
PUTTING THE USER IN THE LOOP FOR
IMAGE-BASED MODELING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Adarsh Prakash Murthy Kowdle

August 2013

© 2013 Adarsh Prakash Murthy Kowdle

ALL RIGHTS RESERVED

PUTTING THE USER IN THE LOOP FOR IMAGE-BASED MODELING

Adarsh Prakash Murthy Kowdle, Ph.D.

Cornell University 2013

Image-based modeling, the task of recovering the 3D structure of an object or a

scene using 2D images is one of the primary goals of computer vision. However,

3D reconstruction in practice is a hard task due to the numerous scene irregular-

ities. When a scene is captured from multiple viewpoints, irregularities such as

textureless surfaces, specularities, thin structures, etc., make the reconstruction

inaccurate. In addition, image sequences or videos of a scene captured in the

wild often consist of dynamic or moving objects such as people, which makes

the task of image-based modeling extremely hard. In this thesis, our goal is to

tackle these problems to obtain a more accurate reconstruction of the scene. In

particular, using the intuition that humans easily discern the 3D structure be-

hind the photons, this thesis addresses these problems by putting the user in

the loop with the image-based-modeling algorithm.

In the first part of the thesis, we focus on image-based modeling of static

scenes. We explore putting the user in the loop interacting with the algorithm by

providing constraints via simple interactions on the image data, to help over-

come the ill-effects of the scene irregularities. We introduce two algorithms

within this framework. First, an algorithm where the user drives the process

of image-based modeling. Second, a novel active-learning algorithm, which ini-

tiates the process of image-based modeling via an unsupervised algorithm and

then guides the user to provide constraints when and where needed.

In the second part of the thesis, we focus on image-based modeling of dy-

namic scenes captured by either a dynamic camera or a static camera. We de-

velop algorithms that leverage the dynamic objects in the scene to aid the image-

based modeling algorithm. We propose novel algorithms that use the sparse,

yet strong occlusion cues between the moving object and the scene, along with

a realistic motion prior for the moving object to recover the depth of the scene.

We explore putting the user in the loop within the framework, guided by the

algorithm to provide useful depth-order constraints and show that we further

improve the solution of the unsupervised algorithm.

Finally, we present an end user application: iModel, which puts the user in

the loop for object of interest 3D modeling on a mobile device and 3D printing

of an object of interest.

THESIS COMMITTEE

Prof. Tsuhan Chen

School of Electrical and Computer Engineering,

Cornell University

Prof. Anthony P. Reeves

School of Electrical and Computer Engineering,

Cornell University

Prof. Noah Snavely

Department of Computer Science,

Cornell University

Prof. Ashutosh Saxena

Department of Computer Science,

Cornell University

Dr. Richard Szeliski

Microsoft Research, Redmond

5

I dedicate this thesis to my parents:

Your support is why I am here.

6

ACKNOWLEDGEMENTS

I thank my advisor, Prof. Tsuhan Chen, for his support and guidance through

every step of my PhD. Deciding to move with you from Carnegie Mellon to

Cornell was the best decision I have ever made. The freedom you gave me with

my research, the opportunities you gave me, the guidance and push you gave

me to think differently is what has shaped me. I have always admired your

demeanor and how you approach every problem, breaking it down to the most

simplest of problems. I hope your attitude rubs off on me. I will always cherish

the time I have spent working with you.

I thank my thesis committee: Prof. Anthony Reeves (thank you for your

input on this thesis. I have always loved your sense of humor and I am happy

I was part of your lectures), Prof. Noah Snavely (you are probably the most

polite person I have ever met. I had a wonderful time as your teaching assistant,

helping you organize the seminars and collaborating with you), Prof. Ashutosh

Saxena (it was a delight collaborating with you. You have a passion for research

that I will always admire. Thank you for your guidance in shaping this thesis),

and Dr. Richard Szeliski (thank you for your guidance. Working with you as an

intern was a wonderful experience and an honor).

I thank Dhruv Batra and Devi Parikh, my collaborators, my mentors and

very close friends all through my PhD. Your advice and help, every step of the

way has helped me immensely. I will always remember those late nights we

were working, the coffee pyramids, the post paper submission celebrations at

Nines, the sky-dive and all those crazy things we have done together.

I thank my collaborators, Andrew Gallagher, Yao-Jen Chang, Congcong Li

and Sudipta Sinha. It was a pleasure working with you, I have learnt a lot from

each of you.

7

I thank all the Advanced Multimedia Processing lab members: Amandy

Nwana, Amir Sadovnik, Henry Shu, Kuan-chuan Peng, Ruogu Fang, Yimeng

Zhang and Zhaoyin Jia. I also thank the visitors, the undergraduate students

and MEng students I had the pleasure of collaborating and mentoring over the

years. The stimulating discussions at the group meetings, the post deadline cel-

ebrations and all the fun times we enjoyed together are memories I will always

cherish. I am grateful to the stimulating environment at Cornell, the seminars

and reading groups, which have helped me explore new ideas and continue

learning.

I thank my room-mate Tanay Gosavi, and all my wonderful friends at Cor-

nell. You guys have made my life at Cornell truly memorable.

I thank my parents, my brother Ashwin and my sister-in-law Sarayu for

helping me make all my decisions and being there every step of the way. Lastly,

but in no way the least, a special thank you to my wife Gauri. The last year of

my graduate life has been special and memorable because of you.

8

TABLE OF CONTENTS

Thesis Committee . 5
Dedication . 6
Acknowledgements . 7
Table of Contents . 9
List of Tables . 11
List of Figures . 12

1 Introduction 1

1.1 First Published Appearances of Described Contributions 9

2 Image-Based Modeling of Static Scenes 10

2.1 Introduction . 10
2.2 Related Work . 12
2.3 Pre-processing . 14
2.4 Node constraints . 15

2.4.1 Energy minimization . 16
2.4.2 Reconstructing non-planar objects 18
2.4.3 Reconstructing planar scenes 26

2.5 Edge constraints: An active learning formulation 34
2.5.1 Automatic 3D reconstruction algorithm 35
2.5.2 What is the uncertainty? . 39
2.5.3 User in the loop . 44

2.6 Experiments and Results . 48
2.6.1 Datasets . 48
2.6.2 Ground truth . 48
2.6.3 Machine experiments . 49
2.6.4 User study . 51
2.6.5 Qualitative analysis . 55

2.7 Summary . 57

3 Image-Based Modeling of Dynamic Scenes 59

3.1 Introduction . 59
3.2 Related work . 64

3.2.1 Dynamic camera scenario 65
3.2.2 Static camera scenario . 66

3.3 Dynamic camera capturing a dynamic scene 68
3.3.1 Algorithm . 68
3.3.2 Experiments and results . 78

9

3.4 Static camera capturing a dynamic scene 81
3.4.1 Algorithm . 81
3.4.2 Experiments and results . 92

3.5 Putting the user in the loop . 100
3.5.1 Incorporating the user constraints 102
3.5.2 Guiding the user feedback 104
3.5.3 Query scoring function . 105
3.5.4 Experiments and results . 107

3.6 Summary . 110

4 Applications: Image-Based Modeling on a Mobile Device 112

4.1 iModel: Interactive 3D modeling on a mobile device 112
4.2 From images to physical 3D printouts 114

5 Conclusions and Future Work 116

5.1 Future work . 118
5.1.1 Leveraging the active-learning framework 118
5.1.2 Leveraging semantics for image-based modeling 119
5.1.3 Putting the user in the loop during image capture 121

A Related Publications 122

10

LIST OF TABLES

3.1 Quantitative results and comparisons for the single moving object
scenario (SET-A). Each measure is averaged across the videos in the
dataset. The table on top reports the performance using the metrics of
Accuracy, Precision, Recall and F-score. While the one at the bottom
reports the Kendal-Tau measures. In both the tables, ROW-1 shows the
performance when we use only the motion occlusion cues [11]; ROW-2
shows the performance when we use only the learnt monocular cues
[41]; ROW-3 shows the performance of a naı̈ve combination of the mo-
tion occlusion and monocular cues; ROW-4 shows the performance of
the proposed framework when we use all the occlusion cues as hard
constraints i.e. by setting c f

i j and δ
f
i j in Equation 3.7, to 1.0; ROW-5

shows the performance of the proposed approach but without the tem-
poral links enforcing the object motion model, which is equivalent to
a very large value for β in the temporal motion pairwise term; Finally
ROW-6 shows the performance of the full proposed approach that com-
bines the motion occlusion and monocular cues into one framework.
Note that the error bars show the standard deviation of the perfor-
mance across the dataset. In summary, the proposed algorithm (in green)
outperforms the other algorithms in each metric in 19 out of 24 scenes. 97

3.2 Quantitative results and comparisons for the multiple moving objects
scenario (SET-B). The table on top reports the performance using the
metrics of Accuracy, Precision, Recall and F-score. While the one at
the bottom reports the Kendal-Tau measures. The rows are the same
algorithms as Table 3.1. Note that the error bars show the standard
deviation of the performance across the dataset. The proposed approach
(in green) outperforms the other algorithms in each metric in 8 out of
9 scenes. 98

3.3 Features (68-dim) for the regression function to rank the queries.
Here, each ‘query’ is a pair of superpixels to be queried for pair-
wise constraint. 106

11

LIST OF FIGURES

1.1 Putting the user in the loop for image-based modeling. 1
1.2 (a) Images of a static scene captured from multiple viewpoints.

What is the user’s object of interest? The statue, or perhaps the
pedestal the statue is on? (b) The user in the loop guides the al-
gorithm by indicating the object of interest via simple scribbles.
(b) Output obtained using the proposed interactive object of in-
terest 3D modeling algorithm. 4

1.3 (a) Images of a static scene captured from multiple viewpoints.
(b) Finding a unique match for some features such as the yellow
‘×’ on the wall is well structured but, the matching point for the
cyan ‘×’ on the textureless surface of the couch is ambiguous.
(c) When humans look at a scene they much better discern the
geometric structure behind the photons, which can help recon-
struct ambiguous portions of the scene. (d) The algorithm guides
the user input by indicating that the cyan region is the region it
needs some support constraints. The user provides constraints
across the yellow edges via the red, blue and white scribbles. . . 5

1.4 Dynamic scene captured by static camera. Note that the moving
objects reveal sparse yet power pairwise depth ordering cues.
(Data from [32]) . 6

1.5 Simple pairwise constraints provided by the user to aid the pro-
cess of image-based modeling of dynamic scenes. 8

2.1 Discrete labeling problem: The user constraints are provided
over the nodes and edges of the graph to help modulate the
unary term and the pairwise term, respectively. 11

2.2 Node constraints. The colored nodes in the graph represent the
node constraints provided by the user via multiple colored scrib-
bles to indicate the different labels. More description about the
node constraints and incorporating them into the algorithm is in
Section 2.4. 16

2.3 Object of interest 3D modeling. (a) Input multiview images of
the object of interest (statue); (b) User node constraints that are
used as hard constraints to learn the appearance models a per-
form the co-segmentation; (c) Resulting co-segmentation that
has some inaccurate labeling in the background; (d) Shape from
silhouette reconstructs the 3D model by the finding the volume
of intersection given the camera parameters; (e) Projecting the
3D model back into each image allows fixing the segmentation
errors that existed earlier. 19

12

2.4 Dino dataset (36 images): (a) Subset of the collection of images
given to the system where the dino was marked the object of
interest; (b) Resulting silhouettes after initial co-segmentation (in
cyan color); (c) Some sample novel views of the 3D model. 21

2.5 Cambridge unicorn dataset (14 images): (a) Subset of the collec-
tion of images given to the system where the unicorn statue was
marked as the object of interest; (b) Resulting silhouettes after
initial co-segmentation (in cyan color); (c) Some sample novel
views of the 3D model. 21

2.6 Clock tower dataset (32 images): (a) Subset of the collection of
images given to the system where the clock tower was marked
as the object of interest; (b) Resulting silhouettes after initial co-
segmentation (in cyan color); (c) Some sample novel views of the
3D model. 22

2.7 Video dataset (17 images obtained by sampling the video): (a)
Subset of the collection of images given to the system where the
person was considered the object of interest; (b) Resulting silhou-
ettes after initial co-segmentation; (c) Some sample novel views
of the 3D model. 23

2.8 Community photo collection - Statue of Liberty dataset: (a) Sub-
set of the collection of images given to the system - for our co-
segmentation algorithm we use a subset of 15 images spanning
a large field of view from a collection of 1600 images; (b) Result-
ing silhouettes after initial co-segmentation (in cyan color); (c)
Some sample novel views of the 3D model. 24

2.9 Statue of Liberty comparison: (a) Point cloud reconstruction us-
ing 1600 images ([88]); (b) Dense reconstruction using multi-
view, using 72 images (figure from [30], used with permission).
With a lot of images, multi-view stereo can give a good depth
model; (c) Pleasing texture mapped reconstruction rendered us-
ing 15 images. 25

2.10 Patch-based multi-view stereo experiment using images in Fig-
ure 2.3(a) where the statue is the object of interest: (a) When
the silhouettes are not available PMVS tries to reconstruct the
whole scene as shown; (b) Using the silhouettes produced by the
co-segmentation algorithm, we can use PMVS to obtain the 3D
model of the statue which was the object of interest. 27

2.11 Interactive piecewise planar 3D reconstruction: (a) Input im-
ages (image selected by user shown in yellow box); (b) User
interactions to indicate the surfaces in the scene; (c) Scene co-
segmentation of all images by using the idea of 3D scribbles to
propagate scene geometry; (d) Some sample novel views of the
reconstruction of the scene, with and without texture. 28

13

2.12 Scene co-segmentation: (a) Scene segmentation with user inter-
action indicating connected planes (white scribbles in black el-
lipses); (b) 3D scribbles inferred from the segmentation; (c) 3D
scribbles warped onto the other images to propagate scene ge-
ometry (Note: scribbles have been increased to improve visibil-
ity; the scribbles used for the results are in Figure 2.11(b)); (d)
Scene co-segmentation. 28

2.13 Outdoor scene with occluding non-planar object: (a) Input im-
ages (image selected by user shown in yellow box); (b) User in-
teractions; (c) Resulting scene segmentation with the additional
interactions to indicate surface connectedness (white scribbles
shown in black circles) and non-planar objects (magenta scribble
shown in blue scribble); (d) Object co-segmentation (foreground
non-planar object in yellow); (e) Scene co-segmentation by using
3D scribbles to propagate scene geometry. 31

2.14 Indoor scene with occluding non-planar object: (a) Input im-
ages (image selected by user shown in yellow box); (b) Non-
planar object co-segmentation; (c) Final scene co-segmentation;
(d) Novel views of the reconstruction with volumetric rendering
of the person. 32

2.15 Non-planar objects: (a) Composite texture map for the scene
(top) allows covering up holes due to occlusions (ellipse); (b)
Novel views of the reconstruction with a volumetric model of
the tree. 33

2.16 Comparison with patch-based multi-view stereo: The top im-
ages show the reconstruction generated by PMVS with the errors
shown in black ellipses, while bottom images show our results
with corrected reconstructions shown in blue ellipses. 34

2.17 Edge constraints. The blue, white and red scribbles across the
yellow edges in the graph illustrate the edge constraints pro-
vided by the user to provide support for the cyan nodes (guided
by the computational engine). More description about the edge
constraints and incorporating them into the framework is in Sec-
tion 2.5. 35

14

2.18 (a) shows a set of multiview images of a scene; (b) shows the re-
sult of the automatic algorithm, the plane labeling shown on the
top indicates the inaccurate labeling, the novel views of the 3D
model are shown at the bottom with black circles showing the
errors. (c) the proposed active-learning algorithm quantifies the
uncertainty of the algorithm and detects the uncertain regions
(in cyan), the uncertainty boxes (in orange) with the highlighted
edges (in yellow) are used to query the user for support, the user
provides any of three types of interactions within each box via
simple scribbles across the highlighted edge, coplanar scribbles
(red), not-coplanar scribbles (white) or not-connected scribbles
(blue) as shown; (d) shows the result of the algorithm after incor-
porating the information provided by the user, plane labeling on
top shows the improved labeling, the improved reconstruction
is shown below through novel viewpoints with yellow circles il-
lustrating the corrected geometry. 36

2.19 Synthetic example to illustrate the uncertaintly of the algorithm
(Best viewed in color). More details in Section 2.5.2. 39

2.20 The user can provide three types of interactions to indicate
coplanar regions (red), not-coplanar regions (white) and not-
connected regions (blue) across the highlighted edge (yellow)
within each uncertainty box (orange), to provide support for the
uncertain regions (cyan). 46

2.21 Incorporating the user constraints to update the structure of the
graph. Note how the red scribble (connected and co-planar)
adds more edges and strengthens edges; blue scribble (not-
connected) breaks edges in the graph; white scribble (connected
and not co-planar) breaks edges and hypothesizes a new planar
surface for the uncertain region. 47

2.22 Machine experiments: Our proposed active-learning algorithm
performs significantly better than random sampling and per-
forms respectably compared to ground truth sampling. 51

2.23 Machine experiments: Our proposed active-learning algorithm
produces the most accurate reconstructions, validating our de-
sign choices. (Section 2.6.3). 52

2.24 User study: The proposed active-learning algorithm not only out
performs random interactions, but performs at par with exhaus-
tive examination in significantly lower time (Section 2.6.4). 53

2.25 The three different user experiments conducted to evaluate the
proposed algorithm (Section 2.6.4). 53

2.26 User study - time: The proposed active-learning algorithm
achieves better performance and significantly faster (Section 2.6.4). 54

15

2.27 Qualitative results: (a) and (b) show the plane labeling and,
novel views of 3D reconstruction from the automatic algorithm
respectively; (c) and (d) shows the improved results using the
active-learning algorithm respectively. 55

2.28 Qualitative comparison: (a) The initial reconstruction of the
scene, with errors shown in black ellipses; (b) The result after
an unguided user provide interactions for 8 iterations, where er-
rors still exist as shown in black ellipses; (c) In comparison, the
user guided by the proposed active-learning algorithm achieves
accurate reconstruction after only 5 iterations. Errors fixed are
shown in red ellipses. 56

3.1 ROW 1 shows two frames from a video sequence from the movie
Sound of Music where, the camera is translating to the left and the
person is walking in the same direction. ROW 2 shows the ini-
tial depth maps estimated using plane sweep stereo (white is far,
black is close). The depth of the moving object is over-estimated
as shown in the red circles. ROW 3 shows the final depth maps
inferred using the proposed approach after identifying and mod-
eling the motion of the moving object. Note that more accurate
depth map for the moving object shown in the green circles. . . . 61

3.2 Overview. (a) Ground-truth top view, black triangle shows the
camera looking up at a scene with the red moving object region
following the path shown in the red arrow; (b) Shows the back-
ground scene in the orange box and two frames from the in-
put sequence where the red object interacts with the background
regions to reveal pairwise depth-ordering cues such as red oc-
cludes green, blue occludes red; (c) A graph constructed over the
background regions is shown in the orange box. Each colored
node corresponds to the respective colored region in (b). The
red nodes correspond to the moving object with a node for ev-
ery frame f in the input sequence ({1, 2, . . . , F}). The black edges
enforce the observed pairwise depth-ordering, for instance be-
tween the green-red nodes at f = 1, and blue-red nodes at f =
2. The red edges enforce a smooth motion model for the mov-
ing object; (d) Shows the inferred depth layers, white = near and
black = far. 63

3.3 Results from the plane sweep stereo implementation. Our sim-
plified implementation works well on a well structured smooth
video (LEFT) as well as a user captured amateur video (RIGHT).
Details in Section 3.3.1. (black = near, white = far) 69

16

3.4 Comparison of algorithmic choices (White is far, black is close
for the depth maps). (a) Sample image from a video; (b) Depth
map using pixel-level NCC score; (c) Cleaner depth map by me-
dian filtering result (a); (d) A pixel-level labeling using graph
cuts produces a better result but, noisy; (e) The best result was
obtained by guided filtering the cost cube, guided by edges in
the original image. 71

3.5 Subset of frames that show the semi-supervised co-segmentation
of the moving object in the scene. 72

3.6 Modeling the object motion: The relationship in the blue box re-
sults from the similarity between the red and green triangles.
More details in Section 3.3.1. 73

3.7 (a) A frame from the input sequence with the moving object
bounding box shown in cyan. (b) The SfM point cloud recon-
structed using [88] with the cameras shown in yellow. (c) The
3D points in the SfM point cloud that project onto the cyan re-
gion are illustrated in red color, which helps define the depth
bound for the moving object. 74

3.8 The blue points correspond to the camera centers in all the fig-
ures. Each row shows the result of a video sequence showing
the effect of using the trajectory fitting, (a) The white points cor-
respond to the initial noisy estimate of the position of the moving
object, (b) The yellow points correspond the position of the mov-
ing object after enforcing that it travels along a smooth motion
trajectory. 76

3.9 An example of the aligned kinect RGBD data used for the quan-
titative results. The RGB image is on the left and the correspond-
ing aligned depth map is on the right. 78

3.10 Quantitative analysis: We show the average RMS error in esti-
mated depth measure using kinect data. Note that the proposed
approach gives significant improvement. 79

3.11 Each black box shows results on a video sequence. ROW 1 shows
four frames from a video with a moving object. ROW 2 shows the
initial depth maps using plane sweep stereo (white is far, black
is close). Note that the depth of the moving object is inaccurately
estimated. ROW 3 shows the final depth maps inferred using the
proposed approach after identifying and modeling the motion
of the moving object. Note the more accurate depth map for the
moving object in each case. ROW 4 shows anaglyphs obtained by
synthesizing the left image of the stereo pair using the original
image as the right image and the recovered depth map (Requires
red - cyan glasses). 80

17

3.12 Pairwise depth-ordering cues. Left image shows the background
scene segmentation and the right image shows an intermediate
frame segmentation with the moving object segment. (a) A re-
gion in the background is covered by the moving object (white
ellipse) indicating that the moving object occludes the back-
ground region; (b) Observing that the boundary corresponding
to the background region (white pixels in black ellipse) does not
change when the moving object comes in contact with it reveals
that the moving object is occluded by the background region. It
also reveals new relationships via transitivity; the chair occludes
the object and at the same instant the object occludes regions on
the wall; therefore the chair occludes the regions on the wall. . . 83

3.13 Spatial occlusion pairwise term ES
i j. If i occludes j, the pairwise

term encourages that i takes a depth label closer (lower) than j
via a large penalty for the red terms and zero penalty for blue
terms. See Section 3.4.1 and Equation 3.7 for details. 87

3.14 Temporal motion pairwise term ET
i j. The penalty (β) increases as

we go away from the diagonal encouraging a smooth motion of
the object across depth layers. See Section 3.4.1. 89

3.15 Multiple moving objects. (a) The background scene is shown in
the orange bounding box. The two moving object segments for
intermediate frames are overlaid in red and blue; (b) The spatio-
temporal graph constructed. The spatial graph corresponding to
the background scene is shown within the orange bounding box
and the two nodes for each frame corresponding to the moving
objects are shown using the red and blue nodes. See Section 3.4.1. 90

3.16 (a) Static scene, (b) manually labeled ground-truth depth layers
for quantitative analysis and (c) estimated depth layers using our
algorithm. white = near, black = far. 93

3.17 Average accuracy across the scenes in SET-A, which shows the
effect of the parameter γ in Equation 3.7. This parameter acts as
a bias that helps depend on the spatial occlusion cues only when
the algorithm is confident of the pairwise occlusion cue. γ is set
to −log(0.5) ≈ 0.7 for all the experiments. 95

3.18 More qualitative results and comparisons. For all the depth-
layers, white = near, black = far. Discussion in Section 3.4.2. . . . 99

3.19 Pairwise constraints provided by the user. The grey color is used
to indicate two regions at the same depth layer, while the white
and black colors are used to indicated relative depth ordering
where white = near, black=far. 101

3.20 User interface to accept pairwise constraints. 102

18

3.21 Spatial pairwise term - incorporating user constraints (Ui,U j)
that gives the pairwise relationship between superpixels i and
j. (a) i occludes j (Ui < U j). (b) i and j belong to the same depth
layer (Ui = U j). (c) i is behind j (Ui > U j). 103

3.22 Note the change in the depth layers upon incorporating the user
constraint. The pairwise terms ensure that the pink region be
pushed back as apposed to the cyan region being pulled in front
since that would have resulted in more pairwise penalties given
the evidence. 104

3.23 Observed occlusion matrix (static scene) for a video in SET-A.
This is a skew-symmetric square matrix of dimension as the
number of superpixels in the static scene. Red and blue points
indicate pairwise occlusion relationships, +1 and −1 respectively
and white points are the dominant diagonal that does not have
pairwise relationships. The black region corresponds to the
space of unknown pairwise relationships. 105

3.24 Random query sampling - performance of adjacent vs. non-
adjacent superpixel queries. Every query is randomly selected
from all the possible queries. The performance of the algo-
rithm is significantly better when we use non-adjacent super-
pixel queries as apposed to adjacent superpixels. The error bars
show the standard deviation across the videos in the dataset. . . 109

3.25 Performance putting the user in the loop. The figure shows
the average performance across the 24 videos in SET-A. (a) The
performance of the random sampling where each query is ran-
domly chosen from all the possible queries is shown in blue.
The learnt scoring function that ranks the queries and picks the
best query is shown in red, which outperforms the random sam-
pling. The error bars show the standard deviation across the
dataset. We note that the learnt scoring function outperforms
the random sampling in each of the videos. (b) The green curve
shows the performance of the upper-bound obtained by exhaus-
tive ground-truth sampling. 110

4.1 Overview of object of interest 3D modeling on a mobile device.
Please refer website1 for a demo video of the application. 113

4.2 Physical 3D printout of the object of interest obtained using the
proposed algorithm. The top row shows the set of multiview
images of the object of interest used to obtain the 3D printout
below. 115

19

5.1 Capturing the right image by actively guiding the user in 3D. (a)
The object of interest lies on a planar surface. The green square
illustrates the initial position of the camera after the first capture.
The red dashed line is illustrated between the camera center and
the origin of the reference co-ordinate system (shown in red ×).
(b) A ring of possible camera positions is obtained by fixing the
height of the camera, illustrated in the black ring. (c) The re-
quired number of camera positions are uniformly sampled along
the ring. (d) The final camera positions to guide the user are thus
obtained. 120

20

CHAPTER 1

INTRODUCTION

Figure 1.1: Putting the user in the loop for image-based modeling.

