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Abstract

Image-based classification of histology sections, in terms of distinct components (e.g., tumor, 

stroma, normal), provides a series of indices for histology composition (e.g., the percentage of 

each distinct components in histology sections), and enables the study of nuclear properties within 

each component. Furthermore, the study of these indices, constructed from each whole slide image 

in a large cohort, has the potential to provide predictive models of clinical outcome. For example, 

correlations can be established between the constructed indices and the patients’ survival 
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information at cohort level, which is a fundamental step towards personalized medicine. However, 

performance of the existing techniques is hindered as a result of large technical variations (e.g., 

variations of color/textures in tissue images due to non-standard experimental protocols) and 

biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. We 

propose a system that automatically learns a series of dictionary elements for representing the 

underlying spatial distribution using stacked predictive sparse decomposition. The learned 

representation is then fed into the spatial pyramid matching framework with a linear support vector 

machine classifier. The system has been evaluated for classification of distinct histological 

components for two cohorts of tumor types. Throughput has been increased by using of graphical 

processing unit (GPU), and evaluation indicates a superior performance results, compared with 

previous research.
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1 Introduction

Tumor histology provides detailed insight into cellular morphology, organization, and 

heterogeneity. For example, histology sections can be used to identify mitotic cells, cellular 

aneuploidy, and autoimmune responses. More importantly, if tumor morphology and 

architecture can be quantified in a large cohort, it will provide the basis for predictive 

models in a similar way that genomic techniques have identified predictive molecular 

subtypes. Genome analysis techniques (e.g., microarray analysis) have the advantages of 

standardized tools for data analysis and pathway enrichment, which enables hypothesis 

generation for the underlying mechanism. On the other hand, histological signatures are hard 

to compute because phenotypic signatures are not standardized and advanced methods for 

image analysis remain at a deficit. Image analysis is further complicated by technical 

variations as a result of sample preparation (e.g., fixation, staining) and biological 

heterogeneity, where the latter can originate both within a whole slide image (WSI) and 

between WSIs of different patients with the same aberrant signature. These variations are 

manifested in terms of wide swings in the texture, color, and intensity of the histology 

sections at multiple scales. If morphometric indices can be successfully computed then they 

can be linked with clinical and genomic data for building predictive models Chang et al. 

(2013c).

One of the main technical barriers for processing a large collection of histological data is the 

diverse phenotypic signature, which is shared by the object recognition problem in computer 

vision, i.e., the number of different ways that a sitting chair can be manufactured. In this 

case of histology sections, the diversity in the aberrant signatures is rendered by technical 

variations (e.g., fixation, staining, uncalibrated imaging system), and biological 

heterogeneity as no two patients have the same signature. Biological heterogeneity can be as 

a result of the (i) protein macromolecules that are being secreted into the immediate 

environment; thus, altering color composition, (ii) tumor being at a specific temporal states 
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at the time of sample collection. The latter has a tremendous impact on the tumor 

composition that ranges from cellular density, cell death, and immune response.

In this paper, we aim to classify components of each histology section in terms of distinct 

phenotypes (e.g., tumor, stroma, necrosis), which is disease specific. We show that, 

compared with human engineered features, unsupervised feature learning is more tolerant to 

batch effect (e.g., technical variations associated with sample preparation) and can learn 

pertinent features without user intervention. The key concept is that stacked predictive 

sparse decomposition (PSD) Kavukcuoglu et al. (2008) can elucidate a superior 

representation that captures intrinsic phenotypic signature. When this representation is 

coupled with spatial pyramid matching (SPM) Lazebnik et al. (2006), which utilizes sparse 

tissue morphometric signatures at various locations and scales, an improved classification 

performance is realized.

Organization of this paper is as follows: Sect. 2 reviews related works. Section 3 describes 

the details of our proposed approach. Section 4 elaborates the details of our experimental 

setup, followed by a detailed discussion (as in Sect. 5) on the experimental results. Lastly, 

Sect. 6 concludes the paper.

2 Related Work

Several outstanding reviews for the analysis of histology sections can be found in Demir and 

Yener (2009); Gurcan et al. (2009). From our perspective, four distinct works have defined 

the trends in tissue histology analysis: (i) one group of researchers proposed nuclear 

segmentation, classification, and organization for tumor grading and/or the prediction of 

tumor recurrence Axelrod et al. (2008); Datar et al. (2008); Basavanhally et al. (2009); 

Doyle et al. (2011); Chang et al. (2013c). It is worth to mention that deep max-pooling 

convolutional neural networks has been used to detect mitotic cells in in breast histology 

images Ciresan et al. (2013) with a significant success. (ii) A second group of researchers 

focused on patch level analysis (e.g., small regions) Bhagavatula et al. (2010); Kong et al. 

