clas-

sifier is O(md) with d the number of all Haar-feature

patterns. In our experiment, m = 10, 000, n ≈ 2900,

d = 160, 000, k < 500. So the majority of the compu-

tational cost of the training process is bound up in the

weak classifier training.

We have also experimentally observed the speedup

of EG against standard QP solvers. We solve the pri-

mal QP defined by (21) using EG and Mosek (MOSEK

2010). The QP’s size is 1, 000 variables. With the same

accuracy tolerance (Mosek’s primal-dual gap is set to

10−7 and EG’s convergence tolerance is also set to 10−7),

Mosek takes 1.22 seconds and EG is 0.0541 seconds on

a standard desktop. So EG is about 20 times faster.

Moreover, at iteration n+1 of training the cascade, EG

can take advantage of the last iteration’s solution by

starting EG from a small perturbation of the previous

4 Our implementation is in C++ and only the weak classi-
fier training part is parallelized using OpenMP.

solution. Such a warm-start gains a 5 to 10× speedup in

our experiment, while the current QP solver in Mosek

does not support warm-start (MOSEK 2010, Chapter

7).

We evaluate the detection performance on the MIT-

+CMU frontal face test set. This dataset is made up

of 507 frontal faces in 130 images with different back-

ground.

If one positive output has less than 50% variation

of shift and scale from the ground-truth, we treat it as

a true positive, otherwise a false positive.

In the test phase, the scale factor of the scanning

window is set to 1.2 and the stride step is set to 1 pixel.

The Receiver operating characteristic (ROC) curves

in Fig. 4 show the entire cascade’s performance. The

average detection rate (similar with the one used in

(Dollár et al. 2012)) are used to rank the compared

methods, which is the mean of detection rates sampled

evenly from 50 to 200 false positives. Note that multiple

factors impact on the cascade’s performance, however,

including: the classifier set, the cascade structure, boot-

strapping etc. Fig. 4 (a) demonstrate the superior per-

formance of FisherBoost to other asymmetric boosting

methods in the face detection task. We can also find

that LACBoost perform worse than FisherBoost. Wu

et al. have observed that LAC post-processing does not

outperform LDA post-processing in some cases either.
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Algorithm 2 The procedure for training a multi-exit

cascade with LACBoost or FisherBoost.
Input:
− A training set with m examples, which are ordered by
their labels (m1 positive examples followed by m2 nega-
tive examples);
− dmin: minimum acceptable detection rate per node;
− fmax: maximum acceptable false positive rate per node;
− Ffp: target overall false positive rate.
Initialize:1

t = 0; (node index)
n = 0; (total selected weak classifiers up to the current node)
Dt = 1; Ft = 1. (overall detection rate and false positive
rate up to the current node)
while Ffp < Ft do2

t = t+ 1; (increment node index)3

while dt < dmin do

(current detection rate dt is not acceptable yet)4

− n = n + 1, and generate a weak classifier and
update all the weak classifiers’ linear coefficient
using LACBoost or FisherBoost.
− Adjust threshold b of the current boosted5

strong classifier

F t(x) =
n∑

j=1

wt
jhj(x) − b

such that ft ≈ fmax.
− Update the detection rate of the current node6

dt with the learned boosted classifier.

Update Dt+1 = Dt × dt; Ft+1 = Ft × ft7

Remove correctly classified negative samples from8

negative training set.
if Ffp < Ft then9

Evaluate the current cascaded classifier on the10

negative images and add misclassified samples
into the negative training set; (bootstrap)

Output: A multi-exit cascade classifier with n weak clas-
sifiers and t nodes.

We have also compared our methods with the boost-

ed greedy sparse LDA (BGSLDA) in (Paisitkriangkrai

et al. 2009; Shen et al. 2011), which is considered one

of the state-of-the-art. FisherBoost and LACBoost out-

perform BGSLDA with AdaBoost/AsymBoost in the

detection rate. Note that BGSLDA uses the standard

cascade.

From Fig. 4 (b), we can see the performance of

FisherBoost is better than the other considered cascade

design methods. However, since the parameters of cas-

cade structure (e.g., node thresholds, number of nodes,

number of weak classifiers per node) are not carefully

tuned, our method can not guarantee an optimal trade-

off between accuracy and speed. We believe that the

boosting method and the cascade design strategy com-

pensate each other. Actually in (Saberian and Vascon-

celos 2010), the authors also incorporate some cost-

sensitive boosting algorithms, e.g., cost-sensitive Ad-

aBoost (Masnadi-Shirazi and Vasconcelos 2011), Asym-

Boost (Viola and Jones 2002), with their cascade design

method.

