
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sketch-a-Net: A Deep Neural Network that Beats Humans

Citation for published version:
Yu, Q, Yang, Y, Liu, F, Song, Y-Z, Xiang, T & Hospedales, TM 2017, 'Sketch-a-Net: A Deep Neural Network
that Beats Humans', International Journal of Computer Vision, vol. 122, no. 3, pp. 411–425.
https://doi.org/10.1007/s11263-016-0932-3

Digital Object Identifier (DOI):
10.1007/s11263-016-0932-3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Computer Vision

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1007/s11263-016-0932-3
https://doi.org/10.1007/s11263-016-0932-3
https://www.research.ed.ac.uk/en/publications/e51a5962-19b0-4659-ba92-abf89f6dd785


Noname manuscript No.
(will be inserted by the editor)

Sketch-a-Net: a Deep Neural Network that Beats Humans

Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

Received: date / Accepted: date

Abstract We propose a deep learning approach to free-hand
sketch recognition that achieves state-of-the-art performance,
significantly surpassing that of humans. Our superior per-
formance is a result of modelling and exploiting the unique
characteristics of free-hand sketches, i.e. consisting of an or-
dered set of strokes but lacking visual cues such as colour
and texture, being highly iconic and abstract, and exhibiting
extremely large appearance variations due to different levels
of abstraction and deformation. Specifically, our deep neu-
ral network, termed Sketch-a-Net has the following novel
components: (i) We propose a network architecture designed
for sketch rather than natural photo statistics. (ii) Two novel
data augmentation strategies are developed which exploit
the unique sketch-domain properties to modify and synthe-
sise sketch training data at multiple abstraction levels. Based
on this idea we are able to both significantly increase the
volume and diversity of sketches for training, and address
the challenge of varying levels of sketching detail common-
place in free-hand sketches. (iii) We explore different net-
work ensemble fusion strategies, including a re-purposed
joint Bayesian scheme, to further improve recognition per-
formance. We show that state-of-the-art deep networks specif-
ically engineered for photos of natural objects fail to per-
form well on sketch recognition, regardless whether they
are trained using photos or sketches. Furthermore, through
visualising the learned filters, we offer useful insights in to
where the superior performance of our network comes from.

Keywords Sketch recognition · Convolutional Neural
Network · Data augmentation · Stroke ordering · Sketch
abstraction

Q. Yu
Queen Mary University of London, Mile End, London, E1 4NS
Tel.: +44-2078826122
E-mail: q.yu@qmul.ac.uk

1 Introduction

Sketches are very intuitive to humans and have long been
used as an effective communicative tool. With the prolifer-
ation of touchscreens, sketching has become easy and ubiq-
uitous – we can sketch on phones, tablets and even watches.
Research on sketches has consequently flourished in recent
years, with a wide range of applications being investigated,
including sketch recognition (Eitz et al, 2012; Schneider and
Tuytelaars, 2014; Yu et al, 2015), sketch-based image re-
trieval (Eitz et al, 2011; Hu and Collomosse, 2013), sketch-
based shape (Zou et al, 2015) or 3D model retrieval (Wang
et al, 2015), and forensic sketch analysis (Klare et al, 2011;
Ouyang et al, 2014).

Recognising free-hand sketches (i.e. objects such as cars
drawn without any photo as reference) is an extremely chal-
lenging task (see Fig. 1). This is due to a number of reasons:
(i) sketches are highly iconic and abstract, e.g., human fig-
ures can be depicted as stickmen; (ii) due to the free-hand
nature, the same object can be drawn in totally different
styles which results in varied levels of abstraction and de-
formation of sketches, e.g., a human figure sketch can be
either a stickman or a portrait with fine details depending on
the drawer; (iii) sketches lack visual cues, i.e., they consist
of black and white lines instead of coloured pixels. A recent
large-scale study on 20,000 free-hand sketches across 250
categories of daily objects puts human sketch recognition
accuracy at 73.1% (Eitz et al, 2012), suggesting that the task
is challenging even for humans.

Prior work on sketch recognition generally follows the
conventional image classification paradigm, that is, extract-
ing hand-crafted features from sketch images followed by
feeding them to a classifier. Most hand-crafted features tra-
ditionally used for photos (such as HOG, SIFT and shape
context) have been employed, which are often coupled with
Bag-of-Words (BoW) to yield a final feature representations



2 Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

iconic

varied levels of abstraction/deformation

lack visual cues

?

Fig. 1 Recognising a free-hand sketch is not easy due to a number of challenges

that can then be classified. However, existing hand-crafted
features designed for photos do not account for the unique
traits of sketches. More specifically, they ignore two key
unique characteristics of sketches. First, a sketch is essen-
tially an ordered list of strokes; they are thus sequential in
nature. In contrast with photos that consist of pixels sam-
pled all at once, a sketch is the result of an online drawing
process. It had long been recognised in psychology (John-
son et al, 2009) that such sequential ordering is a strong
cue in human sketch recognition, a phenomenon that is also
confirmed by recent studies in the computer vision litera-
ture (Schneider and Tuytelaars, 2014). Second, free-hand
sketches can be highly abstract and iconic and, coupled with
varying drawing skills among different people, intra-class
structure and appearance variations are often considerably
larger than photos (see the examples of face and bicycle
sketches from the TU-Berlin (Eitz et al, 2012) dataset in
Fig. 1). Existing hand-crafted features such as HOG and
classifiers such as SVMs are suited neither for capturing this
large variation of abstraction and appearance variations, nor
exploiting the ordered stroke structure of a sketch.

In this paper, we propose a novel deep neural network
(DNN), Sketch-a-Net, for free-hand sketch recognition, which
exploits the unique characteristics of sketch including mul-
tiple levels of abstraction and being sequential in nature.
DNNs, especially deep convolutional neural networks (CNNs)
have achieved tremendous successes recently in replacing
representation hand-crafting with representation learning for
a variety of vision problems (Krizhevsky et al, 2012; Si-
monyan and Zisserman, 2015). However, existing DNNs are

primarily designed for photos; we demonstrate experimen-
tally that directly employing them for the sketch modelling
problem produces little improvement over hand-crafted fea-
tures, indicating special model architecture is required for
sketches. One of the reasons for the failure of existing photo
DNNs is that they typically require large amount of training
data to avoid overfitting given millions of model parameters.
However, the existing free-hand sketch datasets, the largest
TU-Berlin dataset included, are far smaller than the photo
datasets typically used for training photo DNNs, e.g. Ima-
geNet. To this end, we design our model with the following
considerations: (i) We introduce a novel CNN model with a
number of architecture and learning parameter choices specif-
ically for addressing the iconic and abstract nature of sketches.
(ii) We develop a novel uniquely sketch-oriented data aug-
mentation strategy that programatically deforms sketches both
holistically and at local stroke level to generate a much larger
and richer dataset for training. (iii) To deal with the variabil-
ity in abstraction, and further enrich the training data, we
also leverage another form of data augmentation by exploit-
ing the temporal ordering of training strokes – and the ten-
dency of people to sketch coarse detail first. In particular,
we generate training sketches at various levels of abstrac-
tion by selectively removing detail strokes from the sketch
which correspond to later-drawn strokes. (iv) A final net-
work ensemble that works with various fusion schemes is
formulated to further improves performance in practice.