(2010); Han et al. (2011); Cruz-Roa et al. (2013) for tumor representation, among which, 

Cruz-Roa et al. (2013) utilized deep learning for the detection of basal-cell carcinoma. (iii) 

A third group focused on block-level analysis to distinguish different states of tissue 

development using cell-graph representation Acar et al. (2012); Bilgin et al. (2012). (iv) 

Finally, a fourth group has suggested detection and representation of the auto-immune 

response as a prognostic tool for cancer Fatakdawala et al. (2010).

The major challenge for tissue classification is the large amounts of technical variations and 

biological heterogeneities preserved in large scale dataset Kothari et al. (2012), which shares 

the same threads with object recognition and big data in computer vision. To overcome this 

problem, recent studies have focused on either fine tuning human engineered features 

Bhagavatula et al. (2010); Kong et al. (2010); Kothari et al. (2012), or applying automatic 

feature learning Huang et al. (2011) for robust representation.

In the context of computer vision research on image categorization, the traditional bag of 

features (BoF) model has been widely studied and improved through different variations 
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Bosch et al. (2008); Boiman et al. (2008); Elad and Aharon (2006); Moosmann et al. (2006); 

Lazebnik et al. (2006), among which SPM Lazebnik et al. (2006) has clearly become the 

major component of the state-of-art systems Everingham et al. (2012) for its effectiveness in 

practice.

To a large degree, applications of deep learning for classification of histology sections have 

been driven by advances in machine learning and computer vision literature. The evolution 

of our research in patch level analysis has been SIFT-like feature extraction followed by an 

evaluation of several kernel-based classification policies Han et al. (2011); independent 

subspace analysis that utilizes unsupervised learning without the constraint of being able to 

reconstruct the original signal Le et al. (2012); a single layer predictive sparse coding with 

support vector machine (SVM) classifier Nayak et al. (2013); and more recently, coupling of 

either prior knowledge Chang et al. (2013a) or unsupervised feature learning Chang et al. 

(2013b); Zhou et al. (2014), with spatial pyramid matching. The current research builds on 

these results to render an unsupervised feature learning approach with superior performance.

In summary, motivated by the fact that (i) pathologists often use “context” to assess the 

disease state, (ii) SPM partially captures context Lazebnik et al. (2006); Kavukcuoglu et al. 

(2008), and (iii) unsupervised feature learning is preferable to capture the variance in large 

cohorts, we have, for the first time, combined hierarchical unsupervised feature learning 

with SPM framework for the classification of histology sections, which enables (1) 

automatic discovery of intrinsic patterns from large histology tissue cohort via hierarchical 

unsupervised feature learning; and (2) effective representation of tissue morphometric 

context through spatial pyramid feature pooling. As a result, our approach leads to superior 

performance for tissue classification on large scale cohorts, across different tumor types.

3 Approach

The Proposed approach (PSDnSPM) utilizes predictive sparse decomposition (PSD) 

Kavukcuoglu et al. (2008) as a building block for the purpose of constructing hierarchical 

learning framework, which is suggested to be able to capture higher-level dependencies of 

input variables, thereby improving the ability of the system to capture underlying regularities 

in the data Ranzato et al. (2008). Unlike many unsupervised feature learning algorithms Lee 

et al. (2006, 2007); Poultney et al. (2006); Yu et al. (2009), the feed-forward feature 

inference of PSD is very efficient, as it involves only element-wise nonlinearity and matrix 

multiplication. For classification, the predicted sparse features are used in a similar fashion 

as SIFT features in the traditional framework of SPM, as shown in Fig. 1.

3.1 Unsupervised Feature Learning

Given X = [x1, …, xN] ∈ ℝm×N as a set of vectorized image patches, we formulate the PSD 

optimization problem in three different ways:

3.1.1 PSD with Linear Regressor (LR-PSD)—The formulation of PSD with linear 

regressor is as follows,
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(1)

where B = [b1, …, bh] ∈ ℝm×h is a set of the dictionary elements; Z = [z1, …, zN] ∈ ℝh×N is 

the sparse feature matrix; W ∈ ℝh×m is the auto-encoder; and λ is a regularization constant. 