5.4 Pedestrian Detection Using a Cascade Classifier

We run our experiments on a pedestrian detection with

a minor modification to visual features being used. We

evaluate our approach on INRIA data set (Dalal and

Triggs 2005). The training set consists of 2, 416 cropped

mirrored pedestrian images and 1, 200 large resolution

background images. The test set consists of 288 im-

ages containing 588 annotated pedestrians and 453 non-

pedestrian images. Each training sample is scaled to

64 × 128 pixels with an additional of 16 pixels added

to each border to preserve human contour information.

During testing, the detection scanning window is re-

sized to 32×96 pixels to fit the human body. We use his-

togram of oriented gradient (HOG) features in our ex-

periments. Instead of using fixed-size blocks (105 blocks

of size 16×16 pixels) as in Dalal and Triggs (Dalal and

Triggs 2005), we define blocks with various scales (from

12× 12 pixels to 64× 128 pixels) and width-length ra-

tios (1 : 1, 1 : 2, 2 : 1, 1 : 3, and 3 : 1). Each block is

divided into 2× 2 cells, and HOG features in each cell

are summarized into 9 bins. Hence 36-dimensional HOG

feature is generated from each block. In total, there are

7, 735 blocks from a 64×128-pixels patch. `1-norm nor-

malization is then applied to the feature vector. Fur-

thermore, we use integral histograms to speed up the

computation as in (Zhu et al. 2006). At each iteration,

we randomly sample 10% of all the possible blocks for

training a weak classifier. We have used weighted lin-

ear discriminant analysis (WLDA) as weak classifiers,

same as in (Paisitkriangkrai et al. 2008). Zhu et al. used

linear support vector machines as weak classifiers (Zhu

et al. 2006), which can also be used as weak classifiers

here.

In this experiment, all cascade classifiers have the

same number of nodes and weak classifiers. For the

same reason described in the face detection section,

the FisherBoost/LACBoost and Wu et al.’s LDA/LAC

post-processing are applied to the cascade from the 3-

rd node onwards, instead of the first node. The positive

examples remain the same for all nodes while the neg-

ative examples in later nodes are obtained by a boot-

strap approach. The parameter θ of our FisherBoost

and LACBoost is selected from { 1
10 , 1

12 , 1
14 , 1

16 , 1
18 , 1

20}.
We have not carefully selected θ in this experiment.

Ideally, cross-validation should be used to pick the best

value of θ by using an independent cross-validation data

set. Since there are not many labeled positive training

data in the INRIA data set, we use the same 2, 416 pos-

itive examples for validation. We collect 500 additional
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70.94% HOG−MultiExit−LDA

69.45% HOG−LACBoost

69.22% HOG−MultiExit−Asym−LAC

67.60% HOG−MultiExit−Asym
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Fig. 5: FisherBoost (HOG-Fisher) and LACBoost

(HOG-LACBoost) are compared with other cascade

pedestrian detectors on the INRIA data set. All cas-

cades are trained with the same number of weak classi-

fiers and nodes, using HOG features. In the legend, de-

tectors are sorted based on their log-average detection

rates. FisherBoost performs best compared to other

cascades.

negative examples by bootstrapping for validation. Fur-

ther improvement is expected if the positive data used

during validation is different from those used during

training. During evaluation, we use a step stride of 4×4

pixels with 10 scales per octave (a scale ratio of 1.0718).

The performance of different cascade detectors is eval-

uated using a protocol described in (Dollár et al. 2012).

A technique known as pairwise maximum suppression

(Dollár 2012) is applied to suppress less confident de-

tection windows. A confidence score is needed for each

detection window as the input of pairwise maximum

suppression. In this work, this confidence is simply cal-

culated as the mean of decision scores of the last five

nodes in the cascade.

The ROC curves are plotted in Fig. 5. Same as

(Dollár et al. 2012), the log-average detection rate is

used to summarize overall detection performance, which

is the mean of detection rates sampled evenly at 9 po-

sitions from 0.01 to 1. In general, FisherBoost (HOG-

Fisher) outperforms all other cascade detectors. Simi-

lar to our previous experiments, LAC and LDA post-

processing further improve the performance of AdaBoost.

However, we observe that both FisherBoost and LDA

post-processing have a better generalization performance

than LACBoost and LAC post-processing. We will dis-

cuss this issue at the end of the experiments.

