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Abstract We propose a Branch-and-Cut (B&C) method for
solving general MAP-MRF inference problems. The core
of our method is a very efficient bounding procedure, which
combines scalable semidefinite programming (SDP) and a
cutting-plane method for seeking violated constraints. In or-
der to further speed up the computation, several strategies
have been exploited, including model reduction, warm start
and removal of inactive constraints.

We analyze the performance of the proposed method un-
der different settings, and demonstrate that our method ei-
ther outperforms or performs on par with state-of-the-art ap-
proaches. Especially when the connectivities are dense or
when the relative magnitudes of the unary costs are low,
we achieve the best reported results. Experiments show that
the proposed algorithm achieves better approximation than
the state-of-the-art methods within a variety of time budgets
on challenging non-submodular MAP-MREF inference prob-
lems.

1 Introduction

Markov Random Fields (MRFs) have been used to model
a variety of problems in computer vision, including seman-
tic image segmentation, restoration, 3D reconstruction and
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stereo matching, amongst a lot of others. Finding the maxi-
mum a posteriori (MAP) solution to general MRF problems
is typically NP-hard, however, and many approaches have
been proposed to solve such problems, approximately or ex-
actly (see [1, 2, 3, 4, 5] for comparative studies).

Graph cuts based methods [6, 7, 8] have been applied
to a number of MAP problems in computer vision. Binary
MRFs with submodular pairwise potentials can be solved
exactly and efficiently by graph cuts. The QPBO [8, 9] algo-
rithm can obtain a part of the globally optimal solution for
some non-submodular, binary, pairwise MRFs, but its per-
formance degrades as the portion of non-submodular poten-
tials increases and in the case of highly connected graphs or
weak unary potentials [9]. For multi-label MRFs, expansion
move and swap move algorithms [6] have been employed to
find a strong local optimum with the property that no expan-
sion move (swap move) can decrease the energy. However,
this optimality is guaranteed only if the binary subproblem
at each iteration is solved globally. In particular, the binary
subproblem is typically required to be submodular to guar-
antee this optimality.

Another class of popular inference approaches is based
on message passing. Max-product belief propagation [10,
11, 12, 13] obtains exact solutions to tree-structured graphs,
single-cycle graphs [14, 15], and maximum weight match-
ing on bipartite graphs [16]. For graphs with cycles, ap-
proximate solutions can also be obtained using max-product
belief propagation, but there is no convergence guarantee.
Tree-reweighted max-product (TRW) message-passing [17,
18, 19] differs from belief propagation in that it maintains
a lower-bound to the minimum energy and can be used to
measure the quality of approximate solutions. TRW mes-
sage passing is proved [19] to be exact for binary submodu-
lar MRFs. Kolmogorov [18] proposed an improved version
of TRW, called TRW-S, with convergence guarantee that
TRW does not have.
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Many aforementioned approaches have underlying con-
nections to the standard linear programming (LP) relaxation
optimizing over local marginal polytope [20, 21, 22]. The
ordinary max-product updates [10] can be considered as a
Lagrangian approach to the dual of the standard LP relax-
ation, for tree-structured graphs. However, this relationship
cannot be generalized to graphs with cycles. For binary pair-
wise graphs, QPBO and TRW message passing exactly solve
the standard LP relaxation [19]. The standard LP relaxation
can achieve exact solutions for tree-structured graphs or bi-
nary graphs with submodular potentials. It is proved in [3]
that the standard LP relaxation dominates second-order cone
programming (SOCP) relaxation [23] and quadratic prog-
ramming (QP) relaxation [24].

Standard LP algorithms such as interior-point methods
are usually computationally inefficient for large-scale MAP
problems, as they do not exploit the graph structure. To this
end, a number of specific approaches to solve LP relaxation
for MAP problems have been proposed, such as block coor-
dinate descent methods [18, 25], subgradient descent meth-
ods [26, 27, 28], bundle methods [29], proximal methods
[30], ADMM [31, 32, 33] and smoothing methods [30, 34,
35, 36].

However, it has been shown in [37, 38, 39, 40] that the
standard LP relaxation is still not tight enough for many hard
MAP problems in real applications. Especially, the above-
mentioned methods usually perform poorly for the class of
densely-connected graphs with weak unary potentials and a
large portion of non-submodular pairwise potentials (which
are of major interests in this paper). Because there are a
large number of (potentially frustrated) long cycles in den-
sely-connected graphs, the standard LP relaxation is likely
to provide loose bounds. Two approaches can be adopted to
alleviate this issue. The first direction is based on LP relax-
ation with high-order consistency constraints [37, 38, 39, 40,
41, 42]; and the second one is to use semidefinite program-
ming (SDP) relaxation [43, 44, 45, 46, 47, 48, 49, 50, 51].

As the standard LP relaxation only enforces edge consis-
tency constraints over pseudo-marginals of variables, it can
be loose due to the existence of violated high-order consis-
tency constraints. Cluster based methods [37, 39, 40, 42] can
be used to tighten the standard LP relaxation by incremen-
tally adding high-order consistency constraints. Methods for
searching violated high-order constraints include dictionary
enumeration for triplets or other short cycles [39, 40] and
separation algorithms for long cycles [42, 52].

SDP relaxation provides an alternative tighter bound for
MAP-MREF inference problems, compared with LP relax-
ation. SDP is of great importance in developing approxima-
tion algorithms for some NP-hard optimization problems,
and usually provides more accurate solutions. In particular
for the classical maxcut problem, it achieves the best ap-
proximation ratio of 0.879 [53]. Primal-dual interior-point

methods [54, 55, 56, 57, 58] are considered as state-of-the-
art general SDP solvers, which in the worst case require
O(m34+mn®h3+m?n?h?) arithmetic operations and O (m?+
n?h?) memory requirement to solve SDP relaxation to an
MAP problem with n nodes, h states per node and m lin-
ear constraints. The exponent in the polynomial complex-
ity bound is so great as to preclude practical applications
of interior-point methods to even medium sized problems.
This has significantly hampered the use of SDP relaxations
in MAP-MRF inference.

Some approaches [47, 48, 51, 59] solve SDP relaxation
efficiently based on the low-rank approximation of p.s.d.
matrix: X = YY" (such that p.s.d. constraints are elimi-
nated). However, these methods need to solve a sequence of
non-convex problems, and may get stuck in a local-optimal
point. Multivariate weight updates based methods [60, 61,
62, 63, 64, 65] solve specific SDP problems inexactly, but
need many iterations to converge to accurate solutions. Aug-
mented Lagrangian methods [50, 66, 67, 68] have also been
proposed for solving SDP problems, which can be viewed as
an instance of gradient descent methods [69] and may have
a slow convergence rate.

It is shown in [22] that MAP LP relaxation with lo-
cal consistency constraints and conventional SDP relaxation
without considering local consistency constraints are mu-
tually incomparable, which means that neither of them is
tighter than the other. Thus combining conventional SDP
relaxation and standard/high-order local consistency con-
straints together would produce an even tighter bound. Un-
fortunately, this combination results in a very challenging
optimization problem, not only because of the computation-
al inefficiency of SDP itself, but also due to the large number
of linear constraints arising from standard/high-order LP re-
laxation.

In this paper, we propose an efficient SDP approxima-
tion/bounding approach, which is faster than state-of-the-
art competing methods and able to handle a large number
of linear constraints. A Branch-and-Cut (B&C) method is
developed based on this SDP bounding procedure. Our ap-
proach can be used to achieve either the exact solution or
an accurate approximation to general MAP-MRF inference
problems with a time budget, and does so at a lower compu-
tational cost than state-of-the-art competing methods. The
main contributions of this paper are as follows.

e We present an approximate inference approach based on
a scalable SDP algorithm [49] and cutting-plane. The
proposed formulation minimizes the energy over the in-
tersection of the semidefinite and polyhedral outer-bou-
nds arising from SDP and standard/high-order LP relax-
ation respectively. Such optimization schemes result in
SDP problems with a large number of linear constraints
m. Significantly, our proposed SDP method scales lin-
early in m (i.e., O(m))—a sharp contrast to standard
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interior-point methods with complexity of O(m?). The
method proceeds by incrementally adding violated con-
straints until the required solution quality is achieved.
Our method is much faster than interior-point methods
while still maintains a comparable lower-bound of the
minimum energy.

o The proposed SDP approximate/bounding method is em-
bedded into a B&C framework for exactly solving MAP-
MREF inference problems. We also introduce a few tech-
niques to optimize the bounding and branching proce-
dures, including model reduction, warm start and removal
of inactive constraints.

e We analyze the performance on a variety of MRF graphic
models, which demonstrates that our method performs
better than recent competing approaches, especially when
the graph connectivity is dense and/or the unary poten-
tials are weak.

Related work We review some research work that is closely
related to ours. The proposed approach is motivated by the
line of our prior work in [49, 70]. While the work in [49, 70]
focuses on distance metric learning and image segmentation,
our work here considers approximate and exact methods for
general MAP-MRF inference problems.