Joint minimization of Eq. (1) with respect to the triple 〈B, Z, W〉, enforces the inference of 

the linear regressor WX to be similar to the optimal sparse codes, Z, which can reconstruct 

X over B Kavukcuoglu et al. (2008).

As shown below, optimization of Eq. (1) is iterative, where the algorithm terminates when 

either the objective function is below a preset threshold or the maximum number of 

iterations has been reached.

1. Randomly initialize B, and W.

2. Fixing B, and W, minimize Eq. (1) with respect to Z, where Z can be 

either solved as a ℓ1-minimization problem Lee et al. (2006) or 

equivalently solved by greedy algorithms, e.g., Orthogonal Matching 

Pursuit (OMP) Tropp and Gilbert (2007).

3. Fixing Z, update B and W, respectively, using the stochastic gradient 

descent algorithm.

4. Repeat [2]–[3] until stopping condition is satisfied.

3.1.2 PSD with Nonlinear Regressor (NR-PSD)—The formulation of PSD with 

nonlinear regressor is as follows,

(2)

where B = [b1, …, bh] ∈ ℝm×h is a set of the dictionary elements; Z = [z1, …, zN] ∈ ℝh×N is 

the sparse feature matrix; W ∈ ℝh×m is the auto-encoder; G = diag(g1, …, gh) ∈ ℝh×h is a 

scaling matrix with diag being an operator aligning vector, [g1, …, gh], along the diagonal; 

σ(·) is the element-wise sigmoid function; and λ is a regularization constant. Joint 

minimization of Eq. (2) with respect to the quadruple 〈B, Z, G, W〉, enforces the inference 

of the nonlinear regressor Gσ(WX) to be similar to the optimal sparse codes, Z, which can 

reconstruct X over B Kavukcuoglu et al. (2008).
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As shown below, optimization of Eq. (2) is iterative, where the algorithm terminates when 

either the objective function is below a preset threshold or the maximum number of 

iterations has been reached.

1. Randomly initialize B, W, and G.

2. Fixing B, W and G, minimize Eq. (2) with respect to Z, where Z can be 

either solved as a ℓ1-minimization problem Lee et al. (2006) or 

equivalently solved by greedy algorithms, e.g., Orthogonal Matching 

Pursuit (OMP) Tropp and Gilbert (2007).

3. Fixing B, W and Z, solve for G, which is a simple least-square problem 

with analytic solution.

4. Fixing Z and G, update B andW, respectively, using the stochastic 

gradient descent algorithm.

5. Repeat [2]–[4] until stopping condition is satisfied.

Figure 2 illustrates 1,024 dictionary elements computed from GBM and KIRC datasets, 

respectively, which capture both color and texture information from the data and is generally 

difficult to realize using hand-engineered features.

3.1.3 PSD with Saliency (Salient-PSD)—After training, both LR-PSD and NR-PSD 

extract features (sparse codes) on regularly-spaced patches over the input image. A recent 

study Wu et al. (2013) shows that saliency may help improve the classification performance. 

In tissue histology, nuclear structure is considered with the highest saliency, and, as a result, 

the Salient-PSD is designed to extract features on patches aligned at segmented nuclear 

centers Chang et al. (2013c). An example of tissue image saliency mask is shown in Fig. 3.

3.1.4 Speeding up the Unsupervised Feature Learning—In large-scale feature 

learning problems, involving ~ 105 image patches, it is computationally intensive to evaluate 

the sum-gradient over the entire training set. However, both stochastic gradient descent 

algorithm and graphical processing unit (GPU) parallel computing can provide a significant 

increase in speed. The former approximates the true gradient of the objective function by the 

gradient evaluated over mini-batches, and the latter further accelerates the process (up to 5×) 

with our Matlab implementation based on an Nvidia GTX 580 graphics card.

3.2 Spatial Pyramid Matching (SPM)

The codebook, D = [d1, …, dK] ∈ ℝh×K, consisting of K sparse tissue morphometric types, 

is constructed by solving the following optimization problem:

(3)

Chang et al. Page 6

Int J Comput Vis. Author manuscript; available in PMC 2016 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where C = [c1, …, cN] ∈ ℝK×N is the code matrix assigning each zi to its closest sparse 

tissue morphometric type in D, card(ci) is a cardinality constraint enforcing only one 

nonzero element in ci, and ci ⪰ 0 is a non-negative constraint on all vector elements. 

Equation (3) is optimized by alternating between the two variables, i.e., minimizing one 

while keeping the other fixed. After training, D is fixed and the query signal set, Z, is 

encoded by solving Eq. (3) with respect to C only.