Our contributions are summarised as follows:



Sketch-a-Net: a Deep Neural Network that Beats Humans 3

– A representation learning model based on DNN is pre-
sented for sketch recognition in place of the conventional
hand-crafted feature based sketch representations.

– We exploit sequential ordering information in sketches
to capture multiple levels of abstraction naturally exist-
ing in free-hand sketches.

– We propose a simple but powerful deformation model
that synthesises new sketches to generate richer training
data.

– We further apply ensemble fusion and pre-training strate-
gies to boost the recognition performance.

– We visualise what the model has learned to help gain
deeper insight into why the model works for sketch recog-
nition.

To validate the effectiveness of our Sketch-a-Net, experi-
ments on the largest hand-free sketch benchmark, TU-Berlin
(Eitz et al, 2012) have been carried out. The results show that
our model significantly outperforms existing sketch recogni-
tion approaches and beats humans by a significant margin.

2 Related Work

Free-hand Sketch Recognition: Early studies on sketch recog-
nition worked with professional CAD or artistic drawings as
input (Lu et al, 2005; Jabal et al, 2009; Zitnick and Parikh,
2013; Sousa and Fonseca, 2009). Free-hand sketch recog-
nition had not attracted much attention until very recently
when a large crowd-sourced dataset was published in (Eitz
et al, 2012). Free-hand sketches are drawn by non-artists us-
ing touch sensitive devices rather than purpose-made equip-
ments; they are thus often highly abstract and exhibit large
intra-class deformations. Most existing works (Eitz et al,
2012; Schneider and Tuytelaars, 2014; Li et al, 2015) use
SVM as the classifier and differ only in what hand-crafted
features borrowed from photos are used as representation. Li
et al (2015) demonstrated that fusing different local features
using multiple kernel learning helps improve the recogni-
tion performance. They also examined the performance of
many features individually and found that HOG generally
outperformed others.Yanık and Sezgin (2015) proposed to
use active learning to achieve a target recognition accuracy
while reducing the amount of manual annotation. Recently,
Schneider and Tuytelaars (2014) demonstrated that Fisher
Vectors, an advanced feature encoding successfully applied
to image recognition, can be adapted to sketch recognition
and achieve near-human accuracy (68.9% vs. 73.1% for hu-
mans on the TU-Berlin sketch dataset). Despite this progress,
little effort has been made for either designing or learning
representations specifically for sketches. Moreover, the role
of sequential ordering in sketch recognition has generally
received little attention. While the optical character recog-
nition (OCR) community has exploited stroke ordering with

some success (Yin et al, 2013), exploiting sequential infor-
mation is harder on sketches – handwriting characters have
relatively fixed structural ordering; while sketches exhibit a
much higher degree of intra-class variation in stroke order.

DNNs for Visual Recognition: Our Sketch-a-Net is a deep
convolutional neural network. Artificial neural networks (ANN)
are inspired by Hubel and Wiesel (1959), who proposed a bi-
ological model of cat’s primary visual cortex, in which they
found and named two distinct types of cells: simple cell and
complex cell. These two types of cells correspond to convo-
lution and pooling operators respectively in neural network
models, and these two essential blocks have been commonly
used by almost every model in this area since Neocognitron
(Fukushima, 1980) was introduced. LeNet (Le Cun et al,
1990) employed backpropagation for training multi-layer neu-
ral networks (later re-branded as deep learning), and back-
propagation and its varieties are now the standard training
methods for such architecture.

ANN models were not so popular before five years ago,
because (i) there are many hard-to-tune design choices e.g.,
activation functions, number of neurons, and number of lay-
ers, (ii) complicated NN models, esp. ones with many layers
are difficult to train because of the vanishing gradient prob-
lem, (iii) NN advantages rely on sufficiently large training
data and hence fast computers. These issues are progres-
sively being overcome: (a) ReLU’s efficacy has made it the
dominant choice of activation function. (b) Layer-wise pre-
training (e.g., RBM (Hinton et al, 2006)) can give a good ini-
tialisation for later supervised fine-tuning. Hessian-free op-
timization also partially alleviates the problem. (c) Most im-
portantly, modern computers allow backpropagation to work
on deeper networks within reasonable time (Schmidhuber,
2015), particularly when equipped with – now relatively af-
fordable – GPUs. (d) Thanks to crowdsourcing, large-scale
labelled data are now available in many areas.

Deep Neural Networks (DNNs) have recently achieved
impressive performance for many recognition tasks across
different disciplines. In particular, Convolutional Neural Net-
works (CNNs) have dominated top benchmark results on vi-
sual recognition challenges such as ILSVRC (Deng et al,
2009). An important advantage of DNNs, particularly CNNs,
compared with conventional classifiers such as SVMs, lies
with the closely coupled nature of presentation learning and
classification (i.e., from raw pixels to class labels in a single
network), which makes the learned feature representation
maximally discriminative. Very recently, it was shown that
even deeper networks with smaller filters (Simonyan and
Zisserman, 2015) are preferable for photo recognition. De-
spite these advances, most existing image recognition DNNs
are optimised for photos, ultimately making them perform
sub-optimally on sketches. In this paper, we show that di-
rectly applying successful photo-oriented DNNs to sketches
leads to little improvement over hand-crafted feature based



4 Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

methods. In contrast, by designing an architecture for sketches
(e.g., with larger rather than smaller filters) as well as data
augmentation for designed sketches (e.g., exploiting stroke
timing for varying training data abstraction), our Sketch-a-
Net achieves state of the art recognition performance.

DNNs for Sketch Modelling: Very few existing works ex-
ploit DNNs for sketch modelling. One exception is the sketch-
to-3D-shape retrieval work in Wang et al (2015). Designed
for cross-domain (sketch to photo) matching, it uses a vari-
ant of Siamese network where the photo branch and sketch
branch have the same architecture without any special treat-
ment of the unique sketch images. In our work, a different
recognition problem is tackled resulting in a very different
network architecture. Importantly, the architecture and the
model training strategy are carefully designed to suit the
characteristics of free-hand sketch.