Different B&B algorithms have been proposed for MAP-
MREF inference. Sun et al. [71] proposed a B&B method (re-
fer to as MPLP-BB) based on LP relaxation. DAOOPT [72]
is another B&B method based on LP relaxation, which com-
bines several sophisticated techniques, including And/Or s-
earch spaces, the mini-bucket approach and stochastic lo-
cal search. In our experiments, MPLP-BB and DAOOPT are
outperformed by our method. Peng et al. [48] developed an
approximate inference method for optimizing over the inter-
section of semidefinite bound and local marginal polytope.
Note that the optimization technique in their work is differ-
ent from ours. There, the p.s.d. constraint and local marginal
polytope are separated using dual decomposition, and then
the SDP subproblem is solved using non-convex QP, which
results in a local optimum. On the contrary, our method pro-
cesses the p.s.d. and linear constraints altogether and opti-
mizes a convex problem with a guarantee of being globally
optimal.

SDP-based B&B or B&C approaches have also been
widely studied for integer/continuous quadratic problems.
Krislock et al. [73] introduced an SDP-based branch-and-
bound (B&B) method to solve Max-Cut problems. An ex-
perimental comparison was performed in [74] between LP-
and SDP-based B&B methods for graph bisection problems,
which showed that SDP-based methods are better for graphs
with a few thousands nodes. The algorithm in [75] solves
real-valued nonconvex quadratic programs using a finite B&B
algorithm in which the bound of each branch is computed by
semidefinite relaxation. The work in [76] introduced an ex-
act solver for binary quadratic programs, which combines

DC (difference of convex functions) algorithms and SDP-
based B&B approaches. Mars and Schewe [77] proposed
an SDP-based B&B method for mixed-integer semidefinite
programs. SDP-based cutting plane algorithms were stud-
ied in [78, 79, 80, 81, 82] for binary quadratic programs, in
which linear constraints arising from cut polytope were used
to strengthen the SDP relaxation. In contrast to the above
approaches, our algorithm aims to solve the MAP inference
problems for discrete graphical models, and uses a number
of specific speedup strategies.

Notation Table | lists the notation used in this paper:

X A matrix (bold upper-case letters).

x A column vector (bold lower-case letters).

R The set of real numbers.
8™ The set of n X n symmetric matrices.
8% The cone of positive semidefinite (p.s.d.) n X n
matrices.
The matrix X is positive semidefinite.
Inequality between scalars or element-wise in-
equality between column vectors.
Indicator function, 1 if the statement is true and
0 otherwise.
Trace of a matrix.
Rank of a matrix.
The main diagonal vector of the matrix X.
A diagonal matrix consisting of the input vector
x as diagonal elements.
¢1 and ¢ norm of a vector.
Frobenius-norm of a matrix.

(-,+) Inner product of two matrices.
V1(-) The first-order derivatives of function f(-).

|z] The nearest integer less than or equal to z.

X=0
<2

1()

trace(+)

rank(-)
diag(X)
diag(x)

[l (112
I-Il#

Table 1: Notation.

The remaining of this paper is organized as follows. We
first introduce the basic concepts of LP and SDP relaxation
to MAP problems in Section 2. Then our main contributions,
the overall branch-and-cut method for energy minimization
and the SDP bounding approach with cutting-plane are dis-
cussed in Sections 3 and 4 respectively. The performance of
our algorithms is evaluated experimentally in Section 5.

2 LP and SDP Relaxation to MAP-MRF Inference
Problems

Suppose that an MAP-MREF inference model is character-
ized by an undirected graph § = (V, &), where V repre-
sents the set of n nodes (which is reused to represent the
set of node indexes{1,2,...,n}) and € represents the set of
edges. In this paper, we only consider unary and pairwise
potentials, and so MAP-MRF inference problems can be ex-
pressed as the following energy minimization problem:

min B(x) := Zep(xp) + Z Op.q(2p,zq), (D)

xezn
peV p<q,(p,q)€E
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where 0,,(x,,) and 6, ,(x,, z,) represent the unary and pair-
wise potentials respectively. Z = {1,2,..., h} refers to the
set of h possible states. Without loss of generality, we as-
sume that all nodes have the same number of possible states.

It is well known that the energy minimization problem
(1) is equivalent to the following LP problem:

E(y,Y):= Z O0p(1)Yp,i +
peEVIEZ

>

p<q,(p,q)€E,i,jEZ

where the set M(G, Z) refers to the marginal polytope with
respect to graph G and the state space Z:
M(G,2) =

IPr(x), s.t.

v, Y|y, =Pr(z,=1), VpeV,ieZ,

Yyiqi=Pr(zp=i,2,=7), V(p,q) €E,i€Z.
In the above definition, {y, ;}ic2 and {Y; 4;}i jez refer
to singleton and pairwise pseudomarginals with respect to
each node p €V and each edge (p, q) € € respectively, which
are globally realizable by some joint distribution Pr() over
x € Z™. Each vertex (extreme point) of M(G, Z) is integer
({0, 1}-valued) and corresponds to a valid assignment x €
Z™. So there is always a binary optimal solution to the LP
problem (2).

Although the above LP problem only contains O(|&] +
|'V|) number of variables, it generally requires exponential
number of linear constraints to describe M (G, Z). To address
this difficulty, the standard LP relaxation [20, 21, 22] opti-
mizes the objective function of (2) over a tractable set, called
local marginal polytope:

Mp(G,2):=
y=>0;Y >0;
v, Y Ziezyp,izla YpeV; ,
Zjezy;i,qj =Yp,i» V(pv q) € 87 1€Z.
which is a convex polyhedral outer-bound on M(G, Z). That
is, M(G,2) € M(S,2). Its number of linear constraints
grows linearly with respect to the graph size but quadrati-
cally with the size of Z. It is known (see [22] for example)
that any vertex of M(G, Z) is also a vertex of M, (G, Z), and
for a graph G with cycles, M, (G, Z) also contains fractional
vertexes lying outside M(G, Z). Consequently, we have the
following important property of the standard LP relaxation
(see [22]):

@

min
{y, Y}eM(S,2)

op,q(i»j)ypi,qj

3)

“)

Theorem 1 (Optimality guarantee of LP relaxation)

If the solution to the LP relaxation: min
{y, Y}eML(G,2)
is integer, it is the exact MAP solution.

E(y,

The edge consistency is preserved in My, (G, Z), but high-
order consistency is not enforced. Cluster based methods [39,
40, 42] iteratively add to LP relaxation high-order consis-

Y)

tency constraints, and provide incrementally improved lower-
bounds to the minimal energy: miny ez E(x).

Alternatively, SDP relaxation provides a different con-
vex outer-bound on M(SG, Z). Consider a symmetric matrix
consisting of y and Y:

r 1l v Yp,i Yq,i Yn,h 7]
y1,1 Yi1,11 0 Yii,pi 0 Yii,q5 0 Yii,nh
Ypi Ypi,i1 o Ypipi = Ypigi 0 Ypinh
2y, Y)= , (5
Yaj Yajir - Yaipi - Yaj,05 - Yaimn
LYnn Ynn11 - Yah,pi = Ynh,qi ** Ynh,nh

where Y ¢i = Up.i-Yq.5, V(D,q) € E, 4, j €Z. At any vertex
of M(G,2), 2(y,Y) = Qy,yy') = {1’ yTT} = 0isa

Y, ¥y
rank-1 positive semidefinite matrix.
By discarding the non-convex rank-1 constraint, we ob-

tain the following convex outer-bound on M(G, Z):
P(9) =1y, Y2y, Y) = 0}, (6)
which generally contains curved boundaries. It is shown in
[22] that local marginal polytope M (G, Z) and the semi-
definite outer-bound P(§) are mutually incomparable, whi-
ch means that neither of them dominates the other. We at-
tempt to combine the local marginal polytope and semidef-
inite outer-bound in this work such that a tighter bound can
be achieved. To solve the resulted SDP problem, which may
have a large number of constraints, scalable SDP solvers are
developed.

In general, both LP and SDP relaxation do not provide
feasible integer solutions to the original non-submodular en-
ergy minimization problem. Thus a rounding procedure is
needed to transform a fractional solution given by LP/SDP
relaxation to a feasible integer solution. A simple rounding
procedure for both LP/SDP relaxation is to round each vari-
able independently based on the singleton pseudo-marginals
y:

Tp = argrgleagcyp,i, p=12--- n.

)

Better rounding methods would consider the labelling over
all variables jointly, which can be done by considering the
reparameterized objective [ 18] or pairwise pseudo-marginals
Y conditioned by already labelled variables. For max-cut
problems, the random hyperplane rounding approach [53]
for SDP relaxation delivers a bounded expected objective
value. In this paper, the simple rounding procedure (7) is
adopted for our SDP solver, followed by a post-processing
procedure based on ICM [83] (see Section 4.5).

3 Branch-and-Cut for Energy Minimization

In this section, the overall algorithm of B&C for the energy
minimization problem (1) is given in Algorithm 1 and then
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the subproblem selection and branching strategies are pre-
sented.

3.1 The Branch-and-Bound Method

First, we briefly revisit B&B methods [84, 85]. As a method
for global optimization of nonconvex problems, B&B meth-
ods rely on two procedures which compute upper- and lower-
bounds on the global optimum. Considering a minimization
problem, the upper-bound can be obtained by choosing any
point in the feasible set. A local search method is usually
performed to improve the upper-bound. On the other hand,
the lower-bound can be computed from a convex relaxation
to the original non-convex problem.

At each iteration of B&B (Algorithm 1), a subproblem
is selected from the priority queue Q (Step 1) and its upper-
/lower-bounds are computed (Step 2). In Step 3, the global
upper-bound (gub) is updated in each iteration as the mini-
mum of the upper-bounds over all branches, while the global
lower-bound (glb) is updated as the minimum of the lower-
bounds over all leaf branches. All subproblems with a lower-
bound not smaller than the global upper-bound are pruned in
Step 4. If the selected subproblem cannot be pruned, its fea-
sible set D is separated into at least two convex sets (Step
5). B&B algorithms terminate when the global upper-bound
and lower-bound are sufficiently close to each other.