The next step is to construct a spatial histogram for SPM Lazebnik et al. (2006). By 

repeatedly subdividing an image, histograms of different sparse tissue morphometric types 

over the resulting subregions are computed. The spatial histogram, H, is then formed by 

concatenating the appropriately weighted histograms of sparse tissue morphometric types at 

all resolutions, i.e.,

(4)

where (·) denotes the vector concatenation operator, l ∈ {0, …, L} is the resolution level of 

the image pyramid, and Hl represents the concatenation of histograms for all image 

subregions at pyramid level l (Fig. 4).

Finally, a χ2 SVM was transferred into a linear SVM based on a homogeneous kernel map 

Vedaldi and Zisserman (2012). In practice, the intersection kernel and χ2 kernel have been 

found to be the most suitable for histogram representations Yang et al. (2009). Thus, a 

homogenous kernel map is applied to approximate the χ2 kernels, which enables the 

efficiency by adopting learning methods for linear kernels, e.g., linear SVM. For more 

details about the homogeneous kernel map, please refer to Vedaldi and Zisserman (2012).

4 Experiments and Results

In this section, we provide details of the experimental design that includes data from tumor 

histopathology. The tumor data includes curated sets of glioblastoma multiforme (GBM) and 

kidney clear cell carcinoma (KIRC) from The Cancer Genome Atlas (TCGA), which are 

publicly available from both the NIH repository and our website.1 The methods and the 

detailed configuration involved in the evaluation are listed as follows,

1. NR-PSDnSPM: The nonlinear kernel SPM that uses spatial-pyramid 

histograms of sparse tissue morphometric types. In this implementation,

1http://vision.lbl.gov
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a. n = 1, 2;

b. The nonlinear regressor (Z = Gσ(WX)) was trained for the 

inference of Z;

c. The image patch size was fixed to be 20 × 20 and the 

number of dictionary elements in the top layer was fixed to 

be 1,024. We adopted the SPAMS optimization toolbox 

Mairal et al. (2010) for efficient implementation of OMP 

to compute the sparse code, Z, with sparsity prior set to 

30;

d. The PSD features were extracted on regularly-spaced 

patches over the input image, with fixed step-size (20 

pixels).

e. Standard K-means clustering was used for the construction 

of the dictionary;

f. The level of pyramid was fixed to be 3; and

g. The homogeneous kernel map was applied, followed by 

the linear SVM for classification.

2. LR-PSD1SPM Chang et al. (2013b): The nonlinear kernel SPM that uses 

spatial-pyramid histograms of sparse tissue morphometric types. In this 

implementation,

a. The linear regressor (Z = WX) was trained for the 

inference of Z;

b. For consistency, the image patch size and the number of 

dictionary elements was fixed at 20 × 20 and 1,024, 

respectively. The sparsity constraint was set at 0.3 for best 

performance following cross validation.

c. The PSD features were extracted on regularly-spaced 

patches over the input image, with fixed step-size (20 

pixels).

d. Standard K-means clustering was used for the construction 

of the dictionary;

e. The level of pyramid was fixed to be 3;

f. The homogeneous kernel map was applied, followed by 

linear SVM for classification.

3. Salient-LR-PSD1SPM: The nonlinear kernel SPM that uses spatial-

pyramid histograms of sparse tissue morphometric types extracted at 

nuclear centers. In this implementation,
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a. The linear regressor (Z = WX) was trained for the 

inference of Z;

b. For consistency, the image patch size and the number of 

dictionary elements was fixed at 20 × 20 and 1,024, 

respectively. The sparsity constraint was set at 0.3 for best 

performance following cross validation.

c. The PSD features were extracted on patches centered at 

segmented nuclear centers Chang et al. (2013c) over the 

input image.

d. Standard K-means clustering was used for the construction 

of the dictionary;

e. The level of pyramid was fixed to be 3;

f. The homogeneous kernel map was applied, followed by 

linear SVM for classification.

4. LR-PSD Chang et al. (2013b): The sparse tissue morphometric features 

with max-pooling strategy, and RBF kernel. In the implementation,

a. The linear regressor (Z = WX) was trained for the 

inference of Z;

b. For consistency, the image patch size and the number of 

dictionary elements was fixed at 20 × 20 and 1,024, 

respectively. The sparsity constraint was set at 0.3 for best 

performance following cross validation.

c. The PSD features were extracted on regularly-spaced 

patches over the input image, with fixed step-size (20 

pixels).

d. Max-pooling strategy was used for sparse feature 

summarization.

e. nonlinear SVM with RBF kernel was used for 

classification.

