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Abstract The goal of image oversegmentation is to di-

vide an image into several pieces, each of which should

ideally be part of an object. One of the simplest and yet

most effective oversegmentation algorithms is known

as local variation (LV) (Felzenszwalb and Huttenlocher

2004). In this work, we study this algorithm and show

that algorithms similar to LV can be devised by ap-

plying different statistical models and decisions, thus

providing further theoretical justification and a well-

founded explanation for the unexpected high perfor-

mance of the LV approach. Some of these algorithms

are based on statistics of natural images and on a hy-

pothesis testing decision; we denote these algorithms

probabilistic local variation (pLV). The best pLV al-

gorithm, which relies on censored estimation, presents

state-of-the-art results while keeping the same compu-

tational complexity of the LV algorithm.
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1 Introduction

Image segmentation is the procedure of partitioning an

input image into several meaningful pieces or segments,

each of which should be semantically complete (i.e., an

item or structure by itself). Oversegmentation is a less

demanding type of segmentation. The aim is to group

several pixels in an image into a single unit called a

superpixel (Ren and Malik 2003) so that it is fully con-

tained within an object; it represents a fragment of a

conceptually meaningful structure.

Oversegmentation is an attractive way to compact

an image into a more succinct representation. Thus,

it could be used as a preprocessing step to improve

the performance of algorithms that deal with higher

level computer vision tasks. For example, superpixels

have been used for discovering the support of objects

(Rosenfeld and Weinshall 2011), extracting 3D geome-

try (Hoiem et al. 2007), multiclass object segmentation

(Gould et al. 2008), scene labeling (Farabet et al. 2013),

objectness measurement in image windows (Alexe et al.

2012), scene classification (Juneja et al. 2013), floor

plan reconstruction (Cabral and Furukawa 2014), ob-

ject description (Delaitre et al. 2012), and egocentric

video summarization (Lee and Grauman 2015).

One may ask whether specialized oversegmenta-

tion processes are needed at all, given that several ex-

cellent segmentation methods were recently proposed.

Working in the high recall regime, these algorithms

could yield excellent oversegmentation accuracy. Unfor-

tunately, however, they are complex and therefore rel-

atively slow. The segmentation approach described in

Arbelaéz et al. (2011), for example, combines the gPb
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2 Michael Baltaxe et al.

edge detector and the oriented watershed transform to

give very high precision and recall, but requires over

240 seconds per frame (as reported in Dollár and Zit-

nick (2015)). The approach of Ren and Shakhnarovich

(2013) uses a large number of classifiers and needs 30

seconds. Moreover, while the recently introduced edge

detector (Dollár and Zitnick 2015) is both accurate and

very fast (0.08 seconds per frame), it does not pro-

vide close edges and consistent segmentation. Using this

edge detection for hierarchical multiscale segmentation

(Arbelaéz et al. 2014), indeed achieves state-of-the-art

results in terms of precision and recall but requires pro-

cessing time of 15 seconds per image. Thus, the time

required for these methods is often too high for a pre-

processing stage, and then specialized oversegmentation

algorithms, running in one second or less, are preferred.

One of the many popular approaches to overseg-

mentation is the mean shift algorithm, which regards

the image values as a set of random samples and finds

the peaks of the associated PDF, thereby dividing the

data into corresponding clusters (Comaniciu and Meer

2002). The watershed method is a morphological ap-

proach which interprets the gradient magnitude image

as a topographical map. It finds the catchment basins

and defines them as segments (Meyer 1994). Turbopix-

els is a level set approach, which evolves a set of curves

so that they attach to edges in the image and even-

tually define the borders of superpixels (Levinshtein

et al. 2009). The SLIC superpixel algorithm is based

on k-means restricted search, and takes into account

both spatial and color proximity (Achanta et al. 2012).

The entropy rate superpixels (ERS) (Liu et al. 2011)

approach partitions the image by optimizing an objec-

tive function that includes the entropy of a random

walk on a graph representing the image, and a term

balancing the segments’ sizes. A thorough description

of common oversegmentation methods can be found in

Achanta et al. (2012).

The local variation (LV) algorithm by Felzenszwalb

and Huttenlocher (2004) is a widely used, fast and ac-

curate oversegmentation method. It uses a graph rep-

resentation of the image to iteratively perform greedy

merge decisions by evaluating the evidence for an edge

between two segments. Although all the decisions are

greedy and local, the authors showed that, in a sense,

the final segmentation has desirable global properties.

The decision criterion is partially heuristic and yet the

algorithm provides accurate results. Moreover, it is ef-

ficient, with complexity O(n log n).

