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Abstract We present a simple and accurate procedure

to calibrate the pinhole parameters of a Time-of-Flight

camera: the principal point c = (u0, v0), the focal length

f and, if needed, the aspect ratio τ . Only one image of a

flat surface is needed. Using the radial distances as pro-

vided by the Time-of-Flight principle, we reconstruct

the pixel rows (or pixel columns) as collinear points in

3-space. Motivated by theoretical results, we claim that

the correct values for u0, v0 and f can be found by an

incremental procedure. In case of unknown aspect ratio,

some (but few) iterations are needed.

Keywords: Time-of-Flight camera, lateral calibration,

best line fit

1 Introduction

Colour cameras (RGB) have a long history and a lot

of industrial applications work at an accepted accuracy

level. Different image shots of the 3D-world can be com-

bined to provide more or less real time 3D information

from the scene. Industrial vision packages became ma-

ture to deal with this kind of image information. The

fact that stereo vision has not reached its full speed

conditions in research or in industrial practice has to

do with the overall complexity of real time 3D vision

intelligence. Major accuracy obstacles are caused by the
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need for calibrating the relative camera positions and

by the correspondence problem (including detection as

well as identifying).

Time-of-Flight cameras are relatively new 3D imaging

sensors that measure depth by estimating the time de-

lay from light emission to light detection, using either

modulated infra-red light, or light pulses ([8]). In both

cases, every pixel (u, v) delivers a measurement of the

distance D(u, v) from the camera centre to the detected

world point. Such sensors need to be carefully cali-

brated in order to ensure that they produce an accurate

3D geometry. Typically, two types of calibration are

needed: depth calibration, in which the distance mea-

surements are adjusted to be accurate, and lateral cali-

bration, in which the intrinsic parameters of the camera

(e.g., focal length, principal point, and aspect ratio) are

estimated). Traditional image-based lateral calibration

techniques are difficult to apply to ToF cameras be-

cause their resolution tends to be too low (e.g, 176 by

144, or 110 by 155 ,or even 64 by 50 pixels). In this

paper, we present a new technique for lateral calibra-

tion of a ToF camera that works in situations where

image-based calibration is not feasible.

This 3D information is available without the a priori

necessity for feature detection, which is a significant

advantage with respect to traditional images, although

not fully recognized and explored to our opinion. In [10]

we presented a technique for the segmentation of planar

regions in ToF images, while in this article we show how

to calibrate a ToF camera without having to detect any

feature (corner, edge,. . . ) in the image.

Since most authors use the same model for ToF cam-

eras as for traditional colour cameras, the lateral cali-

bration of a ToF camera is commonly done by known

techniques in the style of [13] (see e.g., [6]). Some pub-

lications take advantage of the range measurement of
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ToF cameras during the calibration, but still then, they

stick to the traditional calibration grid or chess pattern

(implying corner detection, etc.) (e.g., [2]). This is cum-

bersome for ToF cameras, due to the low resolution and

the pixel noise that is quite present in their intensity

images (Figure 1).

Fig. 1 The intensity image of a calibration grid by 64 by 50
ToF camera.

Several publications use a parallel setting that combines

an accurately calibrated 2D-camera with a ToF camera,

which offers us besides data fusion also the opportunity

to calibrate the ToF camera ([5,7,11]). Casually, gener-

alizations of the central projection model are used, im-

plying alternative strategies for lateral calibration ([4,

1]).

In this paper we present a new technique for determin-

ing the pinhole parameters of a ToF camera. Notice

that this implies that we only remove the perspective

distortion of the camera, no non-linear lens distortions.

In the real experiments of Section 8 we give suggestions

how to cope with radial distortion in our algorithm. The

main characteristics of the presented calibration proce-

dure are the following:

– No calibration pattern is needed, no features have

to be detected in the image.

– In principle, only one image of a flat surface is suf-

ficient (e.g., a wall), covering the whole ToF-sensor.

– The stability of the method copes with distance er-

rors, hence no depth calibration is required. In case

of inaccurate circumstances for the ToF measure-

ments, one can choose to average a sequence of im-

ages (of the same flat surface in the same camera

position).

– The proposed method determines the intrinsic pa-

rameters incrementally, in a fixed order: v0, u0, f .

As usually, (u0, v0) denote the pixel coordinates of

the principal point, while f denotes the focal length

in pixel units. In case of unknown aspect ratio τ , we

need an initial guess for τ and at most two or three

iteration steps to determine the intrinsic calibration

parameters.

We organize the paper as follows. In Section 2, we present

the concept of 3D-measurement by a ToF camera. We

explain how to represent a calibrated ToF camera by

its internal radial distances (IRD), and how they are

related to 3D-reconstruction. For more details on the

importance of the IRD for ToF cameras in topics as

calibration, reconstruction and image segmentation we

refer to [1,8,10].

In Section 3, we assume the availability of a flat surface

image covering the whole sensor. We show how to re-

cover the focal length as the (unique) optimal value f

that reconstructs a selected pixel row (or column) as a

straight line in space, as it should since the image was

taken from a plane. This is a robust procedure because

it behaves as a convex minimization problem. In case

of known values for the principal point and the aspect

ratio, this method enables precise recovery of the focal

length.

