
BIROn - Birkbeck Institutional Research Online

Liu, K. and Zhang, J. and Yang, P. and Maybank, Stephen J. and Huang,
K. (2017) GRMA: Generalized Range Move Algorithms for the efficient
optimization of MRFs. International Journal of Computer Vision 121 (3), pp.
365-390. ISSN 0920-5691.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/15899/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/15899/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

International Journal of Computer Vision manuscript No.
(will be inserted by the editor)

GRMA: Generalized Range Move Algorithms for the Efficient
Optimization of MRFs

Kangwei Liu · Junge Zhang · Peipei Yang · Steve Maybank · Kaiqi Huang?

Received: date / Accepted: date

Abstract Markov Random Fields (MRF) have become an
important tool for many vision applications, and the opti-
mization of MRFs is a problem of fundamental importance.
Recently, Veksler and Kumar et al. proposed the range move
algorithms, which are some of the most successful optimiz-
ers. Instead of considering only two labels as in previous
move-making algorithms, they explore a large search space
over a range of labels in each iteration, and significantly
outperform previous move-making algorithms. However, t-
wo problems have greatly limited the applicability of range
move algorithms: 1) They are limited in the energy functions
they can handle (i.e., only truncated convex functions); 2)
They tend to be very slow compared to other move-making
algorithms (e.g., α-expansion and αβ-swap). In this paper,
we propose two generalized range move algorithms (GR-
MA) for the efficient optimization of MRFs. To address the
first problem, we extend the GRMAs to more general energy
functions by restricting the chosen labels in each move so
that the energy function is submodular on the chosen subset.
Furthermore, we provide a feasible sufficient condition for
choosing these subsets of labels. To address the second
problem, we dynamically obtain the iterative moves by solv-
ing set cover problems. This greatly reduces the number of
moves during the optimization. We also propose a fast graph
construction method for the GRMAs. Experiments show
that the GRMAs offer a great speedup over previous range
move algorithms, while yielding competitive solutions.

Keywords Markov random field · Discrete optimization ·
Energy minimization · Range move algorithms

∗ Prof. Kaiqi Huang is the correspondence author.
F. Author
Tel.: +123-45-678910
E-mail: fauthor@example.com

1 Introduction

Markov Random Fields (MRF) are an important and widely-
used tool in many vision problems such as stereo recon-
struction (Szeliski et al. 2008), image restoration (Boykov
et al. 2001), segmentation (Boykov and Jolly 2001), medical
image analysis (Boykov and Jolly 2000) and image match-
ing (Liu et al. 2014). These problems are solved by finding
the maximum a posteriori (MAP) estimate of a labeling,
or equivalently obtaining the label assignment that mini-
mizes the MRFs energy. The solution quality and the time
complexity of the optimization significantly affect the appli-
cability of MRF models. Therefore, optimizing the MRFs
efficiently while ensuring the good quality of the solutions
is a problem of fundamental importance.

In the last decades, many optimization approaches have
been developed, such as iterated conditional modes (ICM)
(Besag 1986), sequential belief propagation (Tappen and
Freeman 2003; Szeliski et al. 2008), and sequential tree-
reweighted message passing (TRW-S) (Kolmogorov 2006).
Recently, graph-cut based algorithms (Kolmogorov and Z-
abin 2004; Ishikawa 2003; Boykov et al. 2001; Greig et al.
1989; Gridchyn and Kolmogorov 2013; Kumar and Tor-
r 2009; Veksler 2012) have attracted significant attention
because of their good optimality properties. Boykov et al.
(2001) propose the popular α-expansion and αβ-swap al-
gorithms, both of which optimize the MRFs by a series of
iterative moves. In these two algorithms, each move involves
solving the st-mincut problem of a corresponding graph.
Although α-expansion and αβ-swap have been successfully
used in many vision tasks, there is a limitation which has
reduced the effectiveness of the algorithms. A choice be-
tween only two labels is provided for every vertex in each
move. Veksler (Veksler 2007, 2012) effectively solves this
problem by developing the so-called range move algorithms.
In contrast with α-expansion and αβ-swap, they allow every

2 Kangwei Liu et al.

vertex to have a choice of more than two labels. This yields
better solutions in practice. In Kumar and Torr (2009) and
Kumar et al. (2011), an improved range move algorithm is
proposed and it is pointed out that the range move algorithm
has the same guarantee as linear programming (LP) relax-
ation (Chekuri et al. 2004).

However, although the range move algorithms outper-
form α-expansion and αβ-swap in many cases, there are
two major problems which have significantly limited their
applicability in practice: (i) they are limited in the types of
energy functions they can handle; (ii) the optimization is
too slow. As a result, the range move algorithms are not as
popular as α-expansion and αβ-swap. In the case of (i), pre-
vious range move algorithms (Veksler 2012, 2007; Kumar
and Torr 2009; Kumar et al. 2011) are restricted to truncated
convex functions. However, there are many more general
energy functions, which have been successfully used in dif-
ferent vision problems. The piecewise linear function (Kohli
et al. 2013) and the Geman-McClure function (Lempitsky
et al. 2010) provide examples. Kumar (2014) modify the
range expansion algorithm to general semi-metric pairwise
energy functions and propose the rounding-based algorithm.
However, the rounding-based algorithm chooses a subset
aforehand and estimates a submodular overestimation to re-
place the original energy function, which leads to a solution
that is not optimal for each range move. Veksler (2012)
points out that range move algorithms can be extended to
more general energies by restricting the set of labels so that
the energy on the restricted subset is submodular. Unfortu-
nately, it is still a challenging problem to judge which sets of
labels satisfy the submodular condition, given an arbitrary
energy function. In the case of (ii), previous range move
algorithms execute all possible range moves, which contain
many repeated labels and lead to computational inefficiency.
As a result, the range move algorithms run much slower than
α-expansion and αβ-swap. In theory (Veksler 2012), the
larger the set of allowed moves, the better the optimization.
However, in practice, we find that almost the same solution
can be obtained with a much reduced set of moves. There-
fore, we raise the following questions: (i) how to feasibly
choose sets of labels that satisfy the submodular condition,
given an arbitrary energy function? (ii) Whether we should
execute all the possible moves, and if not, which moves are
sufficient? (iii) How to schedule the moves to reduce the
number of unnecessary moves, while ensuring the quality of
the optimization is comparable to that produced by previous
range move algorithms?

To solve the above problems, we propose two general-
ized range move algorithms (GRMA) that we call the gener-
alized range swap (GRSA) and generalized range expansion
(GREA) algorithm, respectively. Firstly, we extend the range

50X50 100X100 150X150 200X200 250X250
0

10

20

30

40

50

60

70

80

Nodes

T
im

e
(s

ec
.)

αβ-swap
Range swap
Our GRSA

Fig. 1 The run time of previous range swap algorithm and the GRSA
on MRFs with different sizes. The results are average run times tested
on 50 MRFs with a truncated convex energy function.

move methods to more general functions1 by requiring that
the chosen set of labels in every move is submodular. Differ-
ent from the method of Kumar (2014), whose strategy is to
estimate a submodular overestimation and compute an ap-
proximate solution to the original range move, the GRMAs
choose the subsets of the labels on which the submodular
condition is satisfied on the original energy function. More
importantly, we provide a sufficient condition for choosing
sets of labels that satisfy the submodular condition. Second-
ly, we give conditions on the iterative moves to ensure that
GRMAs produce a good estimate of the optimal solution.
Both GRSA and GREA require that every vertex has the
opportunity to change its current label to any other label
during the optimization. This requirement guarantees that
GRSA and GREA obtain at least as good solutions as αβ-
swap or α-expansion. Then, to reduce the run time of the
range move algorithms, we dynamically obtain a series of
moves meeting the requirement by solving a set cover prob-
lem. Finally, we develop an improved graph construction
method for the GRMAs. The proposed graph construction
allows the GRMAs to handle more general energy functions
than the truncated convex functions. Moreover, the new
graph construction not only runs faster than previous graph
constructions (Kumar et al. 2011), but also yields better
solutions. We demonstrate the effectiveness of GRMAs on
both synthetic data and real vision problems. Experimental
results show that both GRSA and GREA greatly reduce
the run time compared to previous range move algorithms
(Fig. 1), while they obtain competitive solutions.

There are three main contributions in this paper:

– The GRMAs are applicable to arbitrary semimetric pair-
wise functions. We restrict the chosen labels to be a
submodular set, and propose a method to choose the
submodular sets feasibly.

– We formulate the iterative optimization using a solution
to a set cover problem. This formulation avoids a large
number of unnecessary moves and offers a great speedup

1 In this work, we consider the optimization of arbitrary semimetric
energy functions. Here, “semimetric” means that the pairwise function
should satisfy θ(α, β) = 0⇔ α = β and θ(α, β) = θ(β, α) ≥ 0.

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 3

over previous algorithms. Furthermore, we show that
although a much fewer number of moves are considered
in our GRMAs, the methods do not lose much accuracy
in practice.

