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Abstract Statistical analysis of Diffusion Tensor Imag-
ing (DTI) data requires a computational framework

that is both numerically tractable (to account for the

high dimensional nature of the data) and geometric (to

account for the nonlinear nature of diffusion tensors).

Building upon earlier studies exploiting a Riemannian
framework to address these challenges, the present pa-

per proposes a novel metric and an accompanying com-

putational framework for DTI data processing. The pro-

posed approach grounds the signal processing opera-
tions in interpolating curves. Well-chosen interpolating

curves are shown to provide a computational framework

that is at the same time tractable and information rel-

evant for DTI processing. In addition, and in contrast

to earlier methods, it provides an interpolation method
which preserves anisotropy, a central information car-

ried by diffusion tensor data.
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1 Introduction

Diffusion-weighted imaging (DWI) allows non-invasive
quantification of the self diffusion of water in vivo. In

biological tissues, characterized by cell membranes and

cytostructures, the movement of water is restricted be-

cause of these barriers. In tissues such as white matter,

which is highly directional, the resulting movement of
water is therefore anisotropic. In this way, high diffusion

anisotropy reflects the underlying directional arrange-

ment of white matter fibre bundles. Diffusion measure-

ments (which use the same tools as magnetic resonance
imaging (MRI)) can characterize this anisotropy. The

most common representation of the directional diffu-

sion is through the use of diffusion tensors, a formalism

introduced by Basser et al in 1994 (Basser et al, 1994).

Since then, other higher level representations have been
introduced, such as the Q-Ball Imaging (Tuch, 2004)

and the Diffusion Kurtosis Imaging (Jensen and Helpern,

2010). In the context of Diffusion Tensor Imaging (DTI),

each voxel of the image contains a diffusion tensor,
which is derived from a set of DWI measured in differ-

ent directions. A diffusion tensor is a symmetric positive

definite matrix whose general form is given by

D =





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



 (1)

where Dxx, Dyy, Dzz relate the diffusion flows to the

concentration gradients in the x, y and z directions.

The off-diagonal terms reflect the correlation between
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diffusion flows and concentration gradients in orthog-

onal directions. This diffusion tensor can be graphi-

cally represented as an ellipsoid. This ellipsoid takes

the three eigenvectors of the matrix as principal axes

(representing the three principal directions of diffusion).
The length of the axes, related to the intensities of dif-

fusion along them, is determined by the eigenvalues.

Diffusion tensor images can thus be viewed as fields of

ellipsoids.

Classical image processing methods have been de-
veloped for scalar fields. As a result, early processing

of DTI data first converted the tensor information into

scalar data, for instance focusing on the scalar mea-

sure of fractional anisotropy (FA), see e.g. (Alexander
and Gee, 2000). However, the tensor nature of DTI

data soon motivated a generalization of signal process-

ing methodological frameworks to tensor fields. In par-

ticular, methods based on the Riemannian geometry

of symmetric positive definite matrices have emerged
(Pennec et al, 2006; Fletcher and Joshi, 2007; Castaño-

Moraga et al, 2006; Gur and Sochen, 2007; Batchelor

et al, 2005; Lenglet et al, 2006, 2009) because the ge-

ometric framework provides a nonlinear generalization
of calculus in linear spaces.

The present paper also adopts a geometric framework

but puts the emphasis on interpolation curves as the

central mathematical object required for signal pro-

cessing in nonlinear spaces. Interpolating curves need
not be geodesics to be practically relevant. Instead,

the choice of interpolation curves is problem dependent

and a subtle trade-off between practical considerations

(such as numerical tractability) and theoretical consid-
erations (such as invariance properties by certain group

actions for the robustness of the processing operations).

We advocate the use of interpolating curves that inter-

polate separately the eigenvalues of the tensor and its

orientation. This is similar in spirit to several previous
works (Weldeselassie et al, 2009; Tschumperlé and De-

riche, 2001; Ingalhalikar et al, 2010) and offers good

control on the interpolation of the spectral properties

and in particular anisotropy, a key DTI information.
The current work is different from the works grounded

in the affine-invariant geometry of the cone (Pennec

et al, 2006; Arsigny et al, 2007), which suffer from

swelling anisotropy effect but are nevertheless widely

used in practice mainly because of their computational
advantage. In the present paper, we recover the tractabil-

ity of the Log-Euclidean framework by handling rota-

tion in the space of quaternions, taking inspiration of

their widespread use in robotics. Our approach is also
different from the Procrustes analysis proposed in (Dry-

den et al, 2009; Zhou, 2010; Zhou et al, 2013). The ge-

ometry proposed in those papers shares the invariance

properties of our framework but does not enjoy similar

computational and anisotropy preserving properties.

Our ‘spectral-quaternion’ interpolating curves are

easy to compute, and allow for a number of desirable
properties, including geometric interpolation of the eigen-

values (and of the volume), linear interpolation of (Hilbert)

anisotropy, and shadowing of rotations when the aniso-

tropy is small, that is, when the orientation is uncertain.
The paper focuses on the theoretical foundations of

the proposed framework, not restricted to DTI pro-

cessing, but also illustrates the potential of the pro-

posed approach for DTI processing through basic fil-

tering and interpolation operations needed in this ap-
plication. The paper is organized as follows: Section 2

introduces four different interpolating curves for sym-

metric definite-positive matrices. Section 3 studies the

mathematical properties of those curves, namely their
computational cost, invariances, and the way they deal

with diffusion information. Section 4 explores the com-

putation of weighted means using our framework, which

is important in all the processing steps. Section 5 uses

the interpolating curves to define metrics and similarity
measures. Section 6 illustrates the result of our frame-

work in different applications, while Section 7 contains

concluding remarks.

2 Interpolating curves in S+(3)

Given two positive numbers s1 > 0 and s2 > 0, ge-

ometric interpolation between s1 and s2 is defined by
the parametric curve

s(t) = exp((1− t) log s1 + t log s2)

= s1 exp(t log

(

s2
s1

)

), 0 ≤ t ≤ 1 (2)

which can be viewed as a linear interpolation between

the logarithms of the scalars, followed by an exponenti-
ation. Viewing positive definite matrices as matrix gen-

eralizations of positive numbers, we search for matrix

analogues of the interpolating curve (2). Table 1 sum-

marizes four such families. We briefly review their un-

derlying geometry.

2.1 Affine-invariant Riemannian geometry

The interpolating curve

S(t) = S
1/2
1 exp(t log(S

−1/2
1 S2S

−1/2
1 ))S

1/2
1 (3)

has the geometric interpretation of a geodesic (i.e. min-
imal length curve) for the affine-invariant metric (Pen-

nec et al, 2006). The use of the affine-invariant Rieman-

nian framework was first proposed for DTI processing
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Table 1 Four matrix interpolating curves on the space of positive definite matrices S+(3).