5.5 Comparison with State-of-the-art Pedestrian

Detectors

In this experiment, we compare FisherBoost with state-

of-the-art pedestrian detectors on several public data

sets. In (Dollár et al. 2012), the authors compare vari-

ous pedestrian detectors and conclude that combining

multiple discriminative features can often significantly

boost the performance of pedestrian detection. This

is not surprising since a similar conclusion was drawn

in (Gehler and Nowozin 2009) on an object recogni-

tion task. Clearly, the pedestrian detector, which relies

solely on the HOG feature, is unlikely to outperform

those using a combination of features.

To this end, we train our pedestrian detector by

combining both HOG features (Dalal and Triggs 2005)

and covariance features (Tuzel et al. 2008)5. For HOG,

we use the same experimental settings as our previous

experiment. For covariance features, we use the follow-

ing image statistics
[
x, y, I, |Ix|, |Iy|,

√
I2x + I2y , |Ixx|,

|Iyy|, arctan(|Ix|/|Iy|)
]
, where x and y are the pixel lo-

cation, I is the pixel intensity, Ix and Iy are first order

intensity derivatives, Ixx and Iyy are second order inten-

sity derivatives and the edge orientation. Each pixel is

mapped to a 9-dimensional feature image. We then cal-

culate 36 correlation coefficients in each block and con-

catenate these features to previously computed HOG

features. The new feature not only encodes the gradient

histogram (edges) but also information of the correla-

tion of defined statistics inside each spatial layout (tex-

ture). Similar to the previous experiment, we project

these new features to a line using weighted linear dis-
criminant analysis. Except for new features, other train-

ing and test implementations are the same with those

in the previous pedestrian detection experiments.

We first compare FisherBoost (HOGCOV-Fisher)

with two baseline detectors trained with AdaBoost. The

first baseline detector is trained with the conventional

cascade (HOGCOV-VJ) while the second baseline de-

tector is trained with the multi-exit cascade (HOGCOV-

MultiExit-Ada). All detectors are trained with both

HOG and covariance features on INRIA training set.

The results on INRIA test sets using the protocol in

(Dollár et al. 2012) are reported in Fig. 6 (a). Simi-

lar to previous results, FisherBoost outperforms both

baseline detectors.

5 Covariance features capture the relationship between dif-
ferent image statistics and have been shown to perform well
in our previous experiments. However, other discriminative
features can also be used here instead, e.g., Haar-like fea-
tures, Local Binary Pattern (LBP) (Mu et al. 2008) and self-
similarity of low-level features (CSS) (Walk et al. 2010).
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Fig. 6: The performance of our pedestrian detector (HOGCOV-Fisher) compared with (a) baseline detectors and

(b, c, d) state-of-the-art detectors on publicly available pedestrian data sets. Our detector uses HOG and covariance

features. The performances are ranked using log-average detection rates in the legend. Our detector performs best

on the INRIA (Dalal and Triggs 2005) data set, second best on the TUD-Brussels (Wojek et al. 2009) and ETH

(Ess et al. 2007) data sets. Note that the best one on the latter two data sets has either used many more features

or used a more sophisticated part-based model.

Our detector is then compared with existing pedes-

trian detectors listed in (Dollár et al. 2012), on the IN-

RIA, TUD-Brussels and ETH data sets. For the TUD-

Brussels and ETH data sets, since sizes of ground-truths

are smaller than that in INRIA training set, we up-

sample the original image to 1280 × 960 pixels before

applying our pedestrian detector. ROC curves and log-

average detection rates are reported in Fig. 6 (b), (c)

and (d). On the ETH data set, FisherBoost outperforms

all the other 14 compared detectors. On the TUD-Bru-

ssels data set, our detector is the second best, only in-

ferior to MultiFtr+Motion (Walk et al. 2010) that uses

more discriminative features (gradient, self-similarity

and motion) than ours. On the INRIA data set, Fisher-

Boost’s performance is also ranked the second, and only

worse than the part-based detector (Felzenszwalb et al.

2010) which uses a much more complex model (de-

formable part models) and training process (latent S-

VM). We believe that by further combining with more

discriminative features, e.g., CSS features as used in

(Walk et al. 2010), the overall detection performance of

our method can be further improved. In summary, de-

spite the use of simple HOG plus covariance features,

our FisherBoost pedestrian detector still achieves the
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avg. features frames/sec.

FisherBoost + multi-exit 10.89 0.186
AdaBoost + multi-exit 11.35 0.166

AdaBoost + VJ cascade 21.00 0.109

Table 2: Average features required per detection win-

dow and average frames processed per second for differ-

ent pedestrian detectors on CalTech images of 640×480

pixels (based on our own implementation).

state-of-the-art performance on public benchmark data

sets.