5. ScSPM Yang et al. (2009): The linear SPM that utilizes linear kernel on 

spatial-pyramid pooling of SIFT sparse codes. In this implementation,

a. The dense SIFT features was extracted on 16 × 16 patches 

sampled from each image on a grid with step-size 8 pixels;

b. The sparse constraint parameter λ was fixed to be 0.15, 

which was determined empirically to achieve the best 

performance;

c. The level of pyramid was fixed to be 3;

d. Linear SVM was used for classification.
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6. KSPM Lazebnik et al. (2006): The nonlinear kernel SPM that uses spatial-

pyramid histograms of SIFT features; In the implementation,

a. The dense SIFT features was extracted on 16 × 16 patches 

sampled from each image on a grid with step-size 8 pixels;

b. Standard K-means clustering was used for the construction 

of the dictionary;

c. The level of pyramid was fixed to be 3;

d. The homogeneous kernel map was applied, followed by 

linear SVM for classification.

7. CTSPM: The nonlinear kernel SPM that uses spatial-pyramid histograms 

of color and texture features; In this implementation,

a. Color features were extracted from the RGB color space;

b. Texture features were extracted via steerable filters Young 

and Lesperance (2001) with 4 directions 

 and 5 scales (σ ∈ {1, 2, 3, 4, 5}) from 

the grayscale image;

c. The feature vector was constructed by concatenating 

texture and mean color on 20 × 20 patches, empirically, to 

achieve the best performance;

d. Standard K-means clustering was used for the construction 

of the dictionary;

e. The level of pyramid was fixed to be 3;

f. The homogeneous kernel map was applied, followed by 

linear SVM for classification.

All experimental processes were repeated 10 times with randomly selected training and 

testing images. The final results were reported as the mean and standard deviation of the 

classification rates on the following two distinct datasets, which included vastly different 

tumor types:

1. GBM Dataset. The GBM dataset contains 3 classes: tumor, necrosis, and 

transition to necrosis, which were curated from WSIs scanned with a 20× 

objective (0.502 micron/pixel). Examples can be found in Fig. 5. The 

number of images per category are 628, 428 and 324, respectively. Most 

images are 1, 000 × 1, 000 pixels. In this experiment, we trained on 40, 80 

and 160 images per category and tested on the rest, using three different 

dictionary sizes: 256, 512 and 1,024. Detailed comparisons are shown in 

Table 1.

2. KIRC Dataset. The KIRC dataset contains 3 classes: tumor, normal, and 

stromal, which were curated from WSIs scanned with a 40× objective 
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(0.252 micron/pixel). Examples can be found in Fig. 6. The number of 

images per category are 568, 796 and 784, respectively. Most images are 

1, 000 × 1, 000 pixels. In this experiment, we trained on 70, 140 and 280 

images per category and tested on the rest, using three different dictionary 

sizes: 256, 512 and 1,024. Detailed comparisons are shown in Table 2.

5 Discussion

5.1 Does Unsupervised Feature Leaning Provide an Improvement over Human Engineered 
Features?

Feature extraction is the very first step for the construction of classification/recognition 

system, and is one of the most important factors that affect the performance. In our 

evaluation, SIFT, color and texture are all human engineered features, which are widely used 

in various applications, including but not limited to image classification, object detection 

and segmentation. However, these prefixed human engineered features typically suffer from 

large data variations in the big dataset, and, as a result, have limited generalization ability. 

As shown in Fig. 7, systems based on unsupervised feature learning (e.g., NR-PSD1SPM 

and LR-PSD1SPM) generate better performance compared with the ones based on human 

engineered features (e.g., ScSPM, KSPM and CTSPM), which indicates that unsupervised 

feature learning can better capture the intrinsic properties in histological datasets, and 

therefore, leads to systems that are more tolerant to batch effects in the data.

5.2 Does Saliency Improve Classification?

Salient-PSD differs from PSD in that PSD features are densely extracted per regularly-

spaced image patch without using saliency information as prior. Recent studies Wu et al. 

(2013) indicate that saliency-awareness may be helpful for the task of image classification, 

thus it will be interesting to figure out whether regular PSD features can be improved by the 

incorporation of saliency as prior. Therefore, we designed salient PSD (Salient-PSD) 

features, which were only extracted on patches aligned with nuclear centroid locations. 