There are several essential components in B&B: bound-
ing (bound(D)), subproblem selection (pop(Q)) and branch
ing (split(D,y)). The bounds computed by the bounding
procedure are assumed to become tighter as the feasible set
shrink. Especially when the size of a feasible set shrinks
to a point, the difference between upper and low er bounds
needs to converge to zero. It is shown in Proposition 1 that
our SDP bounding approach satisfies these assumptions. A
comprehensive study of branching and subproblem selec-
tion strategies can be found in [86, 87, 88, 89], in which a
number of sophisticated rules are investigated. In this work,
we adopt simple rules for branching and subproblem selec-
tion and rely on the tight bounding procedure to improve the
performance.

3.2 Subproblem Selection: D = pop(Q)

All unresolved subproblems (represented by their respective
feasible sets) are stored in the priority queue Q. At each iter-
ation of B&B, the subproblem with the highest priority will
be selected and split. In our implementation, subproblems
are sorted according to the quality of their lower-bounds,
and the subproblem with the worst lower-bound will be split
firstly. In other words,

_ _ : ’
D = pop(Q) = arg min 1b(D’), ®)

Algorithm 1 Semidefinite Branch-and-Cut (SDBC)

Input: the original energy minimization problem miny ¢ zn E(x).
Initialization: global upper-/lower-bounds gub = +o0, glb = —o0;
priority queue Q = {Z"}.
while Q # 0 do
Step 1 Subproblem Selection: D = pop(Q).
Step 2 Bounding:
- [ub, b, x, y] = bound(D) (see Algorithm. 3);
Step 3 Update global bounds:
- glb = min(lb, ming/ ¢ g Ib(D’));
- if gub > ub then gub = ub, x* = x;
Step 4 Pruning: Q < Q\{D’|D’ € Q,1b(D’) > gub}.
Step 5 Branching:
if 1b < gub then
- [D1, D2] = split(D, y) (see Algorithm 2);
L -0+ {9,D1,Da}.

Output: x*.

Algorithm 2 The branching procedure, [D1, D2] = split(D,y).

Input: The search space D := Z{ x 23’ x---x 25, .
pseudomarginals {yp,i}iezgf ,VpeV.

and the singleton

Step 1 Node selection: p = arg min  (max yp;).
PEV,|ZP|>1 i€ZY
Step 2 State ordering: obtain the state order i1, i2, . . . 182D such that
@

Yp,iy > Yp,iz > 2 ywyi‘zfpr
7}

Step 3 Branching: separate 2 into two disjointed subsets 22, =

{in,- - iyzpyy2)y and 205 = {ijz2)/2 41,22 -
Output: Dy =27 x -+ x 20y x - x ZR, and Doy =2P x -+ x

D D
Lo X X Dy

where D := 27 x 23’ x -+ x 23, and Z; denotes the set
of possible states for each node p € V within the feasible set
D. Note that a subset of elements of y are enforced to be Os
or 1s in the subproblem with respect to D:

Yypi =0, ifie{2\2)},VpeV, (9a)
Ypi =1, ifi€2) and|Z)|=1,Vpe V. (9b)

3.3 Branching: [Dy, Dq] = split(D,y)

At the branching step, the input feasible set D is further split
into two disjointed sets D; and Ds, by selecting a node and
split its state space in halves.

Node Selection We employ the “difficult first” strategy, which
selects the node that is the most difficult to discretize. Re-
mind that {y,; };cz> can be considered as a singleton pseudo-
marginal for each flode p € V, if it resides in the local
marginal polytope (4). If this distribution does not concen-
trate on a single point (in other words, spreads evenly over
all states), then the corresponding node is considered to be
difficult to discretize. Accordingly, a simple strategy is adopted
for node selection in this work:

= arg (10)

min  (max yp;).
peV,|ZP|>1 i€z 7P
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States Ordering As in [71], the possible states of the se-
lected node ¢, i.e. i1,%9,. .., i|zg |, are ordered dynamically
in each iteration of branching, such that y,;, > ¥, >
cee > y*”*ilz;%’ - Then the most and the least probable states

are separated into two sets: Zal = {i,... 7iUZ£’\/2J} and

252 = {iyz2i/2) s djz2 -

Now the last component in the B&C approach (Algo-
rithm 1) to be studied is the bounding procedure, bound(D),
which we discuss in the following section.

4 An Efficient SDP Bounding Procedure with
Cutting-plane

In this section, we consider the following SDP relaxation to
the original energy minimization problem (1):

min E(y,Y) (11a)

Y,

s.t. (12), (13), (14), (15, (16), (17), (18), (19), (11b)
2y, Y) =0, (11¢)

where (11b) corresponds to the additional linear constraints
to be discussed in Section 4.1. The above formulation can
be easily extended to any subproblem D in Algorithm 1, by
reparameterization or enforcing additional constraints (9). A
main observation is that the linear constraints arising from
standard/high-order LP relaxation can be used to signifi-
cantly tighten the following naive SDP relaxation: However,
the resulted large-scale SDP optimization problem, which
in particular has a large number of linear constraints, ren-
der standard interior-point SDP solvers inapplicable. A scal-
able SDP solver combined with cutting-plane is proposed to
solve such SDP optimization in Section 4.2 and 4.3. Then
the complexity of our method is discussed in Section 4.4 and
several speeding-up strategies are proposed in Section 4.5.

4.1 Linear Constraints that Tighten the Semidefinite
Outer-Bound

Besides the p.s.d. constraint, several classes of linear con-
straints arising from LP relaxation can be added to SDP re-
laxation to tighten the bound.

0/1-Integer Constraints These constraints arise from the
integer constraints y,, ; € {0, 1}, which is equivalent to y,, ; =
yf”, for each node p € V and state i € Z:

Ypi,pi = Yp,i> Vp € ’\777, € Z. (12)
There are nh such constraints for a graph with n nodes and
h states per node.

Local Normalization Constraints Because only one state
i € Z can be assigned to each node p € V, we have:

S icalpi=1.YpeV, (13)

There are n local normalization constraints in total. Note
that forany {y, Y} € P(9)N(12)N(13), if rank(2(y,Y)) =
1, then {y, Y} is a vertex of M (G, Z).

Non-Negativity Constraints Deriving from Y,; ¢; = i -
Yq,; and y € {0,1}"", the following constraints holds:

There are |€|h? such constraints for a graph with |€| edges.
The number becomes n(n — 1)h?/2 for a fully-connected
graph. Huang et al. [50] have shown that without the non-

negativity constraints, SDP relaxation is loose for submod-
ular functions.

Edge Marginalization Constraints For each edge (p, ¢) €
€andi € Z,wehave Y ;o Ypiqj = Ypi'D_ ez Yqj- There-
fore the following constraints can be derived:

Zjez Yopiqi = Ypsir Y(p,q) € E,i € Z. (15)
There are in total 2|E|h such constraints (n(n—1)h for fully-
connected graphs). Note that local normalization (13), non-
negativity (14) and marginalization (15) constraints force
{y, Y} to lie in local marginal polytope M, (G, Z).

Gangster Operators Because Y,; ,,; = yp. - Yp,; and each
node p € V can only be assigned with one state ¢ € Z, at
least one of y,, ; and y,, ; should be zero. Then we have the
following constraints:

Ypi,pj :07 vpeV7VZ#]7Z7J € Z. (16)
These constraints are referred to as gangster operators, as
they shoot holes (zeros) in Y. Considering matrix symme-
try, there are nh(h — 1)/2 such constraints in total. Schelle-

wald and Schnorr [46] have used these constraints for SDP
approaches to subgraph matching.

Note that the above linear constraints are directly defined
on the marginal polytope. In this work, we also consider
the following a few classes of linear constraints defined on
the cut polytope or equivalently binary marginal polytope,
which can be extended to M(G, Z) by projecting a non-
binary graph to a binary graph. Comprehensive studies of
linear constraints for cut polytope or binary marginal poly-
tope can be found in [90, 91, 92] and the references therein.

Triangular Inequalities Considering three binary variables
Tp, Tq, Ty and define 6, ; := 1[m, # 7|, then we have:

Spg + Oqr + Opr < 2, (17a)
Spg — Oqr — Opr <0, (17b)
—0p.g +0gr — 0pr <0, (17¢)
—8p.q = Ogr + Opr <0, (17d)

which are facet defining for a cut polytope [90]. The number
of triangular inequalities is cubic in the number of binary
variables.

Cycle Inequalities They arise from the fact that there must
be an even number of edge-cuts for any cycle of variables.
For a cycle C and any F C C such that |F| is odd, the
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inequality can be expressed as:

S Gpgt >, (I—6pg) =1, (18)
(P,@)EC\F (p.)EF
The triangular inequalities (17b) (17c), (17d) can be consid-
ered as special cases of cycle inequalities. A cycle inequality
is facet defining for a cut polytope if and only if the cycle is
chordless [90]. There are an exponential number of cycle in-
equalities in a graph. However, the most violated one can be
found in O(n3h?) time for a dense graph using the separa-
tion procedure shown in [90, 93].
Odd-wheel Inequalities Consider a cycle C' of length s =
2t + 3, where the integer ¢ > 0. V(C) denotes the node set
of C and 7, refers to a center node not in V(C). Then the
following inequality

OIS SRR Sl (19)

(p.9)EC peV(C)

is called ‘s-wheel inequality’ or simply ‘odd-wheel inequal-
ity’. This class of constraints is not facet-defining for a cut
polytope, but it is facet defining for a multicut polytope [91,
92]. There are also an exponential number of the above con-
straints with respect to the number of binary variables. For a
solution satisfying all cycle inequalities, the separation pro-
cedure shown in [93] can find the most violated odd-wheel
inequality using O(n*h*) time for a dense graph.

