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Abstract We propose a novel segmentation method based

on energy minimization of higher-order potentials. We intro-

duce higher-order terms into the energy to incorporate prior

knowledge on the shape of the segments. The terms encour-

age certain sets of pixels to be entirely in one segment or

the other. The sets can for instance be smooth curves in or-

der to help delineate pulmonary vessels, which are known to

run in almost straight lines. The higher-order terms can be

converted to submodular first-order terms by adding auxil-

iary variables, which can then be globally minimized using

graph cuts. We also determine the weight of these terms, or

the degree of the aforementioned encouragement, in a prin-

cipled way by learning from training data with the ground

truth. We demonstrate the effectiveness of the method in a

real-world application in fully-automatic pulmonary artery-

vein segmentation in CT images.

Keywords Segmentation · Higher-order energy · Artery-

vein segmentation · Surgery simulation

1 Introduction

Energy minimization is regularly used for image labeling

problems such as segmentation and stereo. Higher-order en-

ergies are perhaps not as common, but are nevertheless being

used more and more (Wang et al. 2013). Whereas the com-

mon first-order (pairwise) potential can directly model only

the relationship between pairs of pixels, the higher-order po-

tential can model more complex and useful relationships be-

tween more than two variables. In this paper, we present
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a novel segmentation method based on higher-order energy

minimization where we choose the higher-order cliques ac-

cording to the data. We demonstrate the efficacy of this method

in a real-world application in medical imaging. Specifically,

we present a fully-automatic pulmonary artery-vein segmen-

tation in 3D CT images, which is hard since the artery and

the vein have similar CT values, making them indistinguish-

able locally, and are often entwined with each other in the

lung, often with a large contacting area.

Data-Dependent Higher-order Clique Potentials A sig-

nificant issue in using higher-order potential is the choice of

the cliques, i.e., the variables on which each potential term

is defined. In the case of the pairwise potentials, a clique

is usually a pair of neighboring variables and the potential

regularizes (i.e., smoothes) the labeling. Similarly, in the

higher-order energies, the cliques are often taken as pre-

determined regular shapes, typically fixed blocks such as

squares (Kohli et al. 2009a, Russell et al. 2007, Ishikawa

2011). Kohli et al. (2009b) used as cliques superpixel-like

image patches of arbitrary shapes, generated by unsuper-

vised segmentation algorithms such as mean-shift. Recently,

Kadoury et al. (2013) used a similar approach. Again, these

higher-order potentials regularize the labeling, encouraging

the homogeneity and regional consistency.

In this paper, we consider a different use of higher-order

potentials: to incorporate the prior knowledge on the shape

of the segments into the energy. Prior knowledge regarding

the shape of the segments is crucial in difficult segmentation

problems, as it is often the only feature that delineates one

segment from another. To exploit it, we encourage the seg-

mentation that is more in accordance with the prior knowl-

edge. In the case of the labeling representation of segmen-

tation, the shape is expressed by the set of pixels that con-

stitute the shape. Therefore, to encourage certain shapes, we

encourage specific set of pixels to have the same label. How-

ever, since the number of combinations of pixels in a higher-
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order clique increases exponentially with the order, using all

possible combinations of pixels and defining potentials ac-

cording to the likelihood of each is prohibitively inefficient.

Thus, some restriction is needed to effectively choose useful

cliques. Here, we propose to adaptively choose the cliques

according to the given data and the prior knowledge about

what kind of shape is desired for the given segmentation

problem. We utilize the (robust) Pn Potts potential (Kohli

et al. 2009a, 2009b) to encourage the pixels in each cliques

chosen thus to have the same label. The Pn Potts poten-

tial is a higher-order potential that can be converted to an

equivalent submodular first-order (pairwise) potential, thus

allowing efficient global optimization.

Learning the potential function is another important as-

pect in utilizing higher-order potentials. Even in the first-

order case, learning the parameters of the potentials signifi-

cantly improves the results (Scharstein and Pal 2007, Sun et

al. 2008, Li 2009); it is even more important in the higher-

order case, since it becomes increasingly more difficult to

design the potential by trial and error, as often is done in

practice. Thus, we also learn the parameters of the potential

from the training data. Moreover, we also learn the param-

eter for the adaptive choice of the cliques according to the

given data.

Related Work Many conventional segmentation meth-

ods utilize length-based regularizer represented by first-order

potentials. Its main drawback is a shrinking bias that of-

ten leads to miss-segmentation of thin and elongated struc-

tures like vessels. One approach to avoid the bias is us-

ing curvature-based measures (El-Zehiry and Grady 2010,

Schoenemann et al. 2012, Standmark et al. 2011). Curvature

regularizer generally require non-submodular and/or higher-

order potentials, complicating the optimization process. Dis-

cretization of curvature angles enables efficient computation

but causes discretization artifact. In a similar manner, Olsson

et al. (2013) transform curvature regularization into a multi-

label optimization with patch based variables. These meth-

ods have a similar tradeoff between the computation costs

and accuracies. Recent work of Nieuwenhuis et al. (2014)

models efficient squared curvature, computational costs of

which increases linearly as the angular resolution increases.

Shekhovtsov et al. (2012) learn local patterns and costs

of curvature which work like filters whose response is lo-

cally minimized. The learned potentials are thought to be

optimal for the assumed application. The method consists of

exclusively selecting a best pattern for each local window.

However, its computational cost is not small enough for real

time application. Our work is similar to their work in that we

also learn patterns and weights from training samples, but is

different in adaptive sampling of variables in cliques. This

enables us to achieve further computational efficiency.

Another approach to segment thin and elongated struc-

tures is using connectivity constraints. Nowozin and Christoph

(a) (b)

Fig. 1 The impact of pre-surgery simulator. (a) A thorascopy image,

(b) 3D rendering from the viewpoint matching the thorascopy image.

We can grasp the 3D positions of the branches such as pars medialis

(V5), ramus lateralis (A4), and pars lateralis (V4) from the 3D render-

ing image (b). In contrast, any structure behind V5 cannot be observed

in the thorascopy image (a). Referring to the 3D rendering images be-

fore and during a surgery can improve the accuracy and safety of video-

assisted thorascopic surgery.

(2009) derived a linear programming relaxation that enforces

the output labeling to be connected in Markov random field

models. Stühmer et al. (2013) (later extended by Oswald et

al. 2014) present the tree-shaped connectivity prior that is

constructed by a geodesic shortest path tree. They include

the prior in an efficient convex optimization framework. The

expression of connectivity by shortest path tree in Stühmer

is similar to our method, but the embodiment in an energy

function is different as ours are based on higher-order sub-

modular potentials. We consider that our method has an ad-

vantage in reducing the size of optimization problem via

adaptive clique selection procedure.

Pulmonary Artery-Vein Segmentation Lung cancer is

the most common cause of cancer-related deaths in the world

(Ferlay et al. 2010). Thanks to the multi-detector CT, which

has become common in clinical practice, lung cancers can

now be detected in early stages, while minimally invasive

surgery such as video-assisted thorascopic surgery (VATS)

lobectomy or segmentectomy can still be effective. The num-

ber of such surgeries is rapidly increasing in recent years.