Throughout this paper we use the recall and under-

segmentation error as measures of quality for overseg-

mentation, just as is done in Levinshtein et al. (2009),

Achanta et al. (2012), and Liu et al. (2011). The re-
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Fig. 1 Recall (top) and undersegmentation error (bottom)
for probabilistic local variation and other common algo-
rithms.

call (Martin et al. 2004) is the fraction of ground truth

boundary pixels that are matched by the boundaries

defined by the algorithm. The undersegmentation er-

ror (Levinshtein et al. 2009) quantifies the area of re-

gions added to segments due to incorrect merges. Fig-

ure 1 presents a comparison of the aforementioned

algorithms, together with probabilistic local variation

(pLV), the method introduced in this paper1.

Understanding the remarkably good performance of

the greedy LV algorithm was the motivation for our

work, which makes three contributions:

1. We briefly analyze the properties of the LV algo-

rithm and show that the combination of all its in-

gredients is essential for high performance.

2. We examine several probabilistic models and show

that LV-like algorithms could be derived by statisti-

cal consideration. One variation involves the estima-

tion of the maximum sample drawn from a uniform

distribution. The second uses natural image statis-

tics and a hypothesis testing decision. This gives

additional viewpoints, further justifies the original

1 Code available at
http://cis.cs.technion.ac.il/index.php/projects/probabilistic-
local-variation

http://cis.cs.technion.ac.il/index.php/projects/probabilistic-local-variation
http://cis.cs.technion.ac.il/index.php/projects/probabilistic-local-variation
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version of the algorithm, and explains the excel-

lent performance obtained from such a simple, fast

method.

3. Following these models, we provide a new algorithm,

which is similar to LV but relies on statistical argu-

ments. This algorithm meets the best performance

among the methods in the literature, at least for

oversegmentation to many segments, but is faster.

The structure of the paper is as follows. We present

the LV algorithm in section 2. We study this algorithm

empirically in section 3. In section 4 we introduce the

first LV-like algorithm (based on maximum estimation),

which does not perform as well as the original LV, but

motivates the alternative and more successful algorithm

of section 5 (based on natural image statistics). Section

6 presents our experimental results. A brief discussion

of single linkage algorithms (which include the LV and

pLV algorithms) as compared to non-single-linkage, hi-

erarchical algorithms is given in section 7. Finally, sec-

tion 8 concludes.

2 Local Variation Algorithm

The LV algorithm is a single-linkage, graph based, hier-

archical clustering process. Let G = (V,E) be a graph

created from the input image, with vertices on the pix-

els and edges between each pair of neighboring pixels.

Define a weight function on the edges, w : E → <,

representing pixel dissimilarity (for example, the RGB

color distance between pixels). Likewise, let a compo-

nent (segment) Ci be a set of connected pixels. The

components change throughout the segmentation pro-

cess, and, initially, the set of components {Ci} is the

set of pixels.

Following Felzenszwalb and Huttenlocher (2004),

define the internal dissimilarity of component Ci,

denoted by Int(Ci), and a threshold function

called the minimum internal difference and denoted

MInt(Ci, Cj), as:

Int(Ci) = max
e∈MST (Ci)

w(e) (1)

MInt(Ci, Cj) = min
x∈{i,j}

(Int(Cx) + T (Cx)) , (2)

where MST (Ci) is a minimum spanning tree of Ci, and

T (Ci) = K/ |Ci| is a component dependent function, in

which K is a user controlled parameter and |Ci| denotes

the number of vertices in component Ci.

The LV algorithm for image oversegmentation is

presented in algorithm 1. Intuitively, we can see that

two components are merged only if the lightest edge

that connects them is lighter than the heaviest edge in

the MST of the components plus a margin. Since the

Algorithm 1 Local Variation Algorithm

Input: Weighted graph G = (V,E) with weights w(e), e ∈ E,
defined by an image.
Output: Set of components C1, ..., Cn defining seg-
ments

1: Sort E by non-decreasing edge weight (e1, e2, ..., em)
2: Initialize segmentation S0 with each vertex being a com-

ponent
3: for all q = 1, ...,m do
4: eq = (vi, vj)← edge with the qth lightest weight

5: Cq−1
i ← component of Sq−1 containing vi

6: Cq−1
j ← component of Sq−1 containing vj

7: if
(
w(eq) ≤MInt

(
Cq−1
i , Cq−1

j

))
∧ (Cq−1

i 6= Cq−1
j )

then
8: Sq = Sq−1 ∪

{
Cq−1
i ∪ Cq−1

j

}
\
{
Cq−1
i , Cq−1

j

}
9: else

10: Sq = Sq−1

11: end if
12: end for
13: Postprocessing: Merge all small segments to the neigh-

bor with closest color.

edges are sorted in step 1, the edges causing merges are

exactly those that would be selected by Kruskal’s MST

algorithm (Kruskal 1956). The parameter K controls

the number of segments in the output segmentation:

increasing K implies that more edges satisfy the merge

condition and more merges are performed.