We adopt the method proposed in [42, 52] for projecting
non-binary graphs to binary graphs. Firstly, 7 is defined as
a binary variable separating the state space of node p into
two disjoint non-empty sets 25 and 2\ Zs, that is m, = 1,
if 2, € Z, and 0 otherwise. 7, = {m}, 72, ...} represents
a collection of partitions with respect to node p. Then the
non-binary graph § = (V, &) can be projected to a binary
graph G, = (V, &), where
Vo= {m3 | pe Vs < Impl}, (202)
Er={(my,m) | (0,q) € €5 <|mpl,t <|mgl}.  (20b)
Note that s ¢ = 1[m) # ] can be expressed in terms of
Yin (5), thatis Oz vy = D fiez, jgz,yn{ig2. ez} Yriai-
In this paper, we define Z; = {s},Vs = 1,2,--- , h, such
that each h-state variable x,, is projected to h binary vari-
ables.

Note that the projected inequalities are not necessarily
facet-defining for the non-binary graph, although some of
them are facet-defining on the projected binary graph.

4.2 Initial Bounding Using SDCut

The feasible set of the SDP relaxation (11) is the intersec-
tion of semidefinite outer-bound P(G) and the polyhedral
outer-bound produced by standard/high-order LP relaxation.
There are several difficulties in optimizing the SDP prob-
lem (11). First of all, it is computationally inefficient to solve
SDP problems using classic interior-point methods, which

Algorithm 3 SDP Bounding Procedure ([ub, Ib, x, y] = bound(D))

Input: The energy minimization problem minyep E(x), where D
is a subset of the space of potential label assignment Z™; ¥ is
the working set of constraints. ¥, 44; is the pool of additional
constraints (14), (15), (17), (18) and (19) to be added in cutting-
plane. Parameters v > 0, § > 1; Maximum iterations Kjpit,
Kinner and Kouter. The initial set of constraints v);,;¢ and the
corresponding dual variable ujp;¢.

Step 1 Initial Bounding:

- Model reduction (Optional): D + QPBO(D);

- Initialize the working set and dual variable: ¥ <— tinit, U < Uipit-

- Construct the dual problem (21) with respect to D, ¥ and .

fork=1,2,..., Kini; do

L - Dual variable update: u < u + pHVd,, (u).

- Lower-bound update: 1b +— d (u).
- Goto Step 3 if any stop condition is met (see Section 4.5).
- Compute the primal variable: 2(y,Y) = 'YHSTH (C(u)).
Step 2 Cutting-Plane:
for k’l = 1, 2, ey Kouter do
- 1in < inactive constraints selected from ¥.
- 1by; < constraints violated by 2(y,Y) selected from ¥, qq;.
-V {W\’lﬁln} Ui/lvi. 0 §- Y-
- Construct the dual problem (21). with respect to D, ¥ and ~.
- Update the dual variable: u < {u, 0}, where 0 corresponds to
the dual variables with respect to .
for ko = 1,2,..., Kinner do
- Dual variable update: u + u 4+ pHVd, (u).
L - Lower-bound update: 1b + d (u).
- Goto Step 3 if any stop condition is met.
- Compute the primal variable: 2(y,Y) = vII s (C(u)).

Step 3 Rounding:

- Generate a discrete solution x by rounding y (see Equation (7)).
- Improve x using RICM (see Section 4.5).

-ub + E(x).

Output: ub, 1b, x and y.

has the computational complexity of O(m>+mn3h®+m?2n2h?)

and memory requirement of O(m? + n?h?), where m is the
number of linear constraints. Secondly, the linear constraints
involved in (11) are very complex. It requires O(n?h?) con-
straints to describe the local marginal polytope for a fully-
connected graph, which makes the computational complex-
ity of interior-point methods increase to O(n°h°). The total
number of cycle inequalities grows even exponentially with
the graph size. To this end, we propose to adapt the SDCut
method proposed in our prior work [49] to optimize (11)
and use cutting-plane to cope with the large number of lin-
ear constraints.

In the following, A, B; € §""*+1 i =1,2,--- m,b ¢
R™ are defined such that (2(y,Y),A) = E(y,Y) and
linear constraints in (11b) are also expressed in the form
of matrix inner-products: (2(y,Y),B;) = b;, Vi € T,
(2(y,Y),B;) <, Vi € J;y,, where J.q, J;y, refer to non-
overlapping indexes for linear equality and inequality con-
straints respectively. m=|Jcq| + |Jin|.

SDCut [49] is proposed to approximately solve a sub-
class of SDP problems in which the trace of p.s.d. matrix
variables is fixed. Instead of minimizing the linear objec-
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tive function (£2(y,Y), A), SDCut minimizes the perturbed
function (2(y,Y),A) + %(HQ(y,Y)H%7 — n?) over the
constraints shown in (11b), where 1 := trace(2(y,Y)) =
n—+1 (n can be discarded since it is a constant) in our case
and v > 0. Itis shown in [49] that with an appropriate -, the
solution of the perturbed problem is “close” to that of the
original SDP problem.

Furthermore, by introducing the perturbed objective, the
Lagrangian dual of SDCut can be simplified to:
2
i T n
max dy () == [ Tgma (C(w) | —u"b- 5 19
s.t. u; > 0,1 € Ty, (21b)
where C(u)=—A — > | u;B;. The matrix-valued func-
tion I1gnnia is defined as
+

HST+1 (X) := Pdiag(max(0, \))P,

and X = Pdiag(A\)P' is the eigen-decomposition of the
matrix X € 8", where A denotes the vector of eigenval-
ues and P contains the corresponding (column) eigenvec-
tors. Note that there is no p.s.d. constraint in (21) any more.
Based on K.K.T. conditions, we have

2y, Y3) = g (C(u3)), (22)

where y>,Y? and u’ are the optimal solutions to the cor-
responding primal and dual problems with respect to ~y re-
spectively.

We demonstrate in Appendix 7.1 that the dual formula-
tion of SDCut (21) is actually equivalent to a penalty ap-
proach to the Lagrangian dual of the original SDP relax-
ation (11). For an sufficiently large parameter -y, the simpli-
fied dual (21) can be arbitrarily close to the original SDP
relaxation (11), which however results in numerical prob-
lems. In many cases, it is sufficient to restrict v to a large
value and obtain an approximate solution. Note that how
to choose the value of v in practice to make a good trade-
off between bound quality and convergence speed is still an
open question. A potential strategy is to adjust -y adaptively
at each iteration of descent step.

The dual objective function d(-) is continuously dif-
ferentiable but not necessarily twice differentiable, and its
gradient is given by

Vdv(u) = —’y@ HS:thl (C(u)) — b, (23)

where @ : §""+1 — R™ refers to the linear transformation
D[] = [(B1,02), -+, (B, 2)]". Consequently, we can
solve the dual (21) using quasi-Newton algorithms as they
only require first-order derivatives during optimization. At
each descent step, quasi-Newton methods update the dual
variable u as follows:

u <+ u+ pHVd,(u), (24)

where H is the approximated inverse of Hessian matrix up-
dated by successive gradient vectors and 1 > p > 0 is the
step size decided by line-search.

Another important property of the simplified dual prob-
lem (21) is that for any feasible dual variable u, the dual
objective function value d.,(u) is a lower-bound to the mini-
mum energy ming ez~ E(x) [49]. This is beneficial for acce-
larating the B&B methods: the bounding procedure can be
stopped once the computed lower-bound is not lower than
the current global upper-bound, and the corresponding sub-
problem can be pruned.

In the sequel, d5(D) is defined as the optimal value of
the dual problem (21) constructed with respect to vy and
D C Z™. In this paper, we further prove the following re-
sults for the tightness of the lower-bound yielded by d7 (D)
(see Appendix 7.2):

Proposition 1 The following results hold: (i) V~y>0,YD, C
Dy C 2", we have d%(D1) > d5(D2); (ii) Vy>0,vDC 2"
with |D| = 1, we have d% (D) = minxep E(x).

The first result shows that the lower-bound is improved as
the search space D shrinks, and the second means that the
gap between the lower- and upper-bound E(x)xep —d% (D)
converges to zero when the search space D shrinks to a point
(namely |D| = 1). In particular, if |D| = 1 and only con-
tains the MAP solution, arg mingez» E(x), d% (D) equals
to the global minimum energy. These two properties are cru-
cial when embedding the proposed bounding method into
branch-and-bound.

Proposition 2 (Optimality Guarantee of SDP Relaxation)
For any v > 0, suppose {y%, Y} and u’ are the opti-
mal/dual primal variable obtained by (22). If the rank of
(2(y3,Y?2)) is 1, then {y?, Y1} yields the exact MAP so-
lution and d., (%) is the minimum energy value.