In Section 4, we observe that the procedure of Section 3

can also be used in case the aspect ratio is unknown,

provided that the straight line reconstruction is applied

for the central pixel row, yielding the correct focal

length f . Furthermore, the straight line reconstruction

of the central pixel column yields τ · f , giving us the

correct aspect ratio τ . Of course, if the ToF-sensor is

guaranteed to be equipped with square pixels, then

simply τ = 1 and this section is redundant. Since we

mostly assume that the principal point is not exactly

known to us, we have to guess the position of the cen-

tral row and the central column in the first iteration

step. Consequently, Section 4 merely describes how to

initialize the aspect ratio τ .

In Section 5, we introduce uncertainties on the coor-

dinates (u0, v0) of the principal point and investigate

their effects on the computation of f as explained in

Section 3 (determined by the maximal straightening of

the spatial reconstruction of the pixel rows). In general,

even in case of errors on the principal point, we can suc-

ceed realizing a given pixel row in the image as approx-

imately collinear points in 3-space, albeit at the cost of

adapting the correct focal length. This “compensating
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value” f∗ for f is mainly determined by the vertical de-

viation of the principal point (v0 → v∗), rather than by

horizontal deviations of the principal point.

Furthermore, we give an explicit formula for this adap-

tation f∗ for the focal length (Eq.2 in Theorem 2), that

depends on the vertical deviation v∗ of v0, but also on

the specific choice of the reconstructed pixel row. As a

matter of fact, the fact that we find different optimal

values for the focal length in order to reconstruct the

different pixel rows as straight spatial lines, indicates

that we used a wrong value v∗ for v0. Consequently, we

adopt the strategy to select the candidate v0 = v∗ that

causes the minimal variance among the computed focal

lengths f∗ for the different pixel rows.

The procedure for finding u0 is similar, replacing “pixel

rows” by “pixel columns” in the previous explanation.

Section 6 collects the previous results in a simple, effec-

tive and robust procedure for the lateral calibration of

a Time-of-Flight camera by means of one image of a flat

surface. The algorithm computes the intrinsic camera

parameters in a gradual way. In case the aspect ratio is

unknown and must to be calibrated too, the procedure

needs to be iterated.

Simulations in Section 7 demonstrate the accuracy and

robustness of our procedure, verifying that at most 3

iteration loops are needed in case of an unknown as-

pect ratio. This has been confirmed by real experiments

(Section 8), where we processed ToF images of a wall

and obtained stable calibration results. The accuracy

of the real experiments is demonstrated by comparing

computed scene distances with the ground truth.

2 Internal Radial Distances

Let C be the centre of projection in the pinhole model of

a ToF camera. Assume that the sensor contains H×W
pixels (H stands for “height”, W stands for “width”).

Using the conventional pixel coordinate axes, each pixel

gets coordinates (u, v) with row index v ∈ {0, . . . ,H −
1} and column index u ∈ {0, . . . ,W − 1}.
The internal radial distance map (IRD) d provides the

distances from the centre C to the pixels of the ToF

sensor in pixel units (Figure 2).

The IRD is represented as a function on the pixel grid:

d(u, v) = |C − puv|

(puv is the pixel with coordinates (u, v)). In case the

aspect ratio of the sensor differs from 1, we agree to

measure d(u, v) in horizontal pixel units.

Notice that the IRD function d is an intrinsic property

of the ToF camera, independent from its position in

the world, and independent from the received signal

as reflected by the environment. As a matter of fact,

the IRD can be directly obtained from the traditional

calibration matrix K (see [1]). In this article we will

always assume rectangular pixels (zero skewness), such

that the IRD can be computed as follows:

d(u, v) =

√
(u− u0)2 +

(
v − v0
τ

)2

+ f2

f : focal length in horizontal pixel units,

τ : aspect ratio,

(u0, v0): pixel coordinates of the principal point.

The reason why we introduce these internal distances

d, is the observation that for ToF-measurements D the

ratios D/d appear to upscale image entities to world

entities. For further elaboration of this concept, we re-

fer to [1,8,10]. For now, it suffices to see how the 3D-

reconstruction of an image point puv with rectangu-

lar pixel coordinates (u, v) can be expressed w.r.t. the

camera reference frame (Figure 2) in terms of this D/d

ratio:

Puv =
D(u, v)

d(u, v)
(u− u0, (v − v0)/τ, f) (1)

where the world radial distance D(u, v) = ||CPuv|| is

provided by the ToF sensor.

v

f

sensor plane

u

puv

D(u, v)

Puv

cu0v0

C

Z

Y

d(u, v)

X

U

V

Fig. 2 The values for u, u0, f and d(u, v) are measured in
horizontal pixel units (hpu), the values v and v0 in τ×hpu,
and D(u, v) in world units (used in the XY Z-reference).