Oversegmentation algorithms usually include a

post-processing stage where small segments are re-

moved (line 13 in algorithm 1). We consider a segment

as small when its size is 10% of the average expected

segment size, and merge it to its neighbor with the

smallest color difference.

Compared to other oversegmentation algorithms,

LV is among the best in terms of recall and running

time. It is thus often the method of choice even though

its undersegmentation error is not as small as that of

some other algorithms; see Achanta et al. (2012) and

figure 1.

The high accuracy obtained by the greedy LV al-

gorithm is impressive. It is mainly due to the adaptive

threshold Int(Ci) +T (Ci), which depends on two com-

ponents: the distribution of weights within the segments

and their size. The particular combination of these two

components meets the criterion used to decide whether

a segmentation is too fine / coarse in Felzenszwalb and

Huttenlocher (2004), but is not theoretically supported

otherwise. In this paper we analyze the LV algorithm

empirically and propose two statistical interpretations

that lead, eventually, to LV-like algorithms, that fol-

low a statistical decision procedure. One of these new

algorithms, denoted as probabilistic local variation (or

more specifically, pLV-ML-Cen), maintains LV’s desir-
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Fig. 2 The LV method against its reduced versions. No re-
duced version could achieve the performance of the original
algorithm.

able properties, and improves its recall and underseg-

mentation error.

3 Empirical Study of the LV Algorithm

To analyze the importance of each of the two aforemen-

tioned components in LV, we test reduced versions of

the algorithm by systematically removing each compo-

nent:

1. Greedy Merging: By setting MInt(Ci, Cj) = ∞
the algorithm depends neither on the distribution nor

on the segment sizes. This implies that the segments

are merged greedily in non-decreasing edge weight.

2. LV with a Constant Threshold: By setting

T (Ci) = K, where K is a constant, makes the decision

size independent (but distribution dependent). Perfor-

mance is substantially reduced and very large segments

are created.

3. Area Based Merging: The condition in line 7 of

algorithm 1 is replaced by min
x∈{i,j}

∣∣Cq−1x

∣∣ < K, where

K is a constant. This condition depends only on the

segment size but not on the distribution, yielding su-

perpixels with roughly the same area.

4. LV without Removing Small Segments: A

post-processing step in LV removes small components

(line 13 in algorithm 1). Without this step, a lot of

very small, meaningless segments remain, implying that

many erroneous merges are performed to obtain a pre-

specified number of segments.

Figure 2 compares the recall of LV and its reduced

versions. All reduced versions yield lower recall than the

original algorithm. Thus we conclude that both the dis-

tribution and size dependent terms are crucial to LV’s

performance.

4 Interpreting LV as Maximum Estimation

4.1 Estimating the Maximum Sample Drawn from a

Uniform Distribution

The threshold used in LV has several possible statistical

interpretations. In this section we consider one interpre-

tation, which suggests that LV’s decision rule is similar

to maximum value estimation.

Consider a set of samples drawn from a uni-

form distribution specified by an unknown interval

[minU,maxU ]. We want to estimate the parameters of

the uniform distribution, minU ,maxU , from the sam-

ples2. For the special case where minU = 0, let m be the

sample maximum and S be the set size. Then, the min-

imum variance unbiased estimator for the maximum

value is given by (Larsen and Marx 2012)

m̂axU = m+
m

S
. (3)

4.2 Interpreting LV as Maximum Estimation

The estimate (3) seems similar to the threshold expres-

sion used in the local variation algorithm (algorithm 1

and Felzenszwalb and Huttenlocher (2004)). Both ex-

pressions contain two terms. The first is a distribution

related term, m, which is the maximal observed value.

The second term in both cases is size dependent. The

two expressions differ in that, in expresion (3), the size

dependent term depends also on the maximal observed

value, m. Thus, we hypothesize that an LV-like pro-

cess would be obtained by considering the weight values

in each segment, estimating their maximum under the

uniform distribution assumption, and testing whether

a new weight falls below the estimated maximum and

therefore belongs to the same distribution. If the weight

satisfies this test for the two segments, then merging

them is justified.