The above optimality guarantee of SDP relaxation can be
considered as a counterpart to Theorem 1 for the standard LP
relaxation. Both LP and SDP relaxations drop non-convex
constraints and result in a simple convex relaxation: the in-
teger constraint is relaxed by LP relaxation and SDP relax-
ation drops the rank-1 constraint. Note that Proposition 2
can be generalized to SDP relaxation with linear constraints
(12), (13).

Computationally SDCut is significantly more scalable
and efficient than general interior-point methods. It is em-
ployed here to solve the SDP relaxation with linear con-
straints in (29c). However, there are O(n?h?) number of
constraints (14), (15) and the exponential number of con-
straints (17), (18), (19). Adding these constraints directly to
SDCut is still impractical. To this end, we proposed to find
and add most violated constraints via cutting-plane, which
is discussed in the next section.
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4.3 Cutting-Plane: Searching and Adding Violated
Constraints

In practice, we find that most of the constraints (14), (15),
(17), (18) and (19) are redundant after the initial bound-
ing procedure shown in Section 4.2, which means that most
of them are already satisfied after imposing the p.s.d. con-
straints and the linear constraints (12), (13) and (16). There-
fore, cutting-plane methods can be adopted to search vio-
lated constraints in (14), (15), (17), (18) and (19), and add
them to SDP relaxation at each iteration. Adding these pri-
mal constraints is equivalent to adding new variables to the
dual problem (21).

Violated non-negativity (14), edge marginalization (15)
constraints and triangular inequalities (17) are found by enu-
meration. Most violated cycle inequalities (18) are found
using the separation procedure [93]. When there is no vi-
olated cycle inequality (up to certain precision), violated
odd-wheel inequalities (19) are searched and added using
the separation procedure shown in [93].

The procedure of the proposed SDP bounding proce-
dure, including initial bounding (Section 4.2) and cutting-
plane (Section 4.3) are summarized in Algorithm 3. At each
iteration of cutting-plane, the dual problem (21) is construc-
ted based on three inputs: the search space D (for reparam-
eterization), linear constraints set ¥ and the penalty param-
eter 7.

4.4 Computational Complexity

L-BFGS-B [94] is used as the implementation of quasi-N-
ewton algorithms for SDCut. At each iteration, L-BFGS-B
itself requires only O(m) arithmetic operations and memory
requirement, so SDCut scales linearly in the number of con-
straints m. The main computational burden of SDCut is the
eigen-decomposition at each gradient-descent step to com-
pute the dual objective function (21a) and its gradient (23).
The eigen-solver used in this paper is the DSYEVR routine
in LAPACK (an implementation of Relatively Robust Rep-
resentations), which has the computational complexity of
O(n®h?) and the memory requirement of O(n?h?).

Finding the most violated non-negativity constraint (14)
and edge marginalization constraint (15) requires O(n?h?)
arithmetic operations, while finding violated cycle inequal-
ity needs O(n3h?) arithmetic operations. To save time, only
a few center node 7, (see Equation (19)) is considered for
odd-wheel inequalities in each cutting-plane iteration.

Therefore the overall computational complexity of the
proposed SDP method is O(n3h3) at each descent iteration
(m is less than O(n3h?), so it is omitted), and the corre-
sponding memory requirement is O(n2h?). This result de-
monstrates that our approach is much more efficient than the

classic interior-point methods, which needs O(n®h®) arith-
metic operations.

4.5 Strategies to Speed Up

Although the proposed SDP approximation method already
provides a tight lower-bound efficiently, we proposed a few
techniques to further speed up the bounding procedure of
B&B.
Pre-Processing (Model Reduction) Several methods have
been proposed to identify persistency for binary models [9],
Potts models [95, 96] and general multi-label models [95,
97, 98, 99, 100, 101]. Persistencies refer to states of vari-
ables which are proved to be non-optimal or belong to at
least one optimal solution. Previous work has employed per-
sistency to reduce the model size before applying approxi-
mate [102] and exact [103] solvers. For binary models, all
variables assigned as integers by QPBO [9] are persistent.
Without affecting the property of global convergence of
B&B, QPBO is performed in each bounding procedure, and
then the SDP bounding procedure is applied on the reduced
model. In general, the computation time of QPBO is negli-
gible compared to that of the SDP procedure. Because the
size of the resulted SDP is smaller, the total computational
time is reduced as well. Note that this partial optimality also
holds for TRW message passing and other methods equiv-
alent to the standard LP relaxation for binary graphs. We
choose QPBO here for its fast computation.
Stop Conditions As discussed in Section 4.2, the objective
value of (21), calculated at each descent step, can be cast as
a lower-bound to the minimum energy. For faster computa-
tion, the bounding process is stopped before convergence if
any of the following conditions is met (see Algorithm 3):

1. The lower-bound 1b is already greater than the global
upper-bound gub, and thus this subproblem is pruned.

2. The improvement of the lower-bound lb between con-
secutive steps is smaller than the specified tolerance.

Warm Start Another strategy used in the bounding proce-
dure to speed up the computation is “warm start”, which
is performed in two levels: between different iterations of
cutting-planes and bounding procedures.

1. In an iteration of cutting-plane, the dual variables are
initialized by the results of the previous iteration. For
the new constraints, the corresponding dual variables are
filled with zeros.

2. The final working set of active constraints and the cor-
responding dual variables of the first bounding iteration
are used to initialize those of subsequent bounding iter-
ations (¥ipit and uiyi in Algorithm 3), which speed up
the convergence speed of L-BFGS-B. The initial work-
ing set ¥;y;¢ of the first bounding iteration is set to con-
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tain constraints (12),(13) and (16), and u;y;; 1S set to ze-
ros.

Removing Inactive Constraints One disadvantage of cut-
ting plane is that the size of the subproblems (the number of
primal linear constraints, and correspondingly the number of
dual variables) keeps increasing from iteration to iteration,

Since traditionally new constraints are added in each r-
ound but are never removed. The strategy of pruning inactive
constraints has been employed to address this issue [104,
105, 106] in cutting-plane methods. In this work, we use a
simple rule to decide which constraint should be dropped
from the working set: those corresponding to zero dual vari-
ables and not violated by the current primal solution. Note
that those constraints discarded by the current iteration may
be re-activated in subsequent cutting-plane iterations.
Post-Processing (Stochastic Local Search)

When the dual optimization is terminated, an approxi-
mate solution X,p,x € Z™ is calculated by rounding and an
upper-bound E(X,pp« ) to the minimum energy miny ez » E(x)
is obtained. Local (greedy) search methods can be applied
to further tighten the upper-bound. What we use here is ‘re-
peated iterated conditional modes’ (refer to as RICM):

1. Run Iterated Conditional Modes (ICM) [83] with X,px
as the initial point to find a local optimal solution Xjoca;-
Compute the upper-bound E(Xjocal)-

2. Randomly flip a portion (around 5%) of assignments in
the initial solution X,ppx.

3. Repeat the steps 1 and 2 several times and select the local
optimal solution Xjocq With the lowest upper-bound as
the new approximate solution.

Note that ICM can be considered as a greedy coordi-
nate descent method. The solution quality is guaranteed to
be improved or at least not worse than the initial point. Fur-
thermore, as ICM depends highly on the initialization, we
repeat ICM several times to overcome this problem.

5 Experiments

The proposed method is evaluated in two forms: one with
cutting-planes (refer to as SDBC) and one without (refer to
as SDBB). Both of the SDP bounding methods in SDBB and
SDBC solve the SDP relaxation (11) approximately based
on the simplified dual formulation (21). The only difference
is that SDBC imposes all linear constraints listed in (11b)’,
while SDBB only considers constraints (12), (13) and (16).
The following algorithms for MAP-MRF inference are com-
pared against ours.

! In the following experiments, we find that odd-wheel inequalities
are only effective on the modularity clustering models, therefore this
class of constraints is not considered for other models

1) As a baseline, the lower-bound produced by TRWS [18]
is compared with SDBC.

2) Sontag et al. [39, 42] proposed to tighten the LP relax-
ation to MAP problems by incrementally introducing clus-
ter consistency constraints, for example, triplet clusters [39]
(refer to as MPLP-CP-v1) or long cycles [42] (refer to as
MPLP-CP-v2). The code is obtained from the author’s web-
site. At each round, 50 additional triplets are added to MPLP-
CP-v1 and 50 ~ 200 triplets plus 50 ~ 200 cycles are added
to MPLP-CP-v2. MPLP-CP-v1 and MPLP-CP-v2 provide
lower-bounds to the global optimal energy value, which can
be used to validate the exactness of a solution. For SDP re-
laxation methods, we compared our method with SDPT3,
which represents one of the state-of-the-art implementations
of interior-point methods.

3) Our method are also compared with methods based
on graph cuts [8, 107] for binary non-submodular pairwise
energies. QPBO [8] can be used to exactly solve problems
with a small fraction of non-submodular terms. We also use
QPBO to reduce the model before applying other methods.
Local submodular approximation (LSA) [107] iteratively ap-
proximates non-submodular energies non-linearly based on
trust region (refer to as LSA-TR) or auxiliary function prin-
ciples.

4) Several B&B methods for energy minimization are
also evaluated. Sun et al. [71] proposed a B&B method (re-
fer to as MPLP-BB) using MPLP to upper-bound the MAP
value at each branch. The dual variables of MPLP at each
branch are fixed, and a data structure, called range maxi-
mum query, is pre-constructed to speed up the bound calcu-
lation significantly. The parameters of MPLP-BB are set to
the default values, except that the number of initial MPLP
iterations is set to 1000.