Finally, we report an average number of features

evaluated per scanning window in Table 2. We compare

FisherBoost with our implementation of AdaBoost with

the traditional cascade and AdaBoost with the multi-

exit cascade. Each image is scanned with 4 × 4 pixels

step stride and 10 scales per octave. There are 90, 650

patches to be classified per image. On a single-core Intel

i7 CPU 2.8 GHz processor, our detector achieves an av-

erage speed of 0.186 frames per second (on 640×480 pix-

els CalTech images), which is ranked eighth compared

with 15 detectors evaluated in (Dollár et al. 2012). Cur-

rently, 90% of the total evaluation time is spent on ex-

tracting both HOG and covariance features (60% of the

evaluation time is spent on extracting raw HOG and co-

variance features while another 30% of the evaluation

time is spent on computing integral images for fast fea-

ture calculation during scanning phase).

The major bottleneck of our pedestrian detector lies

in the feature extraction part. In our implementation,

we make use of multi-threading to speed up the runtime

of our pedestrian detector. Using all 8 cores of Intel i7

CPU, we are able to speed up an average processing

time to less than 1 second per frame. We believe that

by using a special purpose hardware, such as Graphic

Processing Unit (GPU), the speed of our detector can

be significantly improved.

5.5.1 Discussion

Impact of varying the number of weak classifiers In the

next experiment, we vary the number of weak classi-

fiers in each cascade node to evaluate their impact on

the final detection performance. We train three differ-

ent pedestrian detectors (Fisher4/5/6, see Table 3 for

details) on the INRIA data set. We limit the maximum

number of weak classifiers in each multi-exit node to be

80. The first two nodes is trained using AdaBoost and

subsequent nodes are trained using FisherBoost. Fig. 7

shows ROC curves of different detectors. Although we

observe a performance improvement as the number of

weak classifiers increases, this improvement is minor

compared to a significant increase in the average num-

ber of features required per detection window. This ex-

periment indicates the robustness of FisherBoost to the

number of weak classifiers in the multi-exit cascade.

Note that Fisher5 is used in our previous experiments

on pedestrian detection.

Impact of training FisherBoost from an early node In

the previous section, we conjecture that FisherBoost

performs well when the margin follows the Gaussian

distribution. As a result, we apply FisherBoost in the

later node of a multi-exit cascade (as these nodes of-

ten contain a large number of weak classifiers). In this

experiment, we show that it is possible to start train-

ing FisherBoost from the first node of the cascade. To

achieve this, one can train an additional 50 weak clas-

sifiers in the first node (to guarantee the margin ap-

proximately follow the Gaussian distribution). We con-

duct an experiment by training two FisherBoost detec-

tors. In the first detector (Fisher50), FisherBoost is ap-

plied from the first node onwards. The number of weak

classifiers in each node is 55, 60 (with 55 weak classi-

fiers from the first node), 70 (60 weak classifiers from

previous nodes), 80 (70 weak classifiers from previous

nodes), etc. In the second detector (Fisher5), we apply

AdaBoost in the first two nodes and apply FisherBoost

from the third node onwards. The number of weak clas-

sifiers in each node is 5, 10 (with 5 weak classifiers from

the first node), 20 (10 from previous nodes), 30 (20 from

previous nodes), etc. Both detectors use the same node

criterion, i.e., each node should discard at least 50%

background samples. All other configurations are kept

to be the same.

We report the performance of both detectors in Fig.

7. From the results, Fisher50 performs slightly better

than Fisher5 (log-average detection rate of 80.38% vs.

79.61%). Based on these results, classifiers in early nodes

of the cascade may be heuristically chosen such that a

large number of easy negative patches can be quickly

discarded. In other words, the first few nodes can sig-

nificantly affect the efficiency of the visual detector but

do not play a significant role in the final detection per-

formance. Actually, one can always apply simple classi-

fiers to remove a large percentage of negative windows

to speed up the detection.

5.6 Why LDA Works Better Than LAC

Wu et al. observed that in many cases, LDA post-pro-

cessing gives better detection rates on MIT+CMU face

data than LAC (Wu et al. 2008). When using the LDA

criterion to select Haar features, Shen et al. (2011)
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Fig. 7: Performance comparison. (a) We vary the number of weak classifiers in each multi-exit node. When more

weak classifiers are used in each node, the accuracy can be slightly improved. (b) We start training FisherBoost

from the first node (HOGCOV-Fisher50). HOGCOV-Fisher50 can achieve a slightly better detection rate than

HOGCOV-Fisher5.