An early preliminary version of this work was published
in Yu et al (2015). Compared to the earlier version of Sketch-
a-Net (SN1.0) in Yu et al (2015), there are a number of modi-
fications in the current network (SN2.0). Specifically, SN1.0
addressed the stroke ordering and sketch abstraction issues
by – at both training and testing time: (i) segmenting the
sketch in time, and processing the segments by different in-
put channels in the DNN, and (ii) processing the sketch at
multiple scales as different members of a network ensem-
ble. In contrast, in SN2.0 we move all these considerations
to the data augmentation stage. In particular, we use stroke
timing and geometry information to define a simple but pow-
erful data augmentation strategy that synthesises sketches at
varying abstraction levels, and deforms them to achieve a
much richer training set. The result is a simplified smaller
model that is more broadly applicable to pixmaps at test-
ing time. In addition, the newly introduced data augmenta-
tion strategies and simplifier network architecture (i.e. less
model parameters) all help to alleviate the problem of over-
fitting to scarce sketch data. As a result, while SN1.0 just
about beats humans on the sketch recognition task using the
TU-Berlin benchmark (74.9% vs. 73.1%), SN2.0 beats hu-
mans by a large margin (77.95% vs. 73.1%). Further com-
parison of these two networks is discussed in Section 4.2.

3 Methodology

In this section we introduce the key features of our frame-
work. We first detail our basic CNN architecture and outline
the important considerations for Sketch-a-Net compared to
the conventional photo-oriented DNNs (Sec. 3.1). We next
explain how our simple but powerful data augmentation ap-
proach exploits stroke timing information to generate train-
ing sketches at various abstraction levels (Sec. 3.2). We then
further demonstrate how stroke-geometry can be used to pro-
gramatically generate more diverse sketches to further en-

hance the richness of the training set (Sec. 3.3). Fig. 2 illus-
trates our overall framework.

3.1 A CNN for Sketch Recognition

Sketch-a-Net is a deep CNN. Despite all efforts so far, it re-
mains an open question how to design CNN architecture for
a specific visual recognition task; but most recent recogni-
tion networks (Chatfield et al, 2014; Simonyan and Zisser-
man, 2015) now follow a design pattern of multiple convo-
lutional layers followed by fully connected layers, as popu-
larised by the work of Krizhevsky et al (2012).

Our specific architecture is as follows: first we use five
convolutional layers, each with rectifier (ReLU) (LeCun et al,
2012) units, with the first, second and fifth layers followed
by max pooling (Maxpool). The filter size of the sixth con-
volutional layer (index 14 in Table 1) is 7 × 7, which is the
same as the output from previous pooling layer, thus it is
precisely a fully-connected layer. Then two more fully con-
nected layers are appended. Dropout regularisation (Hinton
et al, 2012) is applied on the first two fully connected layers.
The final layer has 250 output units corresponding to 250
categories (the number of unique classes in the TU-Berlin
sketch dataset), upon which we place a softmax loss. The
details of our CNN are summarised in Table 1. Note that for
simplicity of presentation, we do not explicitly distinguish
fully connected layers from their convolutional equivalents.

Most CNNs are proposed without explaining why pa-
rameters, such as filter size, stride, filter number, padding
and pooling size, are chosen. Although it is impossible to ex-
haustively verify the effect of every free (hyper-)parameter,
we discuss some points that are consistent with classic de-
signs, as well as those that are specifically designed for sketches,
thus considerably different from the CNNs targeting photos,
such as AlexNet (Krizhevsky et al, 2012) and DeCAF (Don-
ahue et al, 2015).

Commonalities between Sketch-a-Net and Photo-CNN

Filter Number: In both our Sketch-a-Net and recent photo-
oriented CNNs (Krizhevsky et al, 2012; Simonyan and Zis-
serman, 2015), the number of filters increases with depth. In
our case the first layer is set to 64, and this is doubled after
every pooling layer (indicies: 3 → 4, 6 → 7 and 13 → 14)
until 512.
Stride: As with photo-oriented CNNs, the stride of con-
volutional layers after the first is set to one. This keeps as
much information as possible.
Padding: Zero-padding is used only in L3-5 (Indices 7, 9
and 11). This is to ensure that the output size is an integer
number, as in photo-oriented CNNs (Chatfield et al, 2014).

Unique Aspects in our Sketch-a-Net Architecture



Sketch-a-Net: a Deep Neural Network that Beats Humans 5

Stroke
Removal

Sketch
Deformation

Joint Bayesian fusion

Fig. 2 Illustration of our overall framework

Index Layer Type Filter Size Filter Num Stride Pad Output Size
0 Input - - - - 225× 225
1 L1 Conv 15× 15 64 3 0 71× 71
2 ReLU - - - - 71× 71
3 Maxpool 3× 3 - 2 0 35× 35
4 L2 Conv 5× 5 128 1 0 31× 31
5 ReLU - - - - 31× 31
6 Maxpool 3× 3 - 2 0 15× 15
7 L3 Conv 3× 3 256 1 1 15× 15
8 ReLU - - - - 15× 15
9 L4 Conv 3× 3 256 1 1 15× 15
10 ReLU - - - - 15× 15
11 L5 Conv 3× 3 256 1 1 15× 15
12 ReLU - - - - 15× 15
13 Maxpool 3× 3 - 2 0 7× 7
14 L6 Conv(=FC) 7× 7 512 1 0 1× 1
15 ReLU - - - - 1× 1
16 Dropout (0.50) - - - - 1× 1
17 L7 Conv(=FC) 1× 1 512 1 0 1× 1
18 ReLU - - - - 1× 1
19 Dropout (0.50) - - - - 1× 1
20 L8 Conv(=FC) 1× 1 250 1 0 1× 1

Table 1 The architecture of Sketch-a-Net.

Larger First Layer Filters: The size of filters in the first
convolutional layer might be the most sensitive parameter,
as all subsequent processing depends on the first layer out-
put. While classic networks use large 11×11 filters (Krizhevsky
et al, 2012), the current trend of research (Zeiler and Fergus,
2014) is moving towards ever smaller filters: very recent (Si-
monyan and Zisserman, 2015) state of the art networks have
attributed their success in large part to use of tiny 3×3 filters.
In contrast, we find that larger filters are more appropriate
for sketch modelling. This is because sketches lack texture
information, e.g., a small round-shaped patch can be recog-
nised as eye or button in a photo based on texture, but this
is infeasible for sketches. Larger filters thus help to capture
more structured context rather than textured information. To
this end, we use a filter size of 15× 15.