DAOOPT [72] implements the And/Or Branch and B-
ound paradigm, which also uses mini-bucket heuristic for
pruning search space and limited discrepancy search (LDS)
to find an initial solution quickly. It achieves the best per-
formance in the PIC2011 Challenge [108]. In this paper, the
memory limit of DAOOPT is set to 8GB and the discrep-
ancy limit of LDS is set to 2. The commercial integer lin-
ear program solver, IBM CPLEX [109] (denoted by ILP),
is also evaluated in the experiments. Some specialized algo-
rithms [110, 111, 112, 113] are also investigated for some
particular data sets.

To perform a fair comparison, all the implementations
of compared methods are obtained from the author’s web-
site or from the OpenGM2 toolbox [114] and tested on one
core of a 2.7GHz Intel CPU with 4GB free memory, except
for DAOOPT (10GB) and ILP (40GB). Note that some ex-
perimental results of competitive methods are obtained from
[114], which is evaluated on a faster Intel CPU (3.2GHz).
All the methods are performed with the same procedures of
pre-processing (model reduction by QPBO) and post-processing
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Fig. 1: Lower-bounds given by different algorithms on the model
“deer_rescaled_0034.K15.F100” (60 variables, 15 states per vari-
able) in PIC2011. SDBC is performed without branching (SDBC-
NoBranch) or without both branching and cutting-plane (SDBB-
NoBranch). The lower-bounds provided by LP-based methods (TRWS
and MPLP-CP) are worse than SDP-based methods (SDPT3 and
SDBC). SDBB-NoBranch produces a lower-bound very close to the
interior-point method SDPT3. For SDBC itself, the additional con-
straints added through cutting-plane gives a 5% increase in lower-
bound.

(stochastic local research by ICM). The primary results (Ta-
ble 2, 4, 5 and 6) are shown in a format similar to [1], which
demonstrates the upper-bound (energy value of the final in-
teger solution) and lower-bound (to the optimal energy value),
averaged over all instances of each problem. For an algo-
rithm, the number of instances for which it achieves the
best upper-/lower-bound among all algorithms (denoted as
#Best-ub and #Best-1b respectively) and the number of in-

stances to which it gives the exact solution (denoted as #Exact)

are also demonstrated for better comparison. As in [1], a so-
lution is considered to be exact if the difference between the
lower-bound and upper-bound is less than 10~ in terms of
absolute value or less than 10~8 in terms of relative value.

The implementation of our algorithm is written in mat-
lab and the implementation of other methods are mainly im-
plemented in C/C++. We would expect a further improve-
ment in the speed of our method if it were implemented in
optimized C/C++.

5.1 Performance Analysis

Relaxation Tightness The SDP bounding procedure em-
bedded in SDBC is compared with state-of-the-art SDP/LP
relaxation methods. SDPT3 [115], an implementation of in-
terior point methods, is used to accurately solve the SDP re-
laxation with linear constraints (12), (13) and (16). Note that
the other classes of tightening constraints are difficult to be
imposed with SDPT3, due to the poor scalability of interior-
point methods in the number of linear constraints. MPLP-
CP-v1 and MPLP-CP-v2 tighten the standard LP relaxation

(over local marginal polytope My, (G, Z)) by incrementally
adding high-order consistency constraints.

In Fig. 1, the performance of these relaxation methods
are compared on the lower-bounds achieved on a model in
the PIC2011, “deer_rescaled_0034.K15.F100”, which is a
fully-connected graph with 60 nodes and 15 states per node.
In this experiment, SDBC is performed without branching,
which means there is only one bounding procedure. Further-
more, to show the effectiveness of cutting-plane, SDBC is
performed in two forms: with (SDBC-NoBranch) or with-
out cutting-plane (SDBB-NoBranch).

From the results in Fig. 1, we can see that:

1. SDBB-NoBranch achieves a final lower-bound very sim-
ilar to that produced by SDPT3 (the difference is only
0.1%), but is significantly faster than SDPT3. Note that
SDBB-NoBranch and SDPT3 solve the same SDP prob-
lem, but approximately and exactly respectively. As more
linear constraints are imposed, SDBC-NoBranch achieves
better lower-bound than SDBB-NoBranch and SDPT3
(over 3%).

2. Both SDBB-NoBranch and SDBC-NoBranch yield a tig-
hter lower-bound than TRWS, MPLP-CP-v1 and MPLP-
CP-v2, which shows that the p.s.d. constraint is indeed
effective.

3. Lower bounds of SDBC-NoBranch and SDBB-NoBranch
converge after certain iterations. To further improve lower
bounds, we need to embed the SDP bounding procedure
into B&C.

Connectivity and Unary Strength We now compare the
performance of SDBC, SDBB and other MAP-MRF infer-
ence methods when applied to a range of synthetic prob-
lems generated with varying parameters. We consider two
factors which affect the difficulty of MAP-MREF inference
problems: connectivity (i.e., the average number of neigh-
bours per node) and unary potential strength (compared to
pairwise potentials). Higher connectivity and smaller unary
potential strength increase the difficulty of MAP-MRF in-
ference problems, and degrade the performance of some ex-
isting algorithms (for example, QPBO and belief propaga-
tion [116]).

In this experiment, all the synthetic MRF models have
64 variables and 10 states per variable. The pairwise ener-
gies are sampled from the Gaussian distribution 6,4(z, j) ~
N(0,1), and the unary energies are sampled from 6, (i) ~
N(0,w?), where the parameter w controls the unary strength:
small w corresponds to weak unary strength, and vice versa.
k refers to the connectivity of a graph, which is the average
number of linked neighbours per node.

The results are shown in Fig. 2, in which the curve of
lower-bounds is the concatenation of two parts: the lower-
bounds at the gradient-descent steps within the first bound-
ing iteration and the lower-bounds for the subsequent bound-
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(d) x =6.56, w =0.25

() k =17.06,w = 0.25

) k = 59.06, w = 0.25

Fig. 2: Upper-/lower-bound versus running time on the synthetic MAP-MREF inference problems. All the undirected graph models in this experi-
ment have 64 nodes and 10 states per node, and the energy functions are randomly generated. The upper/lower bound is normalized by dividing
them by the best lower-bound computed within 20 minutes. In (a)-(c), the unary strength decreases from 0.4 to 0.1. When the unary strength pa-
rameter w is large (for example, w =0.4), all methods obtain near optimal upper-bounds (< —0.90) and the superiority of SDBC is not significant.
SDBC does perform significantly better than others for smaller unary strengths (for example, w=0.1). In (d)-(f), the connectivity x changes from
6.56 to 59.06. For sparse graphs (for example, x = 6.56), MPLP-CP-vl and MPLP-CP-v2 converge quickly to the optimal and performs better
than SDBC. However for dense graph models (for example, x =59.06), SDBC yields better upper and lower bounds.

ing iterations. In the first bounding iteration of SDBB, mul-
tiple rounding procedures are conducted at 10, 20 and 100
seconds respectively.

In Fig. 2 (a)-(c), fully-connected graphs (x = 63) are
generated and the parameter w is set to {0.4,0.2,0.1} re-
spectively. SDBC and SDBB achieve the best upper/lower
bounds in most cases. Meanwhile, SDBC yields better lower-
bound than that of SDBB.

The performance of all methods becomes worse when
the parameter w decreases. However, the detrimental impact
on SDBC is the smallest amongst all the evaluated algo-
rithms. The upper-bound of SDBC drops from 0.993 (w =
0.4) to 0.820 (w = 0.1), while the upper-bound of the sec-
ond best method decreases from 0.975 to 0.700. The differ-
ence on the lower-bounds is more significant: at w = 0.4, the
gap between SDBC and the second best on the lower-bound
is only 0.087; while the gap increases to 0.89 for w = 0.1.

In Fig. 2 (d)-(e), w is fixed to 0.25 and the connectivity x
is set to {6.56, 17.06, 59.06 } respectively. SDBC and SDBB
perform slightly worse than MPLP-CP-v1l and MPLP-CP-
v2 in terms of both upper and lower bounds when x = 6.56.
For denser graphs (v € {17.06,59.06}), however, SDBC

produces the best lower-/upper-bounds amongst all compet-
ing methods. We also compare SDBC and MPLP-CP-v1
on a larger sparse model from [117], which contains 768
variables, 8 states per variable and 2252 edges. The upper-
/lower-bounds of MPLP-CP-v1 converge quickly to the global
optimal solution (—565.23) using 0.8 second, as it can ben-
efit from the sparse graph structure. While SDBC scales
poorer than MPLP-CP-v1 on this type of sparse models: it
obtains a non-global-optimal solution (—567.92) using around
2-hour runtime. Note that the focus of the proposed SDP
approaches is on the dense problems with non-submodular
terms and/or weak unary terms (See [118] for the efforts to
improve the scalability of SDP algorithms for MAP infer-
ence).

Based on the experiments on this synthetic data, we may
conclude that SDBC and SDBB perform better than state-
of-the-art for MRF's with high connectivity or weak unary
potentials.
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(a) Ground Truth (b) Input (c) Graph-cut (d) SDBC

Fig. 3: Image denoising. This experiment is used to validate whether
SDBC converges to the globally optimal solution. The 16 x 16 input
image (b) is generated by adding random Gaussian noise to all pix-
els of the ground truth image (a). The constructed graph model has
one node per pixel and contains only unary and submodular pairwise
potentials. Without branching, SDBC converges to the exact solution,
which means the relative gap between the lower- and upper-bound is
smaller than 10~8. The assignment by SDBC (d) is consistent with
that of the graph-cut algorithm (c). The latter is well known to provide

the exact MAP solution for such binary submodular MRFs.