Image-based modeling, the task of recovering the 3D structure of an object or

a scene using 2D images is one of the primary goals of computer vision. Estimat-

ing the depth of the scene has been explored for a variety of applications ranging

from image-based rendering, image editing, to scene understanding. There has

been significant progress in image-based modeling using input images that vary

from the very constrained setup of a single image [40, 80], a single stereo-pair

[82, 84], to multiple images of the scene captured from different viewpoints or

a video of the scene [26–28, 30, 70, 75, 76, 85, 88, 100]. However, 3D reconstruc-

tion of natural scenes is a hard task, due to the numerous scene irregularities

such as textureless surfaces, specularities, thin structures, background clutter,

etc., resulting in inaccurate reconstructions. In addition, unconstrained image

1

sequences often consist of dynamic or moving objects such as people walking

about in the scene, which makes the task of image-based modeling extremely

hard. In this thesis, we address these issues by putting the user in the loop for

image-based modeling.

The core of this thesis is the intuition that when humans look at a scene they

much better discern the geometric structure behind the photons. However, the

key to put the user into the loop to aid the image-based modeling algorithm is

to design a smart computational engine and keep the user interaction simple

and intuitive, yet powerful. We illustrate the basic idea of putting the user in

the loop using Figure 1.1. The computational engine is the workhorse that uses

the constraints provided by the user (i.e., oracle) and recovers the 3D structure

of the scene. The computational engine uses the current solution to the problem

queries the user for useful constraints, placing the user in a closed loop with the

computational engine. The questions to address within this framework is what

is the computational engine? What are the constraints the user provides and

how is this incorporated by the computational engine?

In contrast to prior interactive works that require very involved user in-

puts such as feature correspondence across images and line drawings of objects

[2, 19, 20, 38, 86, 87, 90], we use simple scribbles in all our algorithms as user

constraints, as illustrated in Figure 1.2(c), Figure 1.3(d) and Figure 1.5. In ad-

dition, we show in this thesis that the user in the loop does not directly solve

the problem of image-based modeling. The user is guided by the computational

engine to provide simple and intuitive constraints, which are incorporated into

the computational engine to indirectly aid the task of image-based modeling.

In the first part of this thesis, we consider image-based modeling of static

2

scenes captured from multiple viewpoints. We put the user in the loop to pro-

viding constraints to the algorithm via simple scribbles to indicate the object of

interest or provide 3D support constraints. We also introduce a novel active-

learning algorithm for image-based modeling that can intelligently guide the

user constraints to when and where needed. In the second part of the thesis, we

consider scenes with dynamic objects in them, we propose novel unsupervised

algorithms that serve as the computational engine that leverages the depth or

occlusion constraints revealed by the interactions between the moving object

and the real 3D scene to implicitly aid modeling the scene. We put the user in

the loop guided by the computational engine to provide simple relative depth

cues to further improve the solution to the problem. We give an overview of the

two parts of this thesis below, followed by the structure of this thesis.

First, consider a scenario where we wish to obtain a volumetric 3D model of

the Ezra Cornell Statue shown in Figure 1.2(a). One approach to achieve this,

is to haul an expensive laser scanner to get precise depth estimates in a con-

trolled setup, and reconstruct the statue [67]. However, this might be not be a

feasible solution for average users. Another typical approach is to capture im-

ages of the object in a controlled environment like a multi-camera studio with

mono-color screen and structured lighting, and use a shape-from-silhouette al-

gorithm [15, 21, 23, 91] to render the 3D model. While these techniques produce

promising results in these constrained settings, this is a tedious process, and in

some cases such as the statue (or other immovable objects such as historically

or culturally-significant artifacts) this is not an option. In a world where we are

surrounded by portable cameras, a more accessible approach is to capture im-

ages of the object in its natural environment and directly estimate the 3D struc-

ture from these natural images. The images captured in the wild typically have

3

(a) (b)

(c)

Figure 1.2: (a) Images of a static scene captured from multiple viewpoints.
What is the user’s object of interest? The statue, or perhaps the
pedestal the statue is on? (b) The user in the loop guides the
algorithm by indicating the object of interest via simple scrib-
bles. (b) Output obtained using the proposed interactive object
of interest 3D modeling algorithm.

cluttered backgrounds making it hard for unsupervised algorithms to obtain a

good reconstruction. In addition the notion of object of interest is also ill-posed.

In Figure 1.2(a) how would the algorithm know if the object of interest is the

statue, or perhaps the pedestal the statue is on? This is the first scenario we

explore in Chapter 2. We put the user in the loop with the algorithm to indicate

the object of interest using simple and intuitive scribbles shown in Figure 1.2(b),

resulting in the model in Figure 1.2(c).

The scenario discussed above requires the user to initiate the process of

4

(a) (b)

(c)

(d)

Figure 1.3: (a) Images of a static scene captured from multiple viewpoints.
(b) Finding a unique match for some features such as the yel-
low ‘×’ on the wall is well structured but, the matching point
for the cyan ‘×’ on the textureless surface of the couch is am-
biguous. (c) When humans look at a scene they much better
discern the geometric structure behind the photons, which can
help reconstruct ambiguous portions of the scene. (d) The algo-
rithm guides the user input by indicating that the cyan region
is the region it needs some support constraints. The user pro-
vides constraints across the yellow edges via the red, blue and
white scribbles.

5

Figure 1.4: Dynamic scene captured by static camera. Note that the mov-
ing objects reveal sparse yet power pairwise depth ordering
cues. (Data from [32])

image-based modeling. Is there a way where we can reduce the effort of the

user? Is there a way where we can exploit the significant success with automatic

image-based modeling algorithms that use the rich cues present in multi-view

images [26–28, 30, 70, 75, 76, 85, 88, 100]? Our first observation is that in case of

images of natural scenes automatic algorithms fail to produce an accurate recon-

struction in case of scene irregularities such as textureless and specular surfaces.

Consider that we wish to model the scene shown in Figure 1.3(a). When we ob-

serve two images of the scene from different viewpoints, finding a match for a

unique match for features such as the yellow ‘×’ on the wall is well structured

however, the matching point for the feature on the textureless surface of the

couch shown in the cyan ‘×’ is ambiguous. Thus, while the unsupervised algo-

rithm can reconstruct the wall and perhaps even the ground surface, it makes

errors in modeling the couch. On the other hand, when humans look at a scene

they much better discern the geometric structure behind the photons (Figure

1.3(c)). This intuition forms the basis of the second algorithm we describe in in

Chapter 2, where we allow the unsupervised image-based modeling algorithm

to reconstruct the scene, automatically identify uncertain regions (such as the

couch) and guide the user to provide support constraints via simple scribbles as

shown in Figure 1.3(d) to improve the 3D reconstruction.

6

While the first part of the thesis focuses on image-based modeling of static

scenes captured from multiple viewpoints, there has been an increasing trend in

the use of image sequences or videos captured in natural scenes using handheld

devices, surveillance cameras, or even professionally captured movie footage,

for a number of applications including recovering depth of the scene, video

summarization, activity recognition, etc. These unconstrained image sequences

could be captured by static or dynamic cameras and the scene could also contain

dynamic objects, which makes the problem of recovering depth a non-trivial

task. We note that most of the prior works including algorithms we discuss in

the first part of the thesis focus on estimating the depth of a static scene cap-

tured by a dynamic camera. How do we handle scenarios where a dynamic

scene is captured by a dynamic camera or a static camera? Our intuition for

the novel computational engine is that the dynamic content moving about the

scene implicitly provide useful depth cues to the algorithm. For example, con-

sider Figure 1.4 where a static camera captures two people walking around in

the scene. Even with the sampling of images shown here, we can easily ob-

serve useful occlusion cues that provide depth ordering information about the

different regions of the scene. In Chapter 3, we consider image-based modeling

of dynamic scenes. In case of a dynamic scene captured by a dynamic camera,

we use the occlusions between the moving object and the scene, and a realistic

motion prior for the moving object to recover the depth of the dynamic scene.

We then address the scenario of a dynamic scene captured by a static camera,

and show that even in the absence of camera motion, we can use the sparse,

yet strong occlusion cues revealed by moving object interacting with the static

scene to aid the image-based modeling, and decompose the scene into fronto-

parallel depth layers. We then put the user into the loop within this framework

7

Figure 1.5: Simple pairwise constraints provided by the user to aid the
process of image-based modeling of dynamic scenes.

by leveraging the computational engine to guide the user to provide useful pair-

wise depth ordering constraints, as shown in Figure 1.5 to further improve the

solution of the algorithm.

The rest of this thesis is organized as follows. Chapter 2 presents algorithms

to put the user in the loop for image-based modeling of static scenes. Chap-

ter 3 presents algorithms that address the scenario of image-based modeling of

dynamic scenes, captured by a dynamic camera and a static camera. Chapter 4

then briefly describes an end-user application developed to aid object of interest

3D modeling on a mobile device. The thesis is concluded in Chapter 5 with a

discussion of potential future work.

8

1.1 First Published Appearances of Described Contributions

Most contributions or their initial versions, described in this thesis have first

appeared as various publications:

• Chapter 2: Kowdle, Batra, Chen, Chen [53]; Kowdle, Chang, Batra, Chen [55];

Kowdle, Chang, Gallagher, Chen [56]

• Chapter 3: Kowdle, Snavely, Chen [63]; Kowdle, Gallagher, Chen [59]

• Chapter 4: Kowdle, Batra, Chen, Chen [53]; Kowdle, Liu, Hsu, Lew, Puri,

Batra, Chen [61]

The following contributions have appeared as various publications: Kow-

dle, Chen [57], Kowdle, Sinha, Szeliski [62]; Kowdle, Gallagher, Chen [58]; Li,

Kowdle, Saxena, Chen [60, 68, 69]; Kowdle, Chang, Chen [54]; Batra, Kowdle,

Parikh, Luo, Chen [3–7]. However, they are beyond the scope of this disserta-

tion, and therefore are not discussed here.

9

CHAPTER 2

IMAGE-BASED MODELING OF STATIC SCENES

2.1 Introduction

Image-based modeling, the recovery of 3D structure of a scene using 2D im-

ages, is an active research topic in the computer vision community. There has

been significant success with automatic algorithms [26–28, 30, 70, 75, 76, 85, 88].

However, when only a few images are available, these automatic algorithms fail

to produce a dense reconstruction, leaving holes in case of scene irregularities

such as textureless and specular surfaces. While planar approximations to the

scene [25, 28, 70, 85] help obtain more visually pleasing reconstructions, the cues

in a number of scenes are not sufficient to hypothesize a good model. In partic-

ular, textureless and specular surfaces and a lack of geometric cues such as lines

hinders their performance.

A number of works formulate the task of image-based modeling as a discrete

labeling problem. For example, shape from silhouette algorithms formulate a

binary labeling problem to separate the object from the background [8, 12, 66],

a number of stereo matching algorithms treat the pixel disparities as discrete

labels and formulate a labeling problem to recover the depth of the scene [82],

piecewise planar stereo works discretize the scene into a finite number of 3D

planes and treat these planes as label set [25, 28, 70, 85]. Motivated by these

works, we consider the task of putting the user into the loop. A common frame-

work of all these works is the construction of a Markov Random Field (MRF)

10

Figure 2.1: Discrete labeling problem: The user constraints are provided
over the nodes and edges of the graph to help modulate the
unary term and the pairwise term, respectively.

over the image illustrated in Figure 2.1.

We propose algorithms that use superpixels extracted from the image as the

labeling sites1 i.e., nodes in the MRF, with edges to all adjacent superpixels.

User-provided input is incorporated into the node and edge terms of the model

as constraints. First, we propose an algorithm where the user provides con-

straints on the nodes of the graph (Section 2.4). In this algorithm, the user ini-

tializes the loop by providing annotations on the nodes. These node constraints

allow the user to define the label space for the problem and modulate the unary

term in the energy function. In the second algorithm, an automatic piecewise

planar reconstruction algorithm first tries to reconstruct the scene initiating the

loop. Given the reconstruction, we propose an active-learning algorithm that

uses intuitive cues to quantify the uncertainty of the algorithm. The algorithm

1Superpixels are used to help reduce computational complexity

11

then queries the user to provide support for the uncertain regions via edge con-

straints on the pairwise term that lead to better reconstructions (Section 2.5).

We will discuss the details of the algorithm and applications in the following

sections.

Organization. The rest of this chapter is organized as follows: Section 3.2 dis-

cusses related work; Section 2.3 describes the preprocessing performed on the

images in the proposed algorithms; Section 2.4 presents our approach where

the user provides node constraints to initiate the loop and reconstruct the ob-

ject of interest; Section 2.5 describes our approach of active learning where the

automatic computational engine initiates the loop and guides the user towards

where it needs help; Section 3.3.2 describes the experiments and results; Finally,

Section 3.6 summarizes the chapter.

2.2 Related Work

Automatic algorithms. 3D reconstruction from multiple images is an active re-

search topic in the computer vision community. While some 3D reconstruction

works [75, 76] are geared towards video, some [30, 88] are geared towards un-

ordered photo collections on the internet. Most require a large photo collection.

When the number of input images is small, the automatic algorithms fail to pro-

duce a dense reconstruction. A survey of multiview stereo methods has been

provided by [84]. With a small set of images the reconstruction is incomplete,

leaving holes on textureless and specular surfaces. Planar approximations to the

scene [25, 28, 70, 85] help obtain more visually pleasing reconstructions. How-

12

ever, these algorithms use image features such as strong edges and lines, which

may be absent in textureless surfaces, motivating interactive algorithms.

Interactive algorithms: user driven. A typical approach to obtain the 3D model

of a non-planar object is to capture images of the object in a controlled envi-

ronment like a multi-camera studio with mono-color screen where background

subtraction is a well structured problem, and use a shape-from-silhouette algo-

rithm [15, 21, 23, 91] to render the 3D model. Although these techniques have

produced promising results in these constrained settings, this is a tedious pro-

cess, and in some cases not an option (for example, immovable objects like a

statue, historically or culturally significant artifacts). However, a more realis-

tic approach is to capture images of the object in its natural environment and

directly estimation the 3D structure from these natural images. The images cap-

tured in this case would typically have cluttered backgrounds, which is known

to be problematic for background subtraction algorithms. There have been

many interactive 3D reconstruction algorithms that uses a piecewise planar rep-

resentation of the scene [2, 19, 20, 38, 86, 87, 90]. The user interactions required

range from providing feature correspondence, to providing plane boundaries

and line models of the scene. [20] proposed an algorithm to reconstruct man-

made architectures by marking the edges in the structure and by exploiting

symmetry in man-made structures. [38] and [86] require the user to provide a

detailed line model of the object or mark all the 2D plane polygons in the scene,

respectively; and reconstruct the scene by incorporating geometric information

from structure-from-motion. [89] used scribbles as input to help improve the 3D

reconstruction obtained from a single image. In the first algorithm proposed in

this paper, we leverage the user input to provide node constraints in the MRF

formulation. We propose interactive algorithms driven by the user via simple

13

scribbles that are used to reconstruct non-planar objects, planar scenes, and even

render non-planar objects as part of a planar scene.

Interactive algorithms: active-learning. Active learning is a well established

subfield of machine learning, which has been shown to benefit a number of

computer vision applications such as object categorization [48], image retrieval

[31, 101], video classification [97], dataset annotation [16], and interactive co-

segmentation [7]; maximizing the knowledge gain while valuing the user effort

[93]. However, such an algorithm has not been proposed for image based mod-

eling. [7] proposed an approach for interactive co-segmentation where, starting

from the user interactions (scribbles) to identify the object of interest, the algo-

rithm exploits a number of cues using the scribbles, and identifies informative

regions to request the user for more interactions. Interactive 3D reconstruction,

however, is not a trivial extension of this binary problem to multi-class segmen-

tation. Rich information is already embedded in multiple images of a scene,

which an automatic algorithm can fully utilize. However, the automatic algo-

rithms fall short where texture or geometry cues cannot be easily identified from

the images. Therefore, we formulate interactive 3D reconstruction as an error-

correction and learning problem, where active-learning identifies uncertain re-

gions, requests the user to provide geometric cues, and adapts the algorithm for

the specific scene based on the user inputs.

2.3 Pre-processing

In this paper we work with multiple images of a scene captured from different

viewpoints. We perform the following pre-processing steps. We first run struc-

14

ture from motion (SfM) using the algorithm by [88] on the multiview images

to recover the camera projection matrices for all the views, a sparse 3D point

cloud and the set of the points visible by each camera. We construct a graph,

G = (V, E), over the superpixels2, with edges between adjacent superpixels to

formulate our discrete labeling problem. The graph is a planar graph, but not

typically a grid graph we use for illustration in Figure 2.1. We have developed

a Java-based user interface, which we have made publicly available [92]. This

interface is used in all our interactive algorithms.

In the following sections, we will first describe the algorithm that is initi-

ated by the user via node constraints to obtain the final 3D reconstruction via

scene co-segmentation. We will then describe the algorithm that is driven by

the computational engine and guides the user constraints via an active-learning

algorithm.

2.4 Node constraints

In our first approach, the user provides annotation on the nodes of the graph

as shown in Figure 2.2 and guides the process by initiating the algorithm. The

algorithm first displays the image collection to the user. The user selects an

image and provides scribbles on the image with different colors indicating the

label space for the segmentation algorithm. Given these scribbles on the nodes

of the graph we define an energy function over the graph G as described below.

2We use mean-shift segmentation [18] to break an image to about thousand superpixels.

15

Figure 2.2: Node constraints. The colored nodes in the graph represent
the node constraints provided by the user via multiple col-
ored scribbles to indicate the different labels. More description
about the node constraints and incorporating them into the al-
gorithm is in Section 2.4.

2.4.1 Energy minimization

Let the set of images be X. Consider an image-scribble pair D = {X, S }, where

the image X chosen by the user is represented as a collection of n nodes (su-

perpixels) to be labeled, X = {X1, X2, . . . , Xn}. The user provides a set of scrib-

bles S on the image with multiple labels (suppose that the user defines L labels

in the scene), which is represented as the partial set of labels for these nodes

S = {S 1, S 2, . . . , S n} where, S i = {0, 1, . . . ,L − 1}. Using these labeled nodes (node

constraints), we learn an appearance model A described below. We define an

energy function over the image as:

E(X : A) =
∑
i∈V

Ei(Xi : A) + λ
∑

(i, j)∈E

Ei j

(
Xi, X j

)
, (2.1)

where the first term (unary term) indicates the cost of assigning a node to one

of the labels, while the second term (pairwise term) is used for penalizing label

16

disagreement between neighbors. The colon (:) in the equation indicates that

the term is dependent on the learnt appearance model.

Unary Term. The unary term is modeled via the node constraints provided

by the user. Given the node constraints we learn the appearance model, which

consists of a Gaussian Mixture Model for each of the L labels defined by the user

i.e, A = {GMM0, . . . ,GMML−1}. Specifically, we use color features (Lab space)

extracted from superpixels on the labeled nodes and fit GMMs for the corre-

sponding classes. We use MDL to estimate the right number of components to

use to describe the data (allowing a maximum of 10 Gaussian components). The

unary term for all nodes are then defined as the negative log-likelihood of the

features given the class model. We set the unary term of the superpixels labeled

by the user to −∞ (a large negative value) as hard constraints in the energy min-

imization.

Pairwise Term. We use the commonly used Potts model to model the pair-

wise term,

Ei j(Xi, X j) = I (Xi , X j) exp(−βdi j), (2.2)

where I (·) is an indicator function that is 1(0) if the input argument is

true(false), di j is the distance between features at superpixels i and j and β is

a scale parameter. Intuitively, this smoothness term tries to penalize label dis-

continuities among neighboring sites but modulates the penalty via a contrast-

sensitive term. Thus, if two adjacent superpixels are far apart in the feature

space, there would be a smaller cost for assigning them different labels than if

they were close. We use features such as color, texture, and shape features (for

more details about features refer [42]).

Finally, we use graph-cuts (with α-expansion) to compute the MAP labels

17

for all superpixels [1, 9, 10, 51]. The parameters λ and β were empirically chosen

and fixed for all scenes. This was found to work well in practice. Given, the

above formulation of the energy minimization problem we discuss below how

these constraints allow the user to reconstruct non-planar objects, planar scenes

and even render non-planar objects as part of the planar scene.