– We develop an improved graph construction method for
the graph cut technique. Compared to previous graph
constructions (Ishikawa 2003; Kumar et al. 2011), there
are two advantages in the new graph construction: (i)
The graph construction needs fewer edges to model the
pairwise potentials in each move, and thus the st-mincut
problem can be solved faster than that in previous graph
constructions (Ishikawa 2003; Kumar et al. 2011). (ii)
The improved construction in the GREA guarantees bet-
ter solutions than Kumar et al. (2011) both theoretically
and practically.

The GRSA is a generalization of several graph-cut based
algorithms including αβ-swap, range swap algorithm and
the method of Ishikawa (2003), while the GREA is a gener-
alization of α-expansion, the range expansion algorithm and
the method of Ishikawa (2003). This provides new views of
the relationships among the graph-cut based algorithms.

The preliminary version of the GRSA algorithm is pro-
posed in Liu et al. (2015). This journal version significantly
extends Liu et al. (2015) both theoretically and empirically.
The most important extensions are the GREA algorithm
and the improved graph construction method. Besides, this
journal version reviews the related methods and summarizes
their strengths and weaknesses in more details, enhances the
theoretical analysis of the GRMA algorithms and presents
more experimental analysis to demonstrate the effectiveness
of the proposed methods.

The rest of the paper is organized as follows. We in-
troduce the background and related work in Sec. 2. The
generalized range swap algorithm is proposed and explained
in Sec. 3, while the generalized range expansion algorithm
is developed in Sec. 4. Then, the graph constructions for
both GRSA and GREA are introduced in Sec. 5. The ex-
perimental results are demonstrated in Sec. 6, and finally,
the conclusions are made in Sec. 7.

2 Background and related work

2.1 Preliminaries of MRFs

Many vision problems can be naturally formulated in terms
of the maximum a posteriori (MAP) inference of an MRF.
The MRF is defined as an undirected graph G = (P, E),
where P is the set of vertices, and E is the set of edges
connecting neighboring vertices. Given an MRF, a labeling
f = {fp|p ∈ P} is the label assignment of all the vertices
p ∈ P . The probability of the labeling is given by the Gibbs
distribution: P(f |D) = exp(−E(f))/Z, where D is the

observed data and Z is the partition function that depends
on D. The MAP estimation of the labeling can be solved
by minimizing the Gibbs energy, which is typically given as
follows:

E(f) =
∑
p∈P

θp(fp) +
∑

(p,q)∈E

θpq(fp, fq) (1)

where fp, fq are in the set L of labels, and θp, θpq denote the
unary and pairwise potential respectively. The neighborhood
structure (i.e., elements of E) are often derived from the spa-
tial structure of an image. The objective of the optimization
problem is to obtain the labeling f∗, which minimizes the
sum of the unary terms θp and the pairwise terms θpq .

In the energy E(f), the unary term θp encourages the
consistency between the assigned label fp and the observed
data. In contrast, the pairwise term θpq encourages the label-
ing f to vary smoothly on neighboring vertices. The choice
of θpq is of critical importance to the solution of different
tasks. In some approaches (Poggio et al. 1989), θpq is chosen
to be a convex function (e.g., linear or quadratic function),
which makes the labeling smooth everywhere. However,
convex functions do not perform well on the boundaries of
objects, because the sharp label changes on the boundaries
will increase the value of the energy function. To avoid the
problem of overpenalizing, a large number of non-convex
energies have been developed in the literature, e.g., truncat-
ed convex function (Boykov et al. 2001), piecewise linear
functions (Kohli et al. 2013) and Geman-McClure function
(Lempitsky et al. 2010).

2.2 Graph cut based optimization

In recent years, graph cut has been a standard technique for
the optimization of MRFs. The GRMAs are also based on
graph cut, thus, we give a brief review of graph cut based
algorithms in this section.

The primary idea of the graph cut based algorithms is to
construct a special graph GC with a source vertex s and a
sink vertex t, such that there is a one-to-one correspondence
between the st-cut of GC and of a labeling f . The cost of
the st-cut of GC is exactly equal to the value of energy
E(f). Thus, the minimization of E(f) can be obtained by
finding the st-mincut of the graph GC . Although the st-
mincut can be found efficiently in polynomial time by max-
flow algorithms, the weights of the edges in the st-mincut
graph are required to be non-negative. Unfortunately, there
are many energy functions for which such a correspond-
ing graph cannot be exactly constructed. As a result, most
algorithms optimize E(f) by a series of moves, each of
which only considers a subset of the labels. According to
the number of labels considered in each move, the move-
making algorithms can be divided into three categories:

4 Kangwei Liu et al.

Theαβ-swap andα-expansion algorithms Theα-expansion
and αβ-swap methods (Boykov et al. 2001) are among the
most popular graph cut based algorithms. Both of them op-
timize the energy by a series of iterations. In each iteration,
the algorithms provide every vertex a choice either to keep
the current label or to obtain a new label. Every such move
leads to a lower energy. The algorithms terminate when no
move can be found that lowers the energy E(f). Unlike
traditional standard move algorithms (i.e., ICM), which only
allow one vertex to change its label at a time, both α-
expansion and αβ-swap allow a large number of vertices
to change their labels simultaneously. Due to their good op-
timality properties, both algorithms have been successfully
applied in many vision tasks (Szeliski et al. 2008; Kappes
et al. 2013), and there are a large number of improved move-
making algorithms based on them. For example, Lempit-
sky et al. (2007, 2010) extend their application to arbitrary
pairwise energy functions using QPBO (Kolmogorov and
Rother 2007; Rother et al. 2007) to construct the graph.
Kumar and Koller (2009) proposes an accurate hierarchical
move making strategy and obtains the same guarantees as
the standard linear programming relaxation. Batra and Kohli
(2011) and Gould et al. (2009) improve the efficiency of the
αβ-swap and α-expansion algorithms by reducing the label
space to be searched in each move. However, all of these
algorithms only provide each vertex a choice of two labels
in each move.

The range move algorithms To obtain better solutions with
the graph-cut techniques, Veksler (Veksler 2007, 2012) and
Kumar et al. (Kumar and Torr 2009; Kumar et al. 2011)
develop the range move algorithms for truncated convex
functions (e.g., θ(fp, fq) = min{|fp − fq|, T}). The range
move algorithms break the limitation of previous move
making algorithms in which only two labels are considered
in every move. In the algorithms, every iteration considers
a consecutive label subset Lαβ = {α, α + 1, · · · , β} by
imposing the restriction |α − β| = T . However, there is
a problem in the iterative moves of the previous range move
algorithms: they execute the set of all possible range moves,
and this leads to computational inefficiency. Although the
range move algorithms significantly outperform αβ-swap
and α-expansion on the quality of solutions, they perform
much slower than αβ-swap and α-expansion. In contrast,
the GRMAs do not suffer from this inefficiency, because the
moves are based on a solution to a set cover problem. This
greatly reduces the number of moves in the iterations.

The case of global optimization Although the optimiza-
tion of MRFs is usually NP-hard, there are a few energy
functions for which the exact solution can be obtained by
considering all the labels in one st-mincut. Greig et al.
(1989) first develop an exact method for the optimization

of binary labeled MRFs. Ishikawa (2003) generalized the
graph of Greig et al. (1989) to the optimization of multi-
label MRFs. However, the pairwise potential θpq is restricted
to be convex2. More generally, Schlesinger (Schlesinger and
Flach 2006) points out that all the energies with submodular
pairwise functions can be exactly minimized by the graph
cut techniques. However, neither the convex nor submodular
functions are widely used in practice because they cannot
preserve the discontinuities at the boundaries (Boykov et al.
2001). Our GRMAs are based on the graph construction
of (Schlesinger and Flach 2006). However, rather than re-
quiring the energy function to be convex or submodular on
the whole label set, GRMAs only require that the energy
function be submodular on certain subsets of the labels.

2.3 Set cover problem

The set cover problem is an important question in computer
science and complexity theory. Given an universe U of m
elements and a collection of sets S = {S1, ..., Sk} where
Si ⊆ U and

⋃
i=∈{1,··· ,k} Si = U , a set cover is a subcol-

lection of the sets in S that covers all the elements in U .
The goal of the set cover problem is to find the set cover
with the smallest possible number of sets. In the weighted
set cover problem, a cost function c : S → R is specified
for each set Si ∈ S. Then, the objective is to find the
set cover S ′ ⊆ S that minimizes the costs

∑
Si∈S′ c(Si).

It is well known that the set cover problem is NP hard.
Fortunately, the greedy algorithm (Slavłk 1996) solves the
set cover problem approximately in polynomial time.

3 Generalized range swap algorithm

The optimization of MRFs is a NP-hard problem, while both
the solution quality and time complexity are vitally impor-
tant to applications. This forces the development of efficient
approximation algorithms. Our algorithms generate a local
minimum with respect to two types of moves: range swap
and range expansion. The algorithms start from an initial
labeling, and optimize E(f) by making a series of moves,
each of which refers to an st-mincut problem. They halt
when no move can be found to decrease E(f). In contrast
to the α-expansion and αβ-swap algorithms, both the range
swap and range expansion moves provide every vertex with
a choice from a range of labels instead of only two labels.