Affine-invariant interpolation Log-Euclidean interpolation

S(t) = S
1/2
1 exp(t log(S

−1/2
1 S2S

−1/2
1 ))S

1/2
1 S(t) = exp((1− t) log(S1) + t log(S2))

Spectral interpolation Spectral Quaternion interpolation
S(t) = R(t)Λ(t)R(t)T , S(t) = Rq(t)Λ(t)Rq(t)T

with R(t) = R1 exp(t log(RT
1 R2)) and Rq: rotation matrix corresponding to q(t) = (1−t)q1+tq2

||(1−t)q1+tq2||

Λ(t) = exp((1 − t) log(Λ1) + t log(Λ2)) Λ(t) = exp((1− t) log(Λ1) + t log(Λ2))

in 2006, see (Pennec et al, 2006; Lenglet et al, 2006),

see also (Fletcher and Joshi, 2007; Fletcher et al, 2009;

Castaño-Moraga et al, 2006; Gur and Sochen, 2007;

Batchelor et al, 2005; Lenglet et al, 2009). The affine-

invariant geometry is the natural geometry of S+(3),
the space of 3× 3 positive definite matrices, considered

as the homogeneous space Gl(3)/O(3), where Gl(3) is

the space of general linear matrices (representing all

the possible affine transformations) and O(3) is the
space of orthogonal matrices of size 3, see (Smith, 2005).

This geometry also plays an important role in statistics

(Smith, 2005; Pennec et al, 2006; Ando et al, 2004; Petz

and Temesi, 2005; Moakher and Zéraï, 2011; Moakher,

2005; Burbea and Rao, 1982; Skovgaard, 1984) and in
convex optimization (Nesterov et al, 1994). A limitation

of this geometry for DTI processing is illustrated in Ta-

ble 1: the midpoint of the interpolation curve between

two anisotropic tensors tends to be isotropic.

2.2 Log-Euclidean Riemannian geometry

The interpolating curve

S(t) = exp((1 − t) log(S1) + t log(S2)) (4)

has the geometric interpretation of a geodesic for the

Log-Euclidean metric (Arsigny et al, 2007). Here one

uses the matrix logarithm to define a global embedding
of S+(3) into the (linear) space of symmetric matrices

(i.e. we exploit the property that the nonlinear space

S+(3) is mapped to the linear space R
3×3 by the (ma-

trix) log mapping). This is similar to the definition of
geometric interpolation for scalars (2), which uses the

scalar logarithm to map positive scalars on real num-

bers. The Log-Euclidean metric was first proposed for

DTI processing in (Arsigny et al, 2006). It has become

a popular framework for DTI processing because of its

computational advantage over the affine-invariant ge-

ometry (Goodlett et al, 2009; Chiang et al, 2008; In-

galhalikar et al, 2010; Castro et al, 2007; Weldeselassie
and Hamarneh, 2007; Arsigny et al, 2006; Fillard et al,

2007; Yeo et al, 2009, 2008; Lepore et al, 2006; Awate

et al, 2007). Table 1 suggests that it is a good substitute

for the affine-invariant interpolation but that it suffers
the same limitation regarding anisotropy. Indeed, the

Log-Euclidean geometry is extrinsic, to the contrary of

the affine-invariant one which is intrinsic. Extrinsic ge-

ometry produces a good approximation of the intrinsic

one while close to the identity, but the quality of the
approximation decreases while moving away from it.

2.3 Spectral geometry

The interpolation curve given by the equations

S(t) = U(t)Λ(t)U(t)T , (5)

U(t) = U1 exp(t log(U
T
1 U2)) (6)

Λ(t) = exp((1− t) log(Λ1) + t log(Λ2)) (7)

has the geometric interpretation of a geodesic in the

product spaceM = SO(3)×D+(3), with the bi-invariant

metric of M viewed as a Lie group. SO(3) is the special

orthogonal group of rotation matrices with determinant
equal to 1, and D+(3) is the group of diagonal matri-

ces with positive elements. The Lie group M is closely

related to S+(3) because of the spectral decomposition

of a positive definite matrix

S = UΛUT , (8)
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where U is an orthogonal matrix containing the eigen-

vectors (principal axes) of the ellipsoid and

Λ = diag(λ1, λ2, λ3)

is the diagonal matrix of eigenvalues (axes lengths).

We will assume that λ1 ≥ λ2 ≥ λ3 > 0 and impose

det(U) = 1, so that U belongs to the space of special

orthogonal matrices, SO(3).

Consider S+∗ (3) the subset of S+(3) with distinct eigen-
values λ1 > λ2 > λ3. Every tensor of S+∗ (3) can be

represented by four distinct elements of the Lie group

M, see Figure 1. The four rotation matrices of three

rotations of angle π around the principal axes plus the
identity form the discrete group G. The formal identi-

fication

S+∗ (3) ≃ (SO(3)/G)×D+(3) ,

where ≃ is the standard notation to indicate a diffeo-

morphism between spaces, thus justifies the spectral in-

terpolation (5) provided that U1 and U2 are univocally

selected among the possible discrete spectral decompo-

sitions of S1 and S2. Denoting GU2 the discrete group
of four rotation matrices associated to the spectral de-

composition of S2, a reasonable choice is to choose U1

arbitrarily and choose U2 according to

U2 = arg min
U∈GU2

dSO(3)(U1,U) (9)

= arg min
U∈GU2

|| log(UT
1 U)||2 (10)

Fig. 1 Non-uniqueness of the spectral decomposition. Four
different rotation matrices parametrize the same tensor.

The choice of the spectral geometric framework for

DTI processing has been first proposed in (Tschumperlé
and Deriche, 2001). Table 1 suggests that the decou-

pling of rotations and scaling in interpolation is favor-

able to the conservation of anisotropy along the inter-

polation curve.
The main reason why spectral interpolation is not com-

monly used in DTI processing is computational. The

‘realignment step’ involved in (10) is a local operation

that has to be performed for each tensor of any image,

leading to prohibitive computations for large-scale DTI

processing.