2.4.2 Reconstructing non-planar objects

Consider reconstructing a non-planar object of interest such as a statue as shown

in Figure 2.3(a). A popular approach to obtain the 3D model is shape from

silhouette i.e., obtain the silhouette of the object from multiple viewpoints and

infer the volume of intersection (visual hull). We wish to avoid the tedious

(sometime impossible) process of taking the object of interest into a controlled

setup such as an studio with chroma-keying setup. We instead capture images

of the object of interest from multiple views and get the user into the loop to

obtain the silhouettes.

The user provides node constraints by providing scribbles of two colors (two

labels) on one image to indicate the object of interest and the background as

shown in Figure 2.3(b). The task is setup setup as a binary labeling problem as

described above in Section 2.4.1 with L = 2. While the user may chose only one

image to provide the node constraints, we use the idea that the images are tied

together through the shared appearance models (A) learnt using the user inputs.

The shared appearance models help formulate the energy function described in

Eqn 2.1 for each image. Using graph-cuts we obtain the cosegmentation of the

object in each view as shown in Figure 2.3(c). More details about the two class

18

(a) (b) (c)

(d) (e)

Figure 2.3: Object of interest 3D modeling. (a) Input multiview images
of the object of interest (statue); (b) User node constraints that
are used as hard constraints to learn the appearance models
a perform the co-segmentation; (c) Resulting co-segmentation
that has some inaccurate labeling in the background; (d) Shape
from silhouette reconstructs the 3D model by the finding the
volume of intersection given the camera parameters; (e) Pro-
jecting the 3D model back into each image allows fixing the
segmentation errors that existed earlier.

co-segmentation formulation and an extension to intelligently guide the user

input is available in [7].

Note that the segmentation is noisy with small regions in the background

that share similar appearance to the object of interest incorrectly labeled. While

one approach to fix this is to modulate the smoothness parameter (β), this is a

sensitive parameter to tune since it can result in regions of the object of interest

being incorrectly labeled as background. We instead use the 3D geometry to

help fix errors. Using the camera parameters recovered in the pre-processing

stage (Section 2.3) and the co-segmentation as the silhouettes of the object we

use shape from silhouette [15] to recover the 3D model of the object of interest

19

shown in Figure 2.3(d). The volume of intersection recovered eliminates the

sparse errors in the background. We now project the 3D model back into each

view to fix the errors and obtain a clean co-segmentation of the object of interest

Figure 2.3(e).

Non-planar object of interest modeling

We demonstrate the effectiveness of our algorithm on a number of datasets

ranging from a simple collection taken in a controlled setup to a community

photo collection and a video captured in cluttered scenes. In this section, we

show the rendered 3D model for each dataset, captured from novel view-points.

For all datasets except the dino dataset, we texture map the model by back-

projecting the faces of the mesh onto a single image. We observed that in out-

door scenes texture mapping from multiple views can lead to some artifacts at

the seams due to changes in illumination.

Dino Dataset. The first dataset we use is a standard dataset from the Oxford Vi-

sual Geometry Group3, shown in Figure 2.4(a). One of the images in the dataset

was chosen at random and the interactions were provided to indicate the dino as

foreground and the blue screen as the background. The resulting silhouettes are

shown in Figure 2.4(b). The 3D model obtained from the shape-from-silhouette

algorithm. This dataset was captured in a controlled setup which allowed us

to texture map the model using multiple views i.e. by projecting the faces onto

the corresponding image where they are visible. Occlusion poses a significant

problem for multiview texturing, we use the approach of Chen et al. [14] to

overcome this by using the depth buffer (z-buffer) data from the graphics card.
3Oxford Visual Geometry Group multiview dataset: http://www.robots.ox.ac.uk/˜vgg/data/data-

mview.html

20

(a) (b) (c)

Figure 2.4: Dino dataset (36 images): (a) Subset of the collection of images
given to the system where the dino was marked the object of
interest; (b) Resulting silhouettes after initial co-segmentation
(in cyan color); (c) Some sample novel views of the 3D model.

(a) (b) (c)

Figure 2.5: Cambridge unicorn dataset (14 images): (a) Subset of the col-
lection of images given to the system where the unicorn statue
was marked as the object of interest; (b) Resulting silhouettes
after initial co-segmentation (in cyan color); (c) Some sample
novel views of the 3D model.

This result simply serves as a proof of concept under a controlled setup, and

it is encouraging to see that our approach is able to render a good reconstruction

without any prior knowledge about this setup.

Cambridge Unicorn Dataset. We use the Cambridge unicorn dataset [96],

shown in Figure 2.5(a). Using interactions to indicate the unicorn as the ob-

ject of interest, we obtain the silhouettes as shown in Figure 2.5(b) which results

in the texture-mapped 3D model as shown in Figure 2.5(c).

21

(a) (b) (c)

Figure 2.6: Clock tower dataset (32 images): (a) Subset of the collection of
images given to the system where the clock tower was marked
as the object of interest; (b) Resulting silhouettes after initial co-
segmentation (in cyan color); (c) Some sample novel views of
the 3D model.

Clock Tower Dataset. We now try to reconstruct immovable objects that cannot

be taken to a standard studio setup as shown in Figure 2.6(a). With interactions

we obtain the silhouettes of our object of interest (clock tower), as shown in

Figure 2.6(b) which can be used to obtain texture mapped 3D model using the

shape-from-silhouette algorithm as shown in Figure 2.6(c). We note that algo-

rithms like structure-from-motion and patch based multi-view stereo would try

to reconstruct the whole scene and result in an incomplete reconstruction in this

case.

Statue Dataset. We now demonstrate the effectiveness of our algorithm on im-

ages where the background changes drastically as shown in Figure 2.3(a). The

silhouettes of the object of interest (statue) obtained using our algorithm are

shown in Figure 2.3(c). The texture mapped 3D model of the statue obtained

using these silhouettes are shown in Figure 2.3(d). Note here that a part of the

head of the statue gets clipped off in the generated model. The reason for this

is a leak in the superpixels where a portion of the head became part of the sky

superpixel. We can overcome this problem by working on pixels instead of su-

22

(a) (b) (c)

Figure 2.7: Video dataset (17 images obtained by sampling the video): (a)
Subset of the collection of images given to the system where
the person was considered the object of interest; (b) Resulting
silhouettes after initial co-segmentation; (c) Some sample novel
views of the 3D model.

perpixels i.e. set up the energy minimization over a graph of pixels instead of

superpixels. This would increase the computational complexity but result in

better silhouettes.

Video Dataset. Our work opens up the possibility of allowing users to render

themselves as avatars in virtual worlds. We consider this scenario of recon-

structing a person in 3D. We captured a video of the person to be modeled by

walking around them. Selected frames this video are shown in Figure 2.7(a).

With interactions, we obtain the silhouettes as shown in Figure 2.7(b) which re-

sults in the texture mapped 3D model as shown in Figure 2.7(c). We can see that

the reconstruction is fairly complete, however we observe a leak in the super-

pixel map here as well.

Community Photo collection - Statue of Liberty dataset. With millions of

images available on the internet, we consider an application geared towards

internet-scale reconstruction of objects where the user searches for an object of

interest, in this case the Statue of Liberty. We start with a set of 1600 images of

23

(a) (b) (c)

Figure 2.8: Community photo collection - Statue of Liberty dataset: (a)
Subset of the collection of images given to the system - for
our co-segmentation algorithm we use a subset of 15 images
spanning a large field of view from a collection of 1600 images;
(b) Resulting silhouettes after initial co-segmentation (in cyan
color); (c) Some sample novel views of the 3D model.

the Statue of Liberty collected by Snavely et al. from Flickr®. We use all the

images to estimate the camera matrices using structure-from-motion [88]. For

our algorithm, we sampled a subset of 15 images spanning a large field of view,

as shown in Figure 2.8(a). The silhouettes are shown in Figure 2.8(b) and the

texture-mapped 3D model are shown in Figure 2.8(c). We note here that there

are a few artifacts like the blue sky above the shoulder as well as the thinned

arm. Some of these problems (like the superpixel leaks) may be corrected by

working with pixels. However, some (like the lack of detail on the face of the

Statue of Liberty) are a direct result of our reliance on a segmentation frame-

work and may not be possible to fix. The results on this dataset have also been

reported by the multi-view stereo work of Goesele et al. [30], where they ob-

tain a dense depth model for the statue. A comparison between the model we

generate, the point cloud model from photo-tourism [88] and multi-view stereo

model [30] is shown in Figure 2.9.

24

(a) (b)

(c)

Figure 2.9: Statue of Liberty comparison: (a) Point cloud reconstruction
using 1600 images ([88]); (b) Dense reconstruction using multi-
view, using 72 images (figure from [30], used with permission).
With a lot of images, multi-view stereo can give a good depth
model; (c) Pleasing texture mapped reconstruction rendered
using 15 images.

25

It is worth mentioning that once we obtain the silhouettes of the object of

interest, we can use any known shape-from-silhouette algorithm at this stage to

obtain the 3D model (not necessarily the octree-based reconstruction approach

we used here), for example, the approach by Wong et al [95]. In addition, we

can use this co-segmentation algorithm with the popular multi-view stereo re-

construction approach, to focus the output of the multi-view stereo algorithm

on the object of interest. As an illustration, we show the model generated us-

ing patch-based multi-view stereo (PMVS) 4 in Figure 2.10 when constrained by

the silhouettes extracted using our interactive co-segmentation algorithm. We

used the statue dataset in Figure 2.3(a) for this experiment. In Figure 2.10(a),

we show the result of PMVS without any prior knowledge of the object of in-

terest. In Figure 2.10(b) we show the 3D model obtained from PMVS using our

silhouettes. As we explained earlier, multi-view stereo algorithms would try to

reconstruct the whole scene without giving importance to the object of interest.

We can see that use of silhouettes helps obtain a more accurate 3D model of

the object of interest. Another crucial advantage of using the silhouettes is to

speed up the multi-view stereo algorithm with geometrically consistent recon-

structions. In our experiment with PMVS, it took 3 hours to obtain the model

in Figure 2.10(a), as opposed to 8 minutes using the silhouettes to render Figure

2.10(b). However, faster implementations may be available for PMVS.

2.4.3 Reconstructing planar scenes

We have considered reconstructing non-planar objects in the previous section,

we now consider obtaining piecewise planar reconstructions of the scene. We
4We use the PMVS implementation described in [26] available at

http://grail.cs.washington.edu/software/pmvs/pmvs-1/index.html

26

(a)

(b)

Figure 2.10: Patch-based multi-view stereo experiment using images in
Figure 2.3(a) where the statue is the object of interest: (a)
When the silhouettes are not available PMVS tries to recon-
struct the whole scene as shown; (b) Using the silhouettes pro-
duced by the co-segmentation algorithm, we can use PMVS to
obtain the 3D model of the statue which was the object of in-
terest.

use the interface to display the multiview image collection to the user. The

user selects an image and provides scribbles on the image with different colors

indicating different planar surfaces as shown in Figure 2.11(b). In the context

of the formulation described in Section 2.4.1, the user provides node constraints

for L planar surfaces, the algorithm learns the appearance model to describe

each surface and sets up the energy function solved via graph-cuts (with α-

expansion). The result segments the image into the different surfaces labeled by

27

(a) (b) (c) (d)

Figure 2.11: Interactive piecewise planar 3D reconstruction: (a) Input im-
ages (image selected by user shown in yellow box); (b) User
interactions to indicate the surfaces in the scene; (c) Scene co-
segmentation of all images by using the idea of 3D scribbles
to propagate scene geometry; (d) Some sample novel views of
the reconstruction of the scene, with and without texture.

(a) (b) (c) (d)

Figure 2.12: Scene co-segmentation: (a) Scene segmentation with user in-
teraction indicating connected planes (white scribbles in black
ellipses); (b) 3D scribbles inferred from the segmentation;
(c) 3D scribbles warped onto the other images to propagate
scene geometry (Note: scribbles have been increased to im-
prove visibility; the scribbles used for the results are in Figure
2.11(b)); (d) Scene co-segmentation.

the user as shown in Figure 2.12(a); we call this scene segmentation.

Scene segmentation to 3D geometry

Using SfM we have a sparse 3D point cloud and the 2D feature correspondence

across the images for this point cloud. We therefore know the subset of 3D fea-

ture points seen from the current view (scribbled image). This information helps

transfer the labels from the 2D scene segmentation to the 3D points, based on

28

which scene segment the 3D points project onto. We now use RANSAC-based

plane-fitting on the labeled 3D points to estimate the plane parameters enforc-

ing that the plane normal points outwards i.e., towards the camera looking at

the scene.

We note that there may be featureless surfaces like the wall in the scene,

which lacks enough 3D point support to be reconstructed. The algorithm then

prompts the user for some simple additional interactions to indicate the edges

shared by this surface with the other surfaces in the scene by easily scribbling

two lines across the edge shared as shown in black ellipses in Figure 2.12(a).

We obtain an estimate of the plane parameter by enforcing that the boundary

points correspond to the 2D projection of the line of intersection of the connect-

ing 3D planes, thus, resulting in globally optimal plane parameters. However,

if the featureless surface shares just one edge with another plane, we make per-

pendicularity assumptions for that surface to choose the most probable plane

amongst the infinite planes which shares that edge. This assumption has been

shown to work well [39] and would be the best possible estimate, given the

support.

3D scribbles and scene co-segmentation

Our goal is to obtain a co-segmentation of the planar surfaces in each of the im-

ages. Co-segmentation of the multiple surfaces in the scene is not as trivial as the

binary image co-segmentation since, it is hard to define features discriminative

between the geometric surfaces. However, when a user provides scribbles on an

image, they are doing so based on their perception of the geometry of the scene,

i.e., they are not just indicating surfaces and objects in that image but, are giving

29

us cues about the 3D scene geometry common across all the images. This is the

common thread between the images we exploit to perform the co-segmentation.

3D scribbles. Using the estimated plane parameters and the camera projection

matrix of the scribbled image, we develop the idea of 3D scribbles. Let the pro-

jection matrix of camera i be defined as Mi = KiRi(I−Ci) where, Ki is the intrinsic

matrix, Ri is the rotation matrix and Ci is the camera center in the world co-

ordinate system. Consider, a 2D scribble point s1, j seen from the first camera, on

a segment which corresponds to the plane l parameterized by [n̂l dl] where, n̂l

is the plane normal and dl is the plane constant. The projection of this scribble

point on another image seen from the second camera (s2, j) is given by,

s2, j = K2R2

(((−dl − n̂l.C1)
n̂l.([K1R1]−1s1, j)

[K1R1]−1s1, j + C1

)
−C2

)
(2.3)

We take care to avoid warping the scribbles onto occluded planes by using

the scene geometry and camera pose. For example, we consider the warped

scribbles only on the planes visible from a particular view.

Scene co-segmentation. The resulting scribbles on the images are as shown in

Figure 2.12(c). Using these scribbles as node constraints on all the images, we

extend the energy minimization based multi-class labeling described in Section

2.4.1 to all the images thereby achieving co-segmentation of all the images into

the multiple planar surfaces Figure 2.12(d).

We use the back-projection algorithm to evaluate the point of intersection

of a ray from the camera center through every pixel on the image plane, and

the estimated 3D surface. Using these 3D points, we generate a mesh for the

scene with the corresponding image texture and render a texture mapped pla-

nar reconstruction of the scene as shown in Figure 2.11(d), enabling pleasing

fly-throughs.

30

(a) (b) (c)

(d) (e)

Figure 2.13: Outdoor scene with occluding non-planar object: (a) In-
put images (image selected by user shown in yellow box);
(b) User interactions; (c) Resulting scene segmentation with
the additional interactions to indicate surface connectedness
(white scribbles shown in black circles) and non-planar ob-
jects (magenta scribble shown in blue scribble); (d) Object co-
segmentation (foreground non-planar object in yellow); (e)
Scene co-segmentation by using 3D scribbles to propagate
scene geometry.

Rendering non-planar objects in planar scenes

The algorithm thus far renders a planar reconstruction of the scene. In case of

non-planar objects in the scene, we get an input from the user to indicate these

objects, as shown in the blue ellipse in Figure 2.13(c). This tells the algorithm

which surface and node constraints correspond to the non-planar object. Note

that recent automatic approaches [28, 64] can also be used to identify non-planar

regions. We estimate an approximate planar proxy for the object, which helps

position the object as part of the rendered scene. We then use the algorithm

described in Section 2.4.2 to obtain a visual hull of the non-planar object, which

is rendered as part of the scene using an independent mesh.

31

(a) (b)

(c) (d)

Figure 2.14: Indoor scene with occluding non-planar object: (a) In-
put images (image selected by user shown in yellow box);
(b) Non-planar object co-segmentation; (c) Final scene co-
segmentation; (d) Novel views of the reconstruction with vol-
umetric rendering of the person.

The scene co-segmentation allows us to create a composite texture map for

the scene covering up holes due to the occluding non-planar object as shown

in Figure 2.15(a). The algorithm renders the non-planar objects as part of the

planar scene as we show with the tree in the outdoor scene in Figure 2.15(b)

and the person in the indoor scene in Figure 2.14. Once the algorithm gener-

ates the 3D reconstruction, the user can provide more scribbles to indicate new

or previously occluded planes, and improve the result, thus closing the loop on

our interactive 3D reconstruction algorithm that is initiated by the user via node

constraints. Please see video summary5 with fly-through of the 3D reconstruc-

tions.
5http://chenlab.ece.cornell.edu/projects/Interactive 3D

32

(a) (b)

Figure 2.15: Non-planar objects: (a) Composite texture map for the scene
(top) allows covering up holes due to occlusions (ellipse); (b)
Novel views of the reconstruction with a volumetric model of
the tree.

Comparison

We compare our results with other publicly available algorithms to reconstruct

a scene. Using SfM [88], on a huge image collection can render dense point

clouds however, in this scenario, the point cloud is very sparse. Multi-view

stereo algorithms like patch-based multi-view stereo (PMVS)6 render a denser

reconstruction. However, this fails to render a complete reconstruction, leav-

ing holes and rendering inaccurate geometric reconstructions, in the presence

of textureless surfaces and specular surfaces. As we show in Figure 2.16, the

results from our interactive reconstruction algorithm is more complete and ge-

ometrically accurate.

6We use the PMVS implementation by Furukawa et. al. [26] and available at
http://www.di.ens.fr/pmvs/

33

(a) (b)

Figure 2.16: Comparison with patch-based multi-view stereo: The top im-
ages show the reconstruction generated by PMVS with the er-
rors shown in black ellipses, while bottom images show our
results with corrected reconstructions shown in blue ellipses.

2.5 Edge constraints: An active learning formulation

In our alternate algorithm, we intend to accept edge constraints from the user.

Therefore, we need a smart computational engine that can automatically esti-

mate the 3D structure of the scene and accept the user input across edges when,

and where needed. We do so using an active-learning algorithm. We refer to

Figure 1.1 and consider the ingredients for an active-learning algorithm in the

context of image-based modeling. The integral components are: an automatic

3D reconstruction algorithm (computational engine); an approach to quantify

the uncertainty of the algorithm and sample the most informative queries for

user feedback; the human oracle who provides suitable interactions in response

to the query; and lastly, an approach to seamlessly incorporate the feedback

from the user into the algorithm. We describe each of the above aspects with

respect to our algorithm in detail in the following sections.

34

Figure 2.17: Edge constraints. The blue, white and red scribbles across
the yellow edges in the graph illustrate the edge constraints
provided by the user to provide support for the cyan nodes
(guided by the computational engine). More description
about the edge constraints and incorporating them into the
framework is in Section 2.5.

2.5.1 Automatic 3D reconstruction algorithm

We develop a piecewise planar 3D reconstruction algorithm described below

using successful ideas from recent works [25, 28, 70, 85].

Dense plane hypothesis generation

We use patch-based multiview stereo (PMVS) by [26] as a pre-processing step,

which although not as accurate as the sparse point cloud from SfM [88], pro-

vides a much denser set of points that span the scene. Similar to [85], we hy-

pothesize dominant planes by analyzing the distribution of depths of the 3D

points along each hypothesized normal (using the estimated vanishing direc-

35

(a) (b)

(c) (d)

Figure 2.18: (a) shows a set of multiview images of a scene; (b) shows the
result of the automatic algorithm, the plane labeling shown
on the top indicates the inaccurate labeling, the novel views
of the 3D model are shown at the bottom with black circles
showing the errors. (c) the proposed active-learning algo-
rithm quantifies the uncertainty of the algorithm and detects
the uncertain regions (in cyan), the uncertainty boxes (in or-
ange) with the highlighted edges (in yellow) are used to query
the user for support, the user provides any of three types of
interactions within each box via simple scribbles across the
highlighted edge, coplanar scribbles (red), not-coplanar scrib-
bles (white) or not-connected scribbles (blue) as shown; (d)
shows the result of the algorithm after incorporating the in-
formation provided by the user, plane labeling on top shows
the improved labeling, the improved reconstruction is shown
below through novel viewpoints with yellow circles illustrat-
ing the corrected geometry.

tions). We break down an image into superpixels7 and use the assumption that

every superpixel would lie on a planar surface [70, 81]. Using these superpix-

els, we hypothesize additional planes by fitting planes to 3D points that project

7We use graph based segmentation [22] to break each image down to about 400 superpixels.

36

onto the same superpixel. In practice, we observe that this allows us to add new

planes not hypothesized before as their normals are different from the dominant

normal directions.

Energy minimization

The dense plane hypothesis stage results in P (about sixty) planes. These hy-

pothesized planes serve as the set of discrete labels, which changes the piece-

wise planar reconstruction problem to a multi-label segmentation problem, for-

mulated as an energy minimization problem over the superpixels. The formu-

lation is similar to that described in Section 2.4.1, with the discrete label space

{0, 1, . . . , P−1}. The unary and pairwise term for the automatic piecewise planar

stereo algorithm is defined below.

Unary term. For a particular view, we compute homographies for each plane to

warp the other images to that view. We use normalized cross-correlation (NCC)

to quantify the warp error. We refer the reader to [85] for more details. We

compute the NCC using the superpixel as support at each pixel as opposed to a

constant window. We also compute a color term that measures the mean color

difference of each superpixel between the original and the warped image. We

use a weighted combination of the two normalized terms as the unary term with

the weights tuned by observing the performance on one of the datasets.

Pairwise term: Co-planar classifier. We introduce an adaptive co-planar classi-

fier to model the pairwise term. We learn a classifier that given a pair of adjacent

superpixels returns a score representing the co-planarity of the superpixels. We

use the geometric context dataset by [42] (with seven ground truth geometric

37

labels). Adjacent superpixels with the same geometric label are used as positive

data points while pairs with different labels, are used as negative data points.

We note that adjacent superpixels lying on occluding ‘parallel’ planes would be

bad data points, but, in practice this does not hinder the performance. We use

relative features (difference features) such as color, texture, and shape features

(more details about features in [42]) for each pair of superpixels as the feature

vector for each data point and learn a logistic regression model. This model is

continuously updated by the active-learning algorithm. We note that one can

also use laser image data to learn a co-planar classifier by fitting planes to the

laser data to obtain the samples needed [81]. We use a Contrast Sensitive Pott’s

Model to model the pairwise term.