No Local Response Normalisation: Local Response Nor-
malisation (LRN) (Krizhevsky et al, 2012) implements a
form of lateral inhibition, which is found in real neurons.
This is used pervasively in contemporary CNN recognition
architectures (Krizhevsky et al, 2012; Chatfield et al, 2014;
Simonyan and Zisserman, 2015). However, in practice LRN’s
benefit is due to providing “brightness normalisation”. This
is not necessary in sketches since brightness is not an issue
in line-drawings. Thus removing LRN layers makes learn-
ing faster without sacrificing performance.

Larger Pooling Size: Many recent CNNs use 2 × 2 max
pooling with stride 2 (Simonyan and Zisserman, 2015). It ef-
ficiently reduces the size of the layer by 75% while bringing
some spatial invariance. However, we use the modification:
3×3 pooling size with stride 2, thus generating overlapping



6 Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

Sequence + Length

Random

10% 20% 30% 40% 50%

Sequence + Length

Random

60%

Fig. 3 Examples of ordered stroke removal for temporal modelling, with comparison to random stroke removal. From left to right, we show
sketches after removing 10%-60% percent of strokes at a 10% interval

pooling areas (Krizhevsky et al, 2012). We found this brings
∼ 1% improvement without much additional computation.

3.2 Exploiting Stroke order

Stroke ordering is key information associated with sketches
drawn on touchscreens compared to conventional photos where
all pixels are captured in parallel. Although this information
exists in main sketch datasets such as TU-Berlin, existing
work has generally ignored it. Clearly the specific stroke or-
dering of each sketch within the same category is different,
but their sequences follow a general rule that the main out-
line will be drawn first and then followed by details (Eitz
et al, 2012).

More specifically, a sketch is an ordered list of strokes,
some of which convey broad aspects of the sketch, and oth-
ers convey fine details. In general the broad-brush strokes
are characterised by being drawn first, and by being longer –
with the detail oriented strokes being later and shorter (Eitz
et al, 2012). Importantly, the order of drawing strokes also
corresponds to having different levels of abstraction: to draw
a sketch of the same object category, some people would
stop after some outline/coarse contours of the objects are
drawn, whilst some other people prefer less abstract/more
elaborate sketching style by adding more detailed/shorter
strokes. We exploit these characteristics of sketch stroke or-

der to generate new sketches at multiple abstractions by pro-
gressively removing detail from each training sketch.

Specifically, given a sketch consisting of a set of N or-
dered strokes S = {s}Ni indexed by i, the order of the stroke
and its length are used together to compute the probability
of removing the i-th stroke as:

Pri =
1

Z
· eα∗oi/eβ∗li , s.t. Z =

∑
i

eα∗o/eβ∗l (1)

where oi and li are the sequence order and length of the i-
th stroke, α and β are weights for these two factors, and Z
is a normalisation constant to ensure a discrete probability
distribution. Overall, the later and the shorter a stroke is, the
more likely it will be removed.

Figure 3 illustrates how stroke removal can be used to
increase abstraction by showing sketches with 10%-60% of
strokes progressively removed with this method, with com-
parison to a random stroke removal alternative. Clearly with
our stroke removal techniques, sketches become increasingly
abstract as only longer and earlier strokes are retained, whereas
the random scheme produces unrealistic looking sketches.
Our approach provides a simple yet powerful way to exploit
the unique properties of sketches to provide data augmenta-
tion as well as modelling sketch abstraction. An quantitative
experiment that compares random stroke removal and the
proposed can be found in Section 4.2.



Sketch-a-Net: a Deep Neural Network that Beats Humans 7

(a) (b)

Fig. 4 Local sketch deformation. (a) demonstrates how we do local deformation. The green squares represent control points while the blue dots
are the new deformed positions of these points. (b) shows several example sketches with local deformation. The original stroke are shown in black
while the distorted ones are in red.

(a) (b)

Fig. 5 Global sketch deformation. (a) demonstrates how we do global deformation. (b) shows the effect of global deformation. The left column
are the original ones while the right are deformed sketches.

3.3 Sketch Deformation

The above stroke removal strategy is essentially a data aug-
mentation strategy to deal with the naturally present vari-
ations of abstraction levels in sketches as well as enrich
the scarce available sketch training data. Data augmenta-
tion is critical for learning DNNs – existing successful photo
CNNs (Krizhevsky et al, 2012; Chatfield et al, 2014; Si-
monyan and Zisserman, 2015) obtain excellent performance
in large part due to data augmentation achieved by trans-
lating, rotating, and scaling input images. In this section,

another data augmentation strategy is introduced which ex-
ploits another unique property of sketches compared to pho-
tos, that is, stroke geometry information is available, at least
at training time. Specifically we present another simple but
powerful data augmentation technique that exploits mod-
elling of strokes to programatically generate a much richer
array of training data.

Rationale behind Sketch Deformation Part of the chal-
lenge of sketches is the intra-class diversity: different people
can draw exactly the same object in so many different ways.
This intra-class diversity is largely due to variation in levels



8 Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

apple

snowman

snail

Fig. 6 Sketches with both local and global deformation. In each row, the first is the original sketch, and the following three are distorted sketches.

of deformation, curvature and length in individual strokes.
This inspired us to simulate sketches drawn by different peo-
ple by programatically modifying stroke and object geome-
try to generate more diverse variants of each input sketch.
In particular, we deform each input sketch both locally and
globally.

Local Deformation Local deformation accounts for the
stroke-level variations. In particular, when conducting lo-
cal deformation, we first need to select pivot points. In vec-
tor graphic sketch data, such as the scalable vector graphics
(SVG) used by the TU-Berlin dataset, each sketch S is rep-
resented as a list of strokes S = {s}Ni (i is the ordered stroke
index). Each stroke in turn is composed of a set of segments:
s = {b}ni

j where each segment bj is a cubic bezier spline

b(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3,

0 ≤ t ≤ 1 (2)

and p0 and p3 are the endpoints of each bezier curve. Choos-
ing the endpoints of each segment p0 and p3 as the pivot
points for i-th stroke (green squares in Fig. 4(a)), we jitter
the pivot points according to:

p := p+ ε, s.t. ε ∼ N (0, rI) (3)

where the standard deviation of the Gaussian noise is the
ratio between the linear distance between endpoints and ac-
tual length of the stroke. This means that strokes with shorter

length and smaller curvature are probabilistically deformed
more, while long and curly strokes are deformed less. Af-
ter getting the new position of pivot points (blue points in
Fig. 4(a)), we then employ the Moving Least Squares (MLS)
algorithm (Schaefer et al, 2006) to get new position of all
points along the stroke. In Fig. 4(a), the red line indicates the
distorted stroke while the black is the original one. Fig. 4(b)
show several example sketches with local deformation.