Actually, the IRD d is more general than the calibration

matrix K, since it does not require constant calibration

parameters. In this article we will encounter situations
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where different pixel rows in the image will have to be

reconstructed by means of different values for the focal

length f .

3 Recovering the focal length in case of known

principal point and aspect ratio

In this section we assume that the principal point c =

(u0, v0) is known to us. For a start, we also assume a

known value τ for the aspect ratio.

We consider a ToF image of a flat surface (plane) that

covers a sensor of size H ×W . Next, we select an arbi-

trary horizontal pixel row:

(0, vc), (1, vc) . . . , (W − 1, vc)

In 3-space, with respect to the camera reference frame,

these pixels lie on a line parallel to X, denoted by l(vc)

(Figure 3).

U

l(v
c
)

Wall

c

γ (v
c
)

Z

X
C

Y

ψ

V

Fig. 3 In the image of a wall we illustrate three pixels on a
horizontal row. Their reconstruction can be considered in the
plane γ(vc) through C and l(vc), by rescaling the distance to
C till matching the ToF radial distances.

The reconstruction of the pixels (u, vc) can be carried

out in two steps. First, we consider the plane γ(vc)

through the camera centre C (= the origin in our ref-

erence frame) and the line l(vc). Notice that this plane

γ(vc) contains X, as well as the world points on the flat

surface that are observed by these pixels (u, vc) (Fig-

ure 3). The angle ψ between γ(vc) and the “horizontal”

reference plane XZ can be computed by

tanψ = (vc − v0)/f

and can be regarded as the inclination for the recon-

struction of the given pixel row.

Next the reconstruction Puvc of the individual pixels

(u, vc) can be carried out in this plane γ(vc) by a ho-

mothetic transformation with factor D(u, vc)/d(u, vc)

applied to these pixels on l(vc).

A wrong value for the focal length f (→ fe) will cause

a wrong computation for the inclination ψ of the plane

γ(vc). Furthermore, in this (incorrect) plane γ(vc) the

reconstructed points Puvc fail to be collinear. Indeed,

if we underestimate (resp. overestimate) f then we un-

derestimate (resp. overestimate) the IRD d(u, vc):√
(u− u0)2 +

(
vc − v0
τ

)2

+ f2e

such that we overestimate the homothetic factor

D(u, vc)/d(u, vc) in the reconstruction of the points Puvc .

Consequently, regardless the error on the inclination ψ,

a wrong value fe for the focal length implies that the

reconstructed pixel row yields a “bent” line instead of

a straight line ( Figure 4). This means that we know

that we used a wrong focal length, because the recon-

structed points should be collinear, given by the line

of intersection of the viewed flat surface and the plane

γ(vc).

f
e
 > f

f
e
 < f

f
e
=f

C

Fig. 4 Situation in the plane γ(vc) A 3D-reconstruction of the
ToF images of collinear points is bent toward the camera if we
underestimate the focal length, otherwise the reconstructed
points bend away from the correct line.

In case of a curved reconstruction, we can compute the

least squares fitting line in 3D for this spatial data set

Puvc , with u = 0, . . . ,W − 1. The least squares error

LSE(fe), being the sum of squared distances of these

points to this best fitting line, can be considered as

a measure for the misjudged focal length fe. We note

that this LSE(fe) can be easily obtained as the smallest

eigenvalue of the scatter matrix of the point set. We

refer e.g. to [3,12] or [9].

We conclude that if (u0, v0) and τ are known to us, the

exact value f is distinguished as the unique value for

which LSE(f) = 0. This value can be found by min-

imizing LSE(fe). As a matter of fact, this minimiza-

tion can be performed on any pixel row or any pixel
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column or any line of image pixels, always leading to

the same f , the exact value of the focal length. Fur-

thermore, this optimization is very well conditioned,

because the global minimum LSE(f) is the only local

minimum for LSE(fe), as depicted in Figure 4. This ex-

plains the satisfying accuracy for obtaining f in case the

synthetic or real data is subject to ToF-noise (errors on

D) or lens distortion (Sections 7 and 8). However, we

strongly advise not to run this collinearity optimiza-

tion with more than one free parameter (u0, v0 or τ

besides f) as this would introduce local minima and a

compensation transfer between the several parameters.

4 Recovering the focal length and aspect ratio

in case of known principal point

The key observation in this section is that we do not

need knowledge about the aspect ratio τ for the re-

covery of f by a best-line-fit, provided we choose to

reconstruct the central pixel row as collinear points

in 3-space. For the ease of presentation, we assume the

coordinates of the principal point (u0, v0) up to pixel

accuracy. In this case, the central image row v = v0 ef-

fectively contains pixels (u, v0), u = 0, . . . ,W − 1. The

reconstruction of a 3D point Puv0 of a pixel (u, v0) takes

place in the XZ-plane (inclination ψ = 0) and the com-

puted radial distance is independent from τ . Indeed,

substituting v = v0 in Eq.1:

Puv0 =
D(u, v0)√

(u− u0)2 + f2
(u− u0, 0, f)

Consequently, the correct focal length f is recovered

as the unique value that reconstructs the central pixel

row as collinear points (in theory), or that minimizes

LSE(f) (in practice).