Ei j

(
Xi, X j

)
= I(Xi , X j) exp

(
−βdi j

)
(2.4)

The pairwise term when adjacent superpixels take different labels should be

high when the contrast di j is low or when the superpixels are likely to be co-

planar and high otherwise. Thus, given a pair of adjacent superpixels, using the

learnt co-planar classifier, we obtain a score that represents the likelihood of this

pair being co-planar. This score is used to model the contrast di j (1 - similarity

score) in the Contrast Sensitive Pott’s Model.

Finally, we use graph-cuts (with α-expansion) to compute the MAP labels for

all superpixels [1, 9, 10, 51]. This allows us to automatically obtain the piecewise

planar reconstruction of the scene. At this stage the algorithm has used the

observed multiview stereo cues to obtain the piecewise planar reconstruction

albeit with errors as shown in Figure 2.18(b). We explain below our active-

learning algorithm to fix the errors in the reconstruction by putting the user

into the loop to provide edge constraints deriving support from the current 3D

reconstruction of the scene.

38

(a) Four node graph

(b) Ground truth labels

(c) Incorrect labeling using
ambiguous unary terms

(d) Pairwise term

(e) Good unary terms

(g) Ambiguous unary terms – Example 1

(h) Ambiguous unary terms – Example 2

1

3 4

2

(f) Low confidence unary terms

0.8
0.9

Figure 2.19: Synthetic example to illustrate the uncertaintly of the algo-
rithm (Best viewed in color). More details in Section 2.5.2.

2.5.2 What is the uncertainty?

An important aspect of an active-learning algorithm is to identify the uncer-

tainty of the algorithm. Intuitively, since our algorithm follows an energy mini-

mization framework to solve the multilabel problem over the graph of superpix-

els, we quantify the uncertainty of the algorithm with respect to the uncertainty

in labeling the superpixels. At a high level, we evaluate the uncertainty of a

superpixel in terms of confidence and ambiguity.

39

Synthetic example. We explain our intuition through a small synthetic example.

Consider, a four node graph with their 4-connected neighborhood as shown in

Figure 2.19a. Let us suppose the ground truth labeling consists of two labels

as shown in Figure 2.19b. Now, Table 2.19d shows the pairwise term and Table

2.19e shows an instance of unary terms which gives the ground truth labeling.

Note that the unary terms are energies so the lower the value the more affinity

to the label. Also note that the unary terms for only the two relevant labels

are shown, assume that the energies for the other labels are high and hence not

relevant. In Table 2.19f we observe that while the energies of the two labels for

node 4 reflect that it has a preference for Label a, both the energies are very

large (shown in red) indicating a low confidence in the decision. In Table 2.19g

we observe that two labels have low energies indicating the ambiguity (shown in

red) making the correct decision ambiguous. Similarly, in 2.19h the unary terms

(shown in red) indicate that the node 2 should take the label b but incorporating

the pairwise term causes the final labeling to be erroneous as in Figure 2.19c. We

need an approach to label these nodes as uncertain. We note that entropy of the

unary terms (say the ratio of the unary terms for these two labels) would help

in case of Table 2.19g while the entropy in case of Table 2.19h would be low. We

therefore need to incorporate the effect of pairwise to determine ambiguity. We

explain how we identify these contributors to the uncertainty in detail below.

Confidence

Confidence quantifies how confident the algorithm is to assign a particular

plane hypothesis to the superpixel. Low confidence superpixels represent high

uncertainty regions, for example, occlusions. We obtain these regions via the

40

energy minimization framework. Motivated by the multi-view stereo work by

[13], we add an additional label to our set of discrete labels and refer to it as

the unknown label. For every superpixel, Xi where i ∈ V(all superpixels), the

unary term Ei(Xi) for the unknown label is set at a constant penalty. Intuitively,

this penalty is large enough so it does not affect the unary terms of the more

confident superpixels while low enough so that low confidence superpixels are

separated out. We use the median of all the unary terms, which serves as a

safe unary term value in practice for the unknown label. As opposed to using a

simple threshold on the unary terms to determine low confidence regions, this

approach gives the pairwise term an opportunity to try to derive support,when

possible, for the low confidence superpixels from their neighbors. The super-

pixels that take the unknown label after the minimization are called uncertain

superpixels.

Ambiguity

Ambiguity quantifies the uncertainty of the algorithm between different plane

hypotheses. Superpixels that are ambiguous about multiple plane hypotheses

represent high uncertainty regions, for example, textureless surfaces, specular

surfaces, inaccurate plane hypotheses, etc. One approach to determine ambigu-

ous data points in a multiclass labeling problem would be to analyze the unary

terms, using the idea that the entropy of the unary terms of ambiguous data

points would be high [44]. However, the entropy in the unary terms is not suf-

ficient to capture all the ambiguity because the effects of the pairwise term are

ignored. We thus evaluate the ambiguity by determining the ambiguity of re-

sulting MAP labeling after incorporating the effect of the pairwise. We do so by

41

using the Graph-cut uncertainty similar to [7], as explained below.

Let the minimum energy E(X) for the graph G = (V, E) be Emin. Given the

complete set of plane hypotheses (L labels), suppose that for a superpixel Xi the

minimum energy label is li. We flip the label of superpixel Xi from li to one of

the the other labels l j in L and recompute the energy, Ei→ j of the labeling. At

each such flip stage, we compute the absolute difference between the minimum

energy (Emin) and flip energy (Ei→ j),

E(Xi)(∆[i→ j]) =
∣∣∣∣(Emin − Ei→ j

)∣∣∣∣ (2.5)

The ambiguity for every superpixel is computed by measuring the minimum

of all such flip energy differences,

E(Xi)ambig = min
j∈L\i

E(Xi)(∆[i→ j]) (2.6)

The intuition behind this is simple. If the algorithm does not have high am-

biguity about assigning a particular plane hypothesis to a superpixel, the am-

biguity energy difference, E(Xi)ambig should be high. However, if this value is

low, it amounts to ambiguity between different plane hypotheses and hence un-

certainty. We normalize the ambiguity energy differences and threshold that at

95% to obtain the top 5% of ambiguous superpixels. These are again called un-

certain superpixels. We note that min-marginals by [50] could also be used to

capture ambiguity.

Region level uncertainty

In addition to the superpixel level uncertainty, we determine region level un-

certainty. We determine regions (groups of superpixels) that take a particular

42

independent plane label but have no support from the 3D point cloud, i.e. none

of the 3D points project onto the region, and label them as uncertain. The intu-

ition here is that, a set of superpixels with no support from the 3D points, taking

their own independent plane label amounts to uncertainty.

Quantifying uncertainty

Grouping the uncertain superpixels to uncertain regions, we first identify and

highlight all the boundary or support edges where user interaction might be

needed. To ease the interactive process, we draw a box (uncertainty box) cen-

tered at this edge, scaled to be the larger of a minimum predefined size or two

standard deviations of the edge size. Our active-learning algorithm then queries

the user with the regions with the highest uncertainty or information gain. We

thus need a metric to quantify the uncertainty of each box.

Consider n normals that span all the planes in the scene (from the initial

plane hypothesis step). Superpixels are organized in increasing order of cost,

based on the lowest cost the superpixel pays for adopting a particular normal

(e.g. C1s,C2s, . . . ,Cns). This gives an indication about how certain it is about

taking a particular normal. For a low uncertainty region, the value C1s would

be considerably lower than the next best normal, i.e. C2s.

Let Ri indicate the region under a box i that represents the set of all super-

pixels part of the uncertain region under the box. Let Ri,support indicate the region

under box i not part of the uncertain region under the box. Let coplanarity(e)

represent the score of the co-planar classifier for an edge e between two super-

pixels, and Ei indicate the set of all edges under a box i. The uncertainty is

43

quantified through four terms: Ambiguity of the region in the box (A), Confi-

dence of the support region in the box (F), Graph-cut uncertainty (GCU), and

Co-planar classifier uncertainty (CoP).

Ai = max
s∈Ri

C1s

C2s
(2.7)

Fi = max
s∈Ri,support

(1 −C1s) (2.8)

GCUi = max
s∈Ri

E(Xs)ambig (2.9)

CoPi = max
e∈Ei

coplanarity(e) (2.10)

Our final uncertainly score for each box i, is the sum of each of the compo-

nent uncertainties defined in Eqn (6)-(9), using an equal weighting for each term

as a fair setting. In practice, equal weights work well, as we show in Section

3.3.2. We rank the boxes according to this score and query the user with the top

three uncertainty boxes for some support. We note that we can achieve a steady

improvement by querying the user with only one most uncertain box instead of

the top three, however, this would need additional iterations of the algorithm,

requiring additional user interactions and incurring processing overhead.

2.5.3 User in the loop

In our active-learning framework, given the uncertainty boxes, we wish to ob-

tain user interactions in the form of support for the uncertain regions or edge

constraints and incorporate this feedback into the algorithm to improve the re-

construction. The user (oracle) provides one of three scribble based interactions

described below, within each box as shown in Figure 2.20.

44

Connected and co-planar regions. When the edge highlighted in the uncer-

tainty box is an edge between connected and co-planar regions, i.e. same plane,

the user provides a scribble as support across the edge to indicate co-planarity,

shown as the red scribble (Figure 2.20). We use this additional information to

improve the support for the uncertain superpixels. This is done by adding long-

range edges (non adjacent nodes) between the nodes (superpixels) scribbled on

by the user to allow the algorithm to propagate the confident label to the uncer-

tain superpixels.

Connected but not co-planar regions. In case the highlighted edge is an edge

between connected but not co-planar regions, i.e. different planes, the algorithm

would need cues about the edge shared between these two regions in order

to hypothesize a good plane for the uncertain region. We do so by allowing

the user to use two white scribbles across the edge to indicate the edge segment

shared by the planes (Figure 2.20). The edge constraint from the user is first used

to break edges of the graph to avoid inaccurate labeling. In addition, using the

confident region we obtain the positions of these edge points in 3D. Given this

information and the hypothesized normals (Section 2.5.1), we use a RANSAC

based approach to find the best fit plane through the 3D edge marked by the

user. We add this new plane hypothesis and estimate the corresponding unary

term as described in Section 2.5.1, adding hard constraints to ensure that the

uncertain superpixels choose this new plane. This is therefore both an edge and

a node constraint.

Not connected regions. If the highlighted uncertain edge corresponds to an

edge between not connected regions, i.e. occluding planes, the user can indicate

not-connected regions by using the blue scribble as shown (Figure 2.20). We in-

45

Figure 2.20: The user can provide three types of interactions to indicate
coplanar regions (red), not-coplanar regions (white) and not-
connected regions (blue) across the highlighted edge (yellow)
within each uncertainty box (orange), to provide support for
the uncertain regions (cyan).

corporate this information into the algorithm by breaking edges between these

superpixels in our graph, thereby hindering these regions from taking the same

plane.

We incorporate all the constraints provided by the user and suitably refor-

mulate the graph over superpixels as illustrated in Figure 2.21. The connected

and co-planar scribble (red) adds more edges to the graph and strengthens the

edges to encourage that the uncertain nodes choose the neighboring confident

node label. The not-connected scribble (blue) breaks edges in the graph ensur-

ing that information is not passed between the nodes. Lastly, the connected

and not co-planar scribble (white) breaks edges in the graph to ensure that the

neighboring nodes do not choose the same label. A new planar surface is then

46

Figure 2.21: Incorporating the user constraints to update the structure of
the graph. Note how the red scribble (connected and co-
planar) adds more edges and strengthens edges; blue scrib-
ble (not-connected) breaks edges in the graph; white scribble
(connected and not co-planar) breaks edges and hypothesizes
a new planar surface for the uncertain region.

hypothesized for the uncertain region by using the uncertain edge as the 2D

projection of the line of intersection of the 3D planes (similar to Section 2.4.3).

In addition to modifying the graph, these constraints provide more information

about the co-planar regions of the scene, which are used as additional samples

to update the co-planar classifier. This updates the pairwise term, which makes

the co-planar classifier scene specific. Using the energy minimization frame-

work (Section 2.5.1) on this updated graph, we again obtain the MAP labels for

the superpixels, which gracefully propagates the additional information given

by the user. The process of obtaining uncertain regions, quantifying uncertainty,

querying the user for support, and then updating the algorithm with the ad-

ditional information is repeated using the new result, closing the loop on the

active-learning algorithm.

47

2.6 Experiments and Results

In this section, we describe the datasets, the evaluation metric we use, and we

discuss experiments to quantitatively evaluate the performance of the proposed

active learning approach via machine experiments and a user study. We also

discuss qualitative improvements in the reconstructions.

2.6.1 Datasets

We collect images spanning six scenes (each with about ten images) that lack ge-

ometric cues such as lines essential to the automatic algorithm and, include tex-

tureless surfaces or specular surfaces that hinder the performance of the auto-

matic algorithm. We also use two standard datasets that have been used in prior

automatic works [85]. We make all the datasets used in our works [53, 55, 56]

publicly available8.

2.6.2 Ground truth

To quantitatively evaluate the performance of the proposed active-learning al-

gorithm, we first obtain pixel-wise ground truth segmentation of the planes for

all the datasets. To capture some 3D information, we label ground truth nor-

mals for each segmented region. The ground truth pixel-wise segmentation

along with their ground truth normals serves as a good quantitative indica-

tor of the performance of the algorithm. Given the algorithm’s result, we map

8http://chenlab.ece.cornell.edu/projects/ActiveLearningFor3D

48

each ground truth region to the largest label in that region in the algorithm’s re-

sult, which agrees with the ground truth normal. Using these mapped labels we

compute the pixel-wise labeling accuracy for each of the ground truth regions

and compute the average accuracy across the datasets. We note that this metric

can lead to inaccuracies in case of occluding parallel planes, however, it serves

as a good metric to determine the relative performance in our experiments.

2.6.3 Machine experiments

In order to perform an exhaustive set of experiments to evaluate the various de-

sign choices, we develop a mechanism to generate synthetic interactions, which

mimic the human user. For every uncertainty box queried by the algorithm,

using the ground truth segmentation, normals, and the occlusion boundaries

(manually labeled), we provide one of three interactions described in Section

3.5. We note that an iteration in our experiments refers to providing the inter-

actions in any three distinct locations (e.g. within the three uncertainty boxes in

the active-learning experiment).

Performance of active learning. We evaluate the performance of the proposed

active-learning algorithm against ground truth sampling (an upper bound) and

a random sampling experiment as shown in Figure 2.22.

In the ground truth sampling experiment (black curve), at each iteration, we

compute a 2D error map using the algorithm’s output and the ‘ground truth’.

The machine interactions are then aimed to provide support to these error re-

gions, beginning from the largest error region, in the order of decreasing size.

This is a good upper bound since at each iteration we aim to achieve the best

49

improvement by directly correcting the errors. The active-learning experiment

(blue curve) evaluates the performance of the proposed algorithm in which,

the machine interactions are guided by the uncertainty boxes indicated by the

active-learning algorithm. In the random sampling experiment (red), we do not

use the proposed active-learning algorithm to choose the uncertain regions, but

instead randomly sample the uncertainty boxes along the segmentation bound-

aries.

We see from Figure 2.22 that the proposed active-learning algorithm per-

forms much better than random sampling and, in addition, performs re-

spectably when compared to the upper bound, given that it does not have the

luxury to access ground truth while querying interactions. We also note that it

can achieve the peak performance achieved by the random sampling at the end

of more than twenty iterations in as few as four iterations.

Evaluating algorithm design choices. We evaluate the design choices we in-

corporated into the proposed active-learning algorithm. We first evaluate the

effectiveness of incorporating ‘ambiguity’ to describe uncertainty. The solid

green curve in Figure 2.23 shows the performance of the algorithm when we

ignore ambiguity and only rely on the confidence measure. In comparison with

our active-learning curve (solid blue), we see that when the algorithm quan-

tifies only the low confidence regions as uncertain, it fails to capture several

critical uncertain regions, leading to a very slow and minimal improvement in

performance.

In our algorithm, we use graph-cut uncertainty to capture ambiguity. We

evaluate this choice observing the performance when we use the entropy of the

data terms to directly detect the ambiguous regions, forced ambiguity curve

50

2 4 6 8 10 12 14 16 18 20 22
65

70

75

80

85

90

95

Iteration

Av
er

ag
e

ac
cu

ra
cy

 (%
)

Ground truth sampling (upper bound)
Active−Learning guided uncertainty sampling
Random sampling

Figure 2.22: Machine experiments: Our proposed active-learning algo-
rithm performs significantly better than random sampling
and performs respectably compared to ground truth sam-
pling.

(solid magenta) in Figure 2.23. This firstly strengthens the importance of ambi-

guity on comparing with the no ambiguity green curve and in comparison with

the active-learning curve (solid blue) shows that graph-cut uncertainty captures

relevant regions which are missed by the forced ambiguity.

Lastly, we evaluate the adaptive co-planar classifier. In Figure 2.23, compar-

ing the solid curves with the corresponding dashed curves shows that using the

adaptive co-planar classifier (CoP) gives steady improvement in performance

in all the experiments.

2.6.4 User study

We perform a user study with ten users and three experiments to evaluate the

performance of the algorithm. Figure 2.24 shows the performance of the users.

51

2 4 6 8 10 12 14 16 18 20 22
65

70

75

80

85

90

95

Iteration

Av
er

ag
e

ac
cu

ra
cy

 (%
)

Active−Learning with CoP Classifier
Random sampling with CoP Classifier
Active−Learning without CoP Classifier
Random sampling without CoP Classifier
Forced ambiguity with CoP Classifer
Forced ambiguity without CoP Classifier
No ambiguity with CoP Classifier
No ambiguity without CoP Classifier

Figure 2.23: Machine experiments: Our proposed active-learning algo-
rithm produces the most accurate reconstructions, validating
our design choices. (Section 2.6.3).

We restrict the number of iterations to reduce the effort of the users. The first

experiment is the random interactions experiment, in which we show the user

the segmentation boundaries from the algorithm, however, with no indication

about which regions are erroneous, as shown in Figure 2.25a. The user was

instructed to provide three distinct interactions across any edge by observing

the segmentations, with the only cue that each segmented region corresponds to

a planar surface according to the algorithm. The red curve in Figure 2.24 shows

the performance of the users. We observe that the human user performs better

than the machine with the random interactions experiment because the human

user has an implicit notion of the 3D structure of the scene. The annotations

from the user are therefore more meaningful.

The second experiment is the exhaustive examination experiment. Here, in

addition to the segmentation boundaries, we color code the normals of each seg-

52

1 2 3 4 5 6 7 8 9 10 11
65

70

75

80

85

90

95

Iteration

Av
er

ag
e

ac
cu

ra
cy

 (%
)

Exhaustive examination interactions
Active−Learning guided interactions
Random interactions

Figure 2.24: User study: The proposed active-learning algorithm not only
out performs random interactions, but performs at par with
exhaustive examination in significantly lower time (Section
2.6.4).

(a) Random interactions (b) Exhaustive examination (c) Active-Learning

Figure 2.25: The three different user experiments conducted to evaluate
the proposed algorithm (Section 2.6.4).

ment as shown in Figure 2.25b. The user was again instructed to provide three

distinct interactions across any edge by observing the errors in the segmenta-

tions, with the normals guiding them towards erroneous regions. This leads to

much better performance as seen by the black curve in Figure 2.24.

53

Figure 2.26: User study - time: The proposed active-learning algorithm
achieves better performance and significantly faster (Section
2.6.4).

The last experiment evaluates the proposed active-learning algorithm. We

show the user the uncertain regions detected by the algorithm in cyan. We

highlight the uncertain edge in yellow, and draw three orange boxes to query

the user for interactions, as shown in Figure 2.25c. The user was instructed to

follow these orange boxes and provide interactions across the edges to provide

support for the cyan regions. The blue curve in Figure 2.24 shows the perfor-

mance. We observe that the active-learning algorithm performs much better

than random interactions and performs at par with the exhaustive examination,

indicating that the algorithm effectively guides the user towards relevant un-

certain regions.

We compare the time taken by a user guided by the proposed active learning

algorithm vs. an unguided user. We plot the average accuracy across the time

taken in Figure 2.26. The proposed active-learning algorithm achieves better

performance and significantly faster (almost 2x speed up).

54

(a) (b) (c) (d)

Figure 2.27: Qualitative results: (a) and (b) show the plane labeling and,
novel views of 3D reconstruction from the automatic algo-
rithm respectively; (c) and (d) shows the improved results us-
ing the active-learning algorithm respectively.

2.6.5 Qualitative analysis

In Figure 2.27, we show improvements in quality of the labeling and the 3D

reconstructions as a result of incorporating the user interactions using the pro-

posed algorithm9.

Row 1 shows the improved reconstructions in presence of homogeneous sur-

faces like the wall and ground; Row 3 shows the improved result in case of an

9http://chenlab.ece.cornell.edu/projects/ActiveLearningFor3D

55

Figure 2.28: Qualitative comparison: (a) The initial reconstruction of the
scene, with errors shown in black ellipses; (b) The result after
an unguided user provide interactions for 8 iterations, where
errors still exist as shown in black ellipses; (c) In comparison,
the user guided by the proposed active-learning algorithm
achieves accurate reconstruction after only 5 iterations. Errors
fixed are shown in red ellipses.

occluding object (planar approximation) and homogeneous background. Rows

4 and 5 show the output of the algorithm on public datasets used in prior work

[85]. These are datasets in which the algorithm has enough cues to automati-

cally reconstruct the scene and required minimal user interactions. These show

that our automatic algorithm is not sub-optimal.

Relying on superpixels can hinder the performance in some cases. Note,

for example, the error near the legs in row 3 due to a narrow superpixel leak.

56

Row 6 demonstrates a failure case of the algorithm. In this example, there was

a superpixel that leaks from the top of the tree onto the building. Since the

uncertain edge we show the user always follows the superpixel boundaries,

superpixel leaks can affect the performance. In this case, when queried, the

user would always mark the regions as co-planar, resulting in a part of the tree

labeled as part of the building behind it. However, we note that the proposed

algorithm still performs significantly better than the automatic algorithm.

Comparison. We qualitatively compare the performance of a user guided by the

proposed active-learning algorithm with the performance of an unguided user

in Figure 2.28. The initial reconstruction of the scene has errors that are partially

fixed after 8 iterations by constraints provided by the unguided user. In com-

parison, the user guided by the proposed active-learning algorithm achieves a

much more accurate reconstruction twice as fast, after only 5 iterations.

2.7 Summary

In this chapter, we have proposed a framework to put the user in the loop

with the algorithm for image-based modeling of static scenes. Motivated by

the recent success in discrete labeling formulation for image-based modeling

we have leveraged the user input as node and edge constraints for the under-

lying Markov Random Field. We have considered algorithms where the user

initiates the algorithm to indicate the object of interest, allowing for reconstruct-

ing non-planar objects and planar scenes. We proposed a novel active-learning

algorithm for piecewise planar 3D reconstruction where the computational en-

gine guides the user constraints. The algorithm tries to reconstruct the scene

57

automatically, quantifies uncertainty, and asks the user to provide support for

the most uncertain regions via simple and intuitive interactions (coplanar, not-

coplanar, and not-connected scribbles). The algorithm incorporates these con-

straints to obtain better reconstructions, thus closing the loop on the interactive

algorithm. We show through a user study and machine experiments that the

proposed algorithm not only improves the reconstruction, but does so in signif-

icantly lower time than exhaustive examination by the user. In Chapter 4, we

discuss some end user applications using these algorithms including object of

interest 3D modeling on a mobile device and 3D printing an object of interest.