However, segmentectomy is a highly complex operation be-

cause of the high variability of vascular and bronchial struc-

tures, on top of the difficulties caused by the limited view

and operability of a thorascopy. Therefore, pre-surgery sim-

ulation and navigation systems have great clinical impor-

tance (Ikeda et al. 2013), providing the precise knowledge of

the anatomy of the patient’s pulmonary vessels and bronchi

as shown in Fig. 1. These systems in turn require each organ

to be segmented in the CT images. Since manual segmen-

tation is too time-consuming, precise and fully-automatic

segmentation is the key to successful deployment of such

systems.

In this paper, we present a fully-automatic algorithm for

segmentation of pulmonary arteries (PA) and veins (PV) from

CT Angiography data, based on higher-order energy mini-

mization. Note that typical graph-cuts methods utilizing first-

order potentials tend to fail in PA/PV segmentation, since its
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boundary is locally indistinct, often with large contacting

area. To overcome this challenge, the proposed method uti-

lizes Pn Potts potentials with cliques selected depending on

the data. In the method, we encourage voxels on a smooth

curve to all belong to one segment (or, put another way, dis-

courage the curve from crossing segment boundary), to im-

prove the accuracy of segmentation of pulmonary vessels,

which is known to run in an almost straight line. To the best

of our knowledge, this is the first method that realizes fully-

automatic PA/PV segmentation achieving clinically accept-

able accuracies.

A preliminary version of this paper appeared as (Kita-

mura et al. 2013). The present paper has more detailed pre-

sentation of the segmentation method as well as extended by

addition of an improvement of the method by incorporating

spatial arrangement features (§4.3), a quantitative compari-

son with an existing method (§5.1), and subjective tests in

clinical settings (§5.2). We continue as follows. After pre-

liminaries on higher-order energy minimization as well as

on pulmonary vessel segmentation in Section 2, we describe

the data-dependent higher-order clique potential in Section

3. In Section 4, we discuss the details of the application

in fully-automatic pulmonary artery-vein segmentation. We

will show quantitative comparison with an existing method

as well as subjective tests done by several clinicians in Sec-

tion 5. Finally, we discuss and summarize our method in

Sections 6 and 7.

2 Preliminaries

2.1 Higher-order energies, Pseudo-Boolean Functions, and

Order Reduction

The segmentation problem can be formulated as a pixel-

labeling problem. Many conventional methods minimize the

first-order energy function with unary and pairwise terms:

E(X) =
∑

a∈V

θa(xa) +
∑

a∈V,b∈Na

θab(xa, xb), (1)

where X is the vector of binary variables x ∈ {0, 1} indexed

by the set V of pixels, and Na is the set of the neighbors

of pixel a. The functions θa and θab give the potential for

the binary label xa and the label pair (xa, xb), respectively.

In this paper, we deal with higher-order energies, in which

terms that depend on more than two variables appear.

For a clique, or a subset c of V , we denote the subset

{xa|a ∈ c} of the variables by Xc. The energy (1) is a spe-

cial case of:

E(X) =
∑

c∈C

θc(Xc), (2)

whereC is a set of cliques in the graph, and θc(Xc) are func-

tions parameterized by C that depend on X only through the

subset Xc of the variables. The maximum of |c| − 1 among

the cliques c’s is called the order of the energy. Thus, first-

order energies have the cliques with at most two vertices in

the sum, in which case the energy can be written in the form

of (1). In this paper, we consider more general form of en-

ergy, where the cliques can contain more than two vertices.

Note that a clique is usually defined as a complete sub-

graph. In this paper, we call any subset of V a clique, as is

common in the literature on higher-order energy minimiza-

tion. We can always find a topology that makes given subsets

of vertices to form a complete subgraph. Of course, in that

case there would be many more cliques than the intended

subsets, but we need not include them in C. Alternatively,

we can use a constant as the function θc for them. Instead of

having a fixed topology and therefore a fixed set of cliques,

we adaptively choose which subset c of vertices we use as

the cliques in (2). This departure from the notion of a pre-

determined set of cliques is a very important aspect of this

work.

Throughout this paper, we take V to be the set of pixels

(or voxels) and the set of values to be {0, 1}. In such a case,

the energy (2) is a real-valued function of variables that take

values in {0, 1}. Such a function is called a pseudo-Boolean

function. Pseudo-Boolean functions can always be written

as a polynomial, e.g.,

θab(xa,xb) =

θab(0, 0)(1− xa)(1− xb) + θab(0, 1)(1− xa)xb

+ θab(1, 0)xa(1− xb) + θab(1, 1)xaxb.

In this quadratic polynomial form, if all of the weights of

the quadratic terms in the expanded energy function are non-

positive, it is submodular and can be globally minimized by

the graph-cut algorithm in polynomial time (Hammer 1965).

Otherwise, non-submodular functions can be partially opti-

mized by the roof duality or QPBO algorithm (Hammer et

al. 1984).

Recent advancements enable us to utilize higher-order

energy functions, which contain, in the polynomial form,

terms of degree higher than two. According to (Ishikawa

2011), a higher-order pseudo-Boolean function can be trans-

formed into an equivalent first-order (quadratic) function by

adding auxiliary variables. Then the original problem can be

solved by minimizing the transformed function by conven-

tional algorithms such as graph cuts or QPBO (Boykov and

Kolmogorov 2004; Rother et al. 2007).

Submodular energy functions have great advantages since

they can always be minimized globally in polynomial time

using graph cuts. Thus, higher-order functions that are con-

verted to submodular quadratic functions are of special in-
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terest. Two known cases are (Kohli et al. 2009a):

1−x1x2...xn = 1+ min
z∈{0,1}

−z(x1+x2+...xn−n+1), (3)

1−(1− x1)(1 − x2)...(1 − xn) =

1 + min
z∈{0,1}

(1− z)(x1 + x2 + ...xn − 1), (4)

where z ∈ {0, 1} is the auxiliary variable and n is the de-

gree of the function. The potential (3) takes the value 0 if

and only if its variables are all 1 and otherwise takes value

1. Similarly, (4) takes the value 0 only when its variables

are all 0 and otherwise takes value 1. These potentials are

called the Pn Potts model (Kohli et al. 2009a). Note that

the right-hand side of the transformations are submodular

quadratic pseudo-Boolean functions (i.e., the coefficients of

all quadratic terms are non-positive) inside a minimization.

From these, we can see that adding the higher-degree terms

on the left-hand side to a minimization problem is equivalent

to adding the quadratic function on the right-hand side and

adding the auxiliary variable z to the set of variables over

which to minimize.

Although eqs. (3) and (4) take a smaller value only when

all the variables have the same value (0 or 1), we can use

the robust Pn Potts model (Kohli et al. 2009b) which takes

gradually larger value as the number of variables violating

the condition increases. With a positive integer N , such po-

tentials are formulated as:

min

(

1,

n
∑

i=1

1− xi

N

)

= 1+ min
z∈{0,1}

z

(

−1 +

n
∑

i=1

1− xi

N

)

,

(5)

and

min

(

1,

n
∑

i=1

xi

N

)

= min
z∈{0,1}

(

z + (1− z)

n
∑

i=1

xi

N

)

. (6)

They take the value 0 when the condition (all 1 for (5) or all

0 for (6)). When some of the variables violate the condition,

they take an increasing value until saturating at value 1 when

N or more variables violate the condition. In terms of graph-

cut construction, they correspond to the graphs such as the

one illustrated in Fig. 2.