Global Deformation In addition to locally deforming in-
dividual strokes, we also globally deform the sketch as a
whole. First we apply convex hull algorithm to find the out-
line shape of the sketch (red outline in Fig. 5(a)), and use
the vertices of the convex polygon whose x/y coordinate is
the smallest/largest as the pivot points. As with local defor-
mation, we apply Eq. 3 to get their new positions and use
MLS to compute new position of all points in the sketch.
As shown in Fig. 5(a), green points indicate the pivot points
for global deformation and blue ones are pivot points after
translation. Through comparing two red convex polygons,
we can see the effect of global deformation. Fig. 5(b) dis-
plays some sketches with global deformation.

In our experiment, we combine these two kinds of de-
formation together, first applying local deformation and fol-
lowed by global deformation. Fig. 6 shows the deformation
effect. Our experiments show that both deformation strate-
gies contribute to the final recognition performance (see Sec. 4).



Sketch-a-Net: a Deep Neural Network that Beats Humans 9

3.4 Ensemble Fusion

To further improve recognition performance in practice, we
explore different fusion methods, including a re-purposed
joint Bayesian solution. One common practice is to concate-
nate the CNN learned representations in each network and
feed them to a downstream classifier (Donahue et al, 2015),
which we called “feature-level fusion”. Another common
fusion strategy is score-level fusion, which simply averages
the softmax outputs of the ensemble. However, these two
fusion strategies treat each network equally and thus cannot
explicitly exploit inter-model correlations.

Joint Bayesian (JB) (Chen et al, 2012), initially designed
for face verification, were designed to fully explore such
inter-model correlations. Here, we re-purpose JB for clas-
sification. Let each x represent the 4 × 512 = 2048D con-
catenated feature vector from our network ensemble. Train-
ing: Using this activation vector as a new representation for
the data, we train the JB model, thus learning a good metric
that exploits intra-ensemble correlation. Testing: Given the
activation vectors of train and test data, we compare each
test point to the full train set using the likelihood test. With
this metric to compare test and train points, final classifica-
tion is achieved with K-Nearest-Neighbour (KNN) match-
ing1. Note that in this way each feature dimension from each
network is fused together, implicitly giving more weight to
more important features, as well as finding the optimal com-
bination of different features of different models.

We evaluate these three fusion strategies (feature-level
fusion, score-level fusion and joint Bayesian fusion). Com-
parison results and further discussion can be found later in
Section 4.2.

4 Experiments

4.1 Dataset and Settings

Dataset: We evaluate our model on the TU-Berlin sketch
dataset (Eitz et al, 2012), which is the largest and now the
most commonly used human sketch dataset. It contains 250
categories with 80 sketches per category. It was collected
on Amazon Mechanical Turk (AMT) from 1,350 partici-
pants. We rescaled all images to 256 × 256 pixels in order
to make it comparable with previous work. Also following
previous work we performed 3-fold cross-validation within
this dataset (2 folds for training and 1 for testing).

Data Augmentation: Data augmentation is critical for CNNs
to reduce the risk of overfitting. We first performed classical

1 We set k = 30 in this work and the regularisation parameter of
JB is set to 1. For robustness at test time, we also take 10 crops and
reflections of each train and test image (Krizhevsky et al, 2012). This
inflates the KNN train and test pool by 10, and the crop-level matches
are combined to image predictions by majority voting.

data augmentation by replicating the sketches with a num-
ber of transformations. Specifically, for each input sketch,
we did horizontal reflection and systematic combinations of
horizontal and vertical shifts (up to 32 pixels). These con-
ventional data augmentation strategies will increase the train-
ing data size by a factor of 32× 32× 2 fold. Our stroke re-
moval (see Sec. 3.2) and sketch deformation strategies (see
Sec. 3.3) produce a further 13× more training data (each
training sample, has 6 synthesised sketches with stroke re-
moval + 6 sketches with sketch deformation + the original
sketch). Thus, when using two thirds of the data for training,
the total pool of training instances is 13× (20000 · 0.67)×
(32 · 32 · 2), increasing the training set size by a factor of
13× 32× 32× 2 = 26, 624.

Pre-training: Apart from ’dropout’ and data augmenta-
tion, another strategy to avoid overfitting is via pre-training
on a (larger) auxiliary dataset. The key challenge here is how
to create the auxiliary data source which are similar in na-
ture to our sketch data – photos are abundant but sketches
are hard to find. It is noted that, consisting of black and
white lines, to some degree, sketch is similar to object edges
extracted from photos. We therefore take the Sketch-a-Net
architecture, and pre-train it using the edge maps extracted
from the ImageNet-1K photos (Deng et al, 2009). All the
edge maps are extracted from bounding box areas by us-
ing the edge detection method in Zitnick and Dollár (2014);
therefore only images with bounding boxes provided are
used. This step gives our model a better initialisation com-
pared with being initialised randomly. Our experiments show
that pre-training helps to achieve better performance (Tab. 6).

Settings: We implemented our network using Caffe (Jia
et al, 2014). The initial learning rate is set to 0.001, and
mini-batch to 135. During training, each sketch is randomly
cropped to a 225 × 225 sub-image. Both the novel data
augmentation methods described in Sec. 3.2 and Sec. 3.3,
and traditional data augmentation are applied. We train a
4-network ensemble and then use JB to fuse them. In par-
ticular, we extract the output of the penultimate layer (fc7)
from 4 networks and concatenate them as the final feature
representation. We then employ JB and get the classification
result (as described in Sec. 3.4). More specifically, at testing
time, we do multi-view testing by cropping each sample 10
times (4 corner, 1 centre and flipped). Each of these crops
is put through the ensemble and classified by JB. The views
are then fused by majority vote. Overall, the final feature
representation of each testing sample is a 10 × (4 · 512D)

matrix.