In this section, we develop the so-called generalized
range swap algorithm (GRSA), which is a generalization of
αβ-swap, range swap and the method of Ishikawa (2003).
Firstly, the notion of the generalized range swap move is

2 A function g(·) is convex if it satisfies g(x + 1) − 2g(x) +
g(x − 1) ≥ 0 for any integer x. Note that convex is a special case
of submodular.

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 5

introduced in Sec. 3.1. Every range swap move is executed
on a subset of labels satisfying the submodular condition.
However, it is still a hard problem to find subsets of labels
satisfying the submodular condition. In Sec. 3.2, we propose
a new sufficient condition for submodularity, and show how
to choose the labels flexibly given this condition. Given a
submodular set, the range swap move relies on solving the
st-mincut of a graph which models the unary and pairwise
potentials exactly. In Sec. 3.3, we focus on designing an
iterative process to reduce the run time of GRSA, and obtain
a series of moves by solving a set cover problem.

3.1 Generalized range swap move

Let L = {0, · · · , n} be the label set, and Ls = {l1, · · · , lm}
(li < li+1) be a subset chosen from L. Note that Ls is an ar-
bitrary subset of L, and is not necessary to be a consecutive
sequence as in previous algorithms (Ishikawa 2003; Veksler
2007; Kumar and Torr 2009). Let Pl = {p ∈ P|fp = l} be
the set of vertices assigned label l, and PS = {p ∈ P|fp ∈
Ls} denote the set of vertices whose labels belong to Ls.
Then, a move from f to f ′ is called a range swap move
(RSM) on Ls, if P ′S = PS , and P ′l = Pl for any label
l /∈ Ls. In other words, a RSM allows the vertices belonging
to PS to swap their labels in Ls. Each range swap move
obtains the new labeling f ′ by minimizing the following
energy:

Es(f
′) =

∑
p∈PS

θp(f
′
p)+

∑
(p,q)∈E,{p,q}∩PS 6=∅

θpq(f
′
p, f
′
q) (2)

such that for any vertex p ∈ P , we have

f ′p ∈ Ls, if p ∈ PS ; f ′p = fp, if p /∈ PS ,

where fp is the current label of vertex p.
Naturally, we have E(f ′) = Es(f

′) + Eŝ(f
′), where

Eŝ(f
′) =

∑
p/∈PS

θp(f
′
p) +

∑
(p,q)∈E,{p,q}∩PS=∅

θpq(f
′
p, f
′
q).

With the minimization ofEs(f ′), the RSM onLs effectively
decreases E(f), since the move will not change the value
of Eŝ(f). Theoretically, the RSM on Ls will lead to a
better solution, if there are more labels considered in Ls
(meanwhile, more vertices will be in PS) (Veksler 2012).
However, Ls cannot be chosen arbitrarily. It should satisfy
the following submodular condition (Schlesinger and Flach
2006) to guarantee the optimal RSM can be obtained:

Definition 1 Given a pairwise potential θ(α, β), we call Ls
a submodular set of labels, if it satisfies

θ(li+1, lj)− θ(li+1, lj+1)− θ(li, lj) + θ(li, lj+1) ≥ 0 (3)

for any pair of labels li, lj ∈ Ls(1 ≤ i, j < m).

The optimal RSM on the submodular set Ls can be achieved
by solving the st-mincut of a special graph (see Sec. 5.1).

3.2 Candidate submodular sets

Unfortunately, given an arbitrary energy function, it is still
a challenging problem to obtain the submodular sets with
these inequalities (3). Therefore, we propose a sufficient
condition for submodularity, which allows the sets of labels
satisfying (3) to be chosen feasibly in practice. The suffi-
cient condition is given by the following theorem:

Theorem 1 Given a pairwise function θ(α, β) = g(x) (x =

|α− β|), assume there is an interval3 Xs = [a, b] (0 ≤ a <
b) satisfying: (i) g(x) is convex on [a, b], and (ii) a · (g(a +
1)−g(a)) ≥ g(a)−g(0) ≥ 0. Then Ls = {l1, · · · , lm} is a
submodular subset, if |li − lj | ∈ [a, b] for any pair of labels
li, lj such that li 6= lj and li, lj ∈ Ls (Proof in Appendix A).

In the follows, we focus on explaining the above the-
orem. For brevity, we call the interval Xs satisfying the
conditions (i) and (ii) in Theorem 1 a candidate interval.
It is obvious that any convex interval [0, b] is a candidate
interval, because a · (g(a+ 1)− g(a)) = g(a)− g(0) when
a = 0.

General energy functions Most functions successfully ap-
plied in vision problems are neither linear functions nor
convex functions, such as truncated convex functions and
piecewise linear functions. Although these functions are nei-
ther convex nor submodular on the whole domain, there are
usually some convex candidate intervals. Theorem 1 implies
that submodular subsets Ls of labels can be obtained by
restricting the differences between each pair of labels such
that the differences belong to the same candidate interval.
To explain this clearly, we use the example of the piecewise
linear function shown in Fig. 2. There are two candidate
intervals: [0, 3] and [5, 12] for this pairwise function. As in
previous range move algorithms (Veksler 2007, 2012), we
obtain a series of submodular sets {α, α+ 1, α+ 2, α+ 3}
where L = {0, · · · , n}, 0 ≤ α ≤ n − 3 with the first
candidate interval [0, 3]. Meanwhile, it can be seen that the
subsets {α, α + 2, α + 3} and {α, α + 1, α + 3} are also
submodular sets, because |li − lj | ∈ [0, 3] for any pair
of labels. Furthermore, we can also obtain the submodular
sets: {α, α + 5, α + 10}, {α, α + 6, α + 11},· · · with the
second candidate interval [5, 12]. More generally, we give
the following corollary which is equivalent to Theorem 1:

Corollary 1 (Theorem 1) Assuming the interval [a, b] is a
candidate interval, then {α, α+ x1, α+ x1 + x2, · · · , α+

x1 + · · · + xm} ⊆ L is a submodular set for any α ≥ 0,
if x1, · · · , xm ∈ [a, b] and x1 + · · · + xm ≤ b (Proof in
Appendix A.3).

3 Here, the interval [a, b] denotes the set of integers {x|a ≤ x ≤ b}.

6 Kangwei Liu et al.

3 12 | f p – fq |

θ(f p , fq)

5

Fig. 2 An example of piecewise linear function g(x). The function is
locally convex on the intervals [0, 3] and [5, 12]. Here, we assume that
the function satisfies g(6)−g(5)

6−5
≥ g(5)−g(0)

5−0
. Thus, both [0, 3] and

[5, 12] are candidate intervals, and the submodular sets can be obtained
on these two candidate intervals.

Concave functions If the pairwise function is a concave
function (e.g., g(x) =

√
x), then no convex interval can

be found. It can be easily proved that in this case there is
no submodular set that contains more than two labels. Thus,
only two labels can be considered in every move. Therefore,
GRSA is equivalent to the αβ swap algorithm, when the
energy function is concave.

Convex functions If the pairwise function is a convex func-
tion (e.g., g(x) = x), the domain [0, n], where n is the num-
ber of labels, is a candidate interval. Therefore, the whole
set L of labels is a submodular set. The optimal solution can
be achieved in one move, and thus GRSA is equivalent to
the global method of Ishikawa (Ishikawa 2003) in this case.

GRSA can be viewed as a generalization of several
graph cut based algorithms with different energy functions.
Given an arbitrary function, a series of candidate submodu-
lar sets can be obtained with Theorem 1 or Corollary 1. The
range swap move executed on any of these submodular sets
can be exactly solved by computing an st-mincut problem.

3.3 The iterative optimization

Before proposing the iterative optimization in GRSA, we
review the iterative process in αβ-swap and previous range
swap algorithms, and then give a condition on the moves to
ensure that GRSA produces a good estimate of the optimal
solution.

αβ-swap In the αβ-swap algorithm, the requirement of the
swap moves is that each pair of labels should be visited in
each cycle4 of iterations. This guarantees that every vertex
has a chance to swap its current label fp with any other label
in L.

4 In αβ-swap, we call these iteration moves considering all the
pairs of labels once as a “cycle”. An αβ-swap algorithm usually takes
several cycles to converge (Boykov et al. 2001).

Previous range swap In previous range swap algorithms,
the moves are executed on all the subsets Lαβ = {α, α +

1, · · · , β}, where |α−β| = T , and T is the truncation factor
in a truncated convex function (e.g. θ = min{|fp−fq|, T}).
However, there are two problems on these moves. (i) There
are many repeated labels. For example, in the two moves
{α, α + 1, · · · , β} and {α + 1, α + 2, · · · , β + 1}, all the
label except α and β are repeated. Thus, these moves cost
much time, and cannot efficiently decrease E(f). This is
why previous range swap algorithms run much slower than
αβ-swap. The second problem (ii) is that some important
moves are missing in these iterations, i.e., the pairs of labels
{α, α+T ′} where T ′ > T are not considered in the moves.
For a vertex p, whose current label is α and real label is
α + T ′, there is unfortunately no move from α to α + T ′.
Thus, previous range swap algorithms sometimes need a
careful initialization to obtain good solutions.