2.2 PA/PV Segmentation

Pulmonary arteries (PA) and veins (PV) originate from the

right ventricle and the left atrium, respectively, and branch

several times passing through the hilum. In entirety, they

have tree structures and are arranged radially in the lungs.

Despite the progress of segmentation techniques, segment-

ing arteries from veins in CT images is still known to be

difficult because of the following reasons:

x
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source
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...
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0
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1
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Fig. 2 The graph construction of the function:

w0 min

(

1,
∑

i=1,...,n
xi

N

)

+w1 min

(

1,
∑

i=1,...,n
1−xi

N

)

artery 

vein  

Fig. 3 Axial and sagittal images of the point of contact between the

artery and the vein.

1) PA and PV are indistinguishable from local images, be-

cause they have similar intensities and tubular shapes.

2) They are often found entwined everywhere in the lungs,

where the boundaries of the contact points are often un-

clear (Fig. 3).

3) The vascular structures are highly variable, depending on

the patient.

Although considerable research has been done for ex-

tracting vessels, only a few methods have been published

for separating arteries from veins. Early methods given by

Lei et al. (2001) and van Bemmel et al. (2003) were applied

to MR data, utilizing fuzzy connectedness or the level-set

framework. More focused on pulmonary vessels, a prelim-

inary study (Yamaguchi et al. 2002) utilizing an algorithm

based on region growing has been reported. One promising

method introduced by Saha et al. (2010) combines fuzzy dis-

tance transform and morphologic features. Later they incor-

porated the algorithm into a graphical user interface system,

and showed high segmentation accuracy and reproducibil-

ity for non-angiograph images (Gao et al. 2012). Recently,

Park et al. (2013) introduced an approach based on the min-

imum spanning tree algorithm that can handle the discon-

nected peripheral branches with clinically acceptable accu-

racies. However, these methods, which are designed for non-

angiograph images, are interactive. That is, they require the

user to provide numerous seed points on multiple branches.

As for fully-automatic PA/PV segmentation, there has been

one approach utilizing the specific anatomical knowledge:
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a pulmonary artery is often in close proximity to an air-

way, going in parallel (Mekada et al. 2006; Buelow et al.

2005). Mekada et al. demonstrated the effectiveness of the

approach in a few cases where manually-labeled complete

airway segmentations are available.

In the case of angiography images, the difficulty of the

problem is eased as the origins of pulmonary vascular trees

are visible on the image, though separating artery and vein

remains difficult as they are often entwined with unclear

boundaries. For angiography images, a fast-marching algo-

rithm that propagates a front in the direction of minimal

cost was used by Sebbe et al. (2003), while Ebrahimdoost et

al. (2011) utilized a 3D level-set algorithm. However, these

methods are only for segmenting pulmonary arteries, and in

thorough evaluations for both of the artery and vein, they

have not done well.

3 Data-Dependent Clique Potential

We introduce a novel use of the higher-order energy min-

imization, which we call the Data-Dependent Clique Po-

tentials (DDCP), in segmentation. The idea is to add (ro-

bust) Pn Potts potential (the higher-order terms of the form

(3),(4),(5), and (6)) to encourage all of the n variables in the

term to have the same value (0 or 1). By choosing the vari-

ables (i.e., pixels) to include in such higher terms, we can

encourage specific configurations of many variables while

keeping the energy convertible to a submodular quadratic

function. In other words, we can determine how much the

pixel set is prone to being in the same segment.

As a polynomial, each DDCP looks like (3) and (4), i.e.,

it is just a Pn-Potts potential. The significance of an DDCP

comes from the set of pixels it contains as variables. The

idea is to utilize a prior knowledge regarding the shape in

assigning pixels to potentials. By encouraging a set of pixels

forming a certain shape to all belong to the same segment,

we influence the shape of the resulting segments.

In this paper, we consider a three-class labeling prob-

lem where the classes are Background, Artery, and Vein. We

solve this in sequential two binary labeling steps. The first

step separates the vessel regions from the background. The

second step separates the vessel regions into artery and vein.

For instance, we can encourage pixels forming a curve

with low curvature to be in the same segment. Consider a

segmentation problem of separating the artery (value 0) and

vein (value 1) branches illustrated in Fig. 4(a), which is dif-

ficult using the first-order energy (1) as the two vessels are

in contact. To introduce the DDCP in this case, we find rel-

atively straight curves inside the vessels as shown in black

in the figure, and form a potential from the voxels on each

such curve, by adding a term of the form (3) or (4) or both to

the energy. Adding (3) encourages all the variables (voxels)

on the curve to take value 1, i.e., encourage the curve to lie

entirely in the artery segment. Similarly, adding (4) encour-

ages the curve to be in the vein segment. If we add both, it

encourage the curve to lie entirely in either artery or vein

segment and discourage it from crossing the boundary.

The intention is that we would like each curve to fall en-

tirely in one segment; but in general that cannot happen to

all the curves, as in the case of this example, where some

voxels belong to multiple curves that clearly belong to dif-

ferent segments. Then we modulate the degree of encour-

agement according to the curvature by making the positive

coefficient multiplied to the potential larger for straighter

curves (details can be found in §4.2). That way, we encour-

age straighter curves to be “chosen,” i.e., to be completely

included in one of the segments. In the case of Fig. 4(a), the

set (a)-1 of voxels on a straight line would be encouraged

more than the (a)-2 that forms a curve.

The key property of our method is that, even when these

curves are overlapping, the segmentation can “choose” be-

tween them in this way. That is, as the result of segmen-

tation, some of the curves are “chosen” and lay entirely in

one segment, while others are “unchosen” and cross the seg-

ment boundary. Fig. 4(b) shows the successful result of such

a choice, where the curves drawn with the solid lines are

chosen and contribute to the decrease of the energy. It is

important to note that the unchosen curves, drawn with the

dashed lines, do not affect the resultant energy. As the higher

order terms of the form (3) and (4) have an effect only if all

the variables are labeled the same, the energy decreases only

when the entirety of the curve is segmented as one. They are

possible choices before the energy minimization, but once

the segmentation is done and they are unchosen, they do not

cause any side effects: they do not encourage any other un-

foreseen solution, as in the case of lower order potentials. If,

for instance, each voxel on the curve were encouraged in-

dividually, any number of other curves containing some of

the voxels would be encouraged to varying degree, leading

to an unpredictable behavior. In an actual segmentation, the

entire image has many points of contact that forces a choice

as above, and the number of combinations of these choices is

very large. However, graph cuts can find the best separation

between PA and PV trees in terms of the energy.

To be sure, there is a theoretical limitation when the im-

age resolution is close to the vessel diameters, as shown in

Fig. 4(c). Here, the part the two vessels touch has the width

of only about one voxel. In this case, the “choosing” of one

curve would make inactive all of the higher-order terms that

belong to the other vessel, rendering the effect of the DD-

CPs null. One way to ease this limitation is using the robust

Pn Potts model in eqs. (5) and (6), instead of the original

Pn Potts model in (3) and (4). They tolerate at most N

voxels having different labels, while still having the effect

of decreasing the energy. However, even this model cannot
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(a) (c) (b) 

(a)-1 (a)-2 

Fig. 4 Artery and vein are in contact in the middle. (a) The black

curves illustrate the potentials. (b) After a successful separation. (c)

A case where the image resolution is less than the vessel diameters; a

sectional image is shown on the right.