Competitors: We compared our Sketch-a-Net model with
a variety of alternatives. They can be categorised into two
groups. The first group follows the conventional handcrafted
features+ classifier pipeline. These included the HOG-SVM
method (Eitz et al, 2012), structured ensemble matching



10 Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

(Li et al, 2013), multi-kernel SVM (Li et al, 2015), and the
current state-of-the-art Fisher Vector Spatial Pooling (FV-
SP) (Schneider and Tuytelaars, 2014). The second group
used DNNs. These included AlexNet (Krizhevsky et al, 2012)
and LeNet (LeCun et al, 2012). AlexNet is a large deep
CNN designed for classifying ImageNet LSVRC-2010 (Deng
et al, 2009) images. It has five convolutional layers and 3
fully connected layers. We used two versions of AlexNet: (i)
AlexNet-SVM: following common practice (Donahue et al,
2015), it was used as a pre-trained feature extractor, by tak-
ing the second 4096D fully-connected layer of the ImageNet-
trained model as a feature vector for SVM classification. (ii)
AlexNet-Sketch: we re-trained AlexNet for the 250-category
sketch classification task, i.e. it was trained using the same
data as our Sketch-a-Net. Although LeNet is quite old, we
note that it is specifically designed for handwritten digits
rather than photos. Thus it is potentially more suited for
sketches than the photo-oriented AlexNet. Finally, the ear-
lier version of Sketch-a-Net (Yu et al, 2015), denoted SN1.0,
was also compared.

4.2 Results

Comparative Results: We first report the sketch recog-
nition results of our full Sketch-a-Net, compared to state-of-
the-art alternatives as well as humans in Table 2. The follow-
ing observations can be made: (i) Sketch-a-Net significantly
outperforms all existing methods purposefully designed for
sketch (Eitz et al, 2012; Li et al, 2013; Schneider and Tuyte-
laars, 2014), as well as the state-of-the-art photo-oriented
CNN model (Krizhevsky et al, 2012) re-purposed for sketch;
(ii) we show that an automated sketch recognition model can
surpass human performance on sketch recognition (77.95%
by our Sketch-a-Net vs. 73.1% for humans by a clear mar-
gin based on the study in (Eitz et al, 2012)); (iii) Sketch-a-
Net is superior to AlexNet, despite being much smaller with
only 14% of the total number of parameters of AlexNet. This
verifies that new network design is required for sketch im-

Models Accuracy
HOG-SVM (Eitz et al, 2012) 56%
Ensemble (Li et al, 2013) 61.5%
MKL-SVM (Li et al, 2015) 65.8%
FV-SP (Schneider and Tuytelaars, 2014) 68.9%
AlexNet-SVM (Krizhevsky et al, 2012) 67.1%
AlexNet-Sketch (Krizhevsky et al, 2012) 68.6%
LeNet (LeCun et al, 2012) 55.2%
SN1.0 (Yu et al, 2015) 74.9%
Our Full Model 77.95%
Humans (Eitz et al, 2012) 73.1%

Table 2 Comparitive results on sketch recognition

ages. In particular, it is noted that either trained using the
larger ImageNet data (67.1%) or the sketch data (68.6%),
AlexNet cannot beat the best hand-crafted feature based ap-
proach (68.9% of FV-SP); (iv) among the deep DNN based
models, the performance of LeNet (55.2%) is the weakest.
Although designed for handwriting digit recognition, a task
similar to that of sketch recognition, the model is much sim-
pler and shallower. This suggests that a deeper model is nec-
essary to cope with the larger intra-class variations exhibited
in sketches; (v) Compared with the earlier version of Sketch-
a-Net (SN1.0), the improved SN2.0 model is clearly supe-
rior thanks to the lower model complexity and more richly
augmented training data.

Upon closer category-level examination, we found that
Sketch-a-Net tends to perform better at fine-grained object
categories. This indicates that Sketch-a-Net learned a more
discriminative feature representation capturing finer details
than conventional hand-crafted features, as well as humans.
For example, for ‘seagull’ and ‘pigeon’, both of which be-
long to the coarse semantic category of ‘bird’. Sketch-a-Net
obtained an average accuracy of 40.4% while human only
achieved 16.9%. In particular, the category ‘seagull’, is the
worst performing category for human with an accuracy of
just 2.5%, since it was mostly confused with other types of
birds. In contrast, Sketch-a-Net yielded 26.92% for ‘seagull’
which is nearly 10 times better. Further insights on how this
performance improvement is achieved will be provided via
model visualisation later.

Contributions of Individual Components: Compared to
conventional photo-oriented DNNs such as AlexNet, our Sketch-
a-Net has four distinct features: (i) the network architecture
(see Sec. 3.1), (ii) the stroke removal utilising stroke order-
ing (see Sec. 3.2) to synthesise variable levels of abstrac-
tion, (iii) the sketch deformation approach to deal with large
sketching appearance variations (see Sec. 3.3), and (iv) the
joint Bayesian (JB) fusion with a network ensemble (see
Sec. 3.4). In this section, we evaluate the contributions of
each new feature. Specifically, we examined five stripped-
down versions of our full model: single Sketch-a-Net with
all features but no JB/ensemble (SN-NoJB), Sketch-a-Net
only with stroke removal (SN-SR) which is how we ex-
ploit temporal information, Sketch-a-Net only with sketch
deformation (SN-SD) which accounts for varied levels of
abstraction and our basic Sketch-a-Net model (SN-vanilla).
The results in Table 3 show that all four strategies contribute
to the final strong performance of Sketch-a-Net. In particu-
lar, (i) the improvement of SN-vanilla over AlexNet-Sketch
shows that our sketch-specific network architecture is effec-
tive; (ii) SN-SD and SN-SR improved the performance of
SN by 3% and 2%, respectively, indicating that both stroke
removal and sketch deformation strategy worked; (iii) the
best result is achieved when all four strategies are combined.



Sketch-a-Net: a Deep Neural Network that Beats Humans 11

Our Full Model SN-NoJB SN-SD SN-SR SN-vanilla AlexNet-Sketch
77.95% 77.06% 75.52% 74.57% 72.20% 68.60%

Table 3 Evaluation on the contributions of individual components of Sketch-a-Net.

Global+Local Global Local
75.52% 75.40% 73.86%

Table 4 Evaluation of novel data augmentation strategies: Global and
Local deformations.

Ordered removal 74.57%
Random removal 73.85%

Table 5 Comparison results of different stroke removal strategies.

With Pre-training 77.06%
Without Pre-training 76.06%

Table 6 Contributions of pre-training

Feature Fusion Score Fusion joint Bayesian
77.12% 77.82% 77.95%

Table 7 Comparison of different fusion strategies.

Random vs. Ordered Removal: To quantitatively verify
the value of our proposed stroke removal technique, we also
trained a network using augmented sketches that had under-
gone random stroke removal. The experimental results with
comparison to the proposed stroke removal technique can be
found in Table 5. It is clear to see that our proposed stroke
removal strategy can better simulate the original sketch at
multiple abstraction levels, resulting in higher performance.