2.4 Spectral quaternion interpolation

The interpolating curve given by the equations

S(t) = Uq(t)Λ(t)Uq(t)
T (11)

where

Λ(t) = exp((1 − t) log(Λ1) + t log(Λ2)) ,

Uq(t) is the rotation matrix associated to the unit quater-
nion q(t) ∈ H1 and q(t) satisfies

q(t) =
(1 − t)q1 + tq2

||(1 − t)q1 + tq2||
. (12)

has the geometric interpretation of a geodesic in

the product space H1 × D+(3) where H1 is the group
of quaternions of norm 1 equipped with the Euclidean

metric of its natural embedding in R
4. Using the em-

bedding of SO(3) into the linear space of quaternion

is very common in robotics in order to save on com-
putational time. In this sense, the interpolating curve

(11) can be considered as a computationally convenient

substitute of (5), in the same way as (4) simplifies the

computation of (3).

A unit quaternion is generally denoted by q = (a,V)
where a is associated to the angle of rotation by θ =

2 arccos(a) and V is associated to the axis w of rota-

tion through w = V/ sin(θ/2). From q, the associated

rotation matrix R is given by

R = exp





0 −w3θ w2θ
w3θ 0 −w1θ

−w2θ w1θ 0



 . (13)

The construction of q from R is given by

θ = arccos((trace(R)− 1)/2) (14)

w =
1

2 sin θ





R3,2 −R2,3

R1,3 −R3,1

R2,1 −R1,2



 . (15)

Finally, we have a = cos(θ/2), V = sin(θ/2)w. Note

that the opposite quaternion given by (−a,−V) rep-

resents the same rotation matrix. Using this represen-

tation, rotations can be manipulated as Euclidean vec-
tors, which decreases the computational cost.

The realignment step in the quaternion space uses the

Euclidean (chordal) distance

d(q1,q2) = ||q1 − q2|| (16)

Because H1 provides a double covering of SO(3), eight

different quaternions represent the same orientation.
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We denote by Q this set of quaternions. Realignment

in H1 thus involves solving

d(Q1,Q2) = min
q2∈Q2

||q1 − q2|| (17)

with qr
1 arbitrarily chosen in Q1. This quaternion will

be called the reference quaternion.

Because qr
1 and q2 have unit norm, we have the

simplification

||qr
1 − q2||2 = 2− 2qr

1.q2 (18)

which replaces (17) with

qa
2 = arg max

q2∈Q2

qr
1.q2 (19)

d(Q1,Q2) = ||qr
1 − qa

2 || (20)

where qa
2 is called the realigned quaternion. The com-

putation of (19) and (20) is very fast compared to (10) :

the eight scalar products qr
1.q2 can be computed through

a single matrix product between the 1 × 4 vector rep-
resenting (qr

1)
T and the 4 × 8 matrix formed by the

eight quaternions q2. In contrast, computing the dis-

tance (10) requires four logarithms of product of 3 ×
3 matrices, which is expensive. The selection of the
parametrization of rotations as quaternions thus en-

ables the framework to be computationally tractable.

3 Computational and invariance properties

The four interpolation methods discussed in the previ-

ous section are valid matrix generalizations of the scalar

formula (2). Here we compare their relative merits for

DTI processing.

3.1 Computational cost

The two interpolation methods shown in the left col-

umn of Table 1 (equations (3) and (5)) are intrinsic
whereas the methods shown in the right column of Ta-

ble 1 (equations (4) and (11)) are extrinsic, that is, the

interpolating curve is a projection on the manifold of

an interpolating curve in the embedding space. Extrin-

sic geometries lead to significant computational savings
because they reduce the use of matrix exponential and

matrix logarithm. Table 2 illustrates how the difference

translates into computational savings on a (non opti-

mized) MATLAB code. We expect that the qualitative
difference between intrinsic curves and extrinsic inter-

polations will scale up dramatically in real DTI signal

processing.

Table 2 Computational time of computing 1000 distances
between a reference and random samples from a Wishart dis-
tribution. The computations are performed on a Intel Core
2 Duo 2,66 GHz with 4Go of RAM machine using a (non
optimized) MATLAB code.

Affine- Log-Euclidean Spectral Spectral-
invariant quaternions

0.47 s 0.17 s 0.65 s 0.11 s

3.2 Invariances

The scalar interpolation formula (2) is invariant by scal-

ing, that is

∀λ > 0 : s(t;λs1, λs2) = λ s(t; s1, s2) . (21)

This invariance property is desirable when processing

positive measurements that provide physical intensities,
because it makes the process robust to units (or calibra-

tion). Likewise, the four matrix interpolation formulas

are invariant both by congruence and by scaling, that

is

∀λ ∈ R
+, ∀U ∈ SO(3) :

S(t;λUS1U
T , λUS2U

T ) = λUS(t;S1,S2)U
T (22)

This invariance property makes the process frame-
work robust to the choice of physical units and calibra-

tion for DTI data, a desirable property in application.

It should be noted that formula (3) possesses a larger

invariance group :

∀A ∈ Gl(3) :

S(t;AS1A
T ,AS2A

T ) = AS(t;S1,S2)A
T (23)

In fact, the interpolating curve (3) is the unique inter-

polation formula being invariant to an arbitrary con-

gruence transformation, hence its name. This property

can be highly desirable in other applications (see e.g.
(Smith, 2005)), but it is the intrinsic cause of the an-

isotropy degradation observed in Table 1.

3.3 Volume and spectral interpolation

The volume of the ellipsoid represented by a positive
definite matrix S is the product of its eigenvalues, i.e.

its determinant. The four interpolation formulas dis-

cussed in this paper enjoy the remarkable property

det(S(t,S1,S2)) =

exp((1 − t) log(det(S1)) + t log(det(S2))) (24)

In other words, the determinant of the tensor along the

interpolating curve satisfies the scalar interpolation for-

mula (2). In particular, the volume is preserved along
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the interpolation curve between two tensors of same

volume. This property is in contrast with the ‘swelling’

effect observed with simpler interpolation methods and

has been a main motivation to promote a Riemannian

framework for DTI processing (Arsigny et al, 2006; Fil-
lard et al, 2007).

Because the interpolation of rotations and eigenval-

ues is decoupled in the two spectral interpolation meth-
ods (5) and (11), they enjoy a further spectral interpo-

lation property :

λi (S(t;S1,S2)) =

exp((1− t) log(λi(S1)) + t log(λi(S2))) (25)

This spectral interpolation is a key property for the

anisotropy interpolation.

3.4 Anisotropy interpolation

Geometrically, any anisotropy scalar measure should be

a scale invariant distance to identity. The Hilbert metric

(Birkhoff, 1957) is precisely a projective distance that
can be defined in arbitrary cones. It leads to the fol-

lowing definition that we refer to as Hilbert anisotropy

(HA) in the sequel:

HA = dH(S, I) = log

(

λmax

λmin

)

(26)

where λmax and λmin are respectively the maximum and
minimum eigenvalues of S. The HA index possesses all

the required properties for an anisotropy index, i.e.