Acknowledgments: The authors thank Wen-Chao Chen for his help with the

shape-from-silhouette algorithm and Anandram Sundar for the data annota-

tion.

58

CHAPTER 3

IMAGE-BASED MODELING OF DYNAMIC SCENES

3.1 Introduction

While most prior work in image-based modeling, including algorithms in Chap-

ter 2, address the case of a static scene captured by a dynamic camera, uncon-

strained image sequences captured in natural scenes often consist of dynamic

or moving objects (such as people) in the scene that are captured either by a

dynamic camera or even a static camera, which makes the task much harder.

However, this finds itself a number of applications in video analysis such as

video editing, image-based rendering, 3D modeling, scene understanding, etc.

In this chapter, we consider the task of recovering the depth of a scene in

the presence of dynamic objects. More specifically we consider two scenarios.

First, we consider a dynamic camera viewing a dynamic object. The user in the

loop helps identify the regions corresponding to the moving object. The interac-

tion between the dynamic object and the reconstructed static background helps

recover the depth of the dynamic regions of the scene. Second, we consider a

static camera capturing a dynamic object where we turn the table around and

propose an algorithm where the dynamic object interacting with the scene helps

decompose the static background scene into fronto-parallel depth layers. As the

dynamic object (person, in our work) moves about the scene, it reveals occlu-

sion cues with respect to the background that are sparse yet strong cues, which

aids the task of image-based modeling.This forms the computational engine,

59

that is also capable of incorporating user constraints. We put the user in the

loop within this framework where the computational engine guides the user to

provide additional pairwise depth ordering constraints to further improve the

solution, thus closing the loop. An overview of the two algorithms is given

below.

Dynamic camera scenario. In the first part of this chapter we consider the sce-

nario of a dynamic object captured by a dynamic camera, we assume that we

see enough static regions in the scene to recover the camera parameters for the

frames of the video. Given the camera parameters, we first treat the video as

that of a static scene and use a fronto-parallel plane sweep stereo algorithm to

obtain a dense depth map of the scene. This is done by casting the problem as

a discrete labeling problem formulated over an Markov Random Field (MRF)

over pixels similar to dense stereo matching wherein the pixel disparities (in-

verse depth) are the discrete labels. Clearly, the depth estimates of the moving

object would be in error. Given calibrated cameras there is a well defined rela-

tionship between the displacement of objects in the real world and the resulting

image space displacement, as a function of the depth of the object. With the

help of the user in the loop we identify the region of the image corresponding

to the moving object in the scene. Using the depth of reconstructed static back-

ground occluded by the moving object and constraining the real world speed

of the object, we obtain bounds on the depth of the object. We then incorporate

these into the original plane sweep stereo framework to estimate a more realistic

depth map. We show some results of our algorithm in Figure 3.1.

Static camera scenario. In the second part of the chapter we consider a time-

series of images of a scene with moving objects captured from a static camera,

60

	
 	

…

…

…

Figure 3.1: ROW 1 shows two frames from a video sequence from the
movie Sound of Music where, the camera is translating to the
left and the person is walking in the same direction. ROW
2 shows the initial depth maps estimated using plane sweep
stereo (white is far, black is close). The depth of the moving
object is over-estimated as shown in the red circles. ROW 3
shows the final depth maps inferred using the proposed ap-
proach after identifying and modeling the motion of the mov-
ing object. Note that more accurate depth map for the moving
object shown in the green circles.

and our goal is to exploit occlusion cues revealed as the objects move through

the scene to segment the scene into front-parallel depth layers. It is worth not-

ing here that in contrast to the first scenario where the fronto-parallel depth

map provides a physical estimate of the depth of each pixel, in this scenario the

depth layers only provide a relative ordering of the regions of the scene. This

task is a much harder problem than the first scenario due to the lack of multiple

views of the scene. In the first part of the chapter, the image sequence captured

61

from a dynamic camera allows one to leverage powerful stereo matching cues

to recover the depth and occlusion information of the static background, which

helped estimate the depth of the dynamic object. These cues are absent in case

of a static camera. However, for single images, monocular cues help reveal use-

ful depth information [33, 36, 40, 41, 65, 79, 94, 98]. Therefore, in the second part

of the chapter we turn the table around and show how the dynamic object inter-

acting with the static scene helps decompose the scene to fronto-parallel depth

layers. We consider a set of images of a scene having moving objects captured

from a static camera. As the object moves it is either occluded by or occludes a

portion of the scene, consequently revealing sparse pairwise ordering relation-

ships [11, 83] between regions of the scene. These pairwise cues while powerful,

are very sparse, which makes our goal of extracting dense pixel-level depth lay-

ers a hard problem.

We cast the problem of depth-layer segmentation as a discrete labeling prob-

lem. We accumulate the pairwise ordering cues revealed as the object moves

through the scene and use the monocular cues to propagate the sparse occlusion

cues through the scene. We over-segment the static background scene (scene

without any moving objects) and construct a region-level MRF with edges be-

tween adjacent regions. In each frame, we identify the pixels corresponding

to the moving object and add a node corresponding to each moving object for

every frame of the video. We add temporal edges between the corresponding

moving object nodes across frames, which allows us to encode a smooth motion

assumption for the moving object. As the object moves about the scene, we de-

tect motion occlusion events and add edges between the static scene node and the

corresponding moving object node, including long range edges between two

static scene nodes to encode the pairwise depth-ordering or occlusion cues. The

62

(a) (b)

(c) (d)

Figure 3.2: Overview. (a) Ground-truth top view, black triangle shows the
camera looking up at a scene with the red moving object region
following the path shown in the red arrow; (b) Shows the back-
ground scene in the orange box and two frames from the input
sequence where the red object interacts with the background
regions to reveal pairwise depth-ordering cues such as red oc-
cludes green, blue occludes red; (c) A graph constructed over
the background regions is shown in the orange box. Each col-
ored node corresponds to the respective colored region in (b).
The red nodes correspond to the moving object with a node for
every frame f in the input sequence ({1, 2, . . . , F}). The black
edges enforce the observed pairwise depth-ordering, for in-
stance between the green-red nodes at f = 1, and blue-red nodes
at f = 2. The red edges enforce a smooth motion model for the
moving object; (d) Shows the inferred depth layers, white =
near and black = far.

task now is to assign a fronto-parallel depth label to each region (node) of this

spatio-temporal graph. An overview of our proposed formulation for a single

moving object is shown in Figure 3.2, with the extension to handle multiple

objects in Section 3.4.1. We show that this proposed algorithm achieves state-

63

of-the-art results in depth-layer recovery. We treat this algorithm as the com-

putational engine that is capable of incorporating additional constraints from

the user. In Section 3.5 we show how the algorithm puts the user in the loop

by guiding the user to provide additional pairwise depth ordering constraints,

which is incorporated back into the computational engine and improves the so-

lution.

Organization. The rest of this chapter is organized as follows: Section 3.2 dis-

cusses related work; Section 3.3 is the first part of the chapter that describes the

proposed algorithm and results for the scenario of a dynamic scene captured

from a dynamic camera; Section 3.4 is the second part of the chapter that de-

scribes the algorithm, experiments and results for the scenario of a dynamic

scene captured from a static camera; Section 3.5 describes how we put the user

in the loop guided by the algorithm to provide useful constraints; Finally, Sec-

tion 3.6 summarizes the chapter.

3.2 Related work

A number of works have explored the task of image-based modeling from im-

age sequences. In this section, we first discuss prior work that require the con-

straint of a dynamic or moving camera, followed by works that explore the static

camera scenario.

64

3.2.1 Dynamic camera scenario

The task of estimating the depth of a scene given a sequence of images cap-

tured from multiple viewpoints has been very well established. A number of

approaches have been proposed to tackle this well defined yet hard task. While

enumerating all these is a mammoth task, we refer to some relevant works here

that also include exhaustive summaries of the related works.

While one approach is to use the stereo matching algorithms on pairs of

rectified frames of the video [82, 84], multiview stereo approaches [17, 46, 73]

try to estimate the best depth estimate for each pixel using unstructured images.

More recent large scale multiview stereo techniques allow for obtaining a dense

point cloud or voxelized representation of the scene [27, 30, 88]. A line of work

on depth-from-video by [75, 76] have explored fast, real time depth estimation

from monocular videos. A recent line of work by [100] have shown some of

the best results on depth from video. We note that some prior work model

the scene by breaking it down into piecewise planar regions by hypothesizing

global planes in the scene, which also provides a dense depth map of the scene

[28, 56, 62, 85]. While these works have considered the task of depth from video,

they focus on the regime of static scenes.

A few works have studied dynamic scenes captured simultaneously by mul-

tiple cameras to obtain a dynamic point cloud of the scene [32, 74]. Other related

works in non-rigid structure-from-motion have not been cited here but the main

focus of this line of work is to reconstruct key-points on non-rigid objects such

as human face. More recently, [99] explored dynamic scenes with a focus on seg-

menting the dynamic object from the scene using a semi-supervised algorithm.

Our goal in this work however, is to obtain an estimate of the fronto-parallel

65

depth layers for each pixel, including the dynamic object. We exploit the inter-

action between the dynamic object and the static scene to help obtain a realistic

depth estimate for the dynamic object.

3.2.2 Static camera scenario

Research in cognitive science has shown that humans rely on occlusion cues

to obtain object boundaries and depth discontinuities even in the absence of

strong image cues such as edges and lighting [47, 71] even in a single image.

Recovering occlusion boundaries in a scene is a classic problem that has been

a topic of wide interests. We broadly classify these works into learning-based

approaches and approaches that purely rely on motion occlusion cues revealed

by the moving object.

Learning-based approaches. Prior works have explored learning based ap-

proaches for estimating the depth of the scene [33, 36, 40, 43, 65, 79, 81, 94, 98]

and estimating depth ordering [41, 45] from a single image for 3D scene under-

standing. Recent work has shown that we can also use the objects (clutter) in

the scene to aid better depth estimation of the scene [34, 37] using affordances.

Moving beyond single images to image sequences, [24] showed that the pose

of people interacting with a cluttered room can be used to obtain functional re-

gions and recover a coarse 3D geometry of the room. Our work is complemen-

tary to this work and in particular is agnostic to priors about the type of moving

object and the type of scene (indoor or outdoor). In other words, we do not

require that the moving object is a human. We relate back to prior research in

cognitive science that show that occlusion cues we observe are agnostic to any

66

prior about the object. We use these sparse, yet strong occlusion cues revealed

by the moving object to aid the dense depth layer segmentation of the scene.

Depth layers from motion occlusion. We work with a single static camera im-

age sequence that precludes us from using algorithms for multiview occlusion

reasoning using the moving object [32]. We focus on segmenting a scene cap-

tured by a single static camera into depth layers using occlusion cues revealed

by the moving objects. Our work is inspired by the work of [11] and [83] who

use the pairwise occlusion cues to “push” and “pop” the regions of the scene

affected by the moving object to obtain depth layers at each frame. A limita-

tion of these works is that they reason only about the portion of the scene the

object interacts with, leaving behind huge portions of the scene at an unknown

depth layer. In addition, since the interaction with each region is treated in-

dependently it leads to excessive fragmentation of the scene as we will see in

Section 3.4.2. This fragmentation can be partially avoided [83] by making the

(possibly over-restrictive) strong assumption that the moving object stays at a

constant depth. Our model includes a more reasonable model of object motion.

We revisit depth layers from occlusions and address limitations of prior work

via a unified framework that leverages sparse depth-ordering cues revealed by

the moving object and gracefully propagates them to the whole scene guided by

cues from the image priors. In addition, we reason about the depth layer of the

moving object within the same framework with a realistic object motion model.

We note that it is important to first identify the which scenario an input video

sequence belongs to in order to leverage the right image-based modeling algo-

rithm. For example, identifying that the video is that of a dynamic (moving)

camera indicates that we can leverage multiview stereo cues. In this thesis, we

67

achieve this as a pre-processing step that temporally segments an input video

to clips based on scene and camera motion. More details about this is available

in [57]. In the following sections, we will describe algorithms that implicitly

leverage the moving object to aid the task of image-baed modeling. We first

describe the proposed algorithm and results for the scenario of a dynamic scene

captured by a dynamic camera followed by the proposed algorithm and results

in case of a dynamic scene captured by a static camera.

3.3 Dynamic camera capturing a dynamic scene

We first consider a dynamic camera capturing a dynamic object (moving person

in our work) where the static background reconstructed using a standard multi-

view stereo algorithm helps recover the depth of the dynamic regions of the

scene.

3.3.1 Algorithm

We describe our algorithm in detail in this section. Given a video of a dynamic

scene captured using a dynamic camera, we extract the frames of the video sam-

pled at 30fps. We assume that enough static regions of the scene are observed

and recover the camera parameters for the frames of the video using structure-

from-motion (SfM) [88].

68

Figure 3.3: Results from the plane sweep stereo implementation. Our sim-
plified implementation works well on a well structured smooth
video (LEFT) as well as a user captured amateur video (RIGHT).
Details in Section 3.3.1. (black = near, white = far)

Plane sweep stereo

Motivated by the success of the plane sweep stereo algorithm [17, 75, 100], we

base our depth from video algorithm on the same framework. We use fronto-

parallel planes discretizing the 3D space in inverse depth. In particular, we

obtain the minimum (1
Dmax

) and maximum inverse depth (1
Dmin

) by projecting the

3D points recovered from SfM onto the optical axis. We divide this range into

equally spaced bins thus obtaining the 3D planes to perform the plane sweep

stereo. The goal now is to build the pixel-level cost cube by evaluating an error

metric between the original image and warped image for each of the discrete

plane and obtain the minimum cost depth at each pixel. A number of error

metric have been explored in the past such as the variance of the color at each

pixel, sum of absolute differences, sum of squared differences, etc.

We use a sliding window of 10 frames and normalized cross correlation

(NCC) between the reference image and the image obtained by warping the

69

neighboring view onto the 3D plane, as a metric to find the best depth. The

result on videos of static scenes are shown in Figure 3.3. However, scene ir-

regularities such as homogenous surfaces, thin structures and specular surfaces

result in a very noisy cost cube. We qualitatively compare algorithmic choices

to filter this noisy data in Figure 3.4. As we observe, the best depth map was

obtained by filtering the cost cube by using guided filtering [35]. Using the orig-

inal image to guide the filtering of the cost cube, we observe that the dominant

edges are preserved resulting in a clean output by using a simple argmax 1 op-

eration on the filtered cost cube.

Note that, the inferred depth map can be improved further by using ideas

from plane fitting [99] and piecewise planar stereo [28, 56, 62, 85] at the cost of

computational complexity, which have not been explored here.

Handling a dynamic scene

We now consider a video of a dynamic scene. We start off by running the plane

sweep stereo algorithm assuming the video is that of a static scene. Note that

the depth of the region corresponding to the dynamic object would be incor-

rectly estimated as observed in ROW 2 of Figure 3.1. Intuitively, one can obtain

a better depth estimate by identifying the spatial region corresponding to the

dynamic object and factoring the real world motion of the dynamic object into

the plane sweep stereo framework. While some works attempt to segment out

the dynamic object (with supervision), estimating the real world motion of the

object is non-trivial.

In this work, we put the user into the loop to segment out the dynamic object
1Note that the larger the value, the better since we are using NCC.

70

(a) Reference image (b) Pixel-level NCC

(c) Median filtering (d) Pixel graphcut (e) Guided filtering

Figure 3.4: Comparison of algorithmic choices (White is far, black is close
for the depth maps). (a) Sample image from a video; (b)
Depth map using pixel-level NCC score; (c) Cleaner depth map
by median filtering result (a); (d) A pixel-level labeling using
graph cuts produces a better result but, noisy; (e) The best re-
sult was obtained by guided filtering the cost cube, guided by
edges in the original image.

via a simple user input in the form of a bounding box around the moving object.

To minimize the user effort we use the algorithm described in [57] to segment

video to clips. The frame level labels help identify the frames where a moving

object passes through the scene. The user draws a bounding box around the

moving object in this selected frame. We then track the bounding box over the

successive frames using the mean optical flow of the spatial region within the

bounding box. This is illustrated in Figure 3.5. We note that we can also use

other interactive approaches to perform co-segmentation across the frames [6,

99]. We however focus on the second non-trivial task of modeling real world

object motion in the next section.

71

Figure 3.5: Subset of frames that show the semi-supervised co-
segmentation of the moving object in the scene.

Modeling the motion of the dynamic object

Estimating the depth of a moving object is a hard and ambiguous task. We es-

timate the depth using plane sweep stereo by making some assumptions about

the object motion in the real world.

Let Oref and Onei be the camera centers of the reference and neighboring

frames respectively from a video sampled at r frames per second (Figure 3.6).

Let PA be the position of the dynamic object as seen from Onei but moves to

position P′ when seen in Oref. Thus, the depth of the object, D is incorrectly esti-

mated as D′. Let ∆Y be the real world distance travelled by the object between

the frames i.e. the distance traveled by the object traveling at a speed v in time

∆t = 1
r . Given the focal length (f), the similarity between the red and green tri-

angles gives the relationship between the disparity ∆d in the image space and

72

x

OrefOnei f

PA

Po
x

D0

�Y
P 0

x

�d

D
�d =

f ⇤�Y

D

Figure 3.6: Modeling the object motion: The relationship in the blue box
results from the similarity between the red and green triangles.
More details in Section 3.3.1.

the real world motion as,

∆d =
f ∗ ∆Y

D
=

f ∗ v ∗ ∆t
D

=
f ∗ v
r ∗ D

(3.1)

While on one hand the depth of the moving object is unknown, the speed at

which it is traveling is also unknown. A large object moving fast and far away

from the camera, can appear very similar to a smaller object moving slower

and located close to the camera. We see from Eqn 3.1 that this is an under-

constrained problem since any pair of the depth (D) and speed (v) can result

in the same image projection. In order to relax this ambiguity, we make some

assumptions about the object motion in real world. We consider videos with

people moving and bound the speed of dynamic object (v) to be within v′. We

set v′ = 2 meters per second in our work (human walking speed). Since the

video is sampled at r frames per second, this results in a bound on the image

space displacement (∆d) as a function of the depth (D) as follows,

∆d ≤
f ∗ v′

r
1
D

(3.2)

73

(a) (b)

(c)

Figure 3.7: (a) A frame from the input sequence with the moving object
bounding box shown in cyan. (b) The SfM point cloud recon-
structed using [88] with the cameras shown in yellow. (c) The
3D points in the SfM point cloud that project onto the cyan re-
gion are illustrated in red color, which helps define the depth
bound for the moving object.

While constraining the speed of the object provides a low bound on the depth

of the object, a more useful bound is revealed as the moving object occludes the

static scene. We add an additional bound on the actual depth of the object using

the region of the scene occluded by the object. We consider the minimum depth

of the 3D points from SfM that lies in the occluded region or projects onto the

segmented out dynamic object region and use it to upper-bound the depth (D)

since the object has to be in-front-of the occluded region. This subset of points

that the moving object occludes is illustrated in Figure 3.7.

74

We then incorporate this into the plane sweep algorithm. While evaluating

the cost for a plane hypothesis for the reference frame (i.e. a plane that falls

within the depth upper-bound), we use the depth of the hypothesized plane to

obtain the bound on displacement (∆d) using Eqn 3.2. We allow for the seg-

mented dynamic object region in the reference frame to undergo an in-plane

shift of a maximum of ∆d in either direction and evaluate the best score (NCC)

for this region. Intuitively, at a depth within the bounds, the in-plane shift will

allow the segmented region to obtain a better score than before, resulting in a

better depth estimate. The result of incorporating the object motion into the

depth estimation is evident in Figure 3.10 and Figure 3.11. We note that while

the estimated depth is more accurate than before, the solution is not unique and

is subject to how tight the bounds are. We refine the depth estimate by fitting a

smooth trajectory over the object in the next section.

Enforcing a smooth trajectory

At the end of the previous step we obtain an estimate of the depth of the moving

object for each frame however, the solution is not unique and depends on how

tight the depth bounds are. We use these estimated depths as our initial estimate

for the depth of the moving object enforcing that the object travels in a smooth

trajectory.

Consider a frame of the video sequence where the dense depth of the dy-

namic scene has been estimated as described in the previous section. We esti-

mate the centroid of the bounding box corresponding to the moving object and

consider a small window of pixels around the centroid (10×10). The mean depth

for each pixel within this window is used as the current estimate of the depth

75

(a) Before fit (b) After fit

Figure 3.8: The blue points correspond to the camera centers in all the fig-
ures. Each row shows the result of a video sequence showing
the effect of using the trajectory fitting, (a) The white points
correspond to the initial noisy estimate of the position of the
moving object, (b) The yellow points correspond the position of
the moving object after enforcing that it travels along a smooth
motion trajectory.

of the moving object. We obtain the depth of the moving object for each frame,

which forms our initial set of observations as shown for two video sequences

in Figure 3.8(a). We observe from the trajectory of white points that the initial

estimates of the depth can be noisy. Using the intuition that the dynamic ob-

ject moving about the scene travels in a smooth trajectory, we fit the observed

positions of the object using a regression with a polynomial kernel.

In detail, our observations for each frame are the camera center, the 2D po-

76

sition that corresponds to the centroid of the the object and the depth of the dy-

namic object. The first two parameters define a ray in 3D space along which the

moving object lies, which represent our features (X). The depth of the dynamic

object is used to obtain the depth of the object along the ray using projective

geometry, which serves as the value we are regressing over (Y). We use a poly-

nomial kernel to learn the regression model for the object trajectory, as defined

below.

Kd = (1 + XT X)d (3.3)

θ∗ = argmin
θ

Ld(θ)

= argmin
θ

||KT
d θ
∗ − Y ||2 + λ||Xθ||1 (3.4)

d∗ = argmin
d

(
Ld(θ∗) + αlog2

(
kd +

(
k
d

)
+ 1

))
(3.5)

Here, Kd in Eqn 3.3 indicates the polynomial kernel of degree d and k is the

number of dimensions of X, which in out case is 6 (3D position of the camera

and the 3D ray through the object center). θ represents the regression coeffi-

cients with θ∗ corresponding to the optimal parameters for a particular degree d

resulting in an fit error Ld(θ). Note that we use L-1 sparsity in Eqn 3.4 to avoid

over-fitting. We enforce a smooth trajectory by constraining the degree of the

polynomial kernel. Eqn 3.5 represents the MDL (Rissanen) criterion [77] that is

used to pick the right degree for the polynomial. We evaluate the MDL criterion

for d = {1, 2, 3} and pick the degree (d∗) with the best fit. The resulting trajectory

for the two video sequences is shown in Figure 3.8(b). The trajectory now pro-

vides a better estimate of the depth of the moving object based on the smooth

motion. This new depth is in-turn used to update the depth values of all values

within the bounding box corresponding to the moving object. We note in Fig-

ure 3.8(b) that upon using the MDL criterion the algorithm chooses d∗ = 1 for

77

Figure 3.9: An example of the aligned kinect RGBD data used for the quan-
titative results. The RGB image is on the left and the corre-
sponding aligned depth map is on the right.

the first video resulting in the linear fit, and selects d∗ = 3 for the second video

resulting in a better fit as seen from the trajectory of yellow points.

3.3.2 Experiments and results

We discuss the quantitative and qualitative results using the proposed algo-

rithm in this section.