Local vs. Global Deformation: In our sketch deforma-
tion approach, we apply deformation at both local and global
levels. To find out which part brings about more improve-
ment for our model, in this experiment, we compared the
contributions of different deformation strategies. Specifically,
we trained Sketch-a-Net with the data processed only by lo-
cal or global deformation, and then compare their perfor-
mance. From the results listed in Table 4, we can see that
both types of deformations help, but the global deformation
brings a larger improvement. This makes sense since local
deformation provides subtler stroke-level variations while
global deformation modifies the whole instance.

Effects of Pre-training: Table 6 shows the contribution of
pre-training. The results show that our model benefits from
the pre-training even though the auxiliary data was from a
different domain (extracted edges from photo images).

Comparison of Different Fusion Strategies: Given an
ensemble of Sketch-a-Net (4 models in our experiments)
obtained by varying the mini-batch orders, various fusion
strategies can be adopted for the final classification task.
Table 7 compares our joint Bayesian fusion method with
the alternative feature-level and score-level fusion methods.

Note that all the models we use here were trained with our
stroke removal and sketch deformation data augmentation,
as well as the pre-training strategy. For feature-level fusion,
we treated each single network as a feature extractor, and
concatenated the 512D outputs of their penultimate layers
into a single feature. We then trained a linear SVM based
on this 4× 512 = 2048D feature vector. For score-level fu-
sion, we averaged the 250D softmax probabilities of each
network in the ensemble to make a final prediction. For JB
fusion, we took the same 2048D concatenated feature vector
used by feature-level fusion, but performed KNN matching
with JB similarity metric, rather than SVM classification.

Although JB fusion can still achieve the best performance
among the three fusion strategies, it is interesting to note
that it does not outperform the other two simpler baselines
as much as reported in Yu et al (2015). This is because the
single branch in our current model performs much better
than before. JB was initially designed for face identifica-
tion/verification, when it was used for model fusion: comb-
ing multiple models (e.g., neural networks) together (model
fusion). However it has an implicit assumption that each
model should be reasonably different. This is usually ob-
tained by using different resolutions or face regions. How-
ever, in our current case, the trained neural networks are not
only individually better, but also closer to each other in terms
of both top layer (score-level fusion) and penultimate layer
(feature-level fusion), so there is very little room for JB to
improve.

Comparison of SN1.0 and SN2.0: This work is an ex-
tension of Yu et al (2015). In broad terms, SN2.0 proposed
in this work differs with SN1.0 (Yu et al, 2015) in (i) how
stroke ordering information is exploited, and (ii) how data
argumentation is achieved via local and global stroke defor-
mation. As a result, SN2.0 can achieve better overall recog-
nition performance even without ensemble fusion, which
was previously verified to work well for SN1.0. A detailed
comparison between the two networks is offered in Table
8. In particular, (i) We replaced the multi-channel multi-
scale model with current single-channel single-scale model,
making the whole architecture much simpler and faster for
training; (ii) Correspondingly, the total number of parame-
ters has reduced from 42.5 million (8.5 million/network× 5
networks in SN1.0) to 8.5 million; and (iii) The number of
training data is also reduced a lot. Apart from traditional data
augmentation (i.e., rotation, translation etc.), we replicated
the training data 30 times (6 channel × 5 scales) in SN1.0
while we now only replicate it 13 times (each sketch gener-
ates 13 inputs, including 1 original sketch, 6 new sketches



12 Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

spoon (key)

tire (ashtray) book (bread)butterfly (bee) ladder (bridge)

dog (horse)

beer-­‐mug (backpack)flying-­‐saucer (hat)spider (crab)calculator (cellphone)

crown (cactus)hedgehog (bush)

horse camelcat lion

banana

bedbreadkeylobster

bowlbathtubhot-­‐dog

Fig. 7 Qualitative illustration of recognition successes (green) and failures (red).

Fig. 8 Visualisation of the learned filters. Left: randomly selected filters from the first layer in our model; right: the real parts of some Gabor filters

Table 8 Comparison of SN1.0 and SN2.0
Aspect SN1.0 SN2.0 (without JB)
Architecture multi-channel & multi-scale single-channel & single-scale
Num. of parameters 42.5 million 8.5 million
Multiple of training data 30 13
Performance 74.9% 77.06%

with stroke removal and 6 with sketch deformation). The
performance of SN2.0 (without joint Bayesian fusion) is more
than 2% higher than SN1.0. This indicates the efficacy of our
new data augmentation strategies.

Qualitative Results: Figure 7 shows some qualitative re-
sults. Some examples of surprisingly tough successes are
shown in green. Mistakes made by the network (red) (in-
tended category of the sketches in black) are very reason-
able. One would expect humans would make similar mis-
takes. The clear challenge level of their ambiguity demon-
strates why reliable sketch-based communication is hard even
for humans.

What Has Been Learned by Sketch-a-Net: As illustrated
in Fig. 8, the filters in the first layer of Sketch-a-Net (Fig. 8(left))
learn something very similar to the biologically plausible
Gabor filters (Fig. 8(right)) (Gabor, 1946). This is interest-
ing because it is not obvious that learning from sketches

should produce such filters, as their emergence is typically
attributed to learning from the statistics of natural images
(Olshausen and J., 1996; Stollenga et al, 2014).

To visualise a CNN by showing its filters is only mean-
ingful for the first convolutional layer, because it is directly
applied on pixels. It is hard to get intuition from observ-
ing higher level filters as they are applied on features. So
we use the deconvolution method proposed by Zeiler and
Fergus (2014) to visualise the filters of higher-level convo-
lutional layers. To do this, we searched for patches that max-
imise the response of specific filters on the training set, and
then uses deconvolution to show which part of the patch con-
tributed most to the activation. Fig. 9 shows the visualisation
of some selected filters ranging from layer conv2 to conv5,
and for each filter we used 9 patches from different images
for visualisation. We can see that features of higher level
convolutional layers are more semantic: features of conv2



Sketch-a-Net: a Deep Neural Network that Beats Humans 13

Fig. 9 Visualisation of the learned filters by deconvolution. Through visualisation of the filters by deconvolution, we can see that filter of higher-
level layer are modeling more complex concepts. For example, what neurons represented in conv2 are basic building blocks to compose other
concepts like lines, circles and textures; layer conv3 learns more mid-level concepts or object parts, like eye and wheel; and in conv4 and conv5,
neurons are representing complex concepts like head, roof, and body.

are just texture and simple patterns; object parts like eye of
animals begin to emerge in conv3; and in conv4 and conv5,
the filter can capture more complex concepts like head and
tent. The scale of learned concepts also becomes larger as
we goes deeper, since the receptive field of the neurons has
become larger. In particular, it is noted that bird head like
filters were learned as early as conv2 and where progres-
sively refined as the network goes deeper. This partially ex-

plains why the model performs particularly well on the fine-
grained bird recognition tasks compared to humans.