Root of the artery 

Root of the vein 

(a) (b) (c)

Fig. 5 Schematic images of the pulmonary artery-vein segmentation.

The method consists of the three steps: (a) root-position detection, (b)

vessel-region extraction, and (c) artery-vein segmentation. (reprinted

from Kitamura et al. 2013)

handle it if the segments overlap too much, sharing many

voxels. This also happens sometimes when two vessels run

side by side in close proximity.

Crucial to the effective use of the method is choosing

which set of voxels to add in a principled way, adapting to

the given data. We illustrate this process in more details in

the case of the segmentation problem of pulmonary artery

and vein in the following sections.

4 Fully-automatic pulmonary artery-vein segmentation

To demonstrate the proposed method, here we present a fully-

automatic method for segmentation of chest CT Angiogra-

phy data. The CTA data is acquired after injecting contrast

agents into patients. Therefore, the contrast of arteries and

veins is enhanced from their roots to the peripheral branches,

making it possible to follow the vessels from the roots to the

peripheral.

4.1 Pulmonary vessel segmentation

The segmentation method we describe here consists of the

following three steps: root position detection, vessel region

extraction, and artery-vein separation. Schematic images of

the steps are shown in Fig. 5.

Root position detection The root of the pulmonary ar-

teries and veins are the pulmonary artery trunk and the left

atrium of the heart, respectively. These can be detected by

(a) (b)

Fig. 6 Example images of the learned detector: (a) the pulmonary

artery trunk and (b) the left atrium of the heart. The yellow rectangles

represent the window size of the detectors.

specialized landmark detectors (Wang et al. 2009). In our

implementation, two types of appearances on axial images

were learned from training data by using machine learning

(Friedman et al. 2000). Fig. 6 shows the examples of the

learned appearances. Each root position in the input data is

detected by scanning it by the learned detector.

Vessel region extraction The vessel regions are segmented

by the conventional graph-cut method which utilizes unary

and pairwise potentials. Pulmonary vessels have different

characteristics in the mediastinum and the lung. The thick

vessels in the mediastinum are extracted as continuously ex-

tending regions from the detected root positions. To do this,

foreground seeds (unary terms) are set around voxels where

the roots are detected. Background seeds are given to voxels

having lower intensity than the root positions. The pairwise

terms smooth the labeling depending on the gradient values

of the image. One difficulty in extracting vessels in the me-

diastinum is that several neighboring structures are in con-

tact with the pulmonary vessels. In order to prevent over-

extracting the ascending aorta and the left ventricles, two

landmarks on these structures are detected by the same strat-

egy as the root-position detection and background seeds are

set to voxels around the detected landmarks. Another struc-

ture that should be separated is the bronchus walls. We also

set background seeds around the boundaries of the bronchus

regions, which correspond to the bronchus walls, utilizing

the automatic bronchus detection described in (Inoue et al.

2013).

On the other hand, the vessels having tubular appear-

ances in the lung are detected by the multi-scale vessel de-

tector (Kitamura et al. 2012) based on Hessian analysis and

machine learning. The method can discriminate vessels ac-

curately in two steps:

1) Estimate the main axis of candidate vessels by the Hes-

sian analysis,

2) Discriminate the vessel and the non-vessel based on the

Haar-like features extracted from the orientation-normalized

local images.

We applied the detector at three scales, using 1.0, 2.0,

and 4.0 voxels as the size of the Gaussian kernels for the

Hessian. Note that every dataset is rescaled to 0.75mm isotropic
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(a) (b)

Fig. 7 Vessel segmentation results (a) in the mediastinum, and (b) in

the lungs.

voxel size during the vessel extraction and also during the

following artery-vein separation, in order to normalize the

physical scale. The detected candidates are provided as the

foreground seeds to the graph-cut method. The background

seeds and the pairwise terms are set in a similar way. Finally,

binary segmentation of the entire vessels is obtained as the

sum of the results from the mediastinum and the lungs (Fig.

7). In order to eliminate false positives, regions that are not

connected to the roots are deleted.

Artery-vein separation Given the root positions and the

vessel regions, the third step separates the vessel regions into

PA and PV. The energy function consists of unary, pairwise,

and higher-order terms:

E(X) =
∑

a∈V

θa(xa)+
∑

a∈V,b∈Na

θab(xa, xb) +
∑

c∈C

θc(Xc),

(7)

where xa takes a binary label {Artery, Vein}. C is a set of

cliques, each clique c indexing the DDCP θc(Xc), which

is of the form wc · min
(

1,
∑

a∈c
1−xa

N

)

(eq. (5)) or wc ·

min
(

1,
∑

a∈c
xa

N

)

(eq. (6)) with positive weight wc. Deter-

mining C is the most important part of this work, and is

discussed in §4.2. The unary terms are set around the artery

and vein root positions to force the voxels there to be labeled

appropriately according to the following equation:

θa(xa) ∝

{

0 if Dab < Tdistance,

∞ otherwise,
(8)

where Dab = min (|PPA − Pa|, |PPV − Pa|) is the smaller

of the distances from the root positions PPA and PPV of

PA and PV to the voxel a at position Pa and Tdistance is a

constant threshold value.

The pairwise terms smooth the labeling between the neigh-

boring voxels (in the 18 neighborhood structure) to different

degrees according to the following equation:

θab(xa, xb) ∝


















(

exp

(

−
G2

ab

σ2
G

)

+ α

)(

exp

(

−
H2

ab

σ2
P

)

+ β

)

/D2
ab

if xa 6= xb,

0, otherwise.

(9)

The function depends on the gradient modulus of the im-

age Gab, given by the intensity difference between voxels:

|Va − Vb|, and the plateness measure Hab at the mean po-

sition of a and b calculated by Hessian analysis (Frangi et

al. 1998) to emphasize boundaries where the artery and the

vein are in contact. The plateness measure Hab is given by a

simplified version of the formulation in (Frangi et al. 1998)

:

Hab = exp

(

−
RAB

σ2
RAB

)

·

(

1− exp

(

−
R2

S

σ2
S

))

,

where

RAB =
√

|λ1λ2|/λ3, RS =
√

λ2
1 + λ2

2 + λ2
3.

The λ1, λ2, and λ3 are the three eigenvalues of the Hessian

at the voxel. We applied two scales of Gaussian kernels with

sizes 0.5 and 1.0 voxels. The plateness measure is calcu-

lated from the maximum responses in the two scales. Dab

is introduced to prevent shortcuts of label changes near the

root positions. The weight parameters were determined em-

pirically, and set as follows: Tdistance = 11mm, α = 0.01,

β = 0.1, σG = 50.0, σP = 0.3, σRAB
= 0.5, and σS = 8.0.

4.2 Implementation details of the data-dependent clique

potential

In this section, we describe how the set C of cliques in (7)

and the weight wc for each DDCP θc(Xc) are determined

in a principled way in the case of the PA/PV segmentation

problem.

Notwithstanding the strong tendency of the pulmonary

vessels to run straight, they of course do not always run in

a completely straight line; they sometimes curve or branch.

To allow for such flexibility, we encourage sets of voxels

forming a curve segment according to its curvature.