Comparison of classification performance, between PSD features and salient-PSD features 

are shown in Fig. 8 for both GBM and KIRC datasets, which shows that, for PSD features, 

saliency-awareness plays a negative role for the task of tissue histology classification. One 

possible explanation is that, in the task of tissue histology classification, PSD leads to 

appearance-based image representation, thus requires dense sampling all over the place in 

order to faithfully assemble the view of the image.

5.3 Is There a Preference for Linear and Non-linear Regressors?

As pointed out in Kavukcuoglu et al. (2008), nonlinear regressor is required to produce the 

sparse representations using an over-complete set due to the non-orthogonality of the filters. 

To validate the choice of nonlinear regressor against the linear one for the task of tissue 

histology classification, we made comparisons between PSDs with linear regressor and 

nonlinear regressor. The experimental results suggest that, without any surprise, PSD with 

nonlinear regressor outperforms PSD with linear regressor in terms of both reconstruction 

and classification, as shown in Figs. 9 and 10, respectively.
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5.4 Does Multilayer PSD Performs Better than a Single Layer PSD?

The work in Jarrett et al. (2009) suggests that multi-stage feature extraction system generally 

outperforms single-stage system. Also, it is worth to mention that, as pointed out in Yang et 

al. (2009), spatial pyramid matching kernel is conceptually similar to an extra layer of sparse 

coding and spatial pooling, which suggests that, structurally, PSD1SPM and PSD2SPM are 

similar to two-stage and three-stage systems, respectively. The comparisons among PSD 

(single-stage system), PSD1SPM (two-stage system) and PSD2SPM (three-stage system), as 

shown in Tables 1, 2 and Fig. 11, indicates that:

1. Multi-stage feature extraction system outperforms single-stage system for 

the classification of histology sections;

2. By stacking multiple unsupervised feature learning module (PSD) into 

hierarchy, we experienced a slightly improved performance, which might 

due to the fact that multi-stage feature learning system can capture higher-

level patterns in the tissue images;

3. The improvement of performance might decay with the increase of the 

depth (stages) of feature extraction system. As a result, the two-stage 

system (PSD1SPM) is superior to the single-stage system (PSD); while the 

three-stage system (PSD2SPM) is only slightly better than the two-stage 

one.

From our intensive evaluation, as shown in Tables 3 and 4, some other important insights 

associated with the multi-stage architecture are listed as follows,

1. Local contrast normalization significantly impairs the performance. Local 

contrast normalization enhances the structures in the image, and, as a 

result, ignores the variation of intensity (color). However, for tissue 

histology images, variations in intensity (color) typically correspond to 

different biological processes (e.g., cell proliferation, cell death, etc). 

Therefore, with the choice of PSD as the unsupervised feature learning 

module, local contrast normalization is not desired during the construction 

of multi-stage feature extraction system, for the task of tissue histology 

classification.

2. Extra pooling step is not necessary. As pointed out in Yang et al. (2009), 

spatial pyramid matching kernel is conceptually similar to an extra layer of 

sparse coding and spatial pooling, the adoption of extra pooling step (e.g., 

max-pooling) during the concatenation of PSD modules does not improve 

the performance, and thus is not necessary.

3. Absolute value rectification is not necessary. As pointed out in Jarrett et al. 

(2009), the use of max-pooling alleviates the need for Abs rectification. 

This statement also seems to hold when spatial pyramid matching kernel is 

applied, at least for the application of tissue histology classification.
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5.5 What are the Merits of (PSD)nSPM for Classification of Tumor Histopathology?

Experimental results and discussions suggests that deep learning has the following merits for 

classification of tissue histology:

1. Extensibility to different tumor types Tables 1 and 2 demonstrate the 

superiority and consistency in the performance of the proposed approach 

on two vastly different tumor types, which confirms that unsupervised 

feature learning has better generalization capability compared to human 

engineered features (e.g., SIFT), and ultimately ensures the extensibility of 

proposed approach to different tumor types.

2. Robustness in the presence of large amounts of technical variations and 
biological heterogeneities Tables 1 and 2 indicate that the performance of 

our approach, based on small number of training samples, is comparable 

to or better than the performance of ScSPM, KSPM and CTSPM, which 

are based on large number of training samples. Given the fact that TCGA 

datasets contain large amounts of technical variations and biological 

heterogeneities, these results clearly verify the robustness of our approach, 

which improves the scalability with varying training sample sizes, and the 

reliability of further analysis on large cohort of whole mount tissue 

sections.