It is also interesting to see the CNN trained on sketches
behaves somehow different from the model trained with nat-
ural images, e.g., from AlexNet trained on ImageNet (Zeiler
and Fergus, 2014). As sketches are more abstract and dis-
card many details, object across categories are more likely
to share mid-level representations, i.e, a single filter can be



14 Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang and Timothy M. Hospedales

used by multiple object classes. For example, in conv4, wheel-
like feature can shared both by donut and cameras; eye-like
feature can both shared by animals and house, and in conv5,
clustered blobs can shared by grape and flower.

Running cost: We trained our 4-network ensemble for 180K
iterations each, with each instance undergoing random data
augmentation during each iteration. This took roughly 20
hours using a NVIDIA K40-GPU.

5 Conclusion

We have proposed a deep neural network based sketch recog-
nition model, which we call Sketch-a-Net, that beats hu-
man recognition performance by 5% on a large scale sketch
benchmark dataset. Key to the superior performance of our
method lies with the specifically designed network model
and several novel training strategies that accounts for unique
characteristics found in sketches that were otherwise unad-
dressed in prior art. The learned sketch feature representa-
tion could benefit other sketch-related applications such as
sketch-based image retrieval and automatic sketch synthesis,
which could be interesting venues for future work.

Acknowledgements: This project received support from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement #640891, and the Royal
Society and Natural Science Foundation of China (NSFC)
joint grant #IE141387 and #61511130081. We gratefully ac-
knowledge the support of NVIDIA Corporation for the do-
nation of the GPUs used for this research.

References

Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014)
Return of the devil in the details: Delving deep into con-
volutional nets. In: BMVC

Chen D, Cao X, Wang L, Wen F, Sun J (2012) Bayesian face
revisited: A joint formulation. In: ECCV

Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009)
Imagenet: A large-scale hierarchical image database. In:
CVPR

Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E,
Darrell T (2015) Decaf: A deep convolutional activation
feature for generic visual recognition. In: ICML

Eitz M, Hildebrand K, Boubekeur T, Alexa M (2011)
Sketch-based image retrieval: Benchmark and bag-of-
features descriptors. TVCG

Eitz M, Hays J, Alexa M (2012) How do humans sketch
objects? In: SIGGRAPH

Fukushima K (1980) Neocognitron: A self-organizing neu-
ral network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetics

Gabor D (1946) Theory of communication. part 1: The anal-
ysis of information. Journal of the Institution of Electrical
Engineers-Part III: Radio and Communication Engineer-
ing

Hinton GE, Osindero S, Teh YW (2006) A fast learning al-
gorithm for deep belief nets. Neural Computation

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I,
Salakhutdinov RR (2012) Improving neural networks by
preventing co-adaptation of feature detectors. In: arXiv
preprint arXiv:1207.0580

Hu R, Collomosse J (2013) A performance evaluation of
gradient field hog descriptor for sketch based image re-
trieval. CVIU

Hubel DH, Wiesel TN (1959) Receptive fields of single neu-
rons in the cat’s striate cortex. Journal of Physiology

Jabal MFA, Rahim MSM, Othman NZS, Jupri Z (2009) A
comparative study on extraction and recognition method
of cad data from cad drawings. In: International Confer-
ence on Information Management and Engineering

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick
R, Guadarrama S, Darrell T (2014) Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint
arXiv:14085093

Johnson G, Gross MD, Hong J, Yi-Luen Do E (2009) Com-
putational support for sketching in design: a review. Foun-
dations and Trends in Human-Computer Interaction

Klare BF, Li Z, Jain AK (2011) Matching forensic sketches
to mug shot photos. TPAMI

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet
classification with deep convolutional neural networks.
In: NIPS

Le Cun Y, Boser B, Denker JS, Henderson D, Howard RE,
Hubbard W, Jackel LD (1990) Handwritten digit recogni-
tion with a back-propagation network. In: NIPS

LeCun Y, Bottou L, Orr GB, Müller K (2012) Efficient back-
prop. Neural networks: Tricks of the trade

Li Y, Song Y, Gong S (2013) Sketch recognition by ensem-
ble matching of structured features. In: BMVC

Li Y, Hospedales TM, Song Y, Gong S (2015) Free-
hand sketch recognition by multi-kernel feature learning.
CVIU

Lu T, Tai C, Su F, Cai S (2005) A new recognition model for
electronic architectural drawings. Computer-Aided De-
sign

Olshausen BA, J FD (1996) Emergence of simple-cell recep-
tive field properties by learning a sparse code for natural
images. Nature

Ouyang S, Hospedales T, Song Y, Li X (2014) Cross-modal
face matching: beyond viewed sketches. In: ACCV

Schaefer S, McPhail T, Warren J (2006) Image deformation
using moving least squares. TOG

Schmidhuber J (2015) Deep learning in neural networks: An
overview. Neural Networks



Sketch-a-Net: a Deep Neural Network that Beats Humans 15

Schneider RG, Tuytelaars T (2014) Sketch classification
and classification-driven analysis using fisher vectors. In:
SIGGRAPH Asia

Simonyan K, Zisserman A (2015) Very deep convolutional
networks for large-scale image recognition. In: ICLR

Sousa P, Fonseca MJ (2009) Geometric matching for clip-art
drawing retrieval. Journal of Visual Communication and
Image Representation

Stollenga MF, Masci J, Gomez F, Schmidhuber J (2014)
Deep networks with internal selective attention through
feedback connections. In: NIPS

Wang F, Kang L, Li Y (2015) Sketch-based 3d shape re-
trieval using convolutional neural networks. In: CVPR

Yanık E, Sezgin TM (2015) Active learning for sketch
recognition. Computers & Graphics

Yin F, Wang Q, Zhang X, Liu C (2013) Icdar 2013 chi-
nese handwriting recognition competition. In: Interna-
tional Conference on Document Analysis and Recogni-
tion

Yu Q, Yang Y, Song YZ, Xiang T, Hospedales TM (2015)
Sketch-a-net that beats humans. In: BMVC

Zeiler M, Fergus R (2014) Visualizing and understanding
convolutional networks. In: ECCV

Zitnick CL, Dollár P (2014) Edge boxes: Locating object
proposals from edges. In: ECCV

Zitnick CL, Parikh D (2013) Bringing semantics into focus
using visual abstraction. In: CVPR

Zou C, Huang Z, Lau RW, Liu J, Fu H (2015) Sketch-based
shape retrieval using pyramid-of-parts. arXiv preprint
arXiv:150204232