Kernel size V| €] 1€ s/ 1€l Vredu
3x3 1219 13506 0.212 631.5
5x5 1219 42120 0.059 921.5
TxT7 1219 82530 0.030 1094.5

Table 3: The graph sizes with respect to different convolution kernels.
With the growth of kernel size, the number of edges (|€|) increases
and the portion of submodular edges (|€|,,,/|€|) decreases. There are
more variables (|'V|,.q4,,) in the reduced graph (by QPBO) for a larger

ABCD ABLD D ARC D ARLD
1234 1224 MEMI )14 1214

Ground Truth  Input Image QPBO MPLP-CP-v2 SDBC

Fig. 4: Image deconvolution. The task is to recover the binary ground
truth image (first column) from the blurry and noisy gray-level input
image (second column). The third column demonstrates the partial
optimal results of QPBO, in which the labelled pixels are shown in
black/white color and the unlabelled pixels are shown in gray color.
The last two columns are the images reconstructed by MPLP-CP-v2
and SDBC, using the same computation time of 20 minutes. SDBC
gives better energy value and recovery accuracy than MPLP-CP-v2.

5.2 Image Denoising and Deconvolution

The binary submodular MRF model for image denoising is
generated using the UGM? code. As the energy provided
by the graph-cut algorithm for such MRF models is the ex-
act MAP value, it is used to compare with ours to validate
whether the proposed B&C method converges to the exact
MAP solution. As shown in Fig. 3, the result of SDBC is
indeed the same as that of the graph-cut algorithm.

In this paper, we refer to image deconvolution as the
task of reconstructing an image from its convolution with
a known blurring kernel. Raj and Zabih [119] formulated
the deconvolution to a MAP-MRF inference problem with
unary and non-submodular pairwise energy functions. The

2 http://www.di.ens.fr/~mschmidt/Software/
UGM.html

connectivity increases with the growth in kernel size. We
use two binary images and generate the deconvolution mod-
els with different kernel sizes (3x3, 5x5 and 7x7). QPBO is
applied on the six deconvolution models to reduce the graph
size, and then SDBC, MPLP-CP-v2 and DAOOPT are ap-
plied on the reduced graphs. We also report the results of
QPBO and LSA-TR [107] with Euclidean or Hamming dis-
tance. LSA-TR is repeated (around 8000 times) with ran-
dom initializations until the 20-minute time limit is used
up. ICM is performed as a post-processing procedure for all
the evaluated methods. Table 2 shows the primary evalua-
tion results within the runtime limits of 20 minutes, 1 hour
and 24 hours. DAOOPT did not give solutions within the 24
hours, so its result is omitted. Within 20 minutes, MPLP-
CP-v2 converges quickly to the exact MAP solutions for the
two models with respect to 3 x 3 kernel. But it does not
converge for the rest four models with larger kernel sizes
and higher connectivity. ILP fails to solve any of the six in-
stances exactly within 24 hours. LSA-TR and QPBO pro-
vide non-optimal solutions using a much shorter time. On
the other hand, SDBC gives the best upper-bounds on all
the 6 instances within any of the three time limits, and is
able to solve 5 instances exactly (the model with respect to
“ABCD” and 7 x 7 is not solved exactly by SDBC).

Fig. 4 illustrates the images recovered by SDBC and
MPLP-CP-v2 with respect to 7 x 7 kernels within 20 min-
utes. For image “1234”, SDBC achieves the energy value of
—478.07 and the recovery accuracy of 87.4%, which are bet-
ter than those given by MPLP-CP-v2 (—474.19 and 85.6%)
respectively. Similarly for image “ABCD”, SDBC also per-
forms better than MPLP-CP-v2, in terms of energy value
(—416.63 vs. —410.82) and accuracy (87.5% vs. 86.0%).

We also evaluate algorithms on a larger image (Fig. 5).
The binary ground truth image is convoluted by a 32 x 32
Gaussian kernel. The corresponding MRF problem is large:
16384 variables and 13130296 edges, so we use a parallel
eigen-solver, PLASMA?. The last image shows the decon-
volution result of SDBC using 5600 seconds on 16 cores.
The result of MPLP-CP-v2 is demonstrated in the third im-
age, using the same CPU hours. SDBC performs consider-
ably better than MPLP-CP-v2.

5.3 Benchmarks

In this section, we evaluate the proposed algorithm on some
MRF models in PIC2011 [108] and OpenGM [114] bench-
marks. The experimental results show that our method per-
forms better than state-of-the-arts on these models. The cho-
sen models are difficult for many conventional methods in
that these inference tasks are non-submodular, densely con-
nected and/or with unary terms.

3 nhttp://icl.cs.utk.edu/plasma/


http://www.di.ens.fr/~mschmidt/Software/UGM.html
http://www.di.ens.fr/~mschmidt/Software/UGM.html
http://icl.cs.utk.edu/plasma/

14 Peng Wang et al.

Algorithm Upper-bound  Lower-bound  #Best-ub  #Best-lb  #Exact  Runtime
Runtime < 20min

SDBC —-504.03 —-505.03 6 4 0 1187.83
MPLP-CP-v2 —502.34 —514.48 2 2 2 822.46
ILP —502.88 —568.20 1 0 0 1220.62
QPBO —501.92 —00 0 0 0 0.76
Runtime < 1hr

SDBC —504.08 —504.45 6 4 0 3460.10
MPLP-CP-v2 —503.60 —508.40 2 2 2 2415.58
ILP —502.91 —566.41 2 0 0 3626.06
Runtime < 24hr

SDBC —504.09 —-504.09 6 6 5 41830.36
MPLP-CP-v2 —503.95 —505.37 4 2 2 57616.95
ILP —504.07 —560.11 4 0 0 86026.42

Table 2: Image deconvolution (6 instances, 1219 variables and 2 labels for each instance). LSA-TR achieves the second best average energy value
within the runtime limit of 20 minutes. MPLP-CP-v2 quickly solves two easy instances with respect to 3 x 3 kernel exactly, but becomes worse for
models with respect to 5 x5 and 7 x 7 kernel. ILP is not able to solve any of the six instances exactly within 24 hours, while our method achieves
the best energy values for all six instances and converges to exact solutions to five instances.

Ground Truth Input Image . MPLP-CP-v2

Fig. 5: Image deconvolution on a 128 x 128 image, which is convoluted by a 32 x 32 Gaussian kernel. With the same running time, the result of
SDBC is much better than MPLP-CP-v2.

Algorithm Upper-bound  Lower-bound  #Best-ub  #Best-Ib  #Exact
Runtime = 20min

SDBC —19302.83 —19910.31 34 37 0
MPLP-CP-vl  —18595.15 —24749.11 10 0 0
MPLP-CP-v2  —18905.71 —24624.95 13 0 0
ILP —18247.73 —542806.60 8 0 0
DAOOPT —19139.70 —0o0 17 0 0
MPLP-BB —17838.86 —36904.82 11 0 0
Runtime = 1hr

SDBC —19303.06 —19650.62 35 35 0
MPLP-CP-vl  —18985.04 —22312.83 17 1 0
MPLP-CP-v2  —19231.27 —22260.29 19 1 0
ILP —19049.54 —34838.62 15 0 0
DAOOPT —19139.70 —0o0 17 0 0
MPLP-BB —18227.13 —36804.25 10 0 0
Runtime = 24hr

SDBC —19313.25 —19553.50 36 34 3
MPLP-CP-v2  —19270.70 —21138.12 22 3 0
ILP —19221.27 —33888.65 22 0 0
DAOOPT —19139.70 —00 16 0 0

Table 4: PIC2011-ObjectDetection (37 instances, 60 variables and 10-20 labels for each instance). SDBC achieves the best upper-bounds and
lower-bounds on most of instances within 20 minutes, 1 hour and 24 hours. Exact solutions to 3 instances are obtained by our algorithm.

5.3.1 PIC2011-ObjectDetection

There are 37 models in the “Object-Detection” sub-category
of the PIC2011 challenge, which are fully-connected, lack-
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ing in unary terms and have 60 nodes and 10/15/20 states
per node. SDBC is compared with MPLP-CP-v1l, MPLP-

CP-v2, ILP, DAOOPT and MPLP-BB, among which DAOOPT

is the winner of the PIC2011 challenge.

The primary results are shown in Table 4. The upper-
bounds and lower-bounds of different methods are compared
under three running-time limits: 20 minutes, 1 hour and 24
hour. Our method achieves the best upper- and lower-bounds
for most of the 37 models under all time limits. DAOOPT is
the second best method within 20 minites, while MPLP-CP-
v2 becomes better than DAOOPT within 1 hour. ILP per-
forms poorly within the runtime limit of 20 minutes, while
it becomes the second best in terms of the number of best
upper-bounds (22, the same as MPLP-CP-v2).

In particular, all the evaluated methods do not converge
to global optimal solutions on these models, except that SDBC
gives exact solutions to three of the 37 models.