The GRSA Given an arbitrary energy function, we usually
can obtain a large number of submodular sets, each of which
corresponds to one possible range swap move as described
in Sec. 3.2. However, it is time-consuming and unnecessary
to perform all possible sets of range moves. In practice,
the quality of solutions is assured if any pair of labels is
considered once in any given cycle of iterative moves, i.e.,
every vertex should have chance to swap its current label
with any other label. This is the same requirement as in αβ-
swap.

The problem is how to choose a series of moves (i.e.,
submodular sets) in each cycle, such that (i) these submodu-
lar sets cover all pairs of labels; (ii) submodular sets contain-
ing more labels are chosen preferentially, and (iii) there are
as few repeated labels as possible in these submodular sets.
This problem is naturally formulated as a set cover problem
(SCP) (Feige 1998).

In the GRSA, L = {0, · · · , n} is the set of labels, and
let {L1,L2, · · · ,Lk} be the series of submodular sets. We
define C(L) = {(0, 1), (0, 2), · · · , (n − 1, n)} to be the
set containing all the pairs of labels in L. In the set cover
formulation, the universe U = C(L), and the collection of
subsets is defined by Si = C(Li). Therefore, the moves are
obtained by finding the set cover S ′ ⊆ S in the following
set cover problem:

min
S′⊆S

∑
Si∈S′

c(Si) s.t.
⋃
Si∈S′

Si = U . (4)

where c : S → R is the cost function specified for each set
Si ∈ S.

Although the SCP is an NP hard problem, fortunately,
the greedy algorithm (Slavłk 1996) can obtain an approxi-
mate solution in polynomial time. Algorithm 1 describes the
iterative process of the GRSA, where the moves are chosen
dynamically by solving the SCP with the greedy algorithm.

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 7

Algorithm 1 The Generalized Range Swap Algorithm
Input:
1: The label set L = {0, · · · , n}, and the pairwise function
θ(α, β) = g(x) (x = |α− β|).

Initialization:
2: Find the series of submodular sets Li with the form described in

Corollary 1.
3: Define the collection of sets S = {S1, ..., Sk} where Si =
C(Li) denotes the set containing all the pairs of labels in Li.

4: Initialize the labeling f .
Iteration:
5: repeat
6: Initialize U = C(L), Sc ← ∅.
7: while Sc 6= U do
8: Choose Si ∈ S, which minimizes the cost per element

c(Si)

|Sc∪Si|−|Sc|
.

9: Set Sc := Si ∪ Sc and Ls := Li where Si = C(Li).
10: Obtain the new labeling f ′ = argminE(f) within the

range swap move on Ls.
11: If E(f ′) < E(f), set f := f ′.
12: end while
13: until No moves can be found to decrease E(f).
Output:
14: Return the labeling f .

In the algorithm, steps 6-11 are a cycle of iterative moves.
In each iteration, the following set is chosen in step 7:

Si = argmin
Si∈S

c(Si)

|Sc ∪ Si| − |Sc|
(5)

where Sc denotes the set of elements which have been
chosen in the greedy algorithm, and |Sc ∪Si|− |Sc| denotes
the number of elements in Si but not in Sc. The greedy
algorithm always chooses the set which minimizes the cost
per increased element.

Using the SCP, we can design different iterative process-
es by assigning different costs to the submodular sets. In this
paper, we set5 : c(Si) = 1, if Si ∩ Sc = ∅;∞, otherwise.

This ensures that at every iterative move in step 7 a
set is chosen such that: (i) there is no repeated element in
the sets which have been chosen in previous moves; (ii)
the chosen set contains a maximal number of labels among
the sets satisfying condition (i). In the case of a truncated
convex function with truncation factor T , the GRSA can
execute the moves on the following series of submodular
sets: L̂ = {{0, · · · , T}, {T, · · · , 2T},· · · ,{mT, · · · , n}}
and all the pairs of labels that are not visited in

⋃
Li∈L̂

C(Li).

5 We chose this cost function for simplicity, but a better iterative
process may be developed with other choices, for example c(Si) =
1 + |Si|, because a small number of repeated labels may lead to a
better solution without a significant increasing in the run time. Another
choice is to set c(Si) to be the estimate of improvement in energy as
(Batra and Kohli 2011). However, the experiments show that GRSA
yields promising results with the simple choice of cost function made
here.

Theoretical analysis The GRSA also generalizes αβ-swap
and the method of Ishikawa (2003) in terms of the iterative
process in the optimization. With the set cover formula-
tion, the optimization process is exactly an αβ-swap or the
method of Ishikawa (2003), when the pairwise potential is
concave or convex, respectively. The GRSA has the follow-
ing properties:

Proposition 1 Let L1, · · · ,Lk be a set of range swap
moves, which cover all pairs of labels li, lj ∈ L. Let f̂ be a
local minimum6 obtained by these moves. Then, f̂ is also a
local minimum for αβ-swap (Proof in Appendix B).

Proposition 2 Let f̂ be a local minimum obtained by αβ-
swap. With the initial labeling f̂ , the range swap moves on
L′ = {L1, · · · ,Lk} yield a local minimum f† such that
E(f†) < E(f̂), unless the labeling f̂ exactly optimizes the
energy:

Es(f) =
∑

p∈PLi
θp(fp)+

∑
(p,q)∈E,{p,q}∩PLi 6=∅

θpq(fp, fq)

for each Li ⊆ L′ (Proof in Appendix C).

Proposition 1 implies that if the GRSA obtains a local min-
imum f̂ , it is also a local minimum for the αβ swap and
E(f̂) cannot be decreased by any move in the αβ-swap.
In contrast, Proposition 2 implies that if we obtain a local
minimum f̂ by αβ-swap, E(f̂) still can be decreased by
the moves in the GRSA. This shows that we can first get an
initial labeling f̂ by αβ-swap (or some other fast algorithm,
e.g. α-expansion), and then achieve a better solution by
applying GRSA to the labeling f̂ .

4 Generalized range expansion algorithm

The generalized range expansion algorithm (GREA) gen-
eralizes several graph-cut based algorithms including α-
expansion, range expansion and the method of Ishikawa
(2003). Unlike the GRSA which only considers the vertices
p ∈ P whose current label fp lies in Ls, the GREA allows
all the vertices to change their current labels simultaneously
in one move.

We explain the idea of the generalized range expansion
move (GREM) in Sec. 4.1. As for the GRSA, the chosen
label set in the GREA should also satisfy the submodular
conditions (3). In Sec. 4.2, we show how the iterative moves
are obtained by solving set cover problems. This effectively
reduces the number of unnecessary moves in the GREA.

4.1 Generalized Range Expansion Move

Let Ls = {l1, · · · , lm} (li < li+1) be a subset chosen
from the label set L. Let PS = {p ∈ P|fp ∈ Ls} be the

6 If f̂ is a local minimum, it means that E(f̂) cannot be decreased
by any of the moves Li.

8 Kangwei Liu et al.

set of vertices whose labels belong to Ls. Then, a move
from f to f ′ is called a range expansion move (REM), if
P ′S ⊇ PS , and P ′l ⊆ Pl for any label l /∈ PS . In other
words, a range expansion move allows any vertex p ∈ P to
change its current label to any label f ′p ∈ Ls. Each range
expansion move obtains the new labeling f ′ by minimizing
the following energy:

Ee(f
′) =

∑
p∈P

θp(f
′
p) +

∑
(p,q)∈E

θpq(f
′
p, f
′
q) (6)

such that for any vertex p ∈ P , f ′p ∈ Ls or f ′p = fp, where
fp is the current label of vertex p.

The REM effectively decreases the energyE(f) by min-
imizing Ee(f ′). The set Ls of labels in the GREA should
also satisfy the submodular condition.

For general energy functions, the submodular set Ls in
each move could be obtained according to Theorem 1 or
Corollary 1. The energy functions may not satisfy submod-
ularity (Schlesinger and Flach 2006), but there are usually
subsets of labels that satisfy Theorem 1.

For a convex function, the whole set L of labels is
a submodular set, and the optimization can be achieved
by one range expansion move on L. In this case, the
range expansion algorithm is equivalent to the method of
Ishikawa (2003). In contrast, if only one label is considered
in each move, the range expansion algorithm reduces to α-
expansion. Thus, the GREA can be viewed as the general-
ization of α-expansion, range expansion and the method of
Ishikawa (2003).

4.2 Iterative Optimization

Before explaining the iterative moves of the GREA, we
first review α-expansion and previous algorithms for range
expansion.

α-expansion In each cycle of iterations, all the labels in
L are visited once. This requirement guarantees that every
vertex has the opportunity to change its current label to any
one of the other labels in L. Thus it ensures the solution
quality.

Range expansion Previous range expansion algorithms ex-
ecute all possible range expansion moves on the subsets
Lαβ = {α, α + 1, · · · , β}, where |α − β| = T , and T is
the truncation factor for a convex function. The problem is
that there are many repeated labels in these moves, and thus,
they cannot decrease the energyE(f) efficiently. As a result,
previous range expansion algorithms run much slower than
α-expansion.