– HA ≥ 0 and HA = 0 only for isotropic tensors.

– HA is invariant to rotations: HA(S) = HA(USUT )
for all U ∈ O(3).

– HA is invariant by scaling, HA(S) = HA(αS), ∀α ∈
R+ (it means that anisotropy only depends on the

shape of the tensor and not on its size).

– HA is a dimensionless number. This property is de-
sirable and natural, as the anisotropy of the tensor

physically reflects the microscopic anisotropy of the

tissues, which is independent from the diffusivity.

The spectral interpolation formula (25) leads to a par-
ticularly attractive formula for Hilbert anisotropy in-

terpolation

HA(S(t;S1,S2)) = (1− t)HA(S1) + tHA(S2) . (27)

In the following, we let HAt denote HA(S(t;S1,S2)).

In other words, Hilbert anisotropy is linearly interpo-

lated along the interpolation curves (5) and (11). Other
measures of anisotropy have been used in the litera-

ture : fractional anisotropy (FA), relative anisotropy

(RA) (Basser and Pierpaoli, 1996), geodesic anisotropy

(GA)(Fletcher and Joshi, 2007). With λm = (λ1+λ2+

λ3)/3 and λgm = 3
√
λ1λ2λ3, these indices are given re-

spectively by

FA =

√

3

2

√

∑3
i=1(λi − λm)2
√

∑3
i=1 λ

2
i

, (28)

RA =
1√
3

√

∑3
i=1(λi − λm)2

λm
(29)

GA =

√

√

√

√

3
∑

i=1

(log(λi)− log(λgm))2 . (30)

They do not lead to linear interpolation as the Hilbert

anisotropy but they are qualitatively equivalent in that

they evolve monotonically along the interpolating curve.

This is in contrast with the evolution of anisotropy
along the interpolating curve (3) and (4). Figure 2 il-

lustrates how the anisotropy may degrade along such

an interpolating curve. This ‘anisotropy swelling effect’

is undesirable for a processing framework in which an-
isotropy carries important information.

3.5 Singularities and uncertainty

A potential shortcoming of the proposed spectral inter-

polation framework is that it is only defined on the sub-
set S+∗ (3) where eigenvalues are distinct. In situations

of two or three similar eigenvalues, small measurements

errors may lead to significant differences in the interpo-

lating curves.

One should bear in mind that an isotropic measure-
ment is also much less certain about orientation than an

anisotropic measurement (Parker et al, 2003). In other

words, eigenvalue separation of positive definite matrix

correlates with the orientation information contained in
the physical measurement.

In order to account for this uncertainty, we intro-

duce the real function

f(x) =
(βx)4

(1 + (βx)4)
(31)

where β is a parameter to be defined in the sequel. The
function f defines a smooth sigmoidal transition be-

tween the limits f(0) = 0 and f(∞) = 1. The function

of Eq. (31) will be used to rescale the interpolation be-

tween orientations of tensors in a way that mitigates

the importance of the orientation information in case
of low anisotropy.

Consider two tensors S1,S2, with S1 isotropic. The

orientation of S1 (encoded by the associated quaternion
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Fig. 2 Interpolating curves between two tensors. Top: Log-Euclidean interpolation. Bottom: Spectral-quaternion interpolation.
The represented indices are (from left to right) the determinant, the angle between the principal eigenvectors of the first tensor
and the considered one, the fractional anisotropy and the Hilbert anisotropy. Anisotropy evolves monotonically along spectral-
quaternions interpolating curves, in contrast to Log-Euclidean interpolation.

q1) is totally arbitrary. As a result, it seems logical not

to take into account this orientation in the interpola-
tion between S1 and S2. This suggest to fix q2 along

the entire interpolation curve, which means weighting

q1 by a vanishing weight in the formula (12).

On the other hand, if we consider two very anisotropic
tensors (sharing the same eigenvalues), then their ori-

entations q1,q2 should be fully taken into account in

the interpolation process by opting for the linear inter-

polation (12).

The function f can be used as a smooth transition
between those two limit cases. Noticing that the case

where one tensor is isotropic corresponds to

min(HA1,HA2) = 0 ,

while the case where both are very anisotropic corre-

sponds to min(HA1,HA2) being large, we thus let

α(HA1,HA2) = f(min(HA1,HA2)) . (32)

The linear quaternion interpolation in (12) can be re-

placed with

q(t) = w∗
1(t)q1 + w∗

2(t)q2 (33)

where

w∗
1(t) = (1− t)

α(HA1,HAt)

ᾱ
,

w∗
2(t) = t

α(HAt,HA2)

ᾱ

and where ᾱ = (1− t)α(HA1,HAt)+ tα(HAt,HA2) en-

sures that w∗
1 + w∗

2 = 1. HAt is defined in Eq.(27).

Defined this way, the interpolation is consistent with
the orientation uncertainty. Indeed when one tensor,

say S1, is isotropic we have w∗
1(t) ≡ 0. More gener-

ally as soon as HA1 < HA2 we have w∗
1 < 1 − t as

f(HA1) < f(HAt), meaning that the basis q1 is given

less weight than in the linear interpolation case (12). Fi-
nally, when min(HA1,HA2) → ∞, we recover the linear

interpolation (12). Figure 3 illustrates the effect of this

rescaling in the case of unequal anisotropies. For the

simulations of this paper, we choose β = 0.6 so that
α(HA1,HA2) becomes very close to 1 (more than 0.9)

when both anisotropies are at least equal to 3, which

means the Hilbert ratio between the largest and small-

est eigenvalue is at least 20 (for example, λ1 = 10 and

λ3 = 0.5). In this case both tensors can be considered
as very anisotropic and the linear interpolation (12) is

recovered. The parameter β thus appears as a tuning

parameter such that f−1(0.9)/β (where f−1 is the in-

verse of f) is considered as a high Hilbert anisotropy.
The parameter β can be considered as a user parameter.

3.6 Choice of two frameworks

In the rest of the paper, we focus our comparisons only

between the Log-Euclidean framework and the spectral-

quaternion framework. This is because Table 1 sug-
gests that no significative differences can be observed

between the Spectral interpolation and the Spectral

Quaternion one. This is further illustrated in Figure 4,

which shows the angular difference between the domi-

nant eigenvectors of the tensors interpolated with either
the spectral or the spectral quaternion methods. This

difference is very small, as its maximum is lower than

8 10−3. Moreover, the Spectral-Quaternion method shares

the interesting invariances properties of the spectral
method, as well as its ‘anisotropy preserving’ feature.