Quantitative results

We capture five indoor scene videos using a Kinect by moving it on a dolly, and

extract the aligned ground truth depth map for each frame. A person walked

across the scene in two videos and an RC car was driven across the scene in

three videos. An example is shown in Figure 3.9. On an average each video

had about 50 frames. We show in Figure 3.10 the average RMS error in the

estimated dense depth maps, computed over the spatial region corresponding

78

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

Av
er
ag
e	

RM

S	

Er
ro
r	
 (
in
	
 m

et
er
s)
	

Without	
 mo>on	
 model	

Proposed	
 approach	

Figure 3.10: Quantitative analysis: We show the average RMS error in es-
timated depth measure using kinect data. Note that the pro-
posed approach gives significant improvement.

to the dynamic object, averaged over all the frames. We note that the proposed

approach significantly reduces the error, in addition it achieves a much lower

error bar resulting in a much stable solution.

Qualitative results

We qualitatively evaluate the performance of the algorithm on amateur video

sequences captured by a user and video clips extracted from the movie Sound of

Music. The videos sequences used in the experiments were released as part of

the publicly available, Cornell Video2Clips Dataset2, which provides the video

clips corresponding to our setting of dynamic camera capturing a dynamic

scene [57]. We show some of the results in Figure 3.11. Note the inaccurate

depth estimate of the dynamic object in ROW 2 of each video, and the signif-

icantly improved depth map seen in ROW 3. We also use the depth map to

synthesize a stereo pair using a baseline of 77cm. The resulting anaglyph im-

ages shown on ROW 4 gives the right perception of depth. We note here that the

2http://chenlab.ece.cornell.edu/projects/Video2Clips/

79

Figure 3.11: Each black box shows results on a video sequence. ROW 1
shows four frames from a video with a moving object. ROW 2
shows the initial depth maps using plane sweep stereo (white
is far, black is close). Note that the depth of the moving object
is inaccurately estimated. ROW 3 shows the final depth maps
inferred using the proposed approach after identifying and
modeling the motion of the moving object. Note the more
accurate depth map for the moving object in each case. ROW
4 shows anaglyphs obtained by synthesizing the left image of
the stereo pair using the original image as the right image and
the recovered depth map (Requires red - cyan glasses).

80

result using the proposed algorithm may not be the accurate depth due to am-

biguous continuous space of possibilities mentioned in Section 3.3.1 however,

the proposed algorithm that incorporates the object motion gives significant im-

provement as evident in Figure 3.10.

3.4 Static camera capturing a dynamic scene

In Section 3.3 we showed that the static background reconstructed helps recover

the depth of the dynamic object. We now turn the table around and consider a

static camera capturing a dynamic object (moving person in our work). We

show through the proposed algorithm and results that the dynamic object phys-

ically interacting with the scene aids decomposing the scene into fronto-parallel

depth layers. We note that in Section 3.3 we obtained a physically represen-

tative fronto-parallel depth estimate for each pixel using the multiview stereo

cues revealed by the moving camera. In contrast, in this section, we recover or-

dered depth layers that do not provide a physical depth estimate but focus on a

fronto-parallel depth layering based on the occlusion cues.

3.4.1 Algorithm

We formulate the task of segmenting the scene into depth layers as a discrete

labeling problem. In this section, we first describe our formulation as applied

to a scene with a single moving object and then extend the same framework to

handle multiple moving objects in the scene.

81

Spatio-temporal graph

Background scene segmentation. We refer to the scene without any moving

objects as the background scene. We use a calibration stage to obtain a clean

background image without any moving objects. In the absence of the calibration

stage we take advantage of the static camera scenario and obtain an estimate of

the background image as the median image over the video. Given the back-

ground image we obtain an over-segmentation using mean shift segmentation

[18] to give us about 300 superpixels. We treat this segmentation as a stencil of

background superpixels that applies to each frame of the video.

Moving object segmentation. Given the superpixel stencil for the background

scene, we update this superpixel map for every frame by identifying the pixels

corresponding to the moving object via background subtraction. We model the

appearance of the background using a per-pixel Gaussian distribution (Ap) cen-

tered at the mean color (RGB space) of the pixel across the whole video. Given

Ap, for every frame we estimate the likelihood for each pixel belonging to the

background. We label pixels with background likelihood above 90% as confi-

dent background pixels and below 10% likelihood as confident moving object

pixels. Using these as confident initial seeds, we learn an appearance model for

the background (BG) and the moving object (FG). The moving object segmenta-

tion is obtained using iterative graph-cuts [9, 10, 51] updating the BG/FG color

models with each iteration similar to GrabCut [78]. Figure 3.12 shows examples

of the moving object segmentation overlaid on the background segmentation.

After this stage, we have the background scene superpixel map and the mov-

ing object segmentation for each frame. A region-level MRF is constructed over

the background scene superpixels where each superpixel is a node with an edge

82

(a) Object in-front-of background scene region

(b) Object behind background scene region

Figure 3.12: Pairwise depth-ordering cues. Left image shows the back-
ground scene segmentation and the right image shows an in-
termediate frame segmentation with the moving object seg-
ment. (a) A region in the background is covered by the mov-
ing object (white ellipse) indicating that the moving object oc-
cludes the background region; (b) Observing that the bound-
ary corresponding to the background region (white pixels in
black ellipse) does not change when the moving object comes
in contact with it reveals that the moving object is occluded
by the background region. It also reveals new relationships
via transitivity; the chair occludes the object and at the same
instant the object occludes regions on the wall; therefore the
chair occludes the regions on the wall.

to adjacent superpixels. We add a node corresponding to the moving object for

every frame of the video and add temporal edges connecting the moving object

nodes on adjacent frames. This graph is illustrated in Figure 3.2(c).

83

Pairwise depth-ordering cues

The object moving through the scene is either occluded by or occludes portions

of the scene. We refer to these as motion occlusion events. In our superpixel rep-

resentation of the scene, we accumulate the pairwise cues using a matrix we

call Occlusion Matrix (O) where, Oi, j ∈ {−1, 0,+1} indicates the relationship be-

tween superpixel i and superpixel j i.e., {i occluded by j, no cue, and i occludes

j}, respectively. O is a skew-symmetric matrix i.e., Oi, j = −O j,i. The matrix is

updated at every frame of the video using detected motion occlusion events or

using learnt monocular cues in absence of occlusion cues.

Motion occlusion cues. Low-level cues revealed by the moving object in the

scene serve as sparse, yet strong pairwise depth-ordering cues. We work with

the abstract superpixel representation of each frame and use cues similar to

prior work [11] to obtain pairwise relationship between the moving object seg-

ment and the superpixel it interacts with. The cues are intuitive, given a back-

ground region the moving object is interacting with, we use the moving object

pixels and the boundary pixels of the background region to infer whether the

object moved in-front-of this region or behind this region, respectively, as illus-

trated in Figure 3.12.

We update the corresponding entry of the occlusion matrix with Oi, j as +1 to

indicate that superpixel i occludes superpixel j and set O j,i to −1. In addition to

the pairwise depth-ordering cues between the moving object and the superpixel

it is interacting with, we also enforce transitivity while updating the matrix. If

the object is occluded by a region of the background scene and is simultaneously

occluding several regions of the background scene, via transitivity it establishes

a pairwise relationship between the occluding background region and each of

84

the other background regions as shown in Figure 3.12(b). More formally, if m

refers to the moving object segment simultaneously involved in motion occlu-

sion events with superpixels k and l then, Ok,m = +1 and Ol,m = −1, implies

Ok,l = +1. This provides a strong depth-ordering cue between k and l. In ad-

dition, since k and l are not constrained to be adjacent superpixels, long-range

edges between non-adjacent superpixels are also a result.

Monocular cues. We use monocular cues to provide evidence about occlusions

for the other regions of the scene. Given the superpixel map for each frame, we

use the work of [41] that uses learnt priors to determine which of two adjacent

superpixels occludes the other. For each frame, we first update the occlusion

matrix using the motion occlusion cues where available and update the ma-

trix for all the other spatially adjacent superpixels using the monocular cues.

We do not enforce transitivity here since the monocular cues are not as reliable

as motion occlusion cues. The occlusion matrix serves as the observations for

modulating the terms of the energy function described below.

Energy minimization problem

The goal given the sparse pairwise depth-ordering constraints is to obtain dense

depth-layers. One approach is a greedy algorithm where the whole scene starts

at layer-0 and with every pairwise depth-ordering constraint regions of the

scene are “pushed” and “popped” [11] to obtain the final labeling. [41] use a

graph with boundaries between superpixels are nodes connected to adjacent

boundaries to encourage continuity and closure. [45] use image junctions as

nodes to obtain a globally consistent depth ordering using a minimum span-

ning tree. In this work, we use superpixels as nodes in the graph. This allows

85

us to directly obtain the depth-layer labeling, and also incorporate long range

edges between nodes.

We formulate depth layer segmentation as a discrete labeling problem where

every superpixel is assigned a depth label {1, 2, . . . , L} where L is some pre-

defined yet large set of discrete labels3. The labels are depth-ordered from

closer to the camera moving away i.e. {1 < 2 < · · · < L}. We formulate this

multi-label segmentation problem as an energy minimization problem over the

spatio-temporal graph obtained in the previous stage. The graph is a collection

of n + F nodes, where n nodes correspond to the background scene and F nodes

correspond to the moving object with one node for the moving object for each of

the F frames of the video. Our goal is to obtain a labeling X = {X1, X2, . . . , Xn+F}.

We define an energy function over the graph as follows:

E(X) =
∑

i∈1,...,n+F

Ei(Xi) +
∑

(i, j)∈NS

ES
i j(Xi, X j) +

∑
(i, j)∈NT

ET
i j(Xi, X j) (3.6)

where Ei(Xi) is the unary term indicating the cost of assigning a depth layer to

a node, ES
i j(Xi, X j) is the spatial occlusion pairwise term updated by the motion

occlusion cues and the monocular cues between interacting regions (NS), and

ET
i j(Xi, X j) is the temporal pairwise term updated by the object motion model

between the temporal edges (NT) .

Unary term (Ei). The unary term measures the cost of assigning a particular

depth label to a node. We use a uniform likelihood across all labels since a node

does not prefer one label over another. However, we note that the moving object

can move between two background regions that are in adjacent depth layers. To

address this, we ensure that the background regions only take odd or modulo-2

3In all our experiments we set L = 40. An over-estimate of L allows for enough layers for
the background scene. Increasing L beyond 40 did not affect performance but added to the
computational complexity.

86

Figure 3.13: Spatial occlusion pairwise term ES
i j. If i occludes j, the pair-

wise term encourages that i takes a depth label closer (lower)
than j via a large penalty for the red terms and zero penalty
for blue terms. See Section 3.4.1 and Equation 3.7 for details.

labels, which makes an intermediate layer between two depth layers available

for the moving object. We do so using hard constraints where the background

region pays infinite penalty for choosing an even numbered depth label.

Spatial occlusion pairwise term (ES
i j). The spatial occlusion pairwise term en-

codes the pairwise depth-ordering observations we accumulate within the oc-

clusion matrix. Consider two regions (nodes) i and j, using the cues we dis-

cussed in Section 3.4.1 let us suppose we know that region i is occludes region j

i.e. Oi, j = +1. Intuitively, the pairwise term for the edge between i and j must en-

courage i to take a depth label that is smaller than (closer) j. To accomplish this,

our pairwise term has the form of an lower triangular matrix where a large cost

is incurred for region i taking a depth label larger than region j. We make this

term contrast sensitive using the score from a coplanar classifier (1.0 − δ f
i, j) that

indicates how likely i and j are coplanar using the relative region-level features

87

similar to [56] for each frame f . More formally,

ES , f
i j (Xi, X j) =



−log
(
c f

i j ×
1+O f

i, j+ε

2

)
∀Xi < X j

γ Xi = X j

−log
(
c f

i j ×
1+O f

j,i+ε

2

)
∀Xi > X j

ES
i j(Xi, X j) =

∑
f∈F

(
ES , f

i j (Xi, X j) × exp (−δ f
i, j)

)
(3.7)

where, ES , f
i j is the pairwise term for frame f , O f

i, j is the occlusion relationship

between region i and j in frame f of the image sequence. c f
i j is the confidence of

the pairwise occlusion relationship for frame f . We set this value to 1.0 for edges

that include the moving object and use the occlusion strength [41] as the con-

fidence score for all other edges. The summation over pairwise terms over all

frames helps capture the evidence between two nodes over the whole sequence.

The factor γ is a bias that keeps the solution away from the trivial solution of a

single depth layer for the whole scene4. ε is a small value to maintain numerical

precision. The form of the spatial occlusion pairwise term is illustrated in Figure

3.13.

Temporal motion pairwise term (ET
i j). The temporal motion pairwise term pe-

nalizes label disagreement between the moving object node across frames and

encourages a smooth motion for the moving object, illustrated in Figure 3.14.

The pairwise penalty is similar to the standard Pott’s model, except with an in-

creasing penalty (β) as we go away from the diagonal5. Given the depth label

of the moving object in one frame, smooth motion is encouraged by making the

node pay a lower cost to switch to nearby depth labels but larger penalty for

more drastic changes in the depth label. Intuitively, this pairwise term encour-

4We set the bias γ = −log(0.5) for our experiments after parameter sweeping (Section 3.4.2).
5β = −log(0.5) for our experiments.

88

Figure 3.14: Temporal motion pairwise term ET
i j. The penalty (β) increases

as we go away from the diagonal encouraging a smooth mo-
tion of the object across depth layers. See Section 3.4.1.

ages a fronto-parallel motion of the moving object i.e. encourage it to take the

same depth label however, consider in particular scenarios where the moving

object passes in-front-of a static region and then moves behind it. The algorithm

implicitly has a cue that the moving object has to switch depth label to satisfy

the two pairwise cues since the static region is at a fixed depth label. Such ob-

servations encourage the moving object to smoothly change the depth label via

the temporal motion pairwise term. Physically, this motion model assumes that

the object does not abruptly change in depth as it moves through the scene. We

quantitatively evaluate the impact of using the temporal motion pairwise term

in Section 3.4.2. Note that an additional cue that serves as a useful depth order-

ing cue to help model the pairwise term is the size of the moving object. We can

make an assumption that the larger the object the closer it is to the camera, how-

ever, this cue was very unreliable due to inaccurate moving object segmentation

and is therefore not used in this work.

89

(a)

(b)

Figure 3.15: Multiple moving objects. (a) The background scene is shown
in the orange bounding box. The two moving object segments
for intermediate frames are overlaid in red and blue; (b) The
spatio-temporal graph constructed. The spatial graph corre-
sponding to the background scene is shown within the orange
bounding box and the two nodes for each frame correspond-
ing to the moving objects are shown using the red and blue
nodes. See Section 3.4.1.

Handling multiple moving objects

Here, we extend the formulation (single moving object) to handle multiple mov-

ing objects. Consider the example in Figure 3.15(a) with the region correspond-

ing to the two moving objects in the scene shown in blue and red overlay. In

case of k moving objects, we add k nodes (a node for each moving object) for

each frame of the video. The resulting spatio-temporal graph for the example

is shown in Figure 3.15(b). We have an edge between the moving objects as

shown in the frame, f = 2 when the objects cross path. We obtain their pairwise

depth-ordering using the cue that when the two objects are in contact, the taller

90

object, i.e., the object with a larger bounding box height, occludes the smaller

one. This assumes that the moving objects are the same size in real world; how-

ever, more sophisticated classifiers could be used. We modify the unary term to

reflect that there are multiple moving objects. In the single object case we used

a modulo-2 representation of the depth labels that put hard constraints on the

background regions to take only alternate depth labels allowing for the moving

object to lie between two background region layers. In case of k moving objects

in the scene we extend this to a modulo-(k+1) representation that allows the k

objects to lie between two adjacent background region layers. Given this graph,

the definition of the energy function is the same as Section 3.4.1.

Inference

In our energy function, each energy term by itself is weak. For instance, the

unary term does not provide an affinity of a node towards a particular label but

restricts the labels the background regions can take; the spatial occlusion pair-

wise term bounds the possible labels the adjacent node can take based on the

label of the current node. However, the combination of these terms is powerful.

The intuition behind the goal of inference is to find a depth labeling that sat-

isfies as many pairwise interaction terms and motion model terms as possible.

We perform inference using sequential tree-reweighted max-product message

passing (TRW-S) [52]. The algorithm scales linearly with the number of frames

and quadratically in the worst case with the number of superpixels (i.e., fully

connected graph).

91

3.4.2 Experiments and results

In this section, we discuss the dataset, the evaluation metric, followed by our

quantitative and qualitative results.

Dataset

Our first dataset (SET-A) contains 24 videos with a single moving object. 18

videos are from the publicly available multiview video dataset by [32] that in-

clude a person moving through the scene captured from multiple viewpoints.

Each of these multiview videos serves as a test video for our scenario. The

dataset has 6 additional videos with two clips from the movie ‘Sound of Music’.

Our second dataset (SET-B) contains 9 videos from the publicly available

video dataset by [32] with two people walking in the scene. In the single ob-

ject scenario, the moving object segmentation and correspondence across frames

was achieved using background subtraction, however, this is not trivial for mul-

tiple objects. While we believe that there is scope to leverage prior work on

multiple object tracking to achieve this task automatically, in this work we pro-

vide correspondence and manually segment the moving objects on 30 frames

for each video using GrabCut [78]. An example is shown in Figure 3.15(a).

We manually obtain a pixel-level ground-truth depth layer segmentation for

each of the static scenes using the depth-layer annotation tool by [41] and then

map it to the static scene superpixel map by labeling all the pixels within a su-

perpixel with the dominant label. An example is shown in Figure 3.16. We

make these manually labeled depth layers and the manual multiple object seg-

mentation across frames publicly available, which are also useful in evaluating

92

(a) Static scene (b) Ground-truth (c) Estimated

Figure 3.16: (a) Static scene, (b) manually labeled ground-truth depth lay-
ers for quantitative analysis and (c) estimated depth layers us-
ing our algorithm. white = near, black = far.

tasks such as multiple object co-segmentation6. It is worth pointing out that the

ground surface has no clear ‘ground-truth’. In particular, our instruction to the

ground-truth annotator was that any object that stands on the ground surface

occludes the ground surface as a basis for evaluations. Preprocessing to perform

ground segmentation could be an alternate approach to add more semantics to

the framework. However, this does not change the problem formulation or the

improvement we obtain over the state-of-art.

Evaluation

We evaluate the performance of the algorithm as the accuracy of pairwise or-

dering between the regions of the background scene. Using the background

superpixel map we translate the ground-truth depth layers into the ground-

truth occlusion matrix (Ogt), which gives the pairwise depth-ordering between

any pair of superpixels. Let the final occlusion matrix from the algorithm be O′.

Given the two matrices, we evaluate the performance of the pairwise ordering

between the superpixels by accumulating concordant pairs, discordant pairs,

6http://chenlab.ece.cornell.edu/projects/DepthLayersMRF/

93

and compute the accuracy as7,

Concordant pair (i, j) : Ogt
i, j = O′i, j

Discordant pair (i, j) : Ogt
i, j , O′i, j (3.8)

Accuracy =
#Concordant pairs

#Concordant pairs + #Discordant pairs

The accuracy measure evaluates the performance of the algorithm over all pairs

of regions in the scene. This gives an average score of 25.2% across our dataset

even when the whole scene is given a single depth layer. We obtain a metric fo-

cused only on the occlusion boundaries by computing the precision and recall of

the algorithm evaluating the fraction of recovered occlusion boundaries that are

the true occlusion boundaries and the fraction of the true occlusion boundaries

recovered by the algorithm, respectively.

Our problem is similar to that of inferring a rank ordered list of entries.

We use two standard metrics to evaluate the performance of pairwise order-

ing, Kendall tau correlation coefficient (τ) and Kendall tau distance (τd) [49, 72].

In particular, we use the variant of Kendall’s tau (Tau-b) that accounts for ties

within the list, because pairs of superpixels can take the same depth label. τ

measures the similarity between orderings and has range [−1,+1], the higher

the coefficient the better. τd is a measure of the distance between the orderings

and has range [0, 1], the lower the better.

Parameter sweep (γ). We first sweep the parameter γ in Equation 3.7 to

evaluate the impact on the performance of the proposed algorithm. γ acts as

a bias that helps rely on the spatial occlusion cues only when the algorithm is

confident of the pairwise occlusion cue. We observe that γ = −log(0.5) ≈ 0.7

achieves the best performance as seen in the accuracy metric in Figure 3.17,
7 #x = number of x

94

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
40

45

50

55

’gamma’ parameter sweep

A
v
e

ra
g

e
 a

c
c
u

ra
c
y
 (

%
)

Figure 3.17: Average accuracy across the scenes in SET-A, which shows the
effect of the parameter γ in Equation 3.7. This parameter acts
as a bias that helps depend on the spatial occlusion cues only
when the algorithm is confident of the pairwise occlusion cue.
γ is set to −log(0.5) ≈ 0.7 for all the experiments.

which is fixed for all our experiments.

Quantitative results

We quantitatively evaluate the performance of our algorithm, comparing with

several baselines. First, we compare with prior works that use only motion oc-

clusion cues [11] or only monocular cues [41]. We then evaluate the performance

of a naı̈ve combination of the motion occlusion and monocular cues using a

greedy algorithm similar to [11]. We first use all the motion occlusion cues to

obtain the pairwise depth-ordering and then use the monocular cues to update

the pairwise orderings only for adjacent superpixels that do not yet have a pair-

wise ordering constraint to obtain the final depth labeling. This baseline does

not enforce a global consistency in combining the cues. In our full algorithm,

we use a spatio-temporal graph to combine the two cues and enforce global

consistency. In addition to evaluating the performance of the proposed algo-

rithm (full), we evaluate variants of the proposed algorithm where we use all

95

the pairwise occlusion cues as hard constraints i.e. by setting c f
i j and δ f

i j in spatial

occlusion pairwise term (Equation 3.7), to 1.0 and a variant where we drop the

temporal links that enforce a smooth object motion i.e. setting the parameter β

in the temporal motion pairwise term to a very large value.

Tables 3.1 and 3.2 summarize the results. We see that using motion occlusion

cues alone (ROW-1) performs the worst, for two main reasons - fragmentation

of the scene due to the greedy algorithm [11] and sparsity of the cues i.e., it

only reasons about regions the object interacts with. Monocular cues (ROW-

2) do better because it reasons about the whole scene and encourages global

consistency with a graph model [41]. While the naı̈ve combination of the cues

(ROW-3) performs better than only motion occlusion cues, it performs poorly

in comparison to using only monocular cues, due to fragmentation and lack of

global consistency.

ROW-4 shows the performance of the proposed framework when we use

all the occlusion cues as hard constraints. We see from the results that the soft

constraints we use are useful to avoid making hard decisions. Even without

temporal links (ROW-5), we outperform baselines in each metric. This clearly

indicates that our improvements are not based on tracking per se, and shows

that our algorithm is applicable to scenarios like time-lapse sequences. Finally,

in both test sets, our full proposed approach (ROW-6) gives an additional boost

in performance and significantly outperforms the other algorithms in each met-

ric. Across the datasets, the proposed algorithm achieved the best performance

in 19 out of 24 videos in SET-A and 8 out of 9 videos in SET-B, matching the

performance of using only monocular cues for the other videos.