Thus the algorithm is exactly like algorithm 1 (LV),

except that MInt(Ci, Cj) is replaced by:

MInt(Ci, Cj) = min
x∈{i,j}

(
Int(Cx) +

Int(Cx)

|Cx|
+ c

)
. (4)

In theory the constant c should be 0. However, due

to image quantization, the maximum observed value in

a small segment is often 0, which prevents any further

2 This is the continuous version of the problem known in
the statistical theory literature as the German tank problem
(Ruggles and Brodie 1947), because its solution was used by
the Allies in WW2 to estimate the number of tanks produced
by the Germans from the serial numbers of captured tanks.
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merges. Note also that the difference between two con-

tinuous grey levels may be almost 1, and yet, the dif-

ference between their quantized values is zero. To allow

for these errors, we set c = 1. Otherwise, this LV-like

process (4), denoted as LV-MaxEst, is parameterless.

Figure 5 presents an example. Note that the overall

segmentation still does not seem natural: the segments

on the bird look natural, but those in the sky do not.

4.3 A Controllable Segmentation Based on Maximum

Estimation

Being parameterless, the decision rule based on the

maximum estimation does not allow us to control the

oversegmentation level. A simple, controllable extension

would be to change MInt(Ci, Cj) to:

MInt(Ci, Cj) = min
x∈{i,j}

(
Int(Cx) +

k · Int(Cx)

|Cx|
+ c

)
,

(5)

where the constant k controls the number of superpix-

els. We denote this method LV-MaxEst-c (where the

suffix “c” stands for “controlled”).

Interpreting LV as a maximum estimation problem

sheds some light on the algorithm; however, some of

the assumptions used in this section are not accurate

and the decision rule in equation (5) actually does not

perform as well as the original LV algorithm (see sec-

tion 6). This motivates the alternative model presented

next.

5 Interpreting LV as Hypothesis Testing

The statistical interpretation in section 4 is closely re-

lated to the original LV formulation but the assumption

of a uniform distribution for edge weights seems unjusti-

fied. In this section, we present an alternative statistical

model associated with natural image statistics.

5.1 Natural Image Statistics

Natural image statistics have been intensively explored

over the last two decades. Statistical models consider

specific image descriptors such as wavelet coefficients

(De Bonet and Viola 1997) or intensity difference be-

tween adjacent pixels (Grenander and Srivastava 2001)

and characterize them statistically. A common way to

model the behavior of these image descriptors is by

0 10 20 30 40 50 60 70 80
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Fig. 3 A natural image and semilog plot with the edge
weight histogram of several edge sets. See text for details.

means of the generalized Gaussian distribution (Mal-

lat 1989),

P (x) =
β

2αΓ (1/β)
e−(x/α)

β

, (6)

where, typically, α varies depending on the descriptor

used and β falls in the range [0.5, 0.8] (Srivastava et al.

2003). This model has been successfully used for, e.g.,

image denoising (Moulin and Liu 2006) and image seg-

mentation (Heiler and Schnörr 2005).

We are interested in the weights of the graph edges,

which are either the absolute differences between LUV

color vectors or simply intensity differences. The in-

tensity differences are closely related to some wavelet

coefficient and to gradient strengths, both of which

were modeled with the generalized Gaussian distribu-

tion (Mallat 1989; Huang and Mumford 1999).

The population we consider is somewhat different,

however. We are interested only in weights that are

part of the MST and are inside segments (and not be-

tween them). We checked the validity of the exponential

model, a particular case of the generalized Gaussian dis-

tribution with β = 1, on several images and found that

the exponential assumption is reasonable; see figure 3,

which shows one image example and 4 plots of the LUV

edge weight statistics:

1. Weights of all edges in the image.

2. Weights of all edges within image segments, as

marked by a human (as given in BSDS300 (Mar-

tin et al. 2001)).

3. Weights of edges in an MST of the full image.

4. Weights of edges in an MST of each segment, as

marked by a human.

As expected, the distributions of the edge weights in

the MSTs are biased towards lower weights compared

to the distributions obtained from the edges in the com-

plete image. On the other hand, the edge weight distri-

butions within the segments and throughout the entire

image are similar. This is also expected because the

number of edges crossing segments is relatively small.
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Clearly, all distributions are close to an exponential law

(observed as a straight line in the semilog plot). In this

work, we shall therefore assume that the model under-

lying the distribution of edge weights is the exponential

distribution:

P (x) = λe−λx. (7)

5.2 Merge Decisions from Hypothesis Testing

Consider the local merging context where we need to

decide whether two segments Si, Sj merge along edge

e. We propose to make this decision by testing the hy-

pothesis that the weight w(e) of the edge e belongs

to the distribution Pi(x) = λie
−λix of the weights in

each one of the segments. If this hypothesis is rejected

for at least one of the segments, the segments are not

merged. Otherwise the segments are merged. We refer

to this method as probabilistic local variation (pLV).