To choose the curve segments, we utilize a shortest path

algorithm. At each voxel i, we construct a shortest-path tree

as follows. We first form a graph from the voxels inside the

sphere of radius S/2 centered at i and the 26-voxel neigh-

borhood topology. Each edge connecting neighboring vox-

els a and b is given the following weight:

E(a, b) = L(a, b)(|Va − Vb|+ α)(|Da −Db|+ β) (10)

where L(a, b) is the physical distance between a and b, Va

and Vb are the intensities at a and b, Da and Db are the dis-

tances of a and b from the nearest segmented vessel bound-

aries, and α and β are constant weights. We then find a min-

imum cost path going through i that connects two voxels on

the sphere. The details are as follows:
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1) Run the Dijkstra algorithm to generate a shortest path

tree with i as the root. As a result, every node j has the

shortest path i → j from the root i. Let cj denote its

length, or the sum of the weights of the edges on the

shortest path.

2) For each pair (j, k) of voxels on the sphere, compute the

sum of the lengths normalized by the distance between

the two voxels: (cj + ck)/|Pj − Pk|, where Pj denotes

the position of the voxel j.

3) Choose the path j → i → k with the minimum sum and

take it as a curve segment.

This way, we choose one path (curve) for each voxel i.

The obtained paths tend to be straight avoiding going through

a large gap of intensities, and keeping a certain distance from

the vessel boundaries. The chosen path constitutes the clique

c in (7) and consequently the degree of the higher-order po-

tential θc(Xc) is the number of the voxels therein. The num-

ber of voxels is not always the same according to these steps,

but it does not become a matter in optimization. Thus, one

higher order term per voxel is added by finding the best seg-

ment.

The prediction accuracy of the potentials becomes higher

when the ratio of selected cliques lying entirely in one ves-

sel becomes higher. For this reason, the length of the path

(S) should be larger than the diameter of the vessel so that

we can estimate the direction of the vessel. On the other

hand, setting a larger number for S increases computational

burden. We found the optimal S based on a manually pre-

pared reference segmentation data by running the algorithm

on it with varying parameters, and determined S = 15 voxel

lengths for datasets that were rescaled to 0.75mm isotropic

voxel size. We also found the best parameters for eq. (10)

based on the reference segmentation data by finding the one

that resulted in the highest ratio.

Next, for each clique c found this way, we set the weight

wc for the higher-order potential, determining how much we

encourage the curve segment to be entirely in one of the seg-

ments (artery or vein). Since there is little difference in ap-

pearances between artery and vein, here we only distinguish

whether all labels are the same or not, regardless of it being

artery or vein. This corresponds to giving the same weight

for the terms in eqs. (5) and (6). To determine the weight,

the probabilities of the two cases (i.e., the path is entirely in

one segment, or not) for paths with varying curvatures are

first learned from the reference segmentation data that was

manually prepared. For each path, several features are cal-

culated from the voxel set. In the following, we refer to the

voxels in a clique (path) in the order from the root to the

end: i ∈ c = 1, ..., n , and each voxel i has the attributes

Pi (the 3D position), Vi (the intensity value in HU), and Di

(the distance from the boundaries). The features are:

(a) (b)

Fig. 8 Examples of the selected paths (reprinted from Kitamura et al.

2013)

i) the ratio of the length of the path and the straight-line

distance between the two endpoints:
∑

i∈c |Pi+1 − Pi|/|Pn − P1|,
ii) the total curvature along the path:
∑

i∈c | 6 Pi+1PiPi−1|,

iii) the maximum curvature on the path:

max (| 6 Pi+1PiPi−1|),
iv) the maximum intensity derivative:

max(Vi+1 − 2 · Vi + Vi−1),

v) the standard deviation of the intensity derivative: σ(Vi),

vi) the mean derivative of distance from the boundaries:

E(|Di+1 −Di|), and

vii) the difference of maximum and minimum distance from

the boundaries: max(Di)−min(Di).

Fig. 8 illustrates two examples of the selected paths. Com-

paring (a) with (b), the ratio feature i) is larger in (b), as well

as the total curvature ii). The maximum intensity derivative

takes a large value when a path goes through a boundary of

different structures.

Then, for each of the two cases (whether all the voxels

on the path have the same label or not), the histogram for

the feature values is generated and the log likelihood ratio

of their probabilities:

− log(Pr(not all same)/Pr(all same))

is learned. To learn the likelihood ratio from the limited

number of samples, the feature vectors were projected to

one dimension using the Linear Discriminant Analysis be-

fore learning. Fig. 9 shows the graph of the learned log like-

lihood ratio for the projected feature value. The likelihood

value corresponding to the feature value for given data is di-

rectly used as the weight of the DDCP. Note that the weight

−wc of the energy is clipped to zero when it is positive in

order to keep the potential submodular.

Snapshots of selected segments for the DDCP are shown

in Fig. 10. Each segment is drawn in green through the se-

lected voxels. The brightness indicates the likelihood: the

higher the likelihood of the segment is, the brighter it is

drawn.
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Fig. 9 Graph of learned log likelihood ratio (reprinted from Kitamura

et al. 2013)

Fig. 10 Snapshots of the voxel set for data-dependent clique poten-

tial. Each green filament represents a higher order clique. The poten-

tial weight wc for the clique c is determined according to its shape, in

this case curvature: the higher the weight is, the brighter it is drawn.

(reprinted from Kitamura et al. 2013)

4.3 Incorporating spatial arrangement features into

data-dependent clique potential

Although there are little difference between the appearances

of artery and vein, it is known that an artery often go along

an airway. Here we consider giving different weights for the

DDCP depending on the proximity to the airways. This im-

provement relies on the approach in (Mekada et al. 2006),

which classifies vessels based on two anatomical features;

the distance from the bronchus region to the vessel segment

(Db) and the distance between the nearest interlobar to the

vessel (Dv). The interlobar is approximated by a 3D ex-

tended Voronoi diagram of the bronchus tree. Since the PA

runs parallel to the bronchi, the Db for the PA branches will

be smaller than those of the PV. On the other hand, the Dv

for the PV branches tend to be smaller than those of PA, be-

cause they run near the interlobar of the lung segment. From

these observations, segmented vessels can be classified by

an A/V classification measure:

arctan(D′
b/D

′
v) (11)

where

D′
b =

1

|c|

∑

i∈c

Db(i)/σDb
, D′

v =
1

|c|

∑

i∈c

Dv(i)/σDv
.

The parameters σDb
and σDv

represent the standard devia-

tions of the values Db and Dv in the input volume; c is the
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Fig. 11 (LEFT) One-dimensional histograms that voxels in a clique

were all artery or all vein, where blue is vein and pink is artery,

(RIGHT) the log ratio for the artery-ness and vein-ness for the pro-

jected feature value (described in 3.2) and the artery-vein classification

measure

group of voxels to be evaluated, which are the voxels in the

selected clique in our case.