Node 1 2 3 4 5 6 7 8 9 10 11 12 onwards avg. features log-average det. rate

Fisher4 4 4 8 8 16 16 32 32 64 64 80 80 26.4 79.52%
Fisher5 5 5 10 10 20 20 40 40 80 80 80 80 26.2 79.61%
Fisher6 6 6 12 12 24 24 48 48 80 80 80 80 30.6 79.88%

Table 3: We compare the performance of FisherBoost by varying the number of weak classifiers in each multi-exit

node. Average features required per detection window and log-average detection rates on the INRIA pedestrian

dataset are reported. When more weak classifiers in each multi-exit node are used, slightly improved accuracy can

be achieved at the price of more features being evaluated.

tried different combinations of the two classes’ covari-

ance matrices for calculating the within-class matrix:

Cw = Σ1 + δΣ2 with δ being a nonnegative constant.

It is easy to see that δ = 1 and δ = 0 correspond to

LDA and LAC, respectively. They found that setting

δ ∈ [0.5, 1] gives best results on the MIT+CMU face

detection task (Paisitkriangkrai et al. 2009; Shen et al.

2011).

According to the analysis in this work, LAC is opti-

mal if the distribution of [h1(x), h2(x), · · · , hn(x)] on

the negative data is symmetric. In practice, this require-

ment may not be perfectly satisfied, especially for the

first several node classifiers. This may explain why in

some cases the improvement of LAC is not significant.

However, this does not explain why LDA (FisherBoost)

works; and sometimes it performs even better than LAC

(LACBoost). At the first glance, LDA (or FisherBoost)

by no means explicitly considers the imbalanced node

learning objective. Wu et al. did not have a plausible

explanation either (Wu et al. 2008; 2005).

Proposition 1 For object detection problems, the Fish-
er linear discriminant analysis can be viewed as a regu-

larized version of linear asymmetric classifier. In other

words, linear discriminant analysis has already consid-

ered the asymmetric learning objective. In FisherBoost,

this regularization is equivalent to having a `2-norm

penalty on the primal variable w in the objective func-

tion of the QP problem in Section 4. Having the `2-

norm regularization, ‖w‖22, avoids over-fitting and in-

creases the robustness of FisherBoost. This similar pe-

nalty is also used in machine learning algorithms such

as Ridge regression (also known as Tikhonov regular-

ization).

For object detection such as face and pedestrian de-

tection considered here, the covariance matrix of the

negative class is close to a scaled identity matrix. In

theory, the negative data can be anything other than

the target. Let us look at one of the off-diagonal ele-



18 Chunhua Shen et al.

δ = 0 (LACBoost) δ = 0.1 δ = 0.2 δ = 0.5 δ = 1 (FisherBoost)

Digits 99.12 (0.1) 99.57 (0.2) 99.57 (0.1) 99.55 (0.1) 99.40 (0.1)
Faces 98.63 (0.3) 98.82 (0.3) 98.84 (0.2) 98.48 (0.4) 98.89 (0.2)
Cars 96.80 (1.5) 97.47 (1.1) 97.69 (1.2) 97.96 (1.2) 97.78 (1.2)

Pedestrians 99.12 (0.4) 99.31 (0.1) 99.22 (0.1) 99.13 (0.3) 98.73 (0.3)
Scenes 97.50 (1.1) 98.30 (0.6) 98.62 (0.7) 99.16 (0.4) 99.66 (0.1)

Average (%) 98.23 98.69 98.79 98.86 98.89

Table 4: The average detection rate and its standard deviation (in %) at 50% false positives. We vary the value of

δ, which balances the ratio between positive and negative class’s covariance matrices.

covariance of weak classifers on non−pedestrian data
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Fig. 8: The covariance matrix of the first 112 weak clas-

sifiers selected by FisherBoost on non-pedestrian data.

It may be approximated by a scaled identity matrix.

On average, the magnitude of diagonal elements is 20

times larger than those off-diagonal elements.

ments

Σij,i 6=j = E
[
(hi(x)− E[hi(x)])(hj(x)− E[hj(x)])

]
= E

[
hi(x)hj(x)

]
≈ 0. (24)

Here x is the image feature of the negative class. We

can assume that x is i.i.d. and approximately, x follows

a symmetric distribution. So E[hi,j(x)] = 0. That is to

say, on the negative class, the chance of hi,j(x) = +1

or hi,j(x) = −1 is the same, which is 50%. Note that

this does not apply to the positive class because x of

the positive class is not symmetrically distributed, in

general. The last equality of (24) uses the fact that weak

classifiers hi(·) and hj(·) are approximately statistically

independent. Although this assumption may not hold

in practice as pointed out in (Shen and Li 2010b), it

could be a plausible approximation.