Algorithm 2 The Generalized Range Expansion Algorithm
Input:
1: The label set L = {0, · · · , n}, and the pairwise function
θ(α, β) = g(x) (x = |α− β|).

Initialization:
2: Find the series of submodular sets Li with the form described in

Corollary 1.
3: Get the collection of sets S = {S1, ..., Sk} where Si = Li.
4: Initialize the labeling f .

Iteration:
5: repeat
6: Initialize U = L, Sc ← ∅.
7: while Sc 6= U do
8: Choose Si ∈ S, which minimizes the cost per element

c(Si)

|Sc∪Si|−|Sc|
.

9: Set Sc := Si ∪ Sc and Ls := Li where Si = Li.
10: Get the new labeling f ′ = argminE(f) within the range

expansion move on Ls.
11: If E(f ′) < E(f), set f := f ′.
12: end while
13: until No moves can be found to decrease E(f).
Output:
14: Return the labeling f .

The GREA In the GREA, a series of candidate submodu-
lar sets can usually be found. However, it is inefficient to
perform the range expansion moves on all the submodular
sets. In practice, a high quality solution is found by requiring
only that all the labels in L are visited once in each cycle of
iterative moves, i.e., this guarantees that every vertex has an
opportunity to change its current label to any one of the other
labels.

To obtain enough expected moves to cover all the labels
in L, we formulate the following set cover problem.

Let {L1,L2, · · · ,Lk} be the series of submodular sets
of labels. We define the universe U = L, and the collection
of setS Si = Li. The moves are obtained by find the set
cover S ′ which solves the following problem:

min
S′⊆S

∑
Si∈S′

c(Si) s.t.
⋃
Si∈S′

Si = U . (7)

where c(Si) is the cost of the subset Si.
Algorithm 2 describes the iterative process of the GRSA,

where the moves are chosen by dynamically solving the SCP
with the greedy algorithm. In the algorithm, step 6-11 is
loop, In step 7, the set:

Si = argmin
Si∈S

c(Si)

|Sc ∪ Si| − |Sc|
(8)

is chosen, where Sc is the set of elements already chosen.
|Sc ∪ Si| − |Sc| is the increase in the number of elements
when set Si is added into Sc. In this paper, we set: c(Si) = 1

for simplicity.

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 9

5 Graph construction

In this section, we explain the graph construction for both
GRSA and GREA. Although the graph construction meth-
ods proposed by Ishikawa (2003) and Kumar et al. (2011)
can exactly model the submodular potentials, we develop
improved graph construction methods that perform much
faster than previous methods7. In the GRSA, the improved
graph construction exactly models the range swap move as
previous methods, but it needs much fewer edges to model
the pairwise potentials compared to previous methods. In
the GREA, the improved graph approximately model the
range expansion moves as previous methods (Veksler 2007;
Kumar et al. 2011), since it is difficult to model the pairwise
potential θ(f ′p, f

′
q) of the cases that f ′q is assigned a label in

Ls and f ′p keep its current label that lies outside Ls. Exper-
imental results show that the improved graph construction
models the pairwise potentials better than previous methods
(Veksler 2007; Kumar et al. 2011).

5.1 Graph construction for GRSA

Given a submodular set Ls, the range swap move can be
exactly solved by calculating the st-mincut of a special
graph G . There is a one-to-one correspondence between the
st-cut of G and the configuration of the new labeling f ′,
while the cost of edges in the st-cut exactly models the
energy E(f).

Assume the submodular set Ls = {l1, · · · , lm} contains
m labels, and the current label of every vertex p is fp. For
the move on Ls, we construct a directed graph G = (V ,E),
such that a set of nodes {p1, p2, · · · , pm} ⊂ V is defined for
each p ∈ Ps as shown in Fig. 3. In addition, there are two
special nodes in V , the source node s and the sink node t.

The edges in E with capacity are defined to represent
the potentials in the energy E(f). There are two types of
edges in E : i) Unary edges: the edges that are used to
represent the unary potential θp for every vertex p ∈ Ps; ii)
Pairwise edges: the edges that are used to model the pairwise
potentials θpq for (p, q) ∈ E .

5.1.1 The Unary Edges

For the vertices p ∈ P that fp /∈ Ls, we do not define any
nodes or edges to model their unary potentials since they
are not considered by the range swap move on Ls, and will
retain their current label fp.

For all the vertices p ∈ P that fp ∈ Ls, we define the
following edges in E :

7 When θpq is a truncated linear function, the graph construction in
the GRSA is the same as previous methods.

p2

t

p3

pm

q2

q3

qm

pi

ap

pi+1

qi

aq

qi+1

t

(a)

(b)

(c)

apq

apq

a’pq

pm+1 qm+1

p1 q1

s

l1

l2

lm

∞

Fig. 3 The graph construction in the st-mincut problem to solve the
range swap move.

– For all i ∈ [1,m), edges (pi, pi+1) have the capacity
c(pi, pi+1) = θp(li).

– For all i ∈ [1,m), edges (pi+1, pi) have the capacity
c(pi+1, pi) =∞.

– Edges (pm, t) have the capacity c(pm, t) = θp(lm).
– Edges (s, p1) have the capacity c(s, p1) =∞.

There are two types of edges in the unary edges: i) the
edges with finite capacity: E1 = (pm, t) ∪ (pi, pi+1), ∀ i ∈
[1,m); and ii) the edges with infinite capacity: E2 =

(s, p1) ∪ (pi+1, pi), ∀ i ∈ [1,m).
Let C denote an st-cut of the graph G and Ec ⊂ E

denote the set of edges belonging to C. The edges in E1

model the unary potentials θp(li), that is the cost when
vertex p is assigned label li. The edges in E2 are constructed
to guarantee that only one label is assigned to each vertex
p, i.e., there is only one unary edge (pi, pi+1) ∈ Ec for
any i ∈ [1,m). This is because the cost will be infinite
if Ec contains more than one unary edges for the vertex p
(Ishikawa 2003).

The new labeling f ′ can be obtained according to the
st-cut C as follows:

f ′p =

{
li if (pi, pi+1) ∈ Ec,∀i ∈ [1,m);

lm if (pm, t) ∈ Ec.
(9)

5.1.2 The Pairwise Edges

There are three cases for the pairwise potentials:
i) For (p, q) ∈ E where fp, fq /∈ Ls, the potential θpq is

not represented by any edges in E , because both vertices
p, q will retain their current labels and θpq will remain
unchanged.

ii) For (p, q) ∈ E where fp ∈ Ls, fq /∈ Ls, we add the
following edges8 to E1:

8 The edges (pi, pi+1) for all i ∈ [1,m) and (pm, t) are already
included in the unary edges E1. We can add the capacities that repre-
sent the pairwise potentials to these edges.

10 Kangwei Liu et al.

– For all i ∈ [1,m), edges (pi, pi+1) have the capacity
c(pi, pi+1) = θpq(li, fq), that is, it represents the pair-
wise potential when p is assigned label li while q keeps
its current label fq .

– Edges (pm, t) have the capacity c(pm, t) = θpq(lm, fq).

The other case where fp /∈ Ls, fq ∈ Ls can be handled
similarly.

iii) For (p, q) ∈ E where fp, fq ∈ Ls, we define the
following edges as shown in Fig. 3:

c(pi, qj) =

ψ(i,j)

2 if 1 < j = i ≤ m;

ψ(i, j) if 1 < j < i ≤ m;

0 if j > i,

(10)

where

ψ(i, j) = θ(li, lj−1)− θ(li, lj)− θ(li−1, lj−1) + θ(li−1, lj)

for 1 < j ≤ i ≤ m (we have 0 ≤ ψ(i, j) for a submodular
set Ls).

Let E3 represent the pairwise edges (pi, qj) for (p, q) ∈
E . Note that the edges in E1 and E2 are defined similarly to
previous graph constructions (Ishikawa 2003; Kumar et al.
2011). However, the set of edges E3 in the new construction
contains only the edges (pi, qj) for 1 < j ≤ i ≤ m and
(p, q) ∈ E . In contrast, previous graph constructions contain
all the edges (pi, qj) for 1 < i, j ≤ m. Therefore, the
new graph construction requires fewer edges9 to represent
the pairwise potentials. As a result, the st-mincut problem
with the new graph construction takes much less time to
be solved. Fig. 4 compares the run time of different graph
constructions on a truncated quadratic energy function. It
can be seen that the new method can be two times faster
than competing methods.

Furthermore, although the new construction contains
fewer edges, it has the same properties as previous methods
as follows.

Property 1 The cost of the edges E1 in the st-cut C exactly
represents the unary potentials θp(f ′p) for all vertices p ∈
Ps and the pairwise potentials θpq(f ′p, f

′
q) for any p ∈ Ps,

q /∈ Ps or p /∈ Ps, q ∈ Ps.