We derive a two-dimensional histogram for the projected

feature value described in §4.2 (which is a measure that a

clique has a straight shape) and the A/V classification mea-

sure from the training datasets. And the log likelihood ratio

of the artery-ness (all voxels in a clique are artery) given by

− log(Pr(not all same)/Pr(all artery))

and the vein-ness (all voxels in a clique are vein) given by

− log(Pr(not all same)/Pr(all vein))

are learned. Fig. 11(a) is one dimensional histograms that

voxels in a clique were all artery or all vein. Fig. 11(b) is

the log ratio for the artery-ness and vein-ness. We can see

that a higher-order clique tend to be entirely artery when

it has a straight shape and close to the airway. Meanwhile

a clique can be vein, regardless of the two features. Each of

the two likelihoods gives the weights for the terms in eqs. (5)

and (6). Note that, in the following verification tests, we em-

ployed the fully-automatic results obtained by the airway ex-

traction method (Inoue et al. 2013) which has been demon-

strated to have high extraction performance among the state

of the arts methods by the public benchmarking EXACT09

(Lo et al. 2012).

5 Experimental Validation

Here, we describe both quantitative and qualitative evalua-

tions to show the efficacy of the proposed method.

5.1 Quantitative evaluation

For quantitative validation, we compare our method with the

method in (Mekada et al. 2006), which is the only fully-

automatic method for PA/PV segmentation we could find.

We used ten chest CT Angiography images that were not
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used for learning. The datasets including thoracic regions

were imaged using Toshiba Medical Systems multi-detector

CT scanner at 120kVp. The product of exposure time and

tube current (mAs) was 159 on average (Min: 103, Max:

218). The images were acquired at 1.0mm slice thickness

and reconstructed with 0.8mm slice thickness and 0.67 ×

0.67mm2 in plane resolution. All the patients in the datasets

are known to suffer some lung disease and at least one tumor

exists in the lungs per dataset.

Ground-truth data were prepared for these images by

manually labeling the artery and vein regions. Note that the

ground-truth data was established only for vessels with CT

values more than−200HU in the lungs. Even under this con-

dition, we consider this ground-truth data to be sufficient to

validate A/V separation, since it covers most important ves-

sels except for peripheral branches which are not often in

contact with other vessels. The ground-truth data is directly

used for calculating volume-based measures. The volume

based classification accuracies were calculated as the per-

centages of the volume that the vessel in the ground truth

was correctly classified in the segmentation results.

Also, since the volume-based measures are biased by

the proximal vessels’ much larger volume compared to the

peripheral vessels’, we also evaluated the performance by

length-based measures. The artery and vein centerlines were

generated by thinning operation, which can prevent generat-

ing spike branches or holes, to each of the labeled regions of

PA and PV. We confirmed that the resulting centerlines were

going through the vessel centerlines by visual inspection.

The length based classification accuracies were calculated

as the percentages of the length that the vessel in the ground

truth was correctly classified in the segmentation results, in

the same way as volume-based accuracies.

For each of the volume- and length-based measures, three

kinds of the accuracy measures were calculated, correspond-

ing to the case when the ground truth included only PA, only

PV, and both (PA∪PV). Miss-extraction rates were also cal-

culated as the percentages of the vessel that was not seg-

mented (extracted) as artery or vein.

We compared four types of extraction method: Method-

SAF) the classification method in (Mekada et al. 2006) using

spatial arrangement features, Method-GC) first-order graph

cuts without the data-dependent clique potential, Method-

DDCP) higher-order graph cuts with the DDCP, and Method-

DDCP&SAF) higher-order graph cuts with the DDCP with

the spatial arrangement feature. Method-SAF is an exact

replication of (Mekada et al. 2006), which classifies the type

of vessels in the following steps.

1) The tree structure of the branches is obtained by thinning

operation for the segmented vessel regions.

2) The branches in the tree are merged to groups consider-

ing the connection relationship and contacting points of

PA and PV.

3) Each group is classified into artery or vein by threshold-

ing the A/V classification measure:

Type =

{

artery , if arctan(D′
b/D

′
v) < 0.5,

vein , otherwise
(12)

4) Segmented volumes of PA and PV are generated by di-

lating the classified branches until they conflict with the

other label.

Method-GC is for giving a baseline of conventional first-

order graph cuts approach. Method-DDCP and DDCP&SAF

are the approaches proposed in this paper, corresponding to

the ones described in §4.2 and §4.3, respectively. With re-

gard to the robust Pn Potts model, we set N = 3 for both

of (5) and (6) during these evaluation, since it generated

slightly better segmentation than N = 1. All steps were ex-

ecuted automatically without any user interaction. Tables 1

and 2 show the volume- and length-based measurement re-

sults, respectively. To summarize the results, the average rate

of length-based correct classification of PA∪PV were 73.6%

in the case of Method-SAF, 77.6% in the case of Method-

GC, 90.8% in the case of Method-DDCP, and 91.0% in the

case of Method-DDCP&SAF. The average miss-extraction

rate was 3.3%, which was common between all methods as

they relied on the same vessel-extraction method. The box

plot of the results is shown in Fig. 12.

Firstly, let us discuss the impact of the DDCP by com-

paring Method-GC and Method-DDCP. Shown in Fig. 13(a),

(b), (c) is an example of the case where a major difference

was seen between the two methods. Method-GC, the base-

line, generated a large misclassified region, as it used only

the pairwise term as a typical conventional method does.

Such a method tends to fail to separate regions that are in

contact over a large area or with an unclear boundary (Fig.

13(c)). The case where even Method-GC achieved a high

rate of correct classification is shown in Fig. 13(d), (e), (f).

In this case, the difference of intensity values between the

artery and the vein were comparably higher due to the timing

of the injection of the contrast agents (Fig. 13(f)). However,

Method-DDCP obtained a higher rate, correctly classifying

more vessels around the peripheral.Fig. 14 shows an effi-

cacy of the robust Pn Potts model. The peripheral branch

indicated by the circle was successfully segmented when

N = 3, while in contrast the method using N = 1 failed.

A failure case of Method-DDCP is shown in Fig. 15.

Typically, the proposed method fails where curving or branch-

ing vessels are in contact. Because the method assumes that

pulmonary vessels run straightly, the assumption does not

meet this situation. The average processing time of the Method-

GC and Method-DDCP were 52.5 seconds and 93.2 seconds

per dataset on a quad-core 2.8GHz PC.

Next, let us show the efficacy of the spatial arrangement

features. The correct classification rate of Method-SAF was
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Table 1 Volume-based correct classification rates (%) of PA and PV for each case