6 Conclusion and Future Work

In this paper, we proposed a multi-stage PSD framework for classification of distinct regions 

of tumor histopathology, which outperforms traditional methods that are typically based on 

pixel- or patch-level features. Our analysis indicates that the proposed approach is (i) 

extensible to different tumor types; (ii) robust in the presence of large amounts of technical 

variations and biological heterogeneities; and (iii) scalable with varying training sample 

sizes. Future research will focus on (i) further comparative study between our approach and 

the state-of-art convolutional neural networks (CNNs) LeCun et al. (1998); Huang and 

LeCun (2006); (ii) further validation of our approach on other tumor types; and (iii) further 

application of our approach on the discrimination of phenotypic responses in multicellular 

systems.
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Fig. 1. 
Computational workflow of our approach (PSDnSPM), where X is a set of vectorized image 

patches, randomly selected from input tissue images; Zk is a set of sparse codes from the kth 

layer; and the final representation of each tissue image is the summarization of sparse codes, 

from the last layer, through spatial pyramid kernels
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Fig. 2. 
Computed dictionary elements (B) from GBM (top row) and KIRC (bottom row) datasets, 

respectively
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Fig. 3. 
Top row original image; bottom row saliency mask
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Fig. 4. 
Toy example of constructing a three-level pyramid. After quantization (Eq. 3), there are 

three feature types, represented by diamonds, circles and crosses, respectively. First, we 

subdivide the image at three different level of resolution. Next, for each level of resolution 

and each feature type, we count the features that fall in each spatial bin. Finally, we weight 

and concatenate each spatial histogram according to Eq. 4
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Fig. 5. 
GBM examples. First row tumor; second row transition to necrosis; third row necrosis. In 

GBM, important phenotype for necrosis is loss of nuclear DNA and cell structure. However, 

necrosis is not instantaneous and is a dynamic process where a subset of cells gradually 

change shape, rupture, and release their contents. Transition to necrosis is represented as 

subset of cells being at different stages of loosing their DNA contents and various organelles
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Fig. 6. 
KIRC Examples. First row tumor; second row normal; third row stromal. In KIRC, normal is 

defined by self organization of cell in a “gland-like” structure and stroma refers to one of 

many supporting cells and scaffolding such as collagen, infiltrating immune cells, 

fibroblasts, and fat cells. Tumor can have two distinct phenotypes as follows: (i) cells are 

represented by the loss of proteins and macromolecules contained within the cytoplasm; 

thus, a clear region between the nucleus and cell membrane is formed; and (ii) cells can 

form aberrant organization that leads to the loss of normal gland-like structures
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Fig. 7. 
Comparison of performance between systems based on human engineered features and 

systems based on unsupervised feature learning
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Fig. 8. 
Comparison of performance between systems with/without the incorporation of saliency 

information during feature extraction
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Fig. 9. 
Comparison of PSD with linear and nonlinear regressors in terms of reconstruction. a 
Original image; b reconstruction by PSD with linear regressor (SNR = 4.9429); c 
Reconstruction by PSD with nonlinear regressor (SNR = 9.3436)
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Fig. 10. 
Comparison of PSD with linear and nonlinear regressors for sparse feature approximation in 

terms of classification
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Fig. 11. 
Comparison of performance between systems with various number of stages
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Table 1

Performance of different methods on the GBM dataset

Method Dictionary size=256 Dictionary size=512 Dictionary size=1,024

160 Training

  NR-PSD2SPM 91.85 ± 1.03 91.86 ± 0.78 92.07 ± 0.65

  NR-PSD1SPM 91.85 ± 0.69 91.89 ± 0.99 91.74 ± 0.85

  LR-PSD1SPM Chang et al. (2013b) 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29

  Salient-LR-PSD1SPM 87.67 ± 0.78 87.67 ± 0.44 87.32 ± 0.96

  LR-PSD Chang et al. (2013b) 86.07 ± 1.42 86.32 ± 1.14 86.15 ± 1.33

  ScSPM Yang et al. (2009) 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10

  KSPM Lazebnik et al. (2006) 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

  CTSPM 78.61 ± 1.33 78.71 ± 1.18 78.69 ± 0.81

80 Training

  NR-PSD2SPM 90.51 ± 1.06 90.88 ± 0.66 90.51 ± 1.06

  NR-PSD1SPM 90.74 ± 0.95 90.42 ± 0.94 89.70 ± 1.20

  LR-PSD1SPM Chang et al. (2013b) 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08