On the other hand, suppose now that we search for the

optimal focal value that back-projects the central pixel

column u = u0 to collinear points in 3-space. The exact

value for τ would give us the correct value for f accord-

ing to Section 3 (disregarding noise) and Eq.1. However,

if we do not know the aspect ratio, choosing the default

value τ = 1, then we also succeed in the recovery of the

central pixel column as collinear 3D points, by modify-

ing f to ft. The simple relation between the adapted

ft and the correct focal length f is proven in the next

theorem.

Theorem 1 If we use the correct coordinates (u0, v0)

for the principal point, assuming a default aspect ratio

1, and if ft is the optimal adapted focal length for recon-

structing the central pixel column u = u0 as collinear

points in space, then ft = fτ , with f the correct focal

length and τ the correct aspect ratio.

Proof The correct reconstruction of the central pixel

column u = u0 is given by

Pu0v =
D(u0, v)√(
v−v0
τ

)2
+ f2

(0,

(
v − v0
τ

)
, f)

=
D(u0, v)√(
v−v0
fτ

)2
+ 1

(0,

(
v − v0
fτ

)
, 1)

Clearly, if we use τ = 1 then we can find the same

collinear reconstructed points

Pu0v =
D(u0, v)√(
v−v0
ft

)2
+ 1

(0,

(
v − v0
ft

)
, 1)

by means of the adapted focal length ft = fτ .

Recall that we can find the correct value f by recon-

structing the central pixel row. We conclude that we

can compute the correct value for τ by

τ = ft/f

In general, if we used some initial value τ0, guessing the

aspect ratio τ , then

τ =
ft0
f
τ0

with ft0 the optimal focal value to reconstruct the cen-

tral pixel column u = u0 on a spatial line (using τ0), and

f the correct focal length that is computed by recon-

structing the central pixel row v = v0 (without knowing

the correct value for τ).

Remark: In case the principal point is given at sub-

pixel accuracy, u0 and v0 may not be integers anymore.

Consequently, in order to reconstruct the central row

v = v0 or de the central column u = u0, we need to

interpolate the ToF measurements D for obtaining the

involved radial distances D(u, v0) or D(u0, v).

5 How principal point errors affect the focal

length computation

Let us first investigate the effect of a wrong estimate

v∗ for v0 in the collinearity optimization for a pixel row

v = vc. Provisionally we assume that the aspect ratio

is known to us. For the ease of presentation we put

τ = 1. Furthermore, we assume for the moment that u0
is exactly known.

It turns out that even for an incorrect value v∗ for v0
the procedure of Section 3 succeeds in reconstructing

each pixel row as collinear points in space. The devia-

tion of v0 can be simply traded off by an appropriate

adaptation of the focal length f . The exact formulation

is given by the following theorem:
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Theorem 2 Let v = vc be a (horizontal) pixel row in

the image of a flat surface by a ToF camera with square

pixels, a focal length f and a principal point (u0, v0). Let

(u0, v∗) be an estimate for this principal point. Then we

can adapt the focal length by

f∗ =
√
f2 − 2vc(v0 − v∗) + v20 − v2∗ (2)

such that the resulting reconstructed pixel points P ∗
u =

D(u,vc)
d∗(u,vc)

(u− u0, vc − v∗, f∗) are collinear, where the in-

ternal radial distances d∗ are considered w.r.t. (u0, v∗)

and f∗.

Proof First we observe that all these reconstructed points

P ∗
u are positioned in the plane γ∗(vc), through X and

with inclination ψ∗ (angle w.r.t. the “horizontal” plane

XZ):

tanψ∗ =
vc − v∗
f∗

In this plane γ∗(vc), each point P ∗
u is obtained from

pixel (u, vc) by a homothetic transformation H(C, ru)

from the camera centre C and by the scale factor

ru =
D(u, vc)

d∗(u, vc)

The key of the proof is the fact that the virtual IRD d∗
equals the correct IRD d for this pixel row v = vc:

d∗(u, vc) =
√

(u− u0)2 + (vc − v∗)2 + f2∗

=
√

(u− u0)2 + (vc − v∗)2 + f2 − 2vcv0 + 2vcv∗ − v2∗ + v20

=
√

(u− u0)2 + (vc − v0)2 + f2

= d(u, vc)

by the definition of f∗ as given by Eq.2. Consequently,

for each pixel (u, vc), the transformation H(C, ru) is the

same that maps this pixel in the correct plane γ(vc) to

the correct points Puvc (Eq.1). We conclude that the

points P ∗
u are the images of the points Puvc under the

spatial rotation about X that maps plane γ(vc) to plane

γ∗(vc). Because the correct points Puvc are collinear, so

are their rotated images P ∗
u .

From Theorem 2 we learn that even with a wrong value

v∗ for v0 it is still possible to reconstruct a pixel row

to collinear spatial points by means of a compensation

of the focal length f into f∗. But also notice that the

adapted value f∗ depends on vc, so it varies from pixel

row to pixel row. However, the variation of the different

f∗ for the different rows decreases if v∗ tends to the cor-

rect value v0 (Eq.2). As a matter of fact, if v∗ happens

to be equal to v0 then we find the correct value f∗ = f

for each pixel row.