96

Single moving object Accuracy (%) Precision (%) Recall (%) F-measure
(SET-A) [0.0, 1.0]

Only motion cues 38.2±6.5 40.0±11.1 38.3±8.4 0.39±0.09
[11]

Only monocular cues 49.0±10.6 55.1±12.5 50.0±12.8 0.52±0.12
[41]

Naı̈ve combination 42.1±7.3 46.3±10.4 38.8±9.7 0.42±0.10
Proposed (Hard occlusions) 43.5±6.5 52.4±10.9 42.5±10.3 0.47±0.10

Proposed (No temporal) 54.9±10.6 60.8±12.2 55.4±11.8 0.58±0.13
Proposed (Full) 56.5±9.3 62.6±12.3 57.5±10.9 0.61±0.11

Single moving object Kendall tau coefficient Kendall tau distance
(SET-A) [-1.0, 1.0] [0.0, 1.0]

Only motion cues +0.01±0.13 0.40±0.09
[11]

Only monocular cues +0.15±0.20 0.33±0.10
[41]

Naı̈ve combination +0.03±0.15 0.36±0.10
Proposed (Hard occlusions) +0.10±0.11 0.36±0.06

Proposed (No temporal) +0.33±0.19 0.26±0.09
Proposed (Full) +0.36±0.18 0.24±0.08

Table 3.1: Quantitative results and comparisons for the single moving object
scenario (SET-A). Each measure is averaged across the videos in the
dataset. The table on top reports the performance using the metrics of
Accuracy, Precision, Recall and F-score. While the one at the bottom
reports the Kendal-Tau measures. In both the tables, ROW-1 shows
the performance when we use only the motion occlusion cues [11];
ROW-2 shows the performance when we use only the learnt monocu-
lar cues [41]; ROW-3 shows the performance of a naı̈ve combination of
the motion occlusion and monocular cues; ROW-4 shows the perfor-
mance of the proposed framework when we use all the occlusion cues
as hard constraints i.e. by setting c f

i j and δ
f
i j in Equation 3.7, to 1.0;

ROW-5 shows the performance of the proposed approach but with-
out the temporal links enforcing the object motion model, which is
equivalent to a very large value for β in the temporal motion pairwise
term; Finally ROW-6 shows the performance of the full proposed ap-
proach that combines the motion occlusion and monocular cues into
one framework. Note that the error bars show the standard deviation
of the performance across the dataset. In summary, the proposed algo-
rithm (in green) outperforms the other algorithms in each metric in 19
out of 24 scenes.

97

Multiple moving objects Accuracy (%) Precision (%) Recall (%) F-measure
(SET-B) [0.0, 1.0]

Only motion cues 40.5±6.8 43.4±11.9 40.7±6.9 0.42±0.09
[11]

Only monocular cues 50.9±10.1 55.6±12.1 50.7±10.2 0.53±0.11
[41]

Naı̈ve combination 44.6±7.4 54.2±7.1 43.0±7.0 0.48±0.09
Proposed (Hard occlusions) 45.3±7.5 55.7±6.9 44.5±7.5 0.49±0.06

Proposed (No temporal) 56.3±9.8 60.3±9.5 55.5±10.5 0.58±0.10
Proposed (Full) 58.2±10.0 62.4±10.2 59.1±10.4 0.60±0.10

Multiple moving objects Kendall tau coefficient Kendall tau distance
(SET-B) [-1.0, 1.0] [0.0, 1.0]

Only motion cues +0.02±0.07 0.37±0.05
[11]

Only monocular cues +0.20±0.10 0.35±0.12
[41]

Naı̈ve combination +0.06±0.09 0.36±0.05
Proposed (Hard occlusions) +0.16±0.12 0.36±0.05

Proposed (No temporal) +0.30±0.14 0.26±0.07
Proposed (Full) +0.33±0.10 0.24±0.10

Table 3.2: Quantitative results and comparisons for the multiple moving objects
scenario (SET-B). The table on top reports the performance using the
metrics of Accuracy, Precision, Recall and F-score. While the one at
the bottom reports the Kendal-Tau measures. The rows are the same
algorithms as Table 3.1. Note that the error bars show the standard
deviation of the performance across the dataset. The proposed approach
(in green) outperforms the other algorithms in each metric in 8 out of
9 scenes.

Qualitative results

We show qualitative results obtained using only motion occlusion cues, only

monocular cues and the proposed algorithm in Figure 3.18. Figure 3.18(b)

shows the ground-truth depth layers for each scene. We first observe the draw-

back of using only motion occlusion cues in Figure 3.18(c), such as the fragmen-

tation in the labeling due to the greedy algorithm and the unknown layer for

pixels untouched by the moving object (in blue). Using the monocular cues re-

sults in a better dense labeling but errors due to the image-based features exist,

98

(a) Static
scene

(b) Ground
truth layers

(c) Only mo-
tion cues [11],
pixels with no
cues are col-
ored blue

(d) Only
monocular
cues [41]

(e) Naı̈ve
combination

(f) Proposed
algorithm

Figure 3.18: More qualitative results and comparisons. For all the depth-
layers, white = near, black = far. Discussion in Section 3.4.2.

Figure 3.18(d). In contrast, the proposed algorithm achieves a better labeling

of the scene as seen in Figure 3.18(e). In particular, we see that occlusion cues

captured in the motion occlusion cues but missing in the monocular cues such

as the tree occluding the static scene in ROW-1, the chair and box occluding the

static scene in ROW-2, 4, the pillars in ROW-5 are all carried forward to improve

the result using the proposed algorithm. Errors due to pairwise cues unseen by

the moving object but present in the monocular cues are carried forward to the

final result (ROW-3, 6). In ROW-6 the proposed algorithm favors smoothness

instead of the excessive fragmentation found from the motion occlusion cues.

99

The sensitive stage of the algorithm is foreground segmentation (background

subtraction) especially in case of scene irregularities such as specular surfaces

and thin structures (computer monitor in ROW-2 Figure 3.18), which can lead to

errors in the sparse occlusion cues. In our work, we handle this using the MRF

over all the regions and incorporate temporal dependency via smooth motion of

the moving object. We make a joint solution given all the (soft) occlusion cues,

reducing the errors in comparison with prior work that make hard decisions

using occlusion cues.

3.5 Putting the user in the loop

The object moving about the scene helps reveal pairwise depth ordering con-

straints. We have presented an algorithm in Section 3.4 to combine these sparse,

yet strong motion occlusion cues revealed by moving objects in a static scene

along with monocular cues in a unified framework. The results discussed in the

previous section shows that the proposed approach improves the performance

of prior approaches, and also handles multiple objects moving in the scene.

The scenario discussed thus far in this chapter explores the user implicitly

guiding the image-based modeling algorithm. However, the amount of infor-

mation obtained is constrained by the observed motion of the object (including

the space the object could potentially move) and the monocular cues observed

in the scene. In order to boost the performance of the algorithm we need to ob-

serve additional pairwise depth-ordering constraints. We do so by going back

to what we learnt from Chapter 2 and letting the user guides the algorithm by

providing additional pairwise constraints. This gives rise to two questions to be

100

Figure 3.19: Pairwise constraints provided by the user. The grey color is
used to indicate two regions at the same depth layer, while
the white and black colors are used to indicated relative depth
ordering where white = near, black=far.

answered. First, since the observed pairwise constraints are very sparse, there

is a very huge space of possible queries to prompt to the user. What is a smart

sampling strategy that could be used in this scenario? Second, given that we

know which query to prompt to the user, what is the the feedback the user is

required to provide to the algorithm and how is this feedback incorporated into

the original framework? In the following sections we will first address the more

easier question of how we can incorporate the user feedback in the algorithm

and then discuss the sampling strategy.

101

Figure 3.20: User interface to accept pairwise constraints.

3.5.1 Incorporating the user constraints

We consider that the sampling strategy has picked the superpixels i and j i.e.

two nodes in the graph over the background scene for the user to provide feed-

back. We allow the user to provide feedback (Ui,U j) in the form of one of three

responses, i and j belong to the same depth layer (Ui = U j), i occludes j (Ui < U j)

or i is behind j (Ui > U j), shown in Figure 3.19. Such queries could also be crowd

sourced similar to the work by Gingold et. al. [29]. We modify our earlier user

interface as shown in Figure 3.20. The occlusion matrix entry Oi, j is accordingly

updated as before. The new information from the user corresponds to an addi-

tional edge in the graph over the background scene. This is now incorporated

102

(a) TRIL (b) DIAGO

(c) TRIU

Figure 3.21: Spatial pairwise term - incorporating user constraints (Ui,U j)
that gives the pairwise relationship between superpixels i and
j. (a) i occludes j (Ui < U j). (b) i and j belong to the same
depth layer (Ui = U j). (c) i is behind j (Ui > U j).

into the energy function as a new pairwise term as follows,

ES
i j(Xi, X j) =



TRIL Ui < U j

DIAGO Ui = U j

TRIU Ui > U j

(3.9)

where, TRIU , DIAGO and TRIL are pairwise matrices that enforce hard con-

straints based on the user input. The pairwise matrices are square matrices il-

lustrated in Figure 3.21. This is the foundation for an iterative algorithm where,

with every iteration the user provides a new pairwise constraint that is incor-

porated into the energy function (Eqn 3.6) as discussed above. We then perform

103

(a) Static scene (b) User constraint

(c) Initial depth layers (d) Depth layers with user constraint

Figure 3.22: Note the change in the depth layers upon incorporating the
user constraint. The pairwise terms ensure that the pink re-
gion be pushed back as apposed to the cyan region being
pulled in front since that would have resulted in more pair-
wise penalties given the evidence.

inference using TRW-S [52] to obtain an updated depth ordering for the scene.

Figure 3.22 shows the change in the depth layers upon incorporating a user

constraint.

3.5.2 Guiding the user feedback

There is a huge space of possible queries where we can require the user in-

put. We illustrate this using the skew-symmetric occlusion matrix for one of

the videos in SET-A in Figure 3.23. Note the large green space that indicates

the unknown pairwise depth ordering cues. Our goal is to guide the user and

choose queries amongst the large number of options at each iteration in an

104

Figure 3.23: Observed occlusion matrix (static scene) for a video in SET-A.
This is a skew-symmetric square matrix of dimension as the
number of superpixels in the static scene. Red and blue points
indicate pairwise occlusion relationships, +1 and −1 respec-
tively and white points are the dominant diagonal that does
not have pairwise relationships. The black region corresponds
to the space of unknown pairwise relationships.

active-learning framework.

At every iteration, given the current solution to the depth layer segmentation

problem that includes all the observed pairwise depth ordering, and the current

depth ordering, we use a learnt regression function that provides a score for

each possible query. This scoring function is used to rank the huge space of

queries and select the best query for the user input.

3.5.3 Query scoring function

Given the current depth ordering inferred using the algorithm and the structure

of the graph over the background scene we learn a regression over extracted

features. We list the features extracted for each query superpixel pair in Table

105

Pairwise query features dim
Relative query appearance features
[42]

59

Coplanar classifier score (Refer Sec-
tion 3.4.1 for details)

1

Sum of coplanar classier scores using
all superpixels connected to the query

1

Sum of normalized size of the query 1
Normalized spatial distance between
the centroids of query

1

Binary feature that indicates whether
the query are spatially adjacent

1

Sum of number of adjacent superpix-
els for the query

1

Maximum number of adjacent super-
pixels for query

1

Depth label difference between the
query in the current solution

1

Binary feature that indicates if the
query has the same depth label in the
current solution

1

Table 3.3: Features (68-dim) for the regression function to rank the queries.
Here, each ‘query’ is a pair of superpixels to be queried for pair-
wise constraint.

3.3.

Training. In order to learn our regression function we use the ground-truth

depth layers to obtain the training data. For each video in SET-A we start with

the solution from the automatic algorithm and enumerate all the possible query

pairs of superpixels i.e. the unknown pairs as shown in Figure 3.23. We start

with the result of the automatic algorithm, consider the query pairs one at a time

and use the ground-truth as the oracle to provide the pairwise relationship for

the query superpixels. This additional pairwise constraint is incorporated into

the energy function as described in Section 3.5.1. We measure the improvement

106

in accuracy over the original result from the automatic algorithm by incorpo-

rating the additional constraint and repeat this process for each possible query.

This vector of improvement in accuracy serves as the output vector for our re-

gression and the features for the regression function are defined in the Table

3.3. We use the training data and learn a linear regression function using ridge

regression.

Inference. Given a test video sequence, the original automatic algorithm in-

fers the initial depth-layers of the scene and the observed occlusion matrix in-

dicates the space of possible queries. We compute the regression features and

use the learnt regressor to obtain the importance score for each query pair. The

regressed scores are then ranked to obtain the best query for user input. Once

the user is queried with this best query pair, the feedback is incorporated as de-

scribed in Section 3.5.1 to obtain an updated solution. The process is repeated

at each iteration, where we use the updated list of possible queries, obtain the

new feature vectors given the current solution and again regress the importance

score for each query.

3.5.4 Experiments and results

We evaluate the performance of the proposed algorithm using a machine user

i.e. we use the ground-truth depth layers as the human oracle that is queried

with the query pair of superpixels to obtain the pairwise constraint between

them allowing for more exhaustive experiments. The videos in SET-A (Section

3.4.2) are used for all the experiments.

The person walking about the scene reveals pairwise depth ordering cues

107

between adjacent superpixels. We first compare the improvement in perfor-

mance obtained by the user in the loop guided by random sampling of queries.

We perform three experiments within this setup. We first restrict the space of

queries to only the adjacent superpixels. This is shown using the blue curve in

Figure 3.24. Note that this gives us an indication of the gain we stand to ob-

tain as the person walks about the various regions of the scene since the moving

person reveals cues only between adjacent superpixels. In contrast, when we re-

strict the space of queries to only the non-adjacent superpixels, there is a sharp

increase in performance as shown by red curve in Figure 3.24. This is an impor-

tant result since it demonstrates that there is we stand to gain significantly by

querying non-adjacent superpixels, i.e., pairwise relationships we could have

never obtained relying on the moving person. In addition, most works in oc-

clusion or depth reasoning use a graph similar to our spatial graph wherein a

node (superpixel) is connected only to the immediately adjacent nodes (super-

pixels) however, this result shows the importance of long distance edges. The

performance of random sampling of all the queries is shown in the green curve

in Figure 3.24.

We report the quantitative performance in Figure 3.25. In Figure 3.25(a), the

blue curve shows the performance when the algorithm uses random sampling

as described above. The red curve shows the performance of the algorithm

using the learnt scoring function. We observe that the scoring function guides

the user towards better queries and performs better than the random sampling.

Note that the error bars show the standard deviation of performance across the

dataset. The learnt scoring function outperforms the random sampling in each

of the videos. In Figure 3.25(b), we show the performance of the upper-bound

using the green curve, i.e., the performance when the ground-truth is used to

108

0 5 10 15 20 25

45

50

55

60

65

70

75

Queries

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

%
)

 all queries

 only adjacent superpixels

 only non−adjacent superpixels

Figure 3.24: Random query sampling - performance of adjacent vs. non-
adjacent superpixel queries. Every query is randomly selected
from all the possible queries. The performance of the algo-
rithm is significantly better when we use non-adjacent su-
perpixel queries as apposed to adjacent superpixels. The er-
ror bars show the standard deviation across the videos in the
dataset.

sample the query that provides the maximum improvement in performance.

Note that with as few as 10 queries the upper-bound shows the huge increase

in accuracy by selecting the optimal queries across the videos. However, we

observe that the learnt function still has a significant gap from the upper bound.

Several experiments using other variants of the ranking function (such as SVM-

rank, kernel regression) were performed however, they failed to perform better

than the linear regression. This is an interesting sub-problem that has scope for

further improvement to study whether it is realistic to close the gap between the

upper-bound and the performance of the query ranking function in practice.

109

0 5 10 15 20 25
45

50

55

60

65

70

75

Queries

A
v
e

ra
g

e
 a

c
c
u

ra
c
y
 (

%
)

Random sampling of queries

Learnt regression to rank queries

(a)

0 5 10 15 20 25
45

50

55

60

65

70

75

80

85

90

Queries

A
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

%
)

Random sampling of queries

Learning regression to rank queries

GT sampling − upper bound

(b)

Figure 3.25: Performance putting the user in the loop. The figure shows
the average performance across the 24 videos in SET-A. (a)
The performance of the random sampling where each query
is randomly chosen from all the possible queries is shown in
blue. The learnt scoring function that ranks the queries and
picks the best query is shown in red, which outperforms the
random sampling. The error bars show the standard devia-
tion across the dataset. We note that the learnt scoring func-
tion outperforms the random sampling in each of the videos.
(b) The green curve shows the performance of the upper-
bound obtained by exhaustive ground-truth sampling.

3.6 Summary

The dynamic object moving about the scene are often considered clutter in many

computer vision tasks. Our focus in the chapter was to leverage the dynamic ob-

ject in the scene to aid image-based modeling and recovering depth information

of the scene containing dynamic content. In particular we developed novel com-

putational engines for two scenarios. First, we considered the dynamic scene

captured by a dynamic camera and showed that we can use the background

scene reconstructed via standard multi-view stereo along with the interaction

between the moving object and the background scene to recover a dense depth

map of the dynamic scene. Second, we considered the dynamic scene captured

110

by a static camera and showed that even in the absence of camera motion we

can turn the table around and use the sparse, yet strong motion occlusion cues

revealed by moving objects interacting with the static scene along with monocu-

lar cues for occlusion reasoning in a unified framework to decompose the scene

into depth layers. The results in both the scenarios show the efficacy of the pro-

posed algorithms. We finally explored putting the user in the loop to provide

pairwise depth constraints to improve the solution of the algorithm. We showed

that the user guided by the the algorithm to provide useful pairwise constraints

performs better than an unguided user.

Acknowledgements. The work in this chapter was partly supported by NSF

DMS-0808864.

111

CHAPTER 4

APPLICATIONS: IMAGE-BASED MODELING ON A MOBILE DEVICE

4.1 iModel: Interactive 3D modeling on a mobile device

If there is one thing the growing popularity of immersive virtual environments

(like Second-Life® with 6.1 Million members) and gaming environments (like

Project Natal®) has taught us – it is that people crave personalization. For ex-

ample, gamers want to be able to ‘scan’ and use their own gear (such as skate-

boards) in a skateboarding game; people want to be able to take something from

the real world (such as a statue, or your house) into the virtual environment.

We use the proposed idea of putting the user in the loop to develop an easy

approach to obtain a 3D model of their object of interest. In particular, driven

by the ubiquitous spread of mobile devices with touch-screen interfaces, we de-

velop a mobile application to perform this task.

We give an overview of our mobile application [61] in Fig. 4.1. The applica-

tion uses a client-server setup and is developed for iOS devices. The client (the

user) captures a video of the object of interest by walking around the object.

This video is then sent to the server that samples frames from the video, starts

running structure-from-motion to extract the camera parameters and sends the

sampled frames back to the client. The user is now allowed to flip through the

images, select any image and provide user interactions via the touch-screen to

indicate the object of interest and the background via scribbles. These scrib-

bles are then sent to the server, which performs interactive co-segmentation,

112

Figure 4.1: Overview of object of interest 3D modeling on a mobile device.
Please refer website1 for a demo video of the application.

followed by shape-from-silhouette using the algorithm described in Chapter 2.

The co-segmentation of the object of interest from each view and the 3D model

of the object are now sent back to the client; which the user can visualize. Please

refer to our website for a demo video of the application1.

1http://chenlab.ece.cornell.edu/projects/iModel

113

4.2 From images to physical 3D printouts

While augmented reality is a well established application that allows for vir-

tually placing novel objects in a scene, an interesting application of the recon-

structed 3D model follows the recent trend in 3D printing. Suppose that we

wish to obtain a 3D model of the Ezra Cornell statue. Current 3D printing tools

allow users to print existing models on the web or create new 3D models using

CAD tools, neither of which are feasible in the scenario we consider. We use

the reconstructed model obtained using the algorithm described in Chapter 2 to

obtain a physical 3D printout of the object2 as shown in Fig. 4.2, allowing for

an interesting new application to obtain physical 3D models from images of the

object captured in it’s natural environment.

In addition, the trend in 3D printing is driven by the end user being able

to print customized models, which is one possible future direction with this

application. Using the 3D model obtained using the image data as an initial

estimate of the 3D structure, we can envision an algorithm that translates it to

a CAD model by representing the model using a combination of 3D geometric

primitives. The CAD model thus obtained would form an initial point for the

user to start and customize.

2The 3D printouts were obtained using the online service http://www.shapeways.com

114

Figure 4.2: Physical 3D printout of the object of interest obtained using the
proposed algorithm. The top row shows the set of multiview
images of the object of interest used to obtain the 3D printout
below.

115

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Image-based modeling, the task of recovering the 3D structure of an object or a

scene using 2D images has seen significant progress in the recent years. How-

ever, 3D reconstruction of scenes captured in natural scenes is a hard task, due

to the numerous scene irregularities such as textureless surfaces, specularities,

thin structures, background clutter, etc., resulting in inaccurate reconstructions.

In addition, unconstrained image sequences often consist of dynamic or mov-

ing objects such as people walking about in the scene, which makes the task of

image-based modeling extremely hard. In this thesis, we have showed that we

can address these issues by using the intuition that humans are good at inter-

preting the 3D structure behind the photons they view, and putting the user in

the loop to aid image-based modeling.

We have showed in this thesis that while putting the user in the loop is in-

tuitive, it requires designing a good computational engine that is capable of

incorporating user constraints, while keeping the user constraints simple and

intuitive, yet powerful. We leveraged the use of simple and intuitive scribbles

as user constraints in all our works. In particular, we note that the user in the

loop did not directly solve the same problem as image-based modeling. The

role of the user was to either provide sparse labels to the computational engine

to indicate to the algorithm the object of interest, or provide scene-specific sup-

port constraints and relative depth constraints to indirectly improve the solution

provided by the computational engine. In addition, we showed that we can ex-

ploit the power of the computational engine to perform all the computationally

116

intensive tasks and suitably guide the user input when and where needed via

simple tasks.

In case of a static scenes captured from multiple viewpoints, we developed

algorithms where the user guided the task of image-based modeling by provid-

ing constraints using simple and intuitive scribbles. Within a discrete labeling

framework, we first demonstrated how the user can initiate the process by pro-

viding node constraints. We showed that the node constraints helped identify

the object of interest to be modeled, which was an ill-posed problem without

the user in the loop. We then explored how we can leverage the power of an

unsupervised image-based modeling algorithm and get the user into the loop

to provide scene specific cues to the algorithm. We demonstrated through our

experiments and results that we can minimize the user effort via a novel active-

learning algorithm that intelligently guides the user to providing edge con-

straints or 3D support cues to obtain a better reconstruction, and much faster.

In case of a dynamic scenes, we first focused on the computational engine

and developed algorithms that exploit the dynamic objects such as people walk-

ing about the scene to implicitly aid the task of image-based modeling. Observ-

ing the object motion reveals useful depth or occlusion cues about the scene,

implicitly revealing an idea about the 3D structure of the scene, where in the

scene the objects can move, where is the scene occluding their path, etc. We first

considered a dynamic object captured by a dynamic camera and developed an

algorithm where we use the occlusions between the moving object and the scene

along with the recovered depth for the static background to infer the depth of

the dynamic scene with the user in the loop to co-segment the moving object

in the scene. We then considered the scenario where the dynamic object was

117

captured by a static camera that is void of any multiview stereo cues, and devel-

oped a novel graph based algorithm that used the sparse, yet powerful pairwise

depth ordering cues revealed by the moving object to decompose the scene into

depth layers. We then put the user into the loop within the same framework

where the algorithm guides the user to provide additional useful depth order-

ing constraints to improve the solution. Our experiments and results showed

the efficacy of the proposed algorithms.