  Salient-LR-PSD1SPM 86.07 ± 1.08 86.22 ± 0.76 85.75 ± 1.26

  LR-PSD Chang et al. (2013b) 81.73 ± 0.98 82.08 ± 1.23 81.55 ± 1.17

  ScSPM Yang et al. (2009) 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98

  KSPM Lazebnik et al. (2006) 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

  CTSPM 75.93 ± 1.18 76.06 ± 1.52 76.19 ± 1.33

40 Training

  NR-PSD2SPM 87.90 ± 0.91 88.21 ± 0.90 87.71 ± 0.81

  NR-PSD1SPM 87.72 ± 1.21 86.99 ± 1.76 86.33 ± 1.32

  LR-PSD1SPM Chang et al. (2013b) 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14

  Salient-LR-PSD1SPM 83.37 ± 1.28 83.19 ± 1.08 82.52 ± 1.28

  LR-PSD Chang et al. (2013b) 78.28 ± 1.74 78.15 ± 1.43 77.97 ± 1.65

  ScSPM Yang et al. (2009) 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05

  KSPM Lazebnik et al. (2006) 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56

  CTSPM 73.10 ± 1.51 72.90 ± 1.09 72.65 ± 1.41

The best performances with different training samples are printed in bold, which indicate the superior performance of proposed method over others
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Table 2

Performance of different methods on the KIRC dataset

Method Dictionary size=256 Dictionary size=512 Dictionary size=1,024

280 Training

  NR-PSD2SPM 99.03 ± 0.20 98.89 ± 0.19 98.92 ± 0.21

  NR-PSD1SPM 98.98 ± 0.35 98.81 ± 0.45 98.69 ± 0.41

  LR-PSD1SPM Chang et al. (2013b) 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45

  Salient-LR-PSD1SPM 95.45 ± 0.50 95.17 ± 0.43 94.98 ± 0.32

  LR-PSD Chang et al. (2013b) 90.72 ± 1.32 90.18 ± 0.88 90.43 ± 0.80

  ScSPM Yang et al. (2009) 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50

  KSPM Lazebnik et al. (2006) 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

  CTSPM 87.45 ± 0.59 87.95 ± 0.49 88.53 ± 0.49

140 Training

  NR-PSD2SPM 98.26 ± 0.34 98.07 ± 0.46 97.85 ± 0.56

  NR-PSD1SPM 98.17 ± 0.72 98.05 ± 0.71 97.99 ± 0.82

  LR-PSD1SPM Chang et al. (2013b) 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84

  Salient-LR-PSD1SPM 93.20 ± 0.37 93.18 ± 0.65 92.78 ± 0.53

  LR-PSD Chang et al. (2013b) 88.75 ± 0.37 88.93 ± 0.45 87.98 ± 0.86

  ScSPM Yang et al. (2009) 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63

  KSPM Lazebnik et al. (2006) 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

  CTSPM 86.55 ± 0.99 86.40 ± 0.54 86.49 ± 0.58

70 Training

  NR-PSD2SPM 96.67 ± 0.53 96.20 ± 0.54 95.57 ± 0.66

  NR-PSD1SPM 96.42 ± 0.68 96.41 ± 0.59 96.03 ± 0.69

  LR-PSD1SPM Chang et al. (2013b) 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40

  Salient-LR-PSD1SPM 92.45 ± 1.06 92.32 ± 1.13 92.31 ± 0.97

  LR-PSD Chang et al. (2013b) 87.56 ± 0.78 87.93 ± 0.67 87.13 ± 0.97

  ScSPM Yang et al. (2009) 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86

  KSPM Lazebnik et al. (2006) 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97

  CTSPM 84.76 ± 1.32 84.29 ± 1.53 83.71 ± 1.42

The best performances with different training samples are printed in bold, which indicate the superior performance of proposed method over others
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Table 3

Best performance of different architectures within the NR-PSD1SPM framework on the GBM dataset with 160 

training images per category, where ABS means absolute value rectification; LCN means local contrast 

normalization; MP means max-pooling

Structure Best performance

NR-PSD1SPM 91.89 ± 0.99

91.85 ± 0.83

89.13 ± 0.94

91.87 ± 0.90

89.35 ± 0.77
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Table 4

Best performance of different architectures within the NR-PSD1SPM framework on the KIRC dataset with 

280 training images per category, where ABS means absolute value rectification; LCN means local contrast 

normalization; MP means max-pooling

Structure Best performance

NR-PSD1SPM 98.98 ± 0.35

98.95 ± 0.43

95.97 ± 0.88

98.97 ± 0.50

95.81 ± 0.67
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