To test the hypothesis that w(e) belongs to Si, we

consider the probability:

Pi(x > w(e)) =

∫ ∞
w(e)

λie
−λixdx = e−λiw(e). (8)

The hypothesis is rejected with a level of significance δ

whenever Pi(x > w(e)) < δ.

Thus, the probabilistic local variation approach uses

the following alternative rule for deciding whether two

segments should be merged:

1. Let e∗ be the edge with the minimum weight con-

necting two segments, Si, Sj .

2. For each segment Sa ∈ {Si, Sj}, fit an exponential
distribution, Pa(x), to the weights in it.

3. For each segment Sa ∈ {Si, Sj}, test the hypothesis

that e∗ belongs to the corresponding distribution

using the hypothesis test, Pa(x > w(e∗)) < δ.

4. If the hypothesis is rejected in at least one of the

tests, do not merge. Otherwise merge.

In the rest of this section we describe several ways

to estimate the parameters λi and the implied distribu-

tion.

A straightforward estimate for λ would be the max-

imum likelihood (ML) estimator. Given a population of

n samples, {x1, x2, ..., xn}, drawn i.i.d. from the expo-

nential distribution (7), then the maximum likelihood

estimator for the parameter, λ̂ML, is

λ̂ML =
1

x̄
=

n∑n
i=1 xi

. (9)

When using this estimator, we will denote the proba-

bilistic local variation as pLV-ML.

The ML estimator is, however, noise prone and

highly unstable when the sample size is small, as is the

case when the merged segments are small. One way to

make a robust decision is by using confidence intervals

(CI) for λ̂ML. The symmetric 100(1−α)% CI for λ̂ML,

for a population of n samples drawn from the exponen-

tial distribution, is given by:(
χ2
1−α/2,2n

2n
λ̂ML,

χ2
α/2,2n

2n
λ̂ML

)
, (10)

where χ2
p,ν is a value specifying the tail of weight p in a

χ2 distribution with ν degrees of freedom (see section

7.6 of Ross (2009) for details regarding parameter esti-

mation for the exponential distribution). χ2
p,ν increases

approximately linearly with ν = 2n, and for large n,

converges to ν = 2n, implying that the confidence in-

terval decreases with the segment size, as intuitively

expected.

The question of which value should be chosen within

the CI remains. The effect of choosing a particular λ

value is not straightforward because changes in λ in-

fluence other parameters. Suppose we are interested in

a final segmentation with N superpixels. Choosing λ,

say, at the lower limit of the confidence interval, must be

compensated for by increasing δ. Otherwise, the thresh-

old will be higher and too many merges will be per-

formed. As explained in section 5.3, the edge weights

used for estimating λ are biased towards smaller values,

which makes λ̂ML biased to larger values. Therefore, we

prefer the lower limit of the CI (10), and reject a merge

whenever P (x > w(e)) = e−w(e)λ̂ML
χ2
1−α/2,2n

2n < δ, or

equivalently, whenever

w(e) > ln (1/δ) /

(
λ̂ML

χ2
1−α/2,2n

2n

)
. (11)

Replacing λ̂ML with the lower limit of the CI for λ

(method denoted as pLV-ML-CI) indeed yields better

recall, very similar to that of LV; see figure 6 (top).

The role of the confidence parameter δ is analogous to

that of K in the original LV algorithm: making δ larger

results in more segments.

Note also that qualitatively, the algorithm behaves

according to the LV principle and gives priority to the

merging of smaller superpixels. This is not immediately

clear, however, because, as discussed above, choosing λ

at the lower limit of CI is compensated for by increasing

δ. This compensation, however, is non-uniform. While

the level of significance δ is uniform and applies to all

merging decisions, smaller segments are associated with

larger confidence intervals, which makes the lower limit
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of their confidence intervals lower on average. There-

fore, the threshold on the edge weight (11) is higher for

smaller superpixels, which gives them priority to merge.

While this model achieves nice segmentations and

sheds some new light on the LV algorithm, we observe

that the statistical assumption underlying the estima-

tion of λ – that the measurements are obtained by i.i.d.

sampling – seems inaccurate. First, the samples we have

are sampled in nearby locations, which makes them cor-

related. Moreover, they are sampled with preference for

lower weight edges. The first problem seems to be mi-

nor because the weights are derivative values, which are

less correlated than the image intensities. The second

problem, preferring smaller values, is considered in the

next subsection.

5.3 Parameter Estimation under Biased Sampling

Contrary to the assumption used in section 5.2, the

weights are sampled from the lightest to the heaviest

and are not drawn i.i.d. Thus, at each step the popu-

lation inside a segment is biased towards low values. In

what follows we aim to correct this bias.