Therefore, the off-diagonal elements of Σ are al-

most all zeros; and Σ is a diagonal matrix. Moreover

in object detection, it is a reasonable assumption that

the diagonal elements E[hj(x)hj(x)] (j = 1, 2, · · · ) have

similar values. Hence, Σ2 ≈ vI holds, with v being a

small positive constant.

So for object detection, the only difference between

LAC and LDA is that, for LAC, Cw = m1

m Σ1 and for

LDA, Cw = m1

m Σ1 + v · m2

m I.

In summary, LDA-like approaches (e.g., LDA post-

processing and FisherBoost) perform better than LAC-

like approaches (e.g., LAC and LACBoost) in object

detection due to two main reasons. The first reason is

that LDA is a regularized version of LAC. The sec-

ond reason is that the negative data are not necessarily

symmetrically distributed. Particularly, in latter nodes,

bootstrapping forces the negative data to be visually

similar the positive data. In this case, ignoring the neg-

ative data’s covariance information is likely to deterio-

rate the detection performance.

Fig. 8 shows some empirical evidence that Σ2 is

close to a scaled identity matrix. As we can see, the di-

agonal elements are much larger than those off-diagonal

elements (off-diagonal ones are close to zeros).

In this experiment, we evaluate the impact of the

regularization parameter by varying the value of δ, which
balances the ratio between positive and negative class’s

covariance matrices, i.e., Cw = Σ1+δΣ2; and also Q =[
Q1 0

0 δQ2

]
. Setting δ = 0 corresponds to LACBoost,[

Q1 0

0 0

]
, while setting δ = 1 corresponds to Fisher-

Boost, Q =

[
Q1 0

0 Q2

]
.

We conduct our experiments on 5 visual data sets

by setting the value of δ to be {0, 0.1, 0.2, 0.5, 1}. All

5 classifiers are trained to remove 50% of the negative

data, while retaining almost all positive data. We com-

pare their detection rate in Table 4. First, in general, we

observe performance improvement when we set δ to be

a small positive value. Since setting δ to be 1 happens

to coincide with the LDA objective criterion, the LDA

classifier also inherits the node learning goal of LAC

in the context of object detection. Second, on different

datasets, in theory this parameter should be cross val-

idated and setting it to be 1 (FisherBoost) does not
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always give the best performance, which is not surpris-

ing.

At this point, a hypothesis naturally arises: If regu-

larization is really the reason why LACBoost underper-

forms FisherBoost, then applying other forms of regu-

larization to LACBoost would also be likely to improve

LACBoost. Our last experiment tries to verify this hy-

pothesis.

Here we regularize the matrix Q by adding an ap-

propriately scaled identity matrix Q + δ̃I. As discussed

in Section 4.1, from a numerical stability point of view,

difficulties arise when Q is rank-deficient, causing the

dual solution to (18) to be non-uniquely defined. This

issue is much worse for LACBoost because the lower-

block of Q, i.e., Q2 is a zero matrix. In that case, a

well-defined problem can be obtained by replacing Q

with Q + δ̃I. This can be interpreted as corresponding

to the primal-regularized QP (refer to (16)):

min
w,ρ

1
2ρ
>Qρ− θe>ρ+ δ̃ ‖ρ‖22 ,

s.t. w < 0,1>w = 1,

ρi = (Aw)i, i = 1, · · · ,m. (25)

Clearly here in the primal, we are applying the Tikhonov

`2 norm regularization to the variable ρ. Also we expect

accuracy improvement with this regularization because

the margin variance is minimized by minimizing the

`2 norm of the margin while maximizing the weighted

mean of the margin, i.e., e>ρ. Thus a better margin

distribution may be achieved (Shen and Li 2010a;b).

Now we evaluate the impact of the regularization

parameter δ̃ by running experiments on the same data-

sets as in the last experiment. We vary the values of

δ̃ and the results of detection accuracy are reported in

Table 5. Again, the 5 classifiers are trained to remove

50% of the negative data, while correctly classifying as

most positive data as possible. As can be seen, indeed,

regularization often improves the results. Note that in

the experiments, we have solved the primal optimiza-

tion problem so that even when Q is not invertible, we

can still obtain a solution. Having the primal solutions,

the dual solutions are obtained using (23). This experi-

ment demonstrates that other formats of regularization

indeed improves LACBoost too.

6 Conclusion

By explicitly taking into account the node learning goal

in cascade classifiers, we have designed new boosting

algorithms for more effective object detection.