Lemma 1 When edges (pa, pa+1) and (qb, qb+1) are in the
st-cut C, that is, fp, fq are assigned the labels la, lb respec-
tively, let cut(la, lb) denote the cost of the pairwise edges in
E3 in the st-cut. We have the following relationship

cut(la, lb) =

a∑

i=b+1

i∑
j=b+1

c(pi, qj), if la ≥ lb ;

b∑
i=a+1

i∑
j=a+1

c(qi, pj), if la < lb

(11)

(Proof in Appendix D).
9 Note that when θpq is a truncated linear function, the numbers of

edges in the new construction and in the previous method are the same,
because c(pi, qj) = 0 for i 6= j in this case.

5 6 7 8 9 10
0

2

4

6

8

10

12

The truncated factor

T
im

e
(s

ec
.)

Previous construction
Ours

Fig. 4 The comparison of run time with previous graph constructions
and our improved graph construction. We evaluate the different graph
constructions on truncated quadratic function.

p2

t

p3

pm

q2

q3

qm

(a)

p1 q1

s

l1

l2

lm

∞

p2

t

p3

pm

q2

q3

qm

p1 q1

s

l1

l2

lm

fq

a

fp fq

p2

t

p3

pm

q2

q3

qm

p1 q1

s

l1

l2

lm

∞
fq

(b)

Fig. 5 The improved graph construction in the st-mincut problem to
solve the range expansion move.

Property 2 For (p, q) ∈ E , if fp ∈ Ls, fq ∈ Ls, the cost of
the st-cut exactly represents the pairwise potentials, ie,

cut(f ′p, f
′
q) = θpq(f

′
p, f
′
q).

Lemma 2 For the graph described in Sec. 5.1, Property 2
holds true (Proof in Appendix E).

Property 1 and 2 implies that the cost of the st-cut on
G exactly models the unary and pairwise potentials. The
energy of the new labeling f ′ obtained by a range swap
move is exactly equal to the cost of the st-mincut on G .

5.2 Graph construction for GREA

The graph G = (V ,E) in GREA is constructed similarly
to that in GRSA. The difference is that we model the case
when the label f ′p does not lie in Ls.

5.2.1 Unary edges

For vertex p ∈ P , the unary edges (pm, t) and (pi, pi+1)

for any i ∈ [1,m) are defined as the cases in GRSA. The
difference of the unary edges in GREA is that we change

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 11

the capacity of edge (s, p1) to model the unary potentials
when p retains its current label fp /∈ Ls:

c(s, p1) =

{
θp(fp) if fp /∈ Ls;
0 otherwise.

The new labeling f ′ can be obtained according to the st-cut
as follows:

f ′p =

li if (pi, pi+1) ∈ Ec,∀i ∈ [1,m);

lm if (pi, pm) ∈ Ec.
fp if (s, p1) ∈ Ec.

5.2.2 Pairwise edges

For the pairwise potentials θpq(f
′
p, f
′
q), if f ′p, f

′
q ∈ Ls,

the edges are defined as Eq. 10 to represent θpq(f ′p, f
′
q).

However, we also have to model the cases that at least
one vertex keeps its current label fp that lies outside Ls.
In this case, the graph G for the range expansion move is
complicated, since the pairwise potential θ(f ′p, f

′
q) cannot be

exactly represented by the cost of the st-cut. We develop the
following graph construction method to model the pairwise
potential approximately.

i) If fp ∈ Ls and fq /∈ Ls, we add the edges (pi, q1) in
order (from 1 to m):

c(pi, q1) =

θ(l1, fq) i = 1;

max(0, θ(li, fq)− θ(li, l1)

−
i−1∑
j=1

c(pj , q1)) 2 ≤ i ≤ m.

ii) If fq ∈ Ls and fp /∈ Ls, we add the following edges:

c(qi, p1) =

θ(fp, l1) i = 1;

max(0, θ(fp, li)− θ(l1, li)

−
i−1∑
j=1

c(qj , p1)) 2 ≤ i ≤ m.

iii) If fp /∈ Ls and fq /∈ Ls, we define

δ = max(0,
θ(fp, fq)− θ(l1, fq)− θ(fp, l1)

2
), (12)

and add an auxiliary node a with the following edges:

c(s, a) = θ(fp, fq)

c(a, q1) = θ(l1, fq) + δ, c(q1, a) =∞
c(a, p1) = θ(fp, l1) + δ, c(p1, a) =∞

c(pi, q1) =

θ(l2, fq)− c(a, q1), i = 2;

max(0, θ(li, fq)− θ(li, l1)

−c(a, q1)−
i−1∑
j=2

c(pj , q1)), 3 ≤ i ≤ m.

c(qi, p1) =

θ(fp, l2)− c(a, p1), i = 2;

max(0, θ(fp, li)− θ(l1, li)

−c(a, p1)−
i−1∑
j=2

c(qj , p1)), 3 ≤ i ≤ m.

The above graph construction allows the GREA to han-
dle more general functions instead of only truncated convex
functions. The new graph construction has the following
properties:

Property 3 The cost of unary edges E1 in the st-cut exactly
represents the unary potentials θp(f ′p) for all vertices p ∈
Ps.

Property 4 For (p, q) ∈ E , if f ′p ∈ Ls and f ′q ∈ Ls, the
cost of st-cut cut(f ′p, f

′
q) exactly represents the pairwise

potentials θpq(f ′p, f
′
q).

Property 5 For (p, q) ∈ E , if f ′p = fp /∈ Ls and f ′q =

fq /∈ Ls, the cost of st-cut cut(f ′p, f
′
q) exactly represents the

pairwise potentials θpq(f ′p, f
′
q).

The most complicated case is when one node is given
a label inside Ls and the other node keeps its current label
that lies outside Ls. For brevity, we only consider the case
f ′p ∈ Ls, f ′q = fq /∈ Ls. A similar argument applies when
f ′q ∈ Ls, f ′p = fp /∈ Ls.

Property 6 For (p, q) ∈ E , if f ′p ∈ Ls, f ′q = fq /∈ Ls and
assume f ′p = la, then the cost of the st-cut is

cut(f ′p, f
′
q)=

θ(la, l1) +

a∑
i=2

c(pi, q1) + θ(l1, fq), fp ∈ Ls;

θ(la, l1) +
a∑
i=2

c(pi, q1) + θ(l1, fq)

+δ, fp /∈ Ls.

where δ is defined in Eq. 12.
Property 3 implies that the cost of the st-cut on graph G

exactly models the unary potentials θp(f ′p). Property 4 and 5
specify the cases when the cost of the st-cut cut(f ′p, f

′
q)

exactly models the pairwise potentials, and Property 6 speci-
fied the remaining cases when cut(f ′p, f

′
q) overestimates the

pairwise potentials. In other words, the energy on a new
labeling f ′ is less than or equal to the cost of the st-mincut
on G .

To compare the properties of G and previous graph con-
structions, we consider the special case of truncated convex
functions for which previous graph constructions are devel-
oped. Let d(·) denote a convex function and θ(fp, fq) =

min{d(|fp−fq|), T} be a truncated convex energy function.
We consider a submodular set Ls = {l1, · · · , lm} (li <
li+1), where d(lm − l1) ≤ T holds true. Using Property 6,
we obtain the following results for the graph G in GREA.

Lemma 3 When the pairwise function is a truncated func-
tion θ(fp, fq) = min{d(|fp−fq|), T}, for the case f ′p ∈ Ls
and f ′q = fq /∈ Ls, we have the following properties:

12 Kangwei Liu et al.

– If fq > lm, we have

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤d(|f ′p−l1|)+T ;

– If fq < l1 and fp ∈ Ls or fp < l1,

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤min{d(|f ′p−f ′q|), d(|f ′p−l1|)+T};

– If fq < l1 and fp > lm, we have

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤min{d(|f ′p−f ′q|)+

T

2
, d(|f ′p−l1|)+T},

(Proof in Appendix E).

Lemma 3 tells us that if f ′p ∈ Ls and f ′q = fq /∈ Ls,
the cost of the st-cut cut(f ′p, f

′
q) is larger than or equal to

the pairwise potentials, and at the same time, it gives the
upper bound of cut(f ′p, f

′
q). In particular, for the case where

if fq < l1 and fp ∈ Ls or fp < l1, if d(|f ′p−f ′q|) ≤ T , we
have cut(f ′p, f

′
q) = θ(f ′p, f

′
q) = d(|f ′p−f ′q|).

According to Property 9 in Kumar et al. (2011), for the
case f ′p ∈ Ls and f ′q = fq /∈ Ls, the graph construction of
Kumar et al. (2011) always has that

θ(f ′p, f
′
q) < cutK(f ′p, f

′
q) = d(|f ′p− l1|)+ d̂(|f ′p− l1|)+T,

where d̂(x) = d(x+1)−d(x)−d(1)+ d(0)
2 and cutK is the

cost of the st-mincut in graph (Kumar et al. 2011). Thus,

θ(f ′p, f
′
q) ≤ cut(f ′p, f ′q) < cutK(f ′p, f

′
q). (13)

In other word, the cost of the st-cut in our graph models the
pairwise potentials more accurately.