Suppose the segment has m+ 1 pixels, and at some

point in time our method of sampling provides us with

n measurements, which are the lowest n elements in

the MST of the segment, which contains m edges. Our

task is to estimate the value of λ. The structure of this

problem is an approximation to the one defined by type

II censoring, in which m random variables are drawn

i.i.d. but only the smallest n < m values are observed

(an approximation since the true segment may be split

between several segments specified by the algorithm).

This type of sampling is common in reliability estima-

tion, where one tries to study the failure rate of some

process/machine by analyzing only a subset composed

of the samples which failed first (Epstein and Sobel

1953). Under these conditions, and following Epstein

and Sobel, the maximum likelihood for λ can be de-

rived as follows:

A sequence of size m is called partially n-ordered if

the first n elements in it are non-decreasing (or non-

increasing), and not larger (or not smaller) than any

of the remaining m− n elements. Consider a sequence,

Y , of m samples drawn i.i.d. from some probability dis-

tribution. A partially n-ordered sequence, X, may be

generated from it by choosing the n smallest elements

from Y , and making them the first n elements of X, in

non-decreasing order. The remaining m−n elements in

X are identical to the remaining m− n elements in Y .

Their order is the same order as in Y .

Note that many sequences Y may correspond to the

same partially n-ordered X. The first n elements may

come from H = m!
(m−n)! different sets of locations, im-

plying that the probability of getting a particular par-

tially n-ordered sequence is H times the probability of

getting the original sequence Y of i.i.d. drawn samples.

Therefore, the joint probability density of observing the

values x1, ..., xn is

f(x1, ..., xn)=HP (x1, ..., xn)P (xn+1 > xn, ..., xm > xn)

= H · P (x1) · · ·P (xn) · P (xn+1 > xn) · · ·P (xm > xn)

= H · P (x1) · · ·P (xn) ·
(∫ ∞

xn

λe−λxdx

)m−n
= H · λe−λx1 · · ·λe−λxn ·

(
e−λxn

)m−n
= Hλn · e−λ

∑n
i=1 xi · e−λ(m−n)xn

= Hλn · e−λ(
∑n
i=1 xi+(m−n)xn). (12)

The value of λ yielding the maximum likelihood for this

function can be found by differentiating ln f(x1, ..., xn)

with respect to λ and equating to zero, yielding

λ̂ML−Cen =
n∑n

i=1 xi + (m− n)xn
, (13)

where the notation ML-Cen is for censored maximum

likelihood.

Finally, consider a segment C with edge weights be-

ing {x1, ..., xn, ..., xm}, and the merging decision when

the edge under study is e. Then, combining equations

(11) and (13), the one-sided condition for merge rejec-

tion becomes:

w(e) > HypThr(C)

=
2 ln (1/δ) (

∑n
i=1 xi + (m− n)xn)

χ2
1−α/2,2n

∣∣∣∣∣ xi∈C
n=|C|

, (14)

where m is a user specified parameter reflecting the

expected size of the true segment. In the case that

m = n, λ̂ML−Cen converges to λ̂ML, which we use also

for n > m. To gain further intuition about this thresh-

old, recall that χ2
1−α/2,2n grows almost linearly with the

segment size n.

In summary, our hypothesis testing algorithm for

image oversegmentation (denoted pLV-ML-Cen) is ex-

actly as algorithm 1, but the minimum internal differ-

ence between two components is set to:

MInt(Ci, Cj) = min
x∈{i,j}

HypThr(Cx). (15)

The value of λ for a given segment characterizes

the distribution of its edges. The larger the variabil-

ity within a segment, the smaller the value of λ; see

figure 4. Figure 5 presents an example segmentation of

the probabilistic local variation method with correction
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Fig. 4 Bottom: visualization of λ̂ for each segment. The
brighter the segment, the larger the value of λ̂. Thus, white
represents smooth segments and black represents textured
ones. Top: corresponding oversegmentation.

for biased sampling. Note that probabilistic local vari-

ation appears to have more segments than the original

LV. This happens because the LV algorithm produces

many elongated and hardly visible segments along the

boundaries.

Probabilistic local variation with censoring is based

on different principles and yet follows the same basic

behavior as the LV algorithm. We consider the decision

condition (14) and observe the following four proper-

ties:

1. As discussed above, the denominator χ2
1−α/2,2n

grows with the size of the segment, n, while the nu-

merator decreases with n. Thus, the threshold de-

creases with n and gives preference to merges of

small segments.

2. The heaviest weight in the MST, xn, appears in the

numerator of HypThr(C). Thus, heavier xn leads

to a higher threshold and to a more likely merge

decision.