Experiments validate the superiority of the meth-

ods developed, which we have labeled FisherBoost and

LACBoost. We have also proposed the use of entropic

gradient descent to efficiently implement FisherBoost

and LACBoost. The proposed algorithms are easy to

implement and can be applied to other asymmetric clas-

sification tasks in computer vision. We aim in future

to design new asymmetric boosting algorithms by ex-

ploiting asymmetric kernel classification methods such

as (Tu and Lin 2010). Compared with stage-wise Ad-

aBoost, which is parameter-free, our boosting algorithms

need to tune a parameter.

We are also interested in developing parameter-free

stage-wise boosting that considers the node learning

objective. Moreover, the developed boosting algorithms

only work for the case γ◦ ≤ 0.5 in (2). How can we

make it work for γ◦ ≥ 0.5? Last, to relax the symmetric

distribution requirement for the feature responses of the

negative class is also a topic of interest.
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A Proof of Theorem 1

Before we present our results, we introduce an impor-

tant proposition from (Yu et al. 2009). Note that we

have used different notation.

Proposition 2 For a few different distribution fami-

lies, the worst-case constraint[
inf

x∼(µ,Σ)
Pr{w>x ≤ b}

]
≥ γ, (26)

can be written as:

1. if x ∼ (µ,Σ), i.e., x follows an arbitrary distribu-

tion with mean µ and covariance Σ, then

b ≥ w>µ+
√

γ
1−γ ·

√
w>Σw; (27)

2. if x ∼ (µ,Σ)S,
6 then we haveb ≥ w>µ+
√

1
2(1−γ) ·

√
w>Σw, if γ ∈ (0.5, 1);

b ≥ w>µ, if γ ∈ (0, 0.5];

(28)

3. if x ∼ (µ,Σ)SU, thenb ≥ w>µ+ 2
3

√
1

2(1−γ) ·
√

w>Σw, if γ ∈ (0.5, 1);

b ≥ w>µ, if γ ∈ (0, 0.5];

(29)

4. if x follows a Gaussian distribution with mean µ

and covariance Σ, i.e., x ∼ G(µ,Σ), then

b ≥ w>µ+ φ−1(γ) ·
√

w>Σw, (30)

where φ(·) is the cumulative distribution function

(c.d.f.) of the standard normal distribution G(0, 1),

and φ−1(·) is the inverse function of φ(·).
Two useful observations about φ−1(·) are: φ−1(0.5) =

0; and φ−1(·) is a monotonically increasing function

in its domain.

6 Here (µ,Σ)S denotes the family of distributions in (µ,Σ)
that are also symmetric about the mean µ. (µ,Σ)SU denotes
the family of distributions in (µ,Σ) that are additionally sym-
metric and linear unimodal about µ.
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We omit the proof of Proposition 2 here and refer the

reader to (Yu et al. 2009) for details. Next we begin to

prove Theorem 1:

Proof The second constraint of (2) is simply

b ≥ w>µ2. (31)

The first constraint of (2) can be handled by writing

w>x1 ≥ b as −w>x1 ≤ −b and applying the results in

Proposition 2. It can be written as

−b+ w>µ1 ≥ ϕ(γ)
√

w>Σ1w, (32)

with (6).

Let us assume that Σ1 is strictly positive definite

(if it is only positive semidefinite, we can always add a

small regularization to its diagonal components). From

(32) we have

ϕ(γ) ≤ −b+ w>µ1√
w>Σ1w

. (33)

So the optimization problem becomes

max
w,b,γ

γ, s.t. (31) and (33). (34)

The maximum value of γ (which we label γ?) is

achieved when (33) is strictly an equality. To illustrate

this point, let us assume that the maximum is achieved

when

ϕ(γ?) <
−b+ w>µ1√

w>Σ1w
.

Then a new solution can be obtained by increasing γ?

with a positive value such that (33) becomes an equal-

ity. Notice that the constraint (31) will not be affected,

and the new solution will be better than the previous

one. Hence, at the optimum, (5) must be fulfilled.

Because ϕ(γ) is monotonically increasing for all the

four cases in its domain (0, 1) (see Fig. 9), maximizing

γ is equivalent to maximizing ϕ(γ) and this results in

max
w,b

−b+ w>µ1√
w>Σ1w

, s.t. b ≥ w>µ2. (35)

As in (Lanckriet et al. 2002; Huang et al. 2004), we

also have a scale ambiguity: if (w?, b?) is a solution,

(tw?, tb?) with t > 0 is also a solution.

An important observation is that the problem (35)

must attain the optimum at (4). Otherwise if b > w>µ2,

the optimal value of (35) must be smaller. So we can

rewrite (35) as an unconstrained problem (3).