Case Method-SAF Method-GC Method-DDCP Method-DDCP&SAF Miss

No PA PV PA PV PA PV PA PV PA PV

1 80.7 80.8 91.2 91.0 97.2 94.2 97.4 93.4 0.8 0.3

2 76.8 69.1 94.9 68.2 93.6 96.8 95.1 96.2 0.6 0.7

3 69.8 69.3 92.4 73.1 92.4 93.5 94.9 93.7 2.0 1.7

4 71.9 81.2 93.4 90.4 97.8 95.6 99.2 96.0 0.4 1.0

5 62.5 71.7 96.0 73.8 97.4 96.6 98.0 98.0 0.9 1.4

6 64.7 75.1 90.3 72.2 92.7 95.2 92.8 97.9 0.7 0.9

7 80.1 74.3 92.4 94.0 96.5 97.7 95.7 97.8 0.8 1.6

8 60.1 72.2 90.6 70.6 96.6 94.1 97.9 94.3 1.2 1.1

9 35.7 83.8 89.3 59.9 89.3 95.7 89.3 92.3 2.2 1.3

10 56.7 66.4 95.9 75.2 97.2 93.8 97.4 95.9 0.6 1.5

Mean 65.9 74.4 92.6 76.9 95.1 95.3 95.8 95.6 1.0 1.2

Table 2 Length-based correct classification rates (%) of PA and PV for each case

Case Method-SAF Method-GC Method-DDCP Method-DDCP&SAF Miss

No PA PV PA PV PA PV PA PV PA PV

1 87.2 87.5 85.1 84.5 94.5 90.5 94.8 89.5 2.3 1.8

2 84.0 74.3 88.4 62.2 87.7 92.9 89.0 91.5 2.9 2.5

3 70.2 72.0 84.5 60.8 86.0 87.9 89.4 87.7 5.2 4.7

4 80.8 85.1 87.0 81.8 94.9 90.1 97.4 90.9 2.0 4.7

5 66.7 68.9 89.8 68.2 93.2 92.7 94.0 94.5 3.4 3.7

6 68.6 81.6 84.7 61.3 88.3 91.6 88.5 94.8 2.2 2.6

7 87.8 72.5 86.3 87.9 93.9 94.5 91.9 94.6 2.4 4.1

8 66.1 78.1 85.6 60.5 91.9 87.4 94.4 87.7 3.2 4.2

9 34.0 80.3 85.4 51.1 86.1 92.0 80.6 89.0 3.9 3.5

10 57.5 70.3 92.1 62.6 94.8 87.6 95.2 90.8 1.5 4.6

Mean 70.3 77.1 86.9 68.1 91.1 90.7 91.5 91.1 2.9 3.6

73.6%, although it is reported in (Mekada et al. 2006) that

the method achieved 87% in the three cases with complete

bronchus trees. Similar rates were obtained in the instances

of the testing datasets that ranked high, but the rates for the

rest of the datasets were much lower. The reason is that we

cannot always obtain automatic bronchus extraction results

good enough for artery-vein classification. As the two exam-

ples in Fig. 16 show, the classification performance signif-

icantly decreases in the cases where the extracted bronchus

tree does not extend to the peripheral in the lungs. This is

mainly caused not by the limitation of the extraction perfor-

mance but by the fact that bronchus cannot always be seen

clearly, depending on the patient. The Method-DDCP&SAF

achieved the highest classification rate of 91.0% on aver-

age. In a few cases, however, the rates are much worse com-

pared to Method-DDCP. The reason for the diminished per-

formance was also the limited extraction performance of the

bronchus. Improving its robustness is an important issue to

be solved in the future.

5.2 Subjective tests in clinical settings

Now we describe the details of the subjective tests in clini-

cal settings. Since these tests were done at a hospital where

the proposed method has been deployed as commercial soft-

ware, there were no conflicts of interest between the clini-

cians that conducted the tests and the authors of this paper.

The thoracic regions were imaged using Toshiba Medical

Systems multi-detector CT scanner at 120kVp under auto-

matic exposure control. The images were acquired at 0.5mm

slice thickness and reconstructed with 0.5mm slice thick-

ness and 0.5 × 0.5mm2 in plane resolution. As described

below, test datasets were acquired at several different image

contrasts. Contrast materials were injected into patients at

1.2−1.5ml/sec. for obtaining low contrast data or 3.0ml/sec.

for obtaining high contrast data.

The procedure and viewpoints of these tests are as fol-

lows. Misclassified branches were detected by eye-balling

by three experts and classified into three grades by consen-

sus. The three grades were determined by the depth of the

most proximal misclassified branch. Because the pulmonary

vessels have tree structures, total misclassified region grows

larger as the misclassified position becomes proximal. As

is shown in Fig. 17, Grade-II means that the misclassified

branches form an equivalent of one lung-segment; it is known

that both of the human lungs are classified into about ten

such segments. In a relative manner, Grade-I and Grade-III

represent the cases where misclassified branches range less

than one lung segment and more than one lung-segment, re-

spectively.



12 Yoshiro Kitamura et al.

 

50

55

60

65

70

75

80

85

90

95

100

Method-SAF Method-GC Method-DDCP Method-DDCP&SAF

R
a
te

 o
f 
c
o
rr

e
c
t 
c
la

s
s
if
ic

a
ti
o
n

50

55

60

65

70

75

80

85

90

95

100

Method-SAF Method-GC Method-DDCP Method-DDCP&SAF

R
a
te

 o
f 
c
o
rr

e
c
t 
c
la

s
s
if
ic

a
ti
o
n

(a) volume-based measure 

(b) length-based measure 

Fig. 12 Box plots of (a) volume-based and (b) length-based correct

classification rates of PA∪PV comparing four methods. From left to

right of the horizontal axis, Method-SAF: the classification method

using spatial arrangement features. Method-GC: graph cuts without

the DDCP, Method-DDCP: graph cuts with the DDCP, and Method-

DDCP&SAF: graph cuts combining the DDCP and the spatial arrange-

ment feature.

Testing datasets were categorized into three groups: the

low contrast, the high contrast, and the mixture group. The

images in the low-contrast group have less than 200HU around

both of the PA and PV trunk regions. The images in the high-

contrast group have more than 200HU. The images in the

mixture group have more than 200HU around one of the PA

or PV trunks. The subjective tests were done at slightly dif-

ferent settings: the robust Pn Potts model was not used for

Method-DDCP (i.e. N = 1).

5.2.1 Subjective test - I

One of the two tests is for evaluating the efficacy of the

higher-order potentials. Similar to the previously-mentioned

quantitative evaluation, two extraction results obtained by

the energy functions with and without the DDCP (Method-

GC and DDCP) were compared. The numbers of cases in the

high-contrast, low-contrast, and mixture groups were 10, 9,

and 5, with the total of 24 cases used.

The summary of this test is shown in Table 3. The to-

tal number of misclassifications using Method-DDCP de-

creased by 52% compared to Method-GC. It is especially

notable that the number of Grade-III misclassification dropped

by two thirds, showing that the DDCP greatly contributes to

successful recognition of large amount of branches. These

results agree well with the quantitative evaluation and prove

the robustness of the method with a large number of datasets.

Table 3 Total number of misclassified branches in 24 cases obtained

by Method GC and DDCP

Grade-III Grade-II Grade-I Total

Method-GC 33 58 63 154

Method-DDCP 11 41 22 74

5.2.2 Subjective test - II

We also assessed the dependence of the methods on the de-

gree of contrast enhancement. The numbers of cases in the

high-contrast, low-contrast, and mixture groups were 16, 13

and 11, with the total of 40 cases used. Only the method with

the DDCP (Method-DDCP) was evaluated in this test. Note

that adding contrast at more than 200HU in angiographic

imaging is considered a standard protocol; thus this evalua-

tion is for testing robustness against contrast variability in a

clinical setting.

The summary of evaluation results is shown in Table 4.

The method achieved higher classification accuracies as the

contrast was enhanced more. The method generated an ex-

tremely low rate of misclassification (0.19 at Grade-III, 1.19

at Grade-II on average) in the high contrast group. One ex-

ception is that some segmentation results in the high contrast

group were worse than in the low contrast group, especially

around the superior vena cava (SVC), due to the artifacts

caused by the contrast agent. The examples that were ac-

quired from the same patient but adding different degrees

of contrast are shown in Fig. 18. To summarize, the method

generated almost no major failure when an appropriate con-

trast enhancement is given, and also do not require severe

control of the timing of contrast agent injection.