5.1 Future work

The following are different directions to pursue in the future:

5.1.1 Leveraging the active-learning framework

Interactive image-based modeling is an active topic that has applications in

consumer image-based rendering applications such as image and video edit-

ing, and in commercial applications such as converting monoscopic videos to

stereo videos. The current approaches require a very involved user providing

an enormous amount of annotation. In this thesis, we proposed ideas to lever-

age the power of computer vision algorithms and introduced the idea of active-

learning for image-based modeling. Our formulation was within the framework

of piecewise planar modeling of the scene, however the proposed idea of active-

learning for putting the user in the loop has potential beyond piecewise pla-

nar reconstructions. The framework of guiding the user to provide feedback to

obtain better reconstructions can be extended to multi-view stereo approaches

(which can aid dense surface reconstruction). For example, in case of dense

118

surface reconstructions, the user input could be in the form of drawing curves

that act as guides to recover the surface of the object. It can also be used to re-

construct the scene using a single image, which has an inherent learning-based

framework. The active-learning framework incorporates the positive aspects of

both the automatic as well as the interactive algorithms, using the scene-specific

user constraints when and where needed, to render improved reconstructions.

5.1.2 Leveraging semantics for image-based modeling

The focus of this thesis was about putting a human user in the loop since hu-

mans have a much better interpret the 3D representation of a scene. A question

to ask here is can the actual human user be replaced by human priors that lever-

age semantics within the image-based modeling algorithm? For example, in

our example of the green couch captured from multiple viewpoints, the scene

irregularities resulted in the algorithm making errors on the homogeneous sur-

faces of the couch. However, understanding that the object we are looking at

is a couch, provides a strong prior to the structure of the object aiding the task

of image-based modeling. In case of dynamic objects in the scene, estimating

the geometric layout such as the ground surface of the scene can help constrain

the depth of the moving object, for example, an estimate of the point of contact

of the object with the ground (when visible) significantly constraints the depth

of the object. In [69], we developed an algorithm called Feedback Enabled Cas-

caded Classifier Models (FE-CCM) with the idea that the various vision tasks

such as object detection, saliency detection, geometric labeling and even depth

estimation share a lot of information between each other. For example, given a

test image, inferring the depth of the scene can aid better performance at object

119

detection. While this algorithm explored the single image scenario, extending

this to multiview images presents itself as a unified framework to leverage se-

mantics for image-based modeling and multiview scene understanding.

(a) (b)

(c) (d)

Figure 5.1: Capturing the right image by actively guiding the user in 3D.
(a) The object of interest lies on a planar surface. The green
square illustrates the initial position of the camera after the first
capture. The red dashed line is illustrated between the cam-
era center and the origin of the reference co-ordinate system
(shown in red ×). (b) A ring of possible camera positions is
obtained by fixing the height of the camera, illustrated in the
black ring. (c) The required number of camera positions are
uniformly sampled along the ring. (d) The final camera posi-
tions to guide the user are thus obtained.

120

5.1.3 Putting the user in the loop during image capture

With an increasing number of sensors and metadata available on portable cam-

eras, the algorithms can leverage more than just the image data. A benefit of this

is that algorithms can put the user in the loop during image capture by leveraging

the accelerometer and the gyroscope data along with the image data to guide

the user towards capturing the next image based on the task at hand. As an

example, consider the application of object of interest 3D modeling, where we

wish to obtain images of the object from different viewpoints. We constrain the

problem the following, guide the user around the object of interest such that the

user is made to capture images uniformly spaced on a ring of possible camera

locations as illustrated in Figure 5.1(d). It is intuitive that this framework aids

the iModel application we described in Section 4.1. We skip the time consuming

step of structure from motion since we have a predefined camera pose for each

image. The computational engine can therefore leverage the user to aid much

faster 3D modeling of the object of interest. This is just one application but,

the idea of putting the user in the loop during image capture is an interesting

direction to pursue in the future.

121

APPENDIX A

RELATED PUBLICATIONS

Books and Journal papers:

• Adarsh Kowdle, Andrew Gallagher and Tsuhan Chen. “Leveraging the Dy-

namic Object in the Scene for Image-Based Modeling”, IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 2013. (Submitted)

• Adarsh Kowdle and Tsuhan Chen. “Putting the User in the Loop for Image-

Based Modeling”, International Journal of Computer Vision (IJCV), 2013.

(Submitted)

• Congcong Li, Adarsh Kowdle, Ashutosh Saxena, Tsuhan Chen. “Towards

Holistic Scene Understanding: Feedback Enabled Cascaded Classification

Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), July, 2012.

• Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo Luo and Tsuhan Chen. “In-

teractive Co-segmentation of Objects in Image Collections”, SpringerBriefs in

Computer Science, 2011.

• Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo Luo and Tsuhan Chen. “In-

teractively Co-segmenting Topically Related Images with Intelligent Scribble

Guidance”, International Journal of Computer Vision (IJCV), 2011.

122

Conference and Workshop papers:

• Adarsh Kowdle, Andrew Gallagher and Tsuhan Chen. “Revisiting Depth

Layers from Occlusions”, IEEE Computer Vision and Pattern Recognition

(CVPR), 2013.

• Adarsh Kowdle and Tsuhan Chen. “Learning to Segment a Video to Clips

Based on Scene and Camera Motion”, European Conference on Computer

Vision (ECCV), 2012.

• Adarsh Kowdle, Sudipta Sinha and Richard Szeliski. “Multiple View Object

Cosegmentation using Appearance and Stereo Cues”, European Conference

on Computer Vision (ECCV), 2012.

• Adarsh Kowdle, Andrew Gallagher and Tsuhan Chen. “Combining monocu-

lar geometric cues with traditional stereo cues for consumer camera stereo”,

Workshop on Unsolved Problems in Optical Flow and Stereo Estimation, Eu-

ropean Conference on Computer Vision (ECCV), 2012.

• Adarsh Kowdle, Noah Snavely and Tsuhan Chen.“Recovering Depth of a Dy-

namic Scene using Real World Motion Prior”, IEEE International Conference

on Image Processing (ICIP), 2012.

• Adarsh Kowdle, Yao-Jen Chang, Andrew Gallagher and Tsuhan Chen. “Ac-

tive Learning for Piecewise Planar 3D Reconstruction”, IEEE Computer Vi-

sion and Pattern Recognition (CVPR), 2011.

• Adarsh Kowdle, Yao-Jen Chang, Dhruv Batra and Tsuhan Chen. “Scribble

Based Interactive 3D Reconstruction via Scene Co-segmentation”, IEEE Inter-

national Conference on Image Processing (ICIP), 2011.

123

• Congcong Li, Adarsh Kowdle, Ashutosh Saxena, Tsuhan Chen. “Towards

Holistic Scene Understanding: Feedback Enabled Cascaded Classification

Models”, Neural Information Processing Systems Conference (NIPS), 2010.

• Adarsh Kowdle, Dhruv Batra, Wen-Chao Chen and Tsuhan Chen. “iModel:

Interactive Co-segmentation for Object of Interest 3D Modeling”, Workshop

on Reconstruction and Modeling of Large-Scale 3D Virtual Environments, Eu-

ropean Conference on Computer Vision (ECCV), 2010.

• Adarsh Kowdle*, Congcong Li*, Ashutosh Saxena, Tsuhan Chen. “A Generic

Model to Compose Vision Modules for Holistic Scene Understanding”, Work-

shop on Parts and Attributes, European Conference on Computer Vision

(ECCV), 2010.

• Adarsh Kowdle, Kuo-Wei Chang, and Tsuhan Chen. “Video Categorization

using Object of Interest Detection”, IEEE International Conference on Image

Processing (ICIP), 2010.

• Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jeibo Luo and Tsuhan Chen.

“iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance”,

IEEE Computer Vision and Pattern Recognition (CVPR), 2010.

• Adarsh Kowdle, Yao-Jen Chang and Tsuhan Chen. “i3D: Interactive Planar

Reconstruction of Objects and Scenes”, IEEE Western New York Image Pro-

cessing Workshop (WNYIPW), 2009.

• Dhruv Batra, Adarsh Kowdle, Devi Parikh and Tsuhan Chen. “Cutout Search:

Putting a Name to the Picture”, Workshop on Internet Vision, IEEE Computer

Vision and Pattern Recognition (CVPR), 2009.

• Dhruv Batra, Devi Parikh, Adarsh Kowdle, Tsuhan Chen, and Jiebo Luo.

“Seed Image Selection in Interactive Cosegmentation”, IEEE International

Conference on Image Processing (ICIP), 2009.

124

Demos:

• Adarsh Kowdle, Haochen Liu, ShaoYou Hsu, Jason Lew, Charvi Puri, Dhruv

Batra and Tsuhan Chen. “iModel: Object of Interest 3D Modeling via Interac-

tive Co-segmentation on a Mobile Device”, Demo session at IEEE Computer

Vision and Pattern Recognition (CVPR), 2012.

• Dhruv Batra, Adarsh Kowdle, Kevin Tang, Devi Parikh, Jiebo Luo and Tsuhan

Chen. “Interactive Cosegmentation by Touch”, Demo session at IEEE Com-

puter Vision and Pattern Recognition (CVPR), 2009.

125

BIBLIOGRAPHY

[1] Shai Bagon. Matlab wrapper for graph cut. http://www.wisdom.

weizmann.ac.il/˜bagon, December 2006.

[2] Adrien Bartoli. A random sampling strategy for piecewise planar scene

segmentation. CVIU, 105(1):42–59, 2007.

[3] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. Cutout search:

Putting a name to the picture. Workshop on Internet Vision, CVPR, 2009.

[4] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. Seed image selection

in interactive cosegmentation. ICIP, 2009.

[5] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg: Interactive

co-segmentation with intelligent scribble guidance. CVPR, 2010.

[6] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. Interactive Co-

segmentation of Objects in Image Collections. SpringerBriefs in Computer

Science, 2011.

[7] Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo Luo, and Tsuhan

Chen. Interactively co-segmenting topically related images with intelli-

gent scribble guidance. IJCV, 93(3):273–292, 2011.

[8] Bruce Guenther Baumgart. Geometric modeling for computer vision. PhD

thesis, Stanford University, 1974.

[9] Y. Boykov and V. Kolmogorov. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. PAMI,

26(9):1124–1137, 2004.

126

[10] Y. Boykov, O. Veksler, and R. Zabih. Efficient approximate energy mini-

mization via graph cuts. PAMI, 20(12):1222–1239, 2001.

[11] G. Brostow and I. Essa. Motion based decompositing of video. In ICCV,

1999.

[12] Neill Campbell, George Vogiatzis, Carlos Hernndez, and Roberto Cipolla.

Automatic 3D object segmentation in multiple views using volumetric

graph-cuts. In BMVC, 2007.

[13] Neill D. Campbell, George Vogiatzis, Carlos Hernández, and Roberto

Cipolla. Using multiple hypotheses to improve depth-maps for multi-

view stereo. In ECCV, 2008.

[14] Wen-Chao Chen, Hong-Long Chou, and Zen Chen. A quality controllable

multi-view object reconstruction method for 3D imaging systems. JVCIR,

21(5-6):427 – 441, 2010.

[15] Zen Chen, Hong-Long Chou, and Wen-Chao Chen. A performance con-

trollable octree construction method. In ICPR, 2008.

[16] B.n Collins, J. Deng, K. Li, and L. Fei-Fei. Towards scalable dataset con-

struction: An active learning approach. In ECCV, 2008.

[17] Robert T. Collins. A Space-Sweep Approach to True Multi-Image Match-

ing. In CVPR, 1996.

[18] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature

space analysis. PAMI, 24(5):603–619, 2002.

[19] A. Criminisi, I. D. Reid, and A Zisserman. Single view metrology. In

ICCV, 1999.

127

[20] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture

from photographs: A hybrid geometry- and image-based approach. In

SIGGRAPH, 1996.

[21] Yen-Hsiang Fang, Hong-Long Chou, and Zen Chen. 3D shape recovery

of complex objects from multiple silhouette images. Pattern Recogn. Lett.,

24(9-10):1279–1293, 2003.

[22] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 59(2):167–181, 2004.

[23] Keith Forbes, Fred Nicolls, Gerhard de Jager, and Anthon Voigt. Shape-

from-silhouette with two mirrors and an uncalibrated camera. In ECCV,

pages 165–178, 2006.

[24] D. Fouhey, V. Delaitre, I. Laptev, J. Sivic, A. Efros, and A. Gupta. People

watching: Human actions as a cue for single view geometry. In ECCV,

2012.

[25] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski. Reconstructing building

interiors from images. In ICCV, 2009.

[26] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view stere-

opsis. PAMI, 2009.

[27] Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard Szeliski.

Towards internet-scale multi-view stereo. In CVPR, 2010.

[28] David Gallup, Jan-Michael Frahm, and Marc Pollefeys. Piecewise planar

and non-planar stereo for urban scene reconstruction. In CVPR, 2010.

128

[29] Y. Gingold, A. Shamir, and D. Cohen-Or. Micro perceptual human com-

putation. ACM Transactions on Graphics (TOG), 31(5):119:1–119:12, August

2012.

[30] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and

Steven M. Seitz. Multi-view stereo for community photo collections. In

ICCV, 2007.

[31] P. H. Gosselin and M. Cord. Active learning methods for interactive image

retrieval. IEEE Trans. on Image Processing, 17(7):1200–1211, 2008.

[32] L. Guan, J.S. Franco, and M. Pollefeys. Probabilistic multi-view dynamic

scene reconstruction and occlusion reasoning from silhouette cues. In

IJCV, 2010.

[33] A. Gupta, A. Efros, and M. Hebert. Blocks world revisited: Image under-

standing using qualitative geometry and mechanics. In ECCV, 2010.

[34] A. Gupta, S. Satkin, A. Efros, and M. Hebert. From 3D scene geometry to

human workspace. In CVPR, 2011.

[35] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In ECCV,

2010.

[36] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of

cluttered rooms. In ICCV, 2009.

[37] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the box: Using

appearance models and context based on room geometry. In ECCV, 2010.

[38] A. Hengel, A. R. Dick, T. ThormŁhlen, B. Ward, and P. H. S. Torr. Video-

129

trace: rapid interactive scene modelling from video. ACM Trans. Graph.,

26(3):86, 2007.

[39] D. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-up. In SIG-

GRAPH, 2005.

[40] D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective. In

IJCV, 2008.

[41] D. Hoiem, A. Efros, and M. Hebert. Recovering occlusion boundaries

from an image. In IJCV, 2011.

[42] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recovering surface

layout from an image. IJCV, 75(1), 2007.

[43] Y. Horry, K. Aniyo, and K. Arai. Tour into the picture: Using a spidery

mesh interface to make animation from a single image. In SIGGRAPH,

1997.

[44] P. Jain and A. Kapoor. Active learning for large multi-class problems. In

CVPR, pages 762–769, 2009.

[45] Z. Jia, A. Gallagher, Y. Chang, and T. Chen. A learning based framework

for depth ordering. In CVPR, 2012.

[46] Sing Bing Kang and Richard Szeliski. Extracting view-dependent depth

maps from a collection of images. IJCV, 58:139–163, 2004.

[47] G. Kanizsa. Organization in vision: Essays on gestalt perception. In

Praeger, 1979.

[48] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active learning with

gaussian processes for object categorization. In ICCV, 2007.

130

[49] M. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, 1938.

[50] Pushmeet Kohli and Philip H. S. Torr. Measuring uncertainty in graph cut

solutions. CVIU, 112(1):30–38, 2008.

[51] V. Kolmogorov and R. Zabih. What energy functions can be minimized

via graph cuts? PAMI, 26(2):147–159, 2004.

[52] Vladimir Kolmogorov. Convergent tree-reweighted message passing for

energy minimization. PAMI, 28(10):1568–1583, October 2006.

[53] A. Kowdle, D. Batra, W. Chen, and T. Chen. iModel: Interactive co-

segmentation for object of interest 3D modeling. In ECCV - RMLE Work-

shop, 2010.

[54] A. Kowdle, K. Chang, and T. Chen. Video categorization using object of

interest detection. ICIP, 2010.

[55] A. Kowdle, Y. Chang, D. Batra, and T. Chen. Scribble based interactive 3D

reconstruction via scene cosegmentation. In ICIP, 2011.

[56] A. Kowdle, Y. Chang, A. Gallagher, and T. Chen. Active learning for piece-

wise planar 3D reconstruction. In CVPR, 2011.

[57] A. Kowdle and T. Chen. Learning to segment a video to clips based on

scene and camera motion. In ECCV, 2012.

[58] A. Kowdle, A. Gallagher, and T. Chen. Combining monocular geometric

cues with traditional stereo cues for consumer camera stereo. Workshop on

Unsolved Problems in Optical Flow and Stereo Estimation, ECCV, 2012.

[59] A. Kowdle, A. Gallagher, and T. Chen. Revisiting depth layers from oc-

clusions. In CVPR, 2013.

131

[60] A. Kowdle*, C. Li*, A. Saxena, and T. Chen. A generic model to compose

vision modules for holistic scene understanding. Workshop on Parts and

Attributes, ECCV, 2010.

[61] A. Kowdle, H. Liu, S. Hsu, J. Lew, C. Puri, D. Batra, and T. Chen. iModel:

Object of interest 3D modeling via interactive co-segmentation on a mo-

bile device. In Demo session at CVPR, 2012.

[62] A. Kowdle, S. Sinha, and R. Szeliski. Multiple view object cosegmentation

using appearance and stereo cues. In ECCV, 2012.

[63] A. Kowdle, N. Snavely, and T. Chen. Recovering depth of a dynamic scene

using real world motion prior. In ICIP, 2012.

[64] F. Lafarge, R. Keriven, M. Brédif, and V. Hiep. Hybrid multi-view recon-

struction by jump-diffusion. In CVPR, 2010.

[65] D. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of

rooms using volumetric reasoning about objects and surfaces. In NIPS,

2010.

[66] Wonwoo Lee, Woontack Woo, and Edmond Boyer. Identifying fore-

ground from multiple images. In ACCV, 2007.

[67] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David

Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy

Ginsberg, Jonathan Shade, and Duane Fulk. The digital michelangelo

project: 3D scanning of large statues. In Siggraph, pages 131–144, 2000.

[68] C. Li, A. Kowdle, A. Saxena, and T. Chen. Towards holistic scene under-

standing: Feedback enabled cascaded classification models. NIPS, 2010.

132

[69] C. Li, A. Kowdle, A. Saxena, and T. Chen. Towards holistic scene under-

standing: Feedback enabled cascaded classification models. TPAMI, 2012.

[70] B. Micusı́k and J. Kosecká. Multi-view superpixel stereo in urban envi-

ronments. IJCV, 89(1):106–119, 2010.

[71] K. Nakayama. Biological image motion processing. In Vision Research,

volume 25, pages 625–660, 1985.

[72] G. E. Noether. Why kendall tau? Teaching Statistics, 3(2):41–43, 1981.

[73] M. Okutomi and T. Kanade. A multiple-baseline stereo. PAMI, 15:353–363,

April 1993.

[74] Hyun Soo Park, Takaaki Shiratori, Iain Matthews, and Yaser Sheikh. 3D

reconstruction of a moving point from a series of 2d projections. In ECCV,

2010.

[75] M. Pollefeys, D. Nistr, J. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp,

C. Engels, D. Gallup, S. Kim, P. Merrell, C. Salmi, S Sinha, B. Talton,

L. Wang, Q. Yang, H. Stewnius, R. Yang, G. Welch, and H. Towles. De-

tailed real-time urban 3D reconstruction from video. IJCV, 78(2-3):143–

167, 2008.

[76] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops,

and R. Koch. Visual modeling with a hand-held camera. IJCV, V59(3):207–

232, 2004.

[77] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–

471, 1978.

133

[78] C. Rother, V. Kolmogorov, and A. Blake. “Grabcut” - Interactive fore-

ground extraction using iterated graph cuts. In SIGGRAPH, 2004.

[79] A. Saxena, S. Chung, and A. Y. Ng. Learning depth from single monocular

images. In NIPS, 2005.

[80] A. Saxena, S. Chung, and A. Y. Ng. 3-D depth reconstruction from a single

still image. IJCV, 76(1):53–69, 2008.

[81] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3D scene structure

from a single still image. PAMI, 31(5):824–840, 2009.

[82] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. IJCV, 47(1-3):7–42, 2002.

[83] A. Schodl and I. Essa. Depth layers from occlusions. In CVPR, 2001.

[84] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A com-

parison and evaluation of multi-view stereo reconstruction algorithms. In

CVPR, 2006.

[85] S. Sinha, D. Steedly, and R. Szeliski. Piecewise planar stereo for image-

based rendering. In ICCV, 2009.

[86] S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys. Inter-

active 3D architectural modeling from unordered photo collections. SIG-

GRAPH Asia, 2008.

[87] Sketchup. Google sketchup: http://www.sketchup.com. 2000.

[88] N. Snavely, S. Seitz, and R Szeliski. Photo tourism: Exploring photo col-

lections in 3D. In SIGGRAPH, 2006.

134

[89] S. Srivastava, A. Saxena, C. Theobalt, S Thrun, and A. Y. Ng. i23 - rapid

interactive 3D reconstruction from a single image. In Vision, Modeling and

Visualization, 2009.

[90] Peter F. Sturm and Stephen J. Maybank. A method for interactive 3D

reconstruction of piecewise planar objects from single images. In BMVC,

1999.

[91] R. Szeliski. Rapid octree construction from image sequences. CVGIP:

Image Understanding, 58(1):23–32, 1993.

[92] K. Tang, A. Kowdle, D. Batra, and T. Chen. iScribble, http://chenlab.

ece.cornell.edu/projects/iScribble/iScribble.html. 2009.

[93] S. Vijayanarasimhan, P. Jain, and K. Grauman. Far-sighted active learning

on a budget for image and video recognition. In CVPR, 2010.

[94] H. Wang, S. Gould, and D. Koller. Discriminative learning with latent

variables for cluttered indoor scene understanding. In ECCV, 2010.

[95] Kwan-Yee K. Wong and Roberto Cipolla. Structure and motion from sil-

houettes. In ICCV, 2001.

[96] Kwan-Yee Kenneth Wong and Roberto Cipolla. Reconstruction of sculp-

ture from its profiles with unknown camera positions. IEEE Transactions

on Image Processing, 13(3):381–389, 2004.

[97] Rong Yan, Jie Yang, and Alexander Hauptmann. Automatically labeling

video data using multi-class active learning. In ICCV, 2003.

[98] S.X. Yu, H. Zhang, and J. Malik. Inferring spatial layout from a single

image via depth-ordered grouping. In POCV Workshop, 2008.

135

[99] Guofeng Zhang, Jiaya Jia, Wei Hua, and Hujun Bao. Robust bilayer seg-

mentation and motion/depth estimation with a handheld camera. PAMI,

33:603–617, March 2011.

[100] Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, and Hujun Bao. Consistent

depth maps recovery from a video sequence. PAMI, 31, June 2009.

[101] X. S. Zhou and T. S. Huang. Relevance feedback in image retrieval: A

comprehensive review. Multimedia Systems, 8(6):536–544, 2003.

136