For similar reasons, the Log-Euclidean interpolation is

a good approximation of the affine-invariant one. Since
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Fig. 3 Impact of the rescaling on interpolating curve. For each interpolation, the quaternion interpolation follows q(t) =
w∗

1(t)q1 + w∗
2(t)q2. Left : w∗

1 = 1 − t, w∗
2 = t, which corresponds to the linear interpolation of Eq. (12). right : anisotropy is

used to rescale the interpolation, and w∗
2(t) = tα(HAt,HA2)

ᾱ
. Since the anisotropy of the first tensor is very low, the interpolated

orientation is mostly based on the one of the second tensor (which is equivalent to w2 ≈ 1).

the Log-Euclidean and Spectral Quaternion frameworks

are computationally cheaper than the affine-invariant

and spectral ones, the following of the paper will focus
on those two methods only.

4 Weighted means and multidimensional

interpolation

4.1 Weighted means

An interpolating curve S(t;S1,S2) provides a straight-

forward definition of weighted mean from

mean((1− t)S1, tS2) = S(t;S1,S2) , 0 ≤ t ≤ 1 . (34)

In particular, the unweighted mean obtained for t =

1/2 corresponds to the midpoint of the interpolation

curve, a definition which agrees with the usual notion

of Riemannian mean when the interpolating curve is a
geodesic (see (Karcher, 1977; Fletcher and Joshi, 2007)).

For the interpolating curve (3), this notion also coin-

cides with the mean concept defined by Ando on ab-

stract cones (Ando et al, 2004).
Extending the concept of mean to more than two pos-

itive definite matrices is less straightforward and the

topic of current research (Pennec et al, 2006; Ando

et al, 2004; Petz and Temesi, 2005; Moakher and Zéraï,

2011; Moakher, 2005). Mean on manifolds is usually de-
fined by the Karcher mean, which minimizes the sum

of squared distances. Usually, this definition does not

enable to derive a closed-form formula for the compu-

tation of the mean of N elements, and this mean is
computed through an optimization algorithm, as for ex-

ample in (Pennec et al, 2006; Fletcher and Joshi, 2007).

This is another attractive feature of the Log-Euclidean

framework, which provides a closed-form formula for

the mean of several matrices (Arsigny et al, 2006).

Here we propose a natural definition of weighted mean
using the spectral interpolation curves of Section 2 :

given N weights w1, . . . , wN that satisfy
∑

iwi = 1, the

weighted w-mean of N tensors S1, . . . ,SN is defined by

Sµ = UµΛµU
T
µ , where the different components are

defined as follows.

– The eigenvalues of the mean tensor are defined from

the scalar formula (2):

λµ,k = exp(

N
∑

i=1

wi log(λi,k)), k = 1, 2, 3. (35)

Λµ = diag(λµ,1, λµ,2, λµ,3).

– To compute the mean orientation, we first select the

(weighted) most informative tensor as the reference
quaternion qr. Namely, we choose r as

r = argmax
i

wiHAi (36)

The realigned quaternions are denoted by qi,r.

The mean quaternion is defined as the (chordal)

mean in the quaternion space

qm =
∑

i

wiqi,r (37)

q =
qm

||qm|| (38)

Uµ is the rotation matrix corresponding to q.

The chordal mean (38) of quaternions is the Rie-

mannian mean over the set of rotations using the chordal

distance on the set of quaternions(Dai et al, 2010; Sar-
lette et al, 2007).

The proposed weighted mean is invariant by permuta-

tion of the matrices thanks to the selection of a proper
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Fig. 4 The Spectral Quaternion interpolating curve is a good approximation of the Spectral one. (a) : Interpolating curves
between a prolate and an oblate tensor, with the Spectral framework (top) and the Spectral Quaternion one (bottom). (b) :
Angular difference between the first eigenvector of the tensors computed with the spectral method and the one of the tensor
computed with the Spectral-Quaternion method. The maximal ‘angular error’ is lower than 8 10−3.

reference orientation, chosen consistently with the in-
formation carried by the tensor measurements.

We also emphasize that the only singularity of the pro-

posed mean occurs in the situation qm = 0, which re-

flects a situation in which there is so much uncertainty
about the average orientation that any choice for q is

equally good (or bad).

It follows from the definition and from the properties of

spectral-quaternion interpolation curves that the pro-

posed mean is ‘information preserving’: the determi-
nant of the mean of N tensors is the (geometric) mean

of the determinant, the length of each principal axis is

the geometric mean of the principal axis lengths, and

the Hilbert anisotropy of the mean tensor is the arith-
metic mean of the anisotropies

HA =
N
∑

i=1

wiHAi . (39)

Finally, as explained in Section 3.5, it is possible to

weight the orientations differently than the eigenvalues,

in order to take into account the uncertainty of orienta-

tion for isotropic tensors. Following the developments of

Section 3.5, a novel weighting of the quaternions, simi-
lar to the curve (33), is given by replacing the weights

in Eq. (37) by

w∗
i = wi

α(HAi,HA)

ᾱ
(40)

where α(HAi,HAj) is given by Eq. (32) and ᾱ is the

normalizing factor given by ᾱ =
∑

iwiα(HAi,HA).

4.2 Multidimensional interpolation

As previously advocated in (Zhang et al, 2006; Kindl-
mann et al, 2007; Arsigny et al, 2007), an adequate

interpolation method is important for the processing

of diffusion tensor images and particularly for the ex-

tension of usual registration techniques (for scalar im-

ages) to the case of tensor images. This interpolation
scheme is necessary to resample images. Here, we pro-

vide a direct generalization of classical interpolation

method, where the interpolated value is computed as

the weighted mean of the original tensors.
A common definition for multidimensional interpo-

lation is through a weighted average of diffusion ten-

sors (Pennec et al, 2006; Fletcher and Joshi, 2007; Ar-

signy et al, 2006). The weight associated to each ten-

sor is a function of the grid distance between this ten-
sor and the location of the interpolated tensor. In this

work, if (x1, x2, x3) ∈ [0, 1] × [0, 1] × [0, 1] are the co-

ordinates of the interpolated tensor and (α1, α2, α3) ∈
{0, 1}×{0, 1}×{0, 1} the coordinates of the point α of
the grid, the following function will be used

wα(x1, x2, x3) =
3
∏

i=1

(1− αi + (−1)1−αixi). (41)

Figure 2 shows the curve interpolation between two

tensors using both the Log-Euclidean and the spectral

quaternions frameworks. As in (Zhou, 2010), the varia-
tion of the main information conveyed by the tensors is

also shown. As previously shown, the Hilbert anisotropy

is linearly interpolated by the novel framework, while
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this information is significantly degraded in the Log-

Euclidean framework. A similar behavior is found for

the evolution of the fractional anisotropy. Both meth-

ods geometrically interpolate the determinant. It is also

interesting to analyse the difference in φ, the angle be-
tween the first eigenvector of the first tensor and the

first eigenvector of the weighted mean. The spectral

measure produces a quasi linear interpolation of this

angle, in contrast to the Log-Euclidean framework.