As a result, if we perform the range expansion moves on
the same submodular sets, the proposed graph construction
will yield a better solution than previous methods. To prove
this theoretically, let f∗ denote an optimal labeling of E(f).
We consider a submodular set Li and define the following
sets:

Pi = {p|p ∈ P, f∗p ∈ Li}
A = {(p, q)|(p, q) ∈ E , f∗p ∈ Li, f∗q ∈ Li, }
B1 = {(p, q)|(p, q) ∈ E , f∗p ∈ Li, f∗q /∈ Li, }
B2 = {(p, q)|(p, q) ∈ E , f∗p /∈ Li, f∗q ∈ Li, }

Using Lemma 3 of Kumar et al. (2011), we obtain the
following results.

Lemma 4 At an iteration of the GREA, given the current
labeling f and a submodular set Li, the new labeling f ′ ob-
tained by solving the st-mincut problem reduces the energy
by at least the following:∑
p∈Pi

θp(fp) +
∑

(p,q)∈A∪B

θpq(fp, fq)− (
∑
p∈Pi

θp(f
∗
p)+∑

(p,q)∈A

θ(f∗p , f
∗
q)+

∑
(p,q)∈B1

cut(f∗p , fq)+
∑

(p,q)∈B2

cut(fp, f
∗
q)).

(14)

where cut(f∗p , f
∗
q) is the cost of st-cut when p and q are

assigned label f∗p , f
∗
q respectively.

Let f̂ be a local optimum obtained using range ex-
pansion moves on the series of submodular sets L′ =

{L1, · · · ,Lk}, where
⋃
Li∈L′

Li = L. It follows that

∑
p∈Pi

θp(f̂p) +
∑

(p,q)∈A∪B

θpq(f̂p, f̂q) ≤
∑
p∈Pi

θp(f
∗
p)+∑

(p,q)∈A

θ(f∗p , f
∗
q)+

∑
(p,q)∈B1

cut(f∗p , fq)+
∑

(p,q)∈B2

cut(fp, f
∗
q)),

for all Li ⊂ L′, because the term 14 should be non-positive,
otherwise the energy E(f̂) can be further reduced, which
contradicts the fact that f̂ is a local optimum labeling.

We sum the above inequality over all Li ⊂ L′, and
obtain the following results

E(f̂) ≤
∑
Li⊂L′

(
∑
p∈Pi

θp(f̂p) +
∑

(p,q)∈A∪B

θpq(f̂p, f̂q))

≤
∑
Li⊂L′

(
∑
p∈Pi

θp(f
∗
p) +

∑
(p,q)∈A

θ(f∗p , f
∗
q)+∑

(p,q)∈B1

cut(f∗p , fq)) +
∑

(p,q)∈B2

cut(fp, f
∗
q))

(15)

With Eq. 13, we have that cut(f∗p , f
∗
q) < cutK(f∗p , f

∗
q).

Therefore, if we perform the range expansion moves on the
same submodular sets, the graph construction described in
Sec. 5.2 produces solutions with a tighter bound (see Eq. 15)
than previous methods (Kumar et al. 2011).

6 Experiments

In this section, we evaluate our GRMAs on both syn-
thetic data and the real vision applications including im-
age restoration, stereo matching and image segmentation.
The performance is compared with several state-of-the-art
methods, including α-expansion, αβ-swap, BPS (Tappen
and Freeman 2003), TRW-S (Kolmogorov 2006), as well
as previous range swap and range expansion algorithms.
We also compare the GRMAs with several variations of
the range move algorithms to verify the effectiveness of
the GRMAs. The variations including the range move al-
gorithms with half moves (R. swap Half and R. expan.
Half), randomized range move methods (R. swap Rand1,
R. swap Rand2, R. expan. Rand1 and R. expan. Rand2)
and the range swap + t method (Veksler 2007). The range
move algorithms with half moves perform the range moves
{0, · · · , T},{T2 , · · · ,

T
2 + T},· · · ,{mT2 , · · · , mT2 + T},· · ·

in the iterations, where T is the truncation factor in a
truncated convex function. The first kind of randomized
range move algorithms (R. swap Rand1 and R. expan.
Rand1) perform the range moves {0, · · · , T},{t1, · · · , t1+

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 13

T},· · · ,{
∑m
i=1 ti, · · · ,

∑m
i=1 ti+T}, where ti is random-

ly sampled from the interval [0, T]. The second kind of
randomized range move algorithms (R. swap Rand2 and
R. expan. Rand2) perform the range moves {0, · · · , T0},
{t1, · · · , t1+T1}, · · · , {

∑m
i=1 ti, · · · ,

∑m
i=1 ti+Tm}, where

ti, Ti are randomly sampled from the interval [0, T] and
[T, T+4] respectively. In the range swap + t algorithm, every
move considers the label set {α− t, α− t+ 1, · · · , β + t},
where |β − α| = T to obtain a better solution. We set t = 2

in all the experiments.
In the experiments, we use the codes provided by Kumar

et al. (2011) for previous range swap and range expansion
algorithms. We perform “all swap moves” plus “range swap
moves” in the iterative moves in previous range swap, range
swap + t and randomized range swap algorithms. This is be-
cause some important moves are missing in previous range
swap algorithms, i.e., the pairs of labels {α, β} are not con-
sidered if |α − β| > T . For a vertex p, whose current label
is α and real label is β (|α − β| > T), unfortunately there
is no move from α to β. This may lead to a poor solution
especially when the label space is large (e.g. |L| = 256 in
image restoration).

We also evaluate the methods that perform all the range
moves with our improved graph construction method. We
call them “RS + Our graph” and “RE + Our graph”, re-
spectively. The only difference between “RS + Our graph”,
“RE + Our graph” and previous range move algorithms is
that the methods of the graph construction are different. We
verify the effectiveness of the proposed graph construction
method by comparing “RS + Our graph” and “RE + Our
graph” with previous range swap and range expansion algo-
rithms.

We introduce the test data and experimental setting in
Sec. 6.1. We evaluate the effectiveness of the GRSA in
Sec. 6.3, and we evaluate the GREA in Sec. 6.4.

6.1 Data and experimental setting

Synthetic data The computation times of previous range
move algorithms and the GRMAs are affected by multiple
factors, such as the number of labels, the size of the MRF
and the parameters of the pairwise functions. To give a de-
tailed comparison of our GRMAs and previous range move
algorithms under various cases, we evaluate them on the
synthetic MRFs whose parameters are generated randomly.
Following (Kumar and Torr 2009; Kumar et al. 2011), the
data term θp(fp) is sampled uniformly from the interval
[0, 10]. For the pairwise term, we use the truncated convex
function

θpq = 3min{(fp − fq)2, T 2}.

In the experiments, we evaluate the influence of the label
size, the size of the MRFs and the truncation factor T . For

example, we first fix T = 5, and test the run time of the
algorithms for a range of MRFs of increasing size. Then,
we fix the size of the MRFs as 100 × 100, and evaluate
the influence of the truncation factor T . In each group of
experiments, we test the performance of the algorithms on
50 random fields, and compare the average run time and
average energies.

Image restoration In image restoration, the given input im-
ages are corrupted with noise and the objective is to recon-
struct the original images by removing the noise. We use
two popular images from the Corel database: penguin and
house. In the experiments, we set L = {0, 1, · · · , 255}, and
test the GRMAs on two pairwise functions: 1) the truncated
convex function θpq(fp, fq) = 25min{(fp − fq)

2, 200}
with parameters set as in Veksler (2012) and Kappes et al.
(2013); and 2) the piecewise linear function:

θpq(fp, fq)=

25|fp − fq|, if |fp − fq| ≤ 15;
25× 15, if 15 < |fp − fq| < 45;
25(|fp − fq| − 35), if 45 ≤ |fp − fq|.

Stereo matching In stereo correspondence, the goal is to
find corresponding pixels in the left and right images. In
this experiment, we use the image pairs from the popular
Middlebury Stereo Database. The size of the label space is
equal to the number of values for the disparity for the image
pairs. We use two kinds of energy function: the truncated
function θpq(fp, fq) = 30min{(fp − fq)

2, T 2} and the
piecewise linear function

θpq(fp, fq) =

{
30|fp − fq|, if |fp − fq| < T ;
|fp − fq|+ 30T, otherwise.

We set T = 8 for tsukuba, and T = 10 for other
image pairs. We also evaluate the accuracy of results on
Middlebury On-line Evaluation10 (Scharstein and Szeliski
2002) with two different error thresholds (ET).

Intensity-based Segmentation The objective of segmenta-
tion (Boykov and Kolmogorov 2003; Nagarajan 2003) is to
separate one or more regions of interest in an image. We test
the algorithms on the Berkeley Segmentation Dataset (Mar-
tin et al. 2001) (see Fig. 11). In the experiments, we divide
the image pixels into n classes according to image intensity
such that L = {0, 1, · · · , n}. The unary term θp(fp)is
set to be (Ip − 255∗fp

n), where Ip is the image intensity.
For the pairwise energy function, we use θpq(fp, fq) =

500min{(fp−fq)2, T 2}. In the experiments, we set n = 10

and T = 7.

10 http://vision.middlebury.edu/stereo/eval/

14 Kangwei Liu et al.

50X50 100X100 150X150 200X200 250X250
0

20

40

60

80

Sizes of nodes

T
im

e
(s

ec
.)