5.3.2 OpenGM-ChineseChar

The graphical model for Chinese character inpaining in the
OpenGM benchmarks contains non-submoduar terms, such
that graph cuts based methods cannot give exact solutions
in general. It is shown in [1] that applying combinatorial al-
gorithms (like MCBC [111] and ILP [109]) on the models
reduced by QPBO achieves the best performance. Likewise,
we also apply SDBC on the models reduced by QPBO and
achieve comparable results. Within one hour, our method
solves 44 out of the 100 instances exactly, which is only
worse than the specialized solver, MCBC. Note that MCBC
utilizes more complicated tightening constraints and round-
ing approach than ours. On the other hand, our method is
better than all the other methods (including MCBC) in terms
of the number of best upper-bounds (84) and lower-bounds
(85). In particular, SDBC achieves better lower-bounds on
those instances the LP methods (MCBC and ILP) are loose,
which demonstrate the potential of SDBC in solving these
instances exactly. To validate this potential, we run SDBC
for 4 hours and find that it gives global optimal solutions of
80 instances.

5.3.3 OpenGM-ModularityClustering

The graphical models in this subclass is to find a clustering
of a network maximizing the modularity. Although the six
instances have small graph sizes (34 to 115 variables), they
are difficult due to the absence of unary terms and fully-
connected graph structure.

It can be seen in [1] that the LP relaxation method with
cycle and odd-wheel constraints (MCR-CCFDB-OWC) [112]
and the LP/ILP method (MCI-CCFDB-CCIFD) [113] per-
form the best on modularity clustering, which solve five of
the six instances exactly. However, they do not converge on

the largest instance within one hour. Kerninghan-Lin (KL)
algorithm [110], a specialized efficient heuristic for cluster-
ing networks, offers a better solution than MCI and MCR
on this instance. As MCR and MCI, our method also solves
these five instances within one hour without branching (in
other words, using only one bounding procedure). More-
over, SDBC provides the best solution (in terms of upper-
bound) to the largest instance among all the evaluated ap-
proaches.

6 Conclusion

We have presented an efficient Branch-and-Cut method for
MAP-MREF inference problems by taking the advantage of
an efficient and tight SDP bounding procedure. The main
contribution of the proposed method include: 1) A vari-
ety of linear tightening constraints have been incorporated in
SDP relaxation to MAP problems, by using an efficient SDP
solver and cutting-plane. 2) Several techniques have also
been employed to make the cutting-plane and branch-and-
bound more efficient, including model reduction, warm start
and dropping inactive constraints. Experiments demonstrate
that the proposed method performs very well, particularly
for problems with high connectivity or weak unary poten-
tials. These types of problems are difficult to solve by al-
most all other existing methods. Furthermore, our method
usually provide good approximate solutions within the first
several bounding procedures. In the experiments, we have
compared the proposed approach with state-of-the-art meth-
ods. The results demonstrate the superior performance of
our approach on the evaluated problems.

7 Appendix

7.1 Relationship between the Standard SDP Relaxation
(11) and the Simplified Dual (21)

The Lagrangian dual of (11) can be expressed in the follow-
ing general form:

min u'b (25a)

The p.s.d. constraint (25b) can be replaced by a penalty func-
tion, which is considered as a measure of violation of this
constraint. In our case, the penalty function is defined as
p(w) = [[min(0,\)[3 = [T (C(w)[}, where X is
the vector of eigenvelues of Z. We can find that if p(u) = 0,
then Z > 0. Now the problem (25) can be transformed to

u'b 4 2| e (C(w))| [ (26a)
(26b)

min
u

s.t. U; Z O,VZ S jz’n7
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Algorithm Upper-bound Lower-bound #Best-ub  #Best-lb  #Exact Runtime (s)

SDBC —49546.3380 —49558.9258 84 85 44 2332.18

MCBC —49550.0972 —49612.3817 72 57 56 2053.89

ILP —49547.4144 —50061.1506 59 0 0 3553.71

LSA-TR(euc.) —49548.0996 —00 28 0 0 0.05

LSA-TR(ham.) —49536.7646 —0o0 1 0 0 0.06

QPBO —49501.9531 —50119.3835 0 0 0 0.17

Table 5: OpenGM-ChineseChar (100 instances, 8000 variables and 2 labels for each instance). For fair comparison, all the combinatorial methods
(SDBC, MCBC and ILP) are evaluated on graphs reduced by QPBO. The results of all algorithms except SDBC are obtained from [1]. Within 1
hour, SDBC solves 44 instances exactly and achieves the best upper-bounds and lower-bounds on over 80% instances.

Algorithm Upper-bound  Lower-bound  #Best-ub  #Best-lb  #Exact Runtime (s)
SDBC —0.4913 —0.4939 6 6 5 1500.26
KL —0.4860 —00 2 0 0 0.01
MCR-CCFDB-OWC  —0.4400 —0.5021 5 5 5 601.38
MCI-CCFDB-CCIFD  —0.4652 —0.4962 5 5 5 602.75
MCI-CCI —0.4312 —0.5158 4 4 4 1207.07
MCI-CCIFD —0.4399 —0.5176 4 4 4 1204.03

Table 6: OpenGM-ModularityClustering (6 instances, 34-115 variables and 34-115 labels for each instance). As the top-performing algorithms
(MCR-CCFDB-OWC and MCI-CCFDB-CCIFD) in [1], SDBC solves 5 instances exactly. On the remaining largest instance, our method achieves
the best lower-bound and upper-bound over all compared methods within 1 hour.

Dataset Solution  #Instances #Bounding  #Pruned Q| Runtime
Deconvolution Exact 5 10.80 5.90 0.00 33332
(6 instances, runtime < 24hr) Inexact 1 19.00 6.00 8.00 84324
Object-Detection Exact 3 75.67 38.33 0.00 33625
(37 instances, runtime < 24hr)  Inexact 34 74.68 19.50 36.68 85631
ChineseChar Exact 80 3.42 2.21 0.00 4347
(100 instances, runtime < 4hr)  Inexact 20 3.45 1.00 2.45 12392
Modularity-Clustering Exact 5 1.00 1.00 0.00 1063
(6 instances, runtime < lhr) Inexact 1 1.00 0.00 2.00 3686

Table 7: The average number of bounding iterations, pruned subproblems and unsolved subproblems in the queue Q for SDBC. The results for
instances solved exactly and inexactly are summarized individually. SDBC uses 1-10 bounding iterations to reach the exact solutions to most of
instances on Deconvolution, ChineseChar and Modularity-Clustering. For Object-Detection, SDBC is able to solve 3 instances exactly with less

than 100 bounding evaluations.

where v > 0 serves as a penalty parameter. With the in-
crease of +, the solution to (26) converges to that of (25). It
is clear that (26) is equivalent to (21).

7.2 Proof of Propositions 1 and 2

Firstly, It is known [49, 120] that the set of p.s.d. matrices
with fixed trace ©,, := {X = O|trace(X)=n}, Vi > 0 has
the following property:

Theorem 2 (The spherical constraint). YV > 0,¥X € 6,,
we have || X||r<n, and || X||p=n if and only if rank(X) =1.

It is also shown in [49] that the problem (21) is the La-
grangian dual of the following problem:

min E(y,Y)+g,(y,Y) (27a)
s.t. (12), (13), (14), (15), (16), (17), (18), (19), (27b)
2(y,Y) =0, (27¢)

where g, (y, Y) = 25 (|12(y. Y)II} — (n +1)*).

Proof of Proposition 1: (i) VD, C Dy C 27, 375, F¢q €
{(p,9)}pev,icz such that D1 = {x € Dy | z, #1,V(p, i) €
Fin;xp=1,Y(p, i) € Feq}. Consequently, the difference be-
tween the SDCut primal formulation (27) with respect to D
and D, is that the one with respect to D; contains the fol-
lowing additional linear constraints:
{yniZOJZMjZ}%miZO, V(p,i) € Fin,

Ypi =1, Ypigj = Yajpi =Yg, V(P 1) € Feqg.
Because of the strong duality, we know that d’ (D) equals to
the optimal value of the corresponding primal problem (27).
Then we have d%(D1) > d’(Dy2), as the primal problem
(27) with respect to D1 has more constraints than that with
respect to Ds.

(28)

(#4) This proof is simple. As |D| = 1, there is only one
point X in the set D and E(X) = minyep E(x). Then the
feasible set of (27) also contains a single point {¥, SA(} cor-
responding to X by applying constraints as (28). Because
125 ¥)% = (n + 1)% we have d*(D) = E(3,Y) =
mingep E(x).
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Proof of Proposition 2: {y>, Y} is the optimal solution
of (27) based on the strong duality, and d.,(u%) is the cor-
responding optimal objective value. Consider the following
problem

min By, Y) +g,(y,Y) (29a)
s.t. 2(y,Y) = 0, rank(2(y3, Y])) = 1, (29b)
(12), (13), (14), (15), (16), (17), (18), (19), (29¢)

which adds a rank-1 constraint to the problem (27). Then
d,(u}) and {y%, Y} are also optimal for the above prob-
lem. Note that the constraints (12), (13), 2(y3,Y%) = 0
and rank(£2(y%,Y%)) = 1, force {y3, Y} to be a ver-
tex of M(G, Z). So the feasible set of (29) is M(G, Z). On
the other hand, g, (y3,Y?) = 0 at rank(2(y},Y>)) = 1
(Theorem 2), so the objective function of (29) is E(y, Y). In
summary, the problem (29) is equivalent to the MAP prob-

I i E(y,Y). Th h that y*, Y yield
em y7YéI31v1[I(19’Z) (y,Y). Then we have that y, Y yie

the exact MAP solution and d., (u?) is the minimum energy.
The value of v does not affect the above results.
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