Example: In Section 7 we will illustrate this principle

of collinear reconstruction for pixel rows. However, for

the benefit of the reader, we choose to present already

now a small example. We produced synthetic data by

considering some horizontal rows in the image of a per-

spective projection of a plane. In this artificial setting

we introduced square pixel coordinates by choosing a

focal length f = 80 and taking (u0, v0) = (25, 32) as

principal point, inspired by the 64 × 50 camera in our

lab. Below we give the results of the computations for

three arbitrarily selected pixel rows (containing 50 pix-

els each). This array contains the optimal focal lengths

computed by a numerical procedure (e.g. fminsearch

in Matlab) that minimizes the distances of the recon-

structed points to the best fitting spatial line for these

points ([3,12,9]).

row(vc)
u0 = 25

v0 = 32

u0 = 25

v∗ = 37
dev. straight

0 80 77.81 0

10 80 78.45 0

20 80 79.09 0

30 80 79.72 0

40 80 80.34 0

50 80 80.96 0

60 80 81.58 0

The first column refers to the pixel row v = vc that

we intend to reconstruct as a straight spatial line. In

the second column we reconstructed each pixel row rel-

ative to the correct principal point, and of course, we

find the correct focal length f = 80 as the unique value

that back-projects these pixels rows as straight lines in

3-space, as predicted by Section 3. In the third column

we assumed a deviation v∗ of the second coordinate of

the principal point, but we still assumed a correct u0.

In this case, according to Theorem 2, the pixel rows

can be still reconstructed as straight lines, as shown by

the last column, containing zero deviation of the recon-

structed points with respect to the best fitting line. In

order to succeed in these collinear reconstructions, we

needed adapting f∗ for each individual row v = vc. It

can be checked that the numerically found values for f∗
in the third column match the values that are predicted

by Eq.2.

The correct value v0 can be discovered within a range

of possible values v∗ as the unique value for which the

optimal f∗ is the same for each pixel row. In a real

situation, in the presence of noise, we select v0 by re-

quiring minimal variance between the detected values

f∗ for the different rows. From simulations (Section 7)
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we learn that for reasonable noise on D (1% of the mea-

sured distance to the flat surface) we are at most 1 pixel

mistaken w.r.t. the exact value v0 (camera resolution:

64 × 50). Note that, as a side effect of this calibrating

procedure for v0, we automatically determine the focal

length f as well.

Next we consider errors on the first coordinate of the

principal point and their effect on the computed fo-

cal length that maximizes the straightness of the re-

constructed pixel rows. Unlike deviations v∗ of v0, a

deviation u∗ of u0 prevents us from finding a compen-

sating f∗ that reconstructs the pixels of a horizontal

row as collinear points in space. This is shown in the

table below. The “most straight” reconstruction of the

considered pixel rows, using the principal point (20, 32)

with error in the u-coordinate, gives nonzero scattering

around the best fitting line (third column).

row(vc)
u∗ = 20

v0 = 32

dev. straight

×1000

u∗ = 20

v∗ = 37

0 79.815 0.221 77.624

10 79.817 0.054 78.268

20 79.819 0.026 78.906

30 79.820 0.015 79.538

40 79.820 0.009 80.164

50 79.819 0.006 80.784

60 79.816 0.003 81.398

But observe that the “scattering” of the reconstructed

points is restricted (third column), and that the opti-

mal f∗ that maximizes the straightness is very close to

the correct value f . This can be checked in the second

column, where we assumed a correct second coordinate

v0 of the principal point, but a wrong value u∗ for u0.

Furthermore, if we combine errors on both coordinates,

then we observe in the last column of this table that

the variation of the computed optimal values f∗ for

c = (20, 37) are very similar to the third column of

the previous table (where. c = (25, 37). We conclude

that the variance among the optimal focal lengths for

straightening the separate pixel rows, is mainly due to

the error on the v-coordinate of the principal point.

Theorem 2 and the observed insensitivity of “horizon-

tal errors” on the principal point with respect to the

collinearity of reconstructed pixel rows, enables us to

discover the exact value v0 among a possible range of

values v∗. Indeed, depending on the requested accu-

racy for the principal point (e.g. integer pixel coordi-

nates), we compare the possible proposals v∗ for v0 in

this range, deciding for the value that implies a min-

imal variance for the row focal lengths f∗ associated

with different pixel rows. This procedure is valid even

if the reconstruction has been performed by the wrong

u0.

Furthermore, in Theorem 2 we can interchange the parts

played by u0 and v0, replacing pixel rows by pixel columns,

such that we can discover the correct value for u0 simi-

larly to but separately from v0, computing an optimally

straightening f∗ for different pixel columns.

6 The complete calibration procedure

We conclude in the following algorithm for calibrating

a ToF camera. We assume to have taken the ToF image

of a flat surface. Notice that the reconstruction formula

given by Eq.1 applies for pixels (u, v) with integer co-

ordinates, but that the proposed values for u0 and v0
do not have to be integers.