Using the method described above for computing
the weighted means of many tensors, the interpolation

of four tensors at the corners of a grid can be computed,

as illustrated in Figures 5 and 6. For those figures, the

alternative weights proposed in (40) are used. In the left
columns of those figures, colors of the tensors are deter-

mined by HA. In their middle columns, the evolution

of the anisotropy in the grid is represented as a contour

map. Each curve in these subfigures represent a con-

stant level of anisotropy. In Figure 5, which performs
the weighted mean of 3 very anisotropic (prolate) ten-

sors and an isotropic one, the difference is clearly visible

between the two interpolation schemes. The monotone

evolution of anisotropy achieved with the spectral in-
terpolation is strongly distorted with the Log-Euclidean

interpolation. Figure 6 uses an isotropic tensor (bottom

left), a prolate tensor (bottom right) and two oblate

tensors (for which λ1 ≈ λ2 > λ3). In this case, aniso-

tropy varies in a same way using any of the two meth-
ods. Finally, the direction of the principal eigenvector of

tensors is also shown (right columns). Some differences

can be observed, for example on the first row of the

subfigures in Figure 5, which corresponds to an inter-
polation between two orthogonal tensors with the same

shape.With the Log-Euclidean method, the principal

eigenvector does not vary until the midpoint of the in-

terpolation, where it is rotated by π/2 rad. On the con-

trary, the spectral quaternion interpolation results in a
monotone rotation of the tensor. In Figure 6, it is inter-

esting to note the difference for the orientation inter-

polation between the prolate tensor and the oblate one

(last columns of the subfigures). Since the principal di-
rection of diffusion (first eigenvector) of the prolate ten-

sor is in the diffusion plan of the oblate tensor, it is not

necessary to vary the orientation of the prolate tensor.

This is indeed the case when using the Log-Euclidean

method, but not with the Spectral-Quaternion frame-
work, which performs a smooth variation of this ori-

entation. This disadvantage of our method could be

avoided by using the whole rotation matrix to repre-

sent eigenvectors. This could help to weight differently
the orientation of a prolate tensor if its principal di-

rection is included in the diffusion plane of an oblate

tensor. However, this would imply to weight the orien-

tation interpolation by a factor depending upon the full

orientation, which is not permitted by the quaternion

representation.

In order to further compare the two frameworks, we

implemented some synthetic processing examples which
illustrate how approximation errors could propagate in

the processing pipeline. The simulations are chosen as

in (Thévenaz et al, 2000). The protocol is the following:

a succession of r = 15 rotations of 2π/15 = 24◦ each
was applied to some image, such that the output of any

given step ri is the input for the next step ri+1. The final

output is then compared to the initial image, see Figure

7. To enable a better interpretation of the results, the

maps of squared differences between the properties of
the original image and the ones of the output are also

shown. The errors in FA are localized, and are bigger

in the case of the Log-Euclidean interpolation. There

are more errors for the direction of the principal eigen-
vector, but it should be noted that the largest errors

are localized in low anisotropy areas. The uncertainty

of orientation is high in these areas, which accounts for

large orientation errors.

5 Distance, Riemannian metric and similarity

measure

Interpolation curves provide a natural measure of sim-

ilarity (or closeness) as the length of the interpolating

curve in a suitable metric space.

For the scalar interpolation formula (2), the definition

d(s1, s2) =

∫ 1

0

√

gs(t)(ṡ(t), ṡ(t))dt = | log
(

s1
s2

)

| (42)

where gs(t) is the chosen scalar product at s(t), coin-

cides with the (scale-invariant) geometric distance be-

tween two positive numbers.
Likewise, for the four interpolating formulas considered

in this paper, the definition

d(S1,S2) =

∫ 1

0

√

gS(t)(Ṡ(t), Ṡ(t)) dt (43)

qualifies as valid distance on S+(3).

For the affine-invariant curve, this definition coincides

with the Riemannian distance associated with the affine-

invariant metric. It is globally defined and makes S+(3)
a complete metric space (Fletcher and Joshi, 2007). It

has a closed form expression

d(S1,S2) = || log(S−1/2
1 S2S

−1/2
1 )||2 (44)

which is a natural matrix analog of the scalar formula.

For the Log-Euclidean geometry, the distance has

the closed form

d(S1,S2) = || log(S1)− log(S2)||2 (45)
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which is a chordal distance in the embedding space. It is

simpler to calculate and a good approximation of (44)
close to the identity matrix.

For the spectral geometry, the distance on the Lie

group SO(3)×D+(3) could be taken as given by formula

(43) where the metric is defined by

gS(t)(Ṡ(t), Ṡ(t)) =

k2(S(t)) g
SO(3)
U(t) (U̇(t), ˙U(t)) +

∑

( Λ̇i(S(t))

Λi(S(t))

)2
(46)

which is a weighted sum of the (infinitesimal) Rieman-

nian distances on SO(3) and D+(3), and k is a weight-
ing factor. The Riemannian distance on SO(3) is not

global because of cut-locus singularities. We propose to

define the spectral-quaternion geometry replacing the

geodesic distance on SO(3) by a chordal distance in the

space of quaternion, leading to the metric

gS(t)(Ṡ(t), Ṡ(t)) = k2(S(t)) ||q̇(t)||2+
∑

( Λ̇i(S(t))

Λi(S(t))

)2
.(47)

Building upon the interpolating curves (33), we propose
to let the weighting factor in (47) be

k(S(t)) = f(HA(t)) , (48)

where f is defined in Eq. (31). Thus defined, it appears

as a sigmoid that discards the (infinitesimal) distance
with the orientation term when the considered tensor is

isotropic (since this term contains no information), and

fully accounts for orientation in the case of large aniso-

tropy (that is, k is close to 1 when the ratio between

the largest and smallest eigenvalue becomes larger than
20).

It is hopeless to compute in explicit form the geodesic

distance d associated to the metric (47). However, the

geodesic distance satisfies

∑

| log λi(S1)

λi(S2)
| ≤ d(S1,S2) ≤

α(S1,S2)||q1−qr
2||2+

∑

| log λi(S1)

λi(S2)
| := ∆(S1,S2)(49)

with

α(S1,S2) = f(min(HA1,HA2)) .