Table 4 Total number of misclassified branches in 40 cases obtained

by Method DDCP for datasets having different contrast

Grade-III Grade-II Grade-I Total

High contrast 3 19 16 38

Mixture 5 14 12 31

Low contrast 10 29 16 55

6 Discussion

It should be noted that the separation performance is af-

fected by the image resolution. The vessels with diameters

that are less than the resolution scale are not separated well

in principle as is described in 3. In addition, as the ground-

truth data was prepared only for relatively large vessels, such
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Artery 

Vein 

Artery 

Vein 

unclear boundary 

(a) (b) (c)

(d) (e) (f)

Fig. 13 The segmentation results of the case that the artery and the vein are in contact over a large area. (a)-(c): the case with an unclear boundary.

(d)-(f): the case where the difference of intensity values between the artery and the vein are comparably higher. (a) and (d) were obtained from the

method with DDCP. (b) and (e) are the baseline cases without DDCP. The red and blue regions represent artery and vein, respectively. The yellow

represents misclassified regions. (c) and (f) are coronal images around the pulmonary hilum. (reprinted from Kitamura et al. 2013)

 

Fig. 14 The comparison of segmentation results when (LEFT) N = 1

and (RIGHT) N = 3. On the right image, the voxels along the vein

branch was allowed to have different label.

 

artery 

vein 

Fig. 15 A failure case of the method with the DDCP. (LEFT) 3D ren-

dering of the miss-recognized point, (RIGHT) a cross section image of

the contacting point, The vein branch was classified as artery.

(a) (b)

Fig. 16 The automatic bronchus extraction results used for artery-vein

separation in the qualitative evaluation. (a) is the extracted bronchus

when the classification accuracy was high, (b) is the one when the clas-

sification accuracy was low.

small vessels were not evaluated in our study. Processing

with the increased resolution would be a straightforward way

to raise the performance, but it also increases computational

complexity and consumed memory size. We designed the

experimental settings balancing these factors to meet our

purpose of pre-surgery simulator. Dealing with small ves-
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Fig. 17 Example of the three grades of misclassified branches in the

subjective tests.

 

  

 

(a) (b)

(c) (d)

Fig. 18 The segmentation results for two cases acquired from the same

patient but adding different degrees of contrast. (a) and (c) are the re-

sults in the high contrast group. (b) and (d) are in the mixture group

(lower contrast enhancement). The branches around superior vena cava

(SVC) were classified better in (b) than in (a), while the branches in the

lower lobe were classified better in (c) than in (d).

sels and more comprehensive evaluation would be a future

work.

Although a few promising methods have been proposed

for PA/PV segmentation, we could not directly compare our

method with them, due to the differences in the prerequisite

information/user intervention in each method. Since PA/PV

segmentation consists of several tasks such as seed selec-

tion, vessel segmentation, and artery-vein separation, match-

ing the condition of each step cannot be done easily. Still,

to put our result in perspective, let us compare our qualita-

tive results with state-of-the-art methods in related but not

identical settings. The method in (Saha et al. 2010) achieved

95% correct classification rate on two (non-angiography)

CT datasets, using 25-40 seeds specified by the user, whereas

it is reported that (Mekada et al. 2006), using anatomical

knowledge on pulmonary vessels and airway, achieved 87%

on three CT datasets, given airway-lung segmentation a pri-

ori. Since these methods require different input (image modal-

ity, seeds, a priori segmentation), it is not possible to directly

compare them with our method. Nevertheless, we consider

our method highly competitive as it achieves 90.7% with-

out any user interaction. Moreover, the computational time

is short enough for practical use.

Next, we discuss the features we use in this study to de-

termine the weights of the DDCPs. In the case of lower-

order clique potentials, there are well-studied features like

the correlation coefficient (Lei 2010), which is parameter-

ized by the image intensity and the distance between vox-

els. However, in this paper we focus on the relationships be-

tween much more numerous voxels and consider the shapes

they form. Although we learned the relationship between

the features and the weights, we determined some param-

eters heuristically in choosing the features itself. Thus, the

exploited features here might not be optimal. A generalized

scheme to design feature vectors belongs to a future work.

In this paper we verified that, once the features are chosen,

giving the weights of the DDCPs based on the statistics of

the reference data is effective in obtaining promising results.

Regarding the subjective tests, the experts who performed

the tests concluded that the proposed method was effective

for reducing human workload in generating 3D images of

PA and PV. An alternative mean to obtain the 3D images at

clinical practice is taking two-phase images adding different

contrast for PA and PV. Using the images acquired in such

a manner, PA and PV can be visualized by the conventional

volume rendering method. However, they commented that

the segmentation accuracy of the fully automated method

presented here was clinically acceptable and could replace

the current two-phase imaging technique. Furthermore, the

proposed method also has an impact in reducing the patient

dose, as the method requires only one phase.

Another remarkable feature of the proposed method is

its quick response to user operation. When additional inputs

are given to modify unsatisfactory segmentation results of

PA and PV, optimal solution can be computed quickly by us-

ing the flow-reusing techniques (Kohli et al. 2005; Boykov

and Kolmogorov 2004), while keeping the strong tendency

that the segmentation result keeps straight configuration. We

developed the pre-surgery simulation system in which the

proposed method and a graphical user interface system for

modifying results were implemented (Fig. 19). By using the

flow-reusing technique, the system realizes a response within

one second upon user interaction. Surgeons who use our

pre-surgery simulation system commented that the proce-

dures for further modification by a thoracic surgeon, taking

anatomical variability into account, took only 5-10 minutes

per patient (Saji et al. 2013). The system is now being used

routinely in the institution as is mentioned in the paper.
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(a)

(b) (c)

Fig. 19 The pre-surgery simulation system in which the pulmonary

artery-vein segmentation method and its interactive modification func-

tion have been implemented. (a) The entire view of the graphical user

interface. The 3D rendering image is shown at the center. A user can

input 3D points to modify the segmentation results through the inter-

face. (b) The pulmonary artery-vein segmentation result before modi-

fication. (c) The segmentation result after modification. The green dot

represents the inputted seed point.

Although the number of existing methods that utilize

higher-order potentials is still limited, we proposed a novel

approach to effectively exploit the prior knowledge of the

object shape. The key idea is selecting voxels in a clique

to represent at least a part of the object shape. As an em-

bodiment, we present an effective modeling of vessels. The

verification tests were done especially for PA and PV, but

this approach can be immediately applicable for the vessels

in other parts of the body such as head and abdomen. As the

basic idea is general, considering other voxel selection ap-

proach as per the shapes such as plate-like or arc-like struc-

tures is likely to improve the segmentation accuracy of other

kinds of objects.

7 Conclusion

We proposed a novel segmentation method that utilizes higher-

order functions which allow modeling the shape of segments

such as the complex anatomy of pulmonary vessels. The

higher-order terms encourage sets of pixels to be entirely

in one segment or the other, and they can be converted into

submodular first-order terms so that it can be globally mini-

mized. The key feature of the proposed method is selecting

pixels in a clique according to the shape to be segmented. We

presented a fully-automatic pulmonary artery-vein segmen-

tation method. The verification tests showed that the method

achieved clinically acceptable accuracies. We consider this

method applicable to various other segmentation problems.
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