We first give a short version for the case of known aspect

ratio.

1. Initialize the first coordinate u0 for the principal

point (u0, v0) (e.g., the geometric image centre).

2. Choose a sufficiently large range R for a finite num-

ber of possible values for v0 (depending on the wished

accuracy).

3. For each value v∗ ∈ R and for each pixel row v =

vc, we compute the focal length f∗c that maximally

straightens the spatial reconstruction of this pixel

row w.r.t. (u0, v∗). This step leads to a mapping for

each v∗ ∈ R to the variance Var({f∗c}).
4. Put v0 equal to the value v∗ ∈ R that has minimal

Var({f∗c}) (applying Theorem 2).

5. Next, choose a range of possible values for u0, and

repeat the previous two steps with pixel columns

instead of pixel rows (using the previously estimated

value for v0).

6. Finally, we recover f as the optimal focal length for

the collinear reconstructing of the central pixel row

v = v0.

In case we do not assume to know the aspect ratio τ ,

we have to convert our algorithm in an iterative proce-

dure. Indeed, τ is needed in the straight line reconstruc-

tions of pixel rows/columns for finding v0 and u0, while

on the other hand we need the pixel row and column

through this principal point for obtaining τ (Section 4).

Fortunately, in all our simulations and experiments we

observed that two or three iteration steps were suffi-

cient.

1. Initialize the principal point (u0, v0) and the aspect

ratio τ . One can take the geometric image centre for

(u0, v0) and τ = 1.

2. Use the actual values for u0 and v0 to reconstruct

the central pixel row and central pixel column as
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collinear points, leading to optimal focal values f

and ft respectively. Now correct the current value

of τ by (Theorem 1):

τ ← ft
f
τ

3. Choose a sufficiently large range R for a finite num-

ber of possible values for v0 (depending on the wished

accuracy).

4. For each value v∗ ∈ R and for each pixel row v = vc,

we compute the focal length f∗c that maximally

straightens the spatial reconstruction of this pixel

row w.r.t. (u0, v∗) and τ . This step leads to a map-

ping for each v∗ ∈ R to the variance Var({f∗c}).
5. Put v0 equal to the value v∗ ∈ R that has minimal

Var({f∗c}) (applying Theorem 2).

6. Next, choose a range of possible values for u0, and

repeat the previous two steps with pixel columns

instead of pixel rows (using the previously estimated

value for v0).

7. Now we can iterate the previous steps again, start-

ing at (2), to fine-tune the aspect ratio τ .

8. Finally, we recover f as the optimal focal length for

the collinear reconstructing of the central pixel row

v = v0.

Remark: Observe that the main idea of our calibra-

tion procedure is to optimize the “flatness” of the re-

constructed image pixels, and that we chose to do this

for the separate rows and columns, rather than to op-

timize the whole constructed image as a plane. Due

to this strategy, we are able to observe for different

pixel rows (resp., columns) different optimal values for

f , enabling us to finetune v0 (resp., u0). Also, the fact

that we can threat rows and columns separately, en-

ables us to calibrate u0 and v0 independently from each

other. Furthermore, by comparing the focal length that

straightens pixel columns with the one that straightens

pixel rows, the aspect ratio is exposed.

7 Simulations

We consider a ToF camera with 64 rows of 50 square

pixels, with a focal length f = 80 and a principal point

c = (25, 32). In this simulation, we equip each pixel

(u, v) with the radial distance D(u, v) between the cam-

era centre and a fixed plane.

First we illustrate Theorem 2 in a noise-free environ-

ment (exact D(u, v)). To this end we reconstruct each

separate pixel row from a principal point (25, 35) with

correct u-coordinate but wrong v-coordinate (v∗ = 35).

Each of these 64 rows can be succesfully reconstructed
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Fig. 5 The marks on the horizontal axis refer to the 64 pixel
rows v = vc in the simulated ToF image. The vertical axis
refers to the corresponding adapted focal length f∗, computed
by a numerical optimization for reconstructing each pixel row
on a straight line in space. This plot matches exactly f∗ =√

6199 + 6vc, as predicted by Eq.2.

as a straight line in 3-space by choosing an appropriate

focal length f∗ (Figure 5).

The value f∗ for the pixel row v = vc was found by an

optimization method that minimizes the least-squares

error (LSE) of the reconstructed points with respect

to the best fitting line (e.g. by the method of [9]). In

accordance with Theorem 2, this optimal f∗ succeeds

in reconstructing the corresponding pixel row perfectly

collinear (LSE = 0). We also checked Eq.2 for all 64

values of f∗:

f∗ =
√
f2 − 2vc(v0 − v∗) + v20 − v2∗

=
√

802 − 2vc(32− 35) + 322 − 352

The variation of f∗ for different rows indicate that v∗ =

35 is a wrong guess for v0. Below we present a list of

the variations of f∗ for different proposals for v∗ in a

range from 29 to 33 with a resolution of 0.5 pixel:

v∗ 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0

std(f∗) 0.70 0.58 0.47 0.35 0.23 0.12 0.00 0.12 0.23

The correct value v0 = 32 is obviously discovered by

std(f∗) = 0 (the same focal compensation for all pixel

rows).