The lower bound is obvious since k(S(t)) ≥ 0 along the

path; the upper bound is the (Riemannian) length in

the sense of metric (47) of a curve originating at the
tensor of minimal isotropy and made of two arcs: the

first one linking the orientations at constant (minimal)

anisotropy and the second one linking the eigenvalues
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while the orientation remains fixed. The geodesic dis-

tance being by definition smaller than the length of any

path, the upper bound is obtained.

In the limit case of an isotropic tensor, the inequal-

ity above becomes an equality, and when it is close to
identity, ∆(S1,S2) is thus a good approximation of the

geodesic distance. It is meaningful, as the weighting fac-

tor goes to zero when the orientation information be-

comes uncertain. This measure captures the fact that
the cost of rotation is weighted with the orientation

information. We propose formula (49) as a convenient

substitute for the geodesic distance associated to the

Riemannian metric (46-48). This similarity measure is

not a distance because it does not satisfy the triangu-
lar inequality. However, the bounds in (49) show that it

approximates the distance when the anisotropy is small

and weights the distance between quaternion only when

the anisotropy is high, that is, when the orientation of
tensors carries physical information.

It should be noted that the proposed interpolating curve

(33), metric (47), and similarity measure (49) are not

very sensitive to the form of the sigmoid f , nor to the

parameter β. The rationale for the term k(S(t)) is sim-
ply to let the orientation quaternion q play a role only

when the anisotropy exceeds a certain threshold.

We close this section with a conceptual remark for the

interested reader. The interpolating curve (33), metric
(47), and similarity measure (49) approximate a Riem-

manian framework in S+(3) by properly combining a

Riemmanian framework in D+(3) and in SO(3). This

means that distances between ellipsoids are approxi-

mated by the weighted sum of distances between ro-
tations and distances between dilations. This idea is in

close analogy with the framework recently developed by

the authors (Bonnabel and Sepulchre, 2009; Bonnabel

et al, 2013) to define distances between flat ellipsoids,
that is, positive semidefinite tensors of fixed rank: the

proposal being to approximate the distance between the

flat ellipsoids by the weighted sum of distances between

the subspaces that support them and distances between

full ellipsoids in a common subspace. The Riemmanian
framework proposed for flat ellipsoids is probably not

directly relevant for the DTI application but it is of in-

terest to notice that different applications motivate a

separate weighting of rotations and dilations, leading
to similar theoretical and computational issues about

reconciling the geometry of the product space to the

geometry of the original space.

Algorithm 1 : Computation of interpolation

Inputs : two tensors S1 and S2, a parameter t
Output : the interpolated tensor for the value t, St

1. S1 = U1Λ1U
T
1 , S2 = U2Λ2U

T
2 , with the eigenvalues

in decreasing order.
2. Compute the quaternions representing the orientations,

q1 and q2, and the associated set Q2. This set contains
the four elements






















q2(1)
q2(2)
q2(3)
q2(4)

















q2(2)
−q2(1)
−q2(4)
q2(3)

















q2(3)
q2(4)
−q2(1)
−q2(2)

















q2(4)
−q2(3)
q2(2)
−q2(1)























and their opposites.
3. Compute the interpolated eigenvalues matrix, using

λi(t) = exp((1− t) log(λi,1) + t log(λi,2)).
4. Select the ’realigned’ quaternion qa

2 with respect to q1

using qa
2 = argmaxq2∈Q2

qr
1.q2

5. Compute the interpolated quaternion as

qm(t) = (1− t)q1 + tqa
2

q(t) = qm(t)/||qm(t)||

6. Compute U(t) as the rotation matrix corresponding to
q(t).

7. The interpolated tensor is given by

S(t) = U(t)Λ(t)U(t)T .

Algorithm 2 : Computation of weighted mean

Inputs : A set of tensors S1,S2, . . . ,SN and their associate
weights wi, i = 1, . . . , N .
Output : the mean tensor Sµ

1. Perform the spectral decomposition of each of the N
tensors.

2. Compute the weighted mean of eigenvalues, through

λµ,k = exp(
N
∑

i=1

wi log(λi,k)), k = 1, 2, 3.

3. Select as the reference tensor the one that maximizes
the product wiHAi. The reference quaternion is qr.

4. For each tensor, select the ’realigned’ quaternion qa
i

with respect to qr using qa
i = argmaxqi∈Qi

qr.qi

5. The weighted mean of quaternions is

qm =
∑

i

wiq
a
i

qµ =
qm

||qm||

6. Compute Uµ from qµ according to (13).
7. The mean tensor is Sµ = UµΛµU

T
µ .
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Algorithm 3 : Computation of similarity measure

Inputs : Two tensors S1 and S2.
Output : the measure of their similarity ∆(S1,S2)

1. Perform the spectral decomposition of each tensor, and
compute the quaternions corresponding to the orienta-
tion matrices.

2. The distance between eigenvalues is given by

dΛ =
∑

| log
λi(S1)

λi(S2)
|

3. The weighting factor is given by α(S1,S2) =
(β min (HA1,HA2))

4

1+(β min (HA1,HA2))
4 , with β = 0.6.

4. Compute the chordal distance between quaternions, us-
ing one of the quaternion as the reference and realigning
the other one to this reference, i.e. if q1 is the reference,
select the ’realigned’ quaternion qa

2 with respect to q1

using qa
2 = argmaxq2∈Q2

q1.q2. The distance

dq = ||q1 − qa
2 ||2

5. ∆(S1,S2) = αdq + dΛ.

6 Filtering and denoising

In this section, we will illustrate how the framework in-

troduced in this paper affects the results of some impor-

tant processing methods. All these methods are based
on the principal notion of weighted means. We focus on

filtering methods, however means appear in many other

applications, such as in transformation of images, reg-

istration and template construction. It should be noted
that in those cases, the concept of the reorientation of

the tensors (Alexander et al, 2001) is crucial. Many im-

age processing tasks imply the convolution of the image

with some kernels. This is the case of denoising, smooth-

ing, edge detection, image sharpening and filtering. The
convolution of diffusion tensor images is straightforward

form the definition of means.

Gaussian filtering

In a continuous setting, the convolution of a vector field

F0(x) by a Gaussian Gσ is given by

F (x) =

∫

y

Gσ(y − x)F0(y)dy .