3. For small segments, where n � m, the importance

of the heaviest edge, xn, is amplified by a factor

linear in (m−n)/n. For larger segments, though, the

amplification factor is smaller, making the average

weight of the segment edges more important.

4. It is straightforward to show that there is a pred-

icate for which probabilistic LV leads to segmen-

tation which is not too fine in the sense specified

in Felzenszwalb and Huttenlocher (2004). Showing

that it is not too coarse (Felzenszwalb and Hutten-

Fig. 5 Segmentations obtained by the methods described in
the paper (left to right): LV-MaxEst, LV-MaxEst-c, pLV-ML-
Cen and LV. The last 3 methods are tuned to have roughly
the same number of segments.

locher 2004) seems harder because the sampling or-

der is not tightly related to our threshold criterion.

5.4 Complexity of Hypothesis Testing

To calculate the threshold (14), we need to keep three

values for each segment: the sum of its elements, the

value of the last (heaviest) edge added to it, and its

number of elements. All these values are updated in

O(1), and thus the complexity of the hypothesis testing

method is exactly the same as that of the LV algorithm,

namely O(n log n).

6 Experimental Results

6.1 Testing Probabilistic Local Variation

Following common practice, we use the boundary re-

call and the undersegmentation error as quantitative

performance measures. The recall (Martin et al. 2004)

is the fraction of ground truth boundary pixels that are

matched by the boundaries defined by the algorithm.

The undersegmentation error (Levinshtein et al. 2009)

measures the area of incorrect merges of true segments

(or parts of them); see Martin et al. (2004); Levin-

shtein et al. (2009) for implementation details. All ex-

periments were performed on BSDS300 (test) (Martin

et al. 2001).

The first probabilistic version, LV-MaxEst, is based

on a uniform distribution model and estimates its inter-

val. It is parameterless and gives a single segmentation

(see figure 5). It is difficult to compare its average recall

to that of other methods, because the segmentation of

different images results in different numbers of segments

(and different recall). Therefore, we use the generalized

method, LV-MaxEst-c, for comparison; see section 4.3.

The recall curve is shown in figure 6 (top). It is clearly

inferior to that of LV but in a sense it behaves similarly

and is better than several of the other methods in the

literature.
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Fig. 6 Recall (top) and undersegmentation error (bottom)
of the LV method against its probabilistic versions proposed
in this paper. The proposed hypothesis test (with censored es-
timation) performs best for medium to large segment counts.

The other probabilistic version relies on the expo-

nential distribution model, which is specified by a single

parameter λ. It is important to estimate this parameter

carefully. The maximum likelihood approach, pLV-ML,

overestimates λ, yielding poor recall; see figure 6 (top).

Estimating the confidence interval (95%) and using its

lower limit as in pLV-ML-CI (section 5.2) results in the

same recall as LV. Just like LV, the method depends

on a single parameter δ, determined by the number of

segments selected. Observing that the data is biased led

to using censored estimation. The resulting algorithm

(pLV-ML-Cen) gives a more accurate estimate of λ and

yields excellent, state-of-the-art, results.

This algorithm depends on two parameters: m, the

expected size of the segment, and δ, the level of sig-

nificance of the decision (see eq. (14)). The number of

segments is controlled by any combination of them. For

a prespecified number of segments S (e.g., as needed

for comparing different methods), we use the average

segment size m = ImageSize/S, but found that set-

ting m to any large value (e.g., 200) works equally for

S ∈ [200, 2000]; δ is then tuned so that S segments are

Fig. 7 Two images segmented with the probabilistic lo-
cal variation algorithm (censored version) with parameters
m = 350, δ = 0.05. The number of segments depends on the
characteristics of the image, yielding 268 (left) and 57 (right)
segments respectively.

obtained. This option was used for generating figure 6.

Alternatively, m, δ can be set by empirically maximiz-

ing the average performance, which depends on the im-

age set. Then, using these parameters for a specific im-

age provides adaptive segmentation, yielding more seg-

ments on “busy” images and fewer segments on smooth

ones. See an example in figure 7.

In terms of recall, probabilistic local variation im-

proves LV and matches ERS to achieve the best results

for large numbers of segments. The undersegmentation

error is just behind that of ERS, best for this measure;

see figure 1. The running time of our method is exactly

the same as LV (0.3 sec on a Pentium 4GB machine),

which is almost as fast as the fastest method (SLIC)

and much faster than the only method that achieves

the same recall (ERS, 2.5 sec).

6.2 Multi-Class Segmentation Performance

Extracting superpixels is not an end in itself, and there-

fore testing oversegmentation in the context of common

tasks is important. Following the evaluation framework

presented in Achanta et al. (2012), we examine the qual-

ity of pLV (specifically pLV-ML-Cen) in the context

of the higher level task of multi-class segmentation.