Next, we repeat the same row-wise computations for

f∗, but now guessing the u-coordinate of c, say ue = 20

(that is, an error of 5 pixels). Using wrong values for

u0 and v0 prevents the reconstruction of the separate
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pixel rows as straight lines. But, as explained in Sec-

tion 5, the best fitting lines still have a very small LSE

and they lead to row values for the focal length that

are very similar to the values f∗ that are obtained from

the correct first coordinate of c (u0 = 25). Further-

more, as shown in Figure 6, among a range of possible

values v∗, the correct v0 is still easily distinguished by

minimizing the variance of the computed focal lengths

among the different pixel rows. Simulations with ToF

noise on D up to 1% demonstrate the stability of this

procedure. The lower diagram of Figure 6 shows that

the behaviour of the row variance of the computed focal

lengths for other wrong guesses ue, is almost identical

to these for ue = 20. This illustrates the fact that the

variance among the straightening focal lengths for dif-

ferent pixel rows is mainly determined by the error on

the v-coordinate of the principal point, hardly by the

error on the u-coordinate.
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Fig. 6 Both plots represent the variance of the optimal focal
length for different pixel rows in function of choices for the
v-coordinate of the principal point, under the assumption of
a wrong guess for u0 (ue = 20). But the upper diagram uses
exact ToF-distances D, while the lower diagram simulates a
1% noise level on the ToF distances. In both cases, the correct
value of v0 gives minimal variance. The lower diagram also
shows the similar plot for ue = 35 (dashed graph)

Now, we simulate the calibration procedure as presented

in Section 6 for several noise levels, assuming knowl-

edge of the aspect ratio. This level is determined by

the standard deviation of Gaussian noise added to the

radial distances D(u, v). For example, σ = 0.01 corre-

sponds to absolute errors of ±3 cm on measuring the

simulated flat surface at a distance of 400 cm.

In order to demonstrate the reliability of our calibra-

tion procedure, we simulated a run of 20 trials for the

noise level associated with σ = 0.01, giving the follow-

ing result:

f u0 v0

mean 80.002 24.925 31.945

stdv 0.138 0.527 0.598

Figure 7 shows similar computations for different noise

levels, supporting the claim that the proposed calibra-

tion procedure is both stable and accurate.

Finally, we simulated our calibration in case of unknown

aspect ratio. We produced artificial ToF images (with-

out depth noise) with τ = 1.1. We ran the iterative

algorithm (Section 6) several times, using start guesses

in a wide range: τ0 = 0.8 → 1.4. In each case we ob-

served the correct principal values u0 and v0 after one

iteration, the correct aspect ratio after at most two it-

erations, and the correct focal value after at most three

iterations. In the table below, we illustrate this for ini-

tial value τ0 = 0.9:

# iterations u0 v0 frow fcol τn−1 τn
1 25.0 32.0 79.97 97.78 0.9000 1.1004

2 25.0 32.0 80.00 79.97 1.1004 1.1000

3 25.0 32.0 80.00 80.00 1.1000 1.1000

We conclude that this iteration procedure converges

very fast, even for wild initial guesses.

Finally, we simulated the iterative calibration (unknown

aspect ratio) for different levels of noise on the ToF dis-

tances, in a similar way as we did for known aspect ra-

tio. Motivated by our previous observation in the noise-

less simulations, we stopped after three iteration steps.

The achieved stability and accuracy are as satisfying

as in the simulations with known aspect ratio (without

iterations). The results for the recovered aspect ratio

under an increasing noise level are plotted in Figure 8.

Remark: The calibration results after 3 iteration steps

in our simulations are not affected by the initial guess

for τ . We checked this for the total range τ0 ∈ [0.1 , 2.1],

each time converging to the same values for u0, v0, f

and τ .
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Fig. 7 The calibration parameters (u0 and v0 in the first
plot, f in the second plot) are obtained by our procedure
under increasing noise levels. The plots present the statistics
(mean and standard deviation) for a run of 20 trials for the
selected noise levels.

8 Real Experiments

We tested our calibration algorithm in real experiments,

using Time-of-Flight cameras with resolution 64 × 50

(IFM) and 176× 144 (Mesa). In both cases we did not

calibrate the camera in depth (correcting systematic D-

errors), justified by the robust performance of our pro-

cedure under simulated noise on the ToF measurement

(Section 7).

On the other hand, a drawback of our algorithm is the

fact that it is designed for a perspective model, while

real cameras suffer from lens distortions. For this rea-

son, we cut off vertical and horizontal margins in the

acquired ToF images of the presented plane. Indeed,

the highest affect of radial distortion occurs in these
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Fig. 8 The means and standard deviations for the recovered
aspect ratios are plotted against increasing depth noise. At
each depicted noise level we performed a run of 20 trials.

boundary pixels, and the ToF data is here less reliable.