We have thus shown that, if x1 is distributed ac-

cording to a symmetric, symmetric unimodal, or Gaus-

sian distribution, the resulting optimization problem is

0 0.1 0.3 0.5 0.7 0.9 1

−3

−2

−1

0
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(γ
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Fig. 9: The function ϕ(·) in (6). The four curves cor-

respond to the four cases. They are all monotonically

increasing in (0, 1).

identical. This is not surprising considering the latter

two cases are merely special cases of the symmetric dis-

tribution family.

At optimality, the inequality (33) becomes an equal-

ity, and hence γ? can be obtained as in (5). For ease of

exposition, let us denote the fours cases in the right

side of (6) as ϕgnrl(·), ϕS(·), ϕSU(·), and ϕG(·). For

γ ∈ [0.5, 1), as shown in Fig. 9, we have ϕgnrl(γ) >

ϕS(γ) > ϕSU(γ) > ϕG(γ). Therefore, when solving (5)

for γ?, we have γ?gnrl < γ?S < γ?SU < γ?G . That is to say,

one can get better accuracy when additional informa-

tion about the data distribution is available, although

the actual optimization problem to be solved is identi-
cal.

B Proof of Theorem 2

Let us assume that in the current solution we have se-

lected n weak classifiers and their corresponding linear

weights are w = [w1, · · · , wn]. If we add a weak clas-

sifier h′(·) that is not in the current subset, the cor-

responding w is zero, then we can conclude that the

current weak classifiers and w are the optimal solu-

tion already. In this case, the best weak classifier that

is found by solving the subproblem (20) does not con-

tribute to solving the master problem.

Let us consider the case that the optimality condi-

tion is violated. We need to show that we are able to

find such a weak learner h′(·), which is not in the set of

current selected weak classifiers, that its corresponding

coefficient w > 0 holds. Again assume h′(·) is the most
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violated weak learner found by solving (20) and the

convergence condition is not satisfied. In other words,

we have
m∑
i=1

uiyih
′(xi) ≥ r. (36)

Now, after this weak learner is added into the master

problem, the corresponding primal solution w must be

non-zero (positive because we have the nonnegative-

ness constraint on w).

If this is not the case, then the corresponding w =

0. This is not possible because of the following rea-

son. From the Lagrangian (17), at optimality we have

∂L/∂w = 0, which leads to

r −
m∑
i=1

uiyih
′(xi) = q > 0. (37)

Clearly (36) and (37) contradict.

Thus, after the weak classifier h′(·) is added to the

primal problem, its corresponding w must have a pos-

itive solution. This is to say, one more free variable is

added into the problem and re-solving the primal prob-

lem (16) must reduce the objective value. Therefore a

strict decrease in the objective is obtained. In other

words, Algorithm 1 must make progress at each itera-

tion. Furthermore, the primal optimization problem is

convex, there are no local optimal points. The column

generation procedure is guaranteed to converge to the

global optimum up to some prescribed accuracy.

C Exponentiated Gradient Descent

Exponentiated Gradient Descent (EG) is a very useful

tool for solving large-scale convex minimization prob-

lems over the unit simplex. Let us first define the unit

simplex ∆n = {w ∈ Rn : 1>w = 1,w < 0}. EG effi-

ciently solves the convex optimization problem

min
w

f(w), s.t. w ∈ ∆n, (38)

under the assumption that the objective function f(·)
is a convex Lipschitz continuous function with Lips-

chitz constant Lf w.r.t. a fixed given norm ‖·‖. The

mathematical definition of Lf is that |f(w) − f(z)| ≤
Lf‖x− z‖ holds for any x, z in the domain of f(·). The

EG algorithm is very simple:

1. Initialize with w0 ∈ the interior of ∆n;

2. Generate the sequence {wk}, k = 1, 2, · · · with:

wk
j =

wk−1
j exp[−τkf ′j(wk−1)]∑n

j=1 wk−1
j exp[−τkf ′j(wk−1)]

. (39)

Here τk is the step-size. f ′(w) = [f ′1(w), . . . , f ′n(w)]>

is the gradient of f(·);

3. Stop if some stopping criteria are met.

The learning step-size can be determined by

τk =

√
2 log n

Lf

1√
k
,

following (Beck and Teboulle 2003). In (Collins et al.

2008), the authors have used a simpler strategy to set

the learning rate.

In EG there is an important parameter Lf , which is

used to determine the step-size. Lf can be determined

by the `∞-norm of |f ′(w)|. In our case f ′(w) is a linear

function, which is trivial to compute. The convergence

of EG is guaranteed; see (Beck and Teboulle 2003) for

details.
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