We perform our experiments on the MSRC 21-class

database (Shotton et al. 2009) and use the segmenta-

tion method of Gould et al. (2008), which proceeds as

follows: the input image is divided into superpixels and

a set of features is calculated on each superpixel, the

calculated features are fed to a set of classifiers previ-

ously trained (one for each class), and the labeling is

selected by minimizing an energy potential on a condi-

tional random field. Table 1 presents the segmentation

accuracy obtained when selecting different oversegmen-

tation methods. Note that the accuracy achieved when

using pLV is higher than when using the original LV al-

gorithm. Furthermore, the accuracy obtained with pLV

is improved only by the slower ERS algorithm.
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pLV LV MS TP WS SLIC ERS
77.0% 74.6% 70.3% 76.0% 74.7% 76.9% 78.0%

Table 1 Multiclass segmentation accuracy when using the
following methods for the oversegmentation stage: pLV, LV,
mean shift (MS), turbopixels (TP), watershed (WS), SLIC
and ERS.

7 Discussion

7.1 Single-Linkage Clustering

The LV algorithm, as well as its probabilistic versions

considered here, are hierarchical algorithms, which, at

every step, examine and possibly merge the two most

similar segments.

Being single-linkage algorithms, they specify the

dissimilarity between two segments, X and Y, as the

minimal distance between their two closest elements:

D(X,Y ) = min
x∈X,y∈Y

d(x, y), where d(x, y) is some un-

derlying dissimilarity function between elements. Re-

call that in the graph based notation the dissimilarities

between elements are represented by the correspond-

ing edge weights and therefore D(X,Y ) is the minimal

weight of an edge from X to Y . In the LV and pLV case,

the decision whether to merge two segments is made by

testing, independently for each segment, whether the

weight D(X,Y ) belongs to the distribution of weights

estimated for the segment.

This paper focuses on the LV algorithm (Felzen-

szwalb and Huttenlocher 2004) and on the implied

single-edge based merging decision. Alternatively, the

decision as to whether two segments should be merged

can be made by testing whether all their weights may

be explained by a single, common distribution. For

one-dimensional distributions characterizing a segment,

classical tests such as the Kolmogorov-Smirnov test

(Ross 2009) may be used; see, e.g., Pauwels and Fred-

erix (2000). See also Peng et al. (2011) for another use

of one-dimensional test for segmentation. Usually, how-

ever, more effective, multidimensional distributions de-

scribing, say, the segment’s texture or color, are pre-

ferred. Formal tests for multidimensional distributions

are problematic (see, however, Glazer et al. (2012)).

Usually the distribution is approximated as a mixture

of visual words (textons) and the χ2 distance between

the histograms serves as a measure of dissimilarity be-

tween segments. A more reliable dissimilarity measure

can be obtained by augmenting this distance with edge

information (Martin et al. 2004).

In the context of hierarchical segmentation, the dis-

tribution comparison technique may be used in two dif-

ferent ways. One approach carries out the merging pro-

cess according to a fixed order determined before the

process begins, as done in single-linkage processes. This

option is inconsistent with the hierarchical approach be-

cause the most similar pairs of segments (according to

the merging criterion) are not tested before the others.

The other option, to recalculate the order dynamically

after every merge, is computationally expensive.

An effective combination studied in the literature is

to divide the hierarchical merging process into stages.

At the beginning of a stage, every segment is speci-

fied as an element, and the dissimilarity between the

elements is calculated according to an arbitrary dissim-

ilarity measure, which may depend on the distributions.

Then all the merges in this stage proceed according to

a single-linkage algorithm. This approach has shown to

be a good trade-off between runtime and accuracy, as

presented in Kim et al. (2011); Ren and Shakhnarovich

(2013); Baltaxe (2014).

8 Conclusion

The local variation algorithm of Felzenszwalb and Hut-

tenlocher (2004) is a simple yet amazingly effective

oversegmentation method. In this paper we analyzed

the LV algorithm using statistical and empirical meth-

ods and showed that the algorithm and its performance

may be explained by statistical principles.

We proposed an oversegmentation algorithm, de-

noted probabilistic local variation, that is based on hy-

pothesis testing and on the statistical properties of nat-

ural images.

We found that probabilistic local variation is highly

accurate, outperforms almost all other oversegmen-

tation methods, and runs much faster than the one

equally accurate oversegmentation algorithm (ERS).

This is remarkable because it follows from a statisti-

cal interpretation of a 10-year old method (LV), which

is, by the way, still one of the best competitors.
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