In the case of images (i.e pixels or voxels on a discrete

grid), the coefficients are renormalized since the neigh-

borhood V is usually limited to points within one to

three times the standard deviation σ. The discretiza-

tion is given by

F (x) =

∑

u∈V(x)Gσ(u)F0(x+ u)
∑

u∈V(x)Gσ(u)
, (50)

which is nothing else than a weighted averaging, where

the weights are given by the coefficients Gσ. We have

applied a Gaussian filter to a true image (Figure 8,(a)),

corrupted by additive noise in Figure 8, (b). The size

of the Gaussian filter was 7× 7, and σ = 3 pixels. The

Log-Euclidean filtering (Figure 8, (c)) is compared to

a convolution based on the spectral-quaternions frame-
work (Figure 8, (d)). It can be observed that both meth-

ods produce smoothened images. The corresponding FA

maps show that tensors which are highly anisotropic in

the true image become much more isotropic with the
Log-Euclidean filtering (Figure 8, (g)). This expected

degradation of anisotropy is less important with the

spectral-quaternion framework (Figure 8, (h)).

Anisotropic filtering

Anisotropic regularization of images corrupted by noise

is very important in medical image processing, since

it allows for a reduction of the noise level while pre-

serving boundaries and structures. The main idea of
anisotropic filtering is to ‘penalize’ the smoothing in

the directions where the derivative is important (Per-

ona and Malik, 1990). As proposed in (Pennec et al,

2006), if c(·) is a weighting function decreasing from

c(0) = 1 to c(∞) = 0, anisotropic filtering can be real-
ized using a discrete implementation of the Laplacian

operator. The contribution ∆uS of the spatial direction

u to the Laplace-Beltrami operator is weighted by the

decreasing function, according to the norm of the gra-
dient in that direction. The norm of the gradient should

of course be evaluated according to the corresponding

metric or measure. Finite difference approximations of

the derivatives are explained in (Pennec et al, 2006) for

the affine-invariant metric. In the case of Log-Euclidean
metric, the schemes are simpler since the dependence

of the gradient on the current tensor disappears on the

logarithms of tensors. The norm of gradient is then eas-

ily computed, as explained in (Arsigny et al, 2006). A
similar comment can be made about spectral quater-

nions method : all the computations can be done in an

Euclidean way by using the quaternions and the log-

arithms of eigenvalues. Not entering into the details,

the numerical implementations of an anisotropic filter-
ing with the spectral-quaternions method is based on

the following equations, where V represents the 4 used

directions used for the computations. For each pixel at

position x and at each time step, both the orientation
and the eigenvalues have to be computed.

qtemp(x) = qn(x) + 2εq∆q(x) (51)

qn+1(x) =
qtemp(x)

||qtemp(x)||
(52)

where

∆q(x) =
∑

u∈V

c(
√
α||q∗

n(x+ u)− qn(x)||)∆uq(x) (53)
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Fig. 8 Gaussian filtering of a true image. Top: Slices of diffusion tensor images, bottom : corresponding FA maps. (a): Slice of
an image constructed from real data,(b): noisy image, (c): result of the Gaussian filtering with the Log-Euclidean method, (d):
Gaussian filtering with the spectral-quaternion framework. For both methods, boundaries are less visible after the filtering.
It can be observed that tensors which are highly anisotropic in the true image are more isotropic with the Log-Euclidean
framework. This degradation is less important with the spectral-quaternions method.

with q∗
n(x+u) the realigned quaternion with respect to

qn(x) and ∆uq(x) = q∗
n(x+u)−qn(x). The parameter

α in the argument of function c(·) is the one used in the

similarity measure.

The logarithms of eigenvalues are used to compute the

filtering.

Λn+1(x) = exp(Λn(x) + 2εΛ∆Λ(x)) (54)

where

∆Λ(x) =
∑

u∈V

c(||∆uΛ(x)||)∆uΛ(x) (55)

with ∆uΛ(x) = log(Λn(x+u))− log(Λn(x)). The func-

tion c(·) used in both cases is c(t) = exp(−t2/σ2),
with different σ for the orientation and the eigenvalues

(σq = 0.1 and σΛ = 1). The time steps used are also

different, with εq = 0.1 and εΛ = 0.001 in our exam-

ple. This algorithm has been applied to the same noisy

image that had been used for the Gaussian filtering,
Figure 8, and the results are shown in Figure 9. In this

figure it can be observed that both methods perform

well. Compared to the results of the Gaussian filter-

ing, the structures are better preserved. Some outliers
are not regularized in both figures. Moreover, the re-

sults suggest that the spectral quaternions method pro-

duces better orientation results, for highly anisotropic

tensors. In the subfigures showing the angular differ-
ence between the principal eigenvectors, low errors ar-

eas are observable for the spectral quaternion frame-

work. Those structures correspond to high anisotropy

areas.

7 Conclusion

In this paper, we have introduced a novel geometric
framework for the Diffusion Tensor Images processing.

This framework is based on interpolating curves that

interpolate intensities and orientation separately. The

main advantage of this method is to control the spectral
interpolation of tensors during the processing. More-

over, it possesses all the important properties of existing

metrics, such as the invariances and the preservation of

other information as the determinant and the orienta-

tion of tensors.
Computational obstacles previously described in (Tsch-

umperlé and Deriche, 2001; Chefd’hotel et al, 2004) are

circumvented by embedding the set of rotation matrices

in the space of quaternions, long used for its numerical
efficiency in robotics.

The resulting interpolation method retains the com-

putational tractability and the geometry of the Log-
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Fig. 9 Anisotropic filtering of a true image. Top left : Log-
Euclidean filtering. Top right : Filtering based on the spectral
quaternions framework. Bottom: angular difference between
the first eigenvector of the filtered tensor and the one of the
‘true’ tensor. It can be observed that some ‘very noisy’ tensors
are not well regularized. Compared to the Gaussian filtering,
the structures are well preserved. Moreover, the orientation
of highly anisotropic tensors is better regularized with the
spectral quaternion framework, as can be observed from the
visible ‘low errors areas’.

Euclidean framework but addresses a limitation of this

framework regarding the degradation of anisotropy.

Although several illustrations of the paper exemplify
the potential benefit of preserving anisotropy through

averaging and interpolation operation encountered in

statistical process, the benefits of the proposed frame-

work for clinical applications remain to be demonstrated.
Registration and tractography are two particular areas

where the advantages of the proposed method should

be evaluated quantitatively.

Future research will extend the proposed framework to

more complex models of diffusion, such as HARDI. In
particular, Riemannian methods used to process those

models suffer the same drawback of degradation of the

anisotropy (Cheng et al, 2009; Goh et al, 2011). It is

interesting to note that recent contributions have ad-
vocated a decoupling between orientation and other

parts of the diffusion model to correct those artifacts

(Cetingül et al, 2012; Ncube and Srivastava, 2011).
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