Furthermore, for the Mesa camera, we rectified the im-

ages by a quadratic radial model, based on a reference

image of a hung plumb. The resolution of the IFM was

considered to be too low for an accurate removal of the

radial distortion.

In the table below, we present the results of the pro-

cedure of Section 6 for 9 images of a wall by the IFM

camera, taken form distances varying from 1 m to 2

m. The camera delivered each of these 9 images as the

result of averaging 100 ToF-measurements. We used 3

iteration steps.

Image u0 v0 f τ

1 27 34 80.6709 0.9858

2 25 28 81.5967 0.9731

3 27 34 80.1028 1.0016

4 21 34 80.6351 0.9921

5 21 29 80.8330 0.9727

6 24 29 80.8330 1.0018

7 27 34 80.9754 0.9810

8 27 30 82.9128 0.9502

9 27 34 81.2941 0.9901

Rather than taking the average of the values of the in-

trinsic parameters among several images, we suggest to

use one “reliable” image (which is already the result

of 100 ToF measurements). This reliability is obtained

first at all by avoiding overexposed images (due to re-

flection by the observed surface). But the main charac-

teristic of a reliable calibration image is the small vari-

ance of the straightening focal values for the separate

pixel rows (columns). Below we show for each image
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the standard deviations of the optimal f -values for the

pixel rows or columns

image: 1 2 3 4 5 6 7 8 9

std. row f: 0.96 2.01 1.26 1.68 1.65 1.65 0.74 2.10 1.49

std. col. f: 0.33 0.77 0.66 0.48 1.13 1.13 1.25 1.13 1.31

We conclude that the calibration from the first image is

the most reliable, yielding u0 = 27, v0 = 34, f = 80.67,

τ = 0.99. We verified these parameters by using them

to reconstruct the 9 available images in 3-space, and

by checking the planarity of the result. This was done

by considering the spread of the distances of the recon-

structed points to the best fitting plane. The standard

deviations of these offsets for the 9 images are given by

(in mm):

image: 1 2 3 4 5 6 7 8 9

std. plane dist.: 3.2 4.4 3.0 3.1 4.8 7.1 3.4 4.9 4.0

This proofs that the the reconstructions are close to

being coplanar, supporting the choice of these calibra-

tion parameter values. We also note that the recovered

focal length is very similar the value f = 80 that was

provided by the factory.

The higher resolution of our second camera (176 by

144) enabled us to find a useful model for the radial

distortion and to rectify the images. Out of 10 images,

from different distances and under different angles, we

selected the top 3 with minimal variance among the

deparate row values for the straightening focal length:

u0 v0 f τ

78 82 253.9 1.08

78 82 253.9 1.13

78 82 253.9 1.15
78 82 255.4 1.14

So, we observe stability if we compare different reliable

images. The accuracy of these calibration results has

been checked by the flatness of the reconstructed im-

ages, as in the experiment with the IFM camera. The

results obtained from the image with the best quality

(minimal variance of the row focal lengths), appeared to

yield the most flat reconstruction. But we also checked

another “ground truth”, namely by viewing two par-

allel cables with a distance of approximately 50 cm.

We measured the distance between the cables in sev-

eral (rectified) images, at 50 height levels. Also here,

taking u0 = 78, v0 = 82, f = 253.9, τ = 1.08, gave

the most accurate result compared to the world mea-

sure, namely an average distance of 496.82 mm, with

standard deviation of 1.655 mm.

9 Conclusions

We presented a gradual procedure for the lateral cal-

ibration of a Time-of-Flight camera by means of one

image of a flat surface.

Starting with an arbitrary guess for the first coordi-

nate u0 of the principal point, we evaluated candidates

for the second coordinate v0 in an interval of possible

values. For each such candidate v∗ and for each pixel

row v = vc we determined the optimal focal length

fc that back-projects this pixel row to collinear points

(using the ToF distances D). The correct value v∗ = v0
was recognized as the one that yields the minimal vari-

ance for the optimal fc among the different pixel rows.

This observation appears to be immune under a wrong

“guess” for u0. Theorem 2 provides a formula for the

optimally straightening focal length, supporting the fol-

lowed procedure. The latter can be applied on pixel

columns equally well in order to recognize the correct

value for the first coordinate u0. Once the principal

point had been positioned, we immediately obtain the

focal length. In case of unknown aspect ratio τ , we have

to iterate our procedure (according to Theorem 1).

The stability and the accuracy of the algorithm was

evaluated and validated by simulations and experiments.

The performance appeared to be satisfactory, even with-

out any depth calibration of the ToF camera. Our cal-

ibration procedure ignores non-linear lens distortions.

To overcome this drawback, the images can be rectified

in a preprocessing phase, and the boundary pixels can

be deleted.

The main contribution of this procedure is the fact that

a ToF camera has been laterally calibrated by means

of one simple image of a flat surface, only using the

depth data provided by the camera. We do not need

multiple intensity images and avoid feature detection.

Consequently, our procedure is fast and simple, and not

sensitive to pixel noise.
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