α-expansion
αβ-swap
Range swap
Our GRSA

5 6 7 8 9
0

10

20

30

40

50

60

The truncated factor

T
im

e
(s

ec
.)

α-expansion
αβ-swap
Range swap
Our GRSA

5 6 7 8 9
4.9

4.95

5

5.05

5.1
x 104

The truncated factor

E
ne

rg
y

α-expansion
αβ-swap
Range swap
Our GRSA

(a) average time vs. size (b) average time vs. truncated factor (c) average energy vs. truncated factor

0

2

4

6

8

10

12

14

16

T
im

e
of

 p
er

 c
yc

le
 (s

ec
.)

0

1

2

3

4

5

N
um

be
r

of
 c

yc
le

s

The run time of each cycle
The number of cycles

 α-expansion αβ-swap Range swap Our GRSA

(d) time of per cycle vs. number of cycles

Fig. 6 The evaluation of the GRSA on synthetic data. Each result is an average of the results obtained from 50 MRFs with truncated convex
functions. (a) and (b) show the algorithms’ run time with different sizes of MRFs or different truncation factors T . (c) shows the energy with
different truncation factors T (size 100× 100). (d) shows the number of cycles and the run time for each cycle when T = 8 and the MRFs’ size
is 100× 100.

Penguin Our GRSA 0 2 4 6 8 10

130%

160%

190%

220%

250%

280%

300%

E
ne

rg
y

100%

αβ−swap
Our GRSA

αβ−swap Range swap Range swap+t Our GRSA

150s

300s

450s

600s

750s

900s

1050s

Ti
m

e
of

 p
er

 c
yc

le

0s 10

20

30

40

50

60

N
um

be
r o

f c
yc

le
s

The run time of each cycle
The number of cycles

0 2 4 6 8 10

120%

140%

160%

180%

200%

220%

240%

260%

280%

E
ne

rg
y

100%

αβ−swap

Our GRSA

Range swap Range swap+t

Cycles of iterations

0 500 1000 1500 2000

102%

104%

106%

108%

110

112%

114%

116%

E
ne

rg
y

100%

αβ−swap
Range swap
Range swap + t
Our GRSA

0 2000 4000 6000 8000 10000

102%

104%

106%

108%

110%

112%

114%

Time (sec.)

E
ne

rg
y

100%

αβ−swap
Range swap
Range swap + t
Our GRSA

vs. number of cycles

(d) Penguin: Time of per cycle
(e) House: Energy vs. Time (f) House: Energy vs. Iterations vs. number of cycles

(g) House: Time of per cycle

(a) Penguin: results of different range swap moves
Time (sec.)

(b) Penguin: Energy vs. Time

Cycles of Iterations

(c) Penguin: Energy vs. Iterations

swap Range swap Range swap+t Our GRSA

30

60

90

120

150

180

210

Ti
m

e
of

 p
er

 c
yc

le

0 10

17

24

31

38

45

52

59
 64

N
um

be
r o

f c
yc

le
s

The run time of each cycle
The number of cycles

Fig. 7 The evaluation of the GRSA on image restoration. (a) shows the results obtained by range swap (Kumar and Torr 2009), range swap + t and
the GRSA on penguin. (b) and (e) show the energy obtained by different algorithms as a function of run time on penguin and house respectively.
(c) and (f) show the obtained energy as a function of the number of cycles on penguin and house respectively. The value of energy is plotted in
percentage points, where 100% is set to be the lowest value achieved by any algorithm in (b), (c), (e) and (f). (d) and (g) show the run time taken
by each cycle in different algorithms, and the number of cycles taken by each algorithm to converge.

6.2 Evaluation on the improved graph construction

We first evaluate the effectiveness of the proposed graph
construction in this section. We compare it with previous
construction method (Kumar et al. 2011) on both synthetic
data and real problems. Fig. 8 shows the results for synthetic
data, while Fig. 9, Tab. 2 and Tab. 3 show the results on the
real applications of image restoration, stereo matching and
image segmentation.

In the figures, ”RS + our graph” denotes that we perform
all the range swap moves with our graph construction. From
Tab. 3, we see that ”RS + our graph” yields the same results
as previous range swap algorithms. However, the ”RS + our
graph” performs about 3 times faster than previous range
swap algorithm. Note that ”RS + our graph” and previous
range swap algorithm take the same range swap moves in the

optimization. Therefore, this shows that the improved graph
construction in the GRSA is much faster than previous graph
construction, while it yields the same solutions as previous
graph construction.

”RE + our graph” denotes that we perform all the range
expansion moves with our graph construction. In Fig. 8 and
Fig. 9(b),(d), we see that our graph construction runs 2-5
times faster than previous methods on truncated quadratic
functions, e.g., on image penguin, previous graph construc-
tion (range expansion) takes 68532.4 seconds, while our
method (RE + our graph) takes 11907.8 seconds.

Fig 9(a), (c) and Tab. 1 show the quality of our graph
construction for image restoration, while Tab. 2 and Tab. 3
show the results on stereo matching and image segmenta-
tion, respectively. We see that ”RE + our graph” performs
much better than previous range expansion methods (e.g., on

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 15

Algorithm Energy Time Energy Time
(penguin) (penguin) (house) (house)

αβ-swap 17367822 512.4 45114530 1789.8
Range swap 15740426 1448.7 41438765 7536.5
R. swap Half 15752587 898.6 41452186 3389.8

R. swap Rand1 15763214 2103.1 41443603 7646.3
R. swap Rand2 15724023 2367.4 41410447 9404.7
Range swap+t 15716390 2258.0 41332881 15753.3

Our GRSA 15758765 392.0 41452670 1278.7
α-expansion 16108436 99.8 41567659 190.1
Range expan. 15817602 68532.4 41290076 129280.4
R. expan. Half 15974414 10206.1 41491386 65700.6

R. expan. Rand1 15828659 16220.0 41333511 100722.1
R. expan. Rand2 15799637 27366.1 41293033 172447.8
RE+Our graph 15624248 11907.8 40946750 40378.3

Our GREA 15693819 1349.3 41159653 5448.4

αβ-swap 9395637 221.0 26648428 453.5
Our GRSA 8675869 149.3 23827954 371.1
Our GREA 9210063 652.7 25615002 3805.6

Table 1 The results for image restoration. The optimization algorithms
are evaluated on two images. The 2-3 columns show the energy and
run time on image penguin, respectively. The 4-5 columns show the
results on image house. The 2-7 rows show the results on the truncated
convex function, and 8-9 rows show the results on the piecewise linear
function.

image penguin, previous graph construction obtains an ener-
gy 15817602, while ”RE + our graph” obtains 15624248).
In the experiments, ”RE + our graph” and previous range
expansion algorithm perform the range expansion moves
on the same series of subsets. As a result, we see that the
improved graph construction in the GREA not only runs
much faster, but also yields better solutions than previous
graph construction methods.

6.3 Evaluation on GRSA

Comparison with traditional range swap algorithm
Efficiency: To quantify the efficiency of the GRSA, we
compare the run time of the GRSA with previous range
swap algorithms on truncated convex functions. To avoid
the influence of implementation details, we use the code11

provided by Kumar and Torr (2009) for their range swap
algorithm. Fig. 6 shows the run time of the algorithms on
synthetic data with different influential factors. We observe
that the run time of the previous range swap algorithm
increases repidly as the size of the MRFs or the truncation
factor increases. In contrast, the run time of the GRSA
increases more slowly. The run time is reduced by more
than 80% in many cases (e.g. T = 8, size 100 × 100). In
real problems, the GRSA also runs much faster. As shown
in Fig. 7 (b) and (e), and Tab. 1, we see that for image
restoration the GRSA runs at least 3-6 times faster than

11 http://cvn.ecp.fr/personnel/pawan/research/truncated-moves.html

previous range swap, and 5-14 times faster than the range
swap + t algorithm. From Tab. 3, it is seen that for image
segmentation the GRSA runs 6-10 times faster than previous
range swap algorithm. The GRSA is much more efficient
because the set cover formulation reduces a large number of
unnecessary moves. Thus the GRSA takes much less time
for each cycle of iterations. As shown in Fig. 6 (d), Fig. 7
(d) and (g), we see that the GRSA takes a similar number
of cycles to converge, but runs several times faster in each
cycle compared to previous range swap algorithms.

Performance: We quantify the performance of the GRSA
and previous range swap algorithms on image restoration,
stereo matching and image segmentation. In stereo match-
ing, the range swap + t algorithm obtains the best results
on the truncated convex function (Tab. 2). The GRSA and
previous range swap algorithm also yield promising and
similar results. For the piecewise linear function, we see that
GRSA yields the best solutions. In image restoration, the
range swap + t algorithm (“all swap moves” plus “all range
swap + t moves”) yields the best results. However, we can
see that the GRSA obtains very similar solutions compared
to both the range swap + t and range swap algorithms as
shown in Fig. 7.

The above analysis shows that the GRSA offers a great
speedup over previous range swap algorithms, and at the
same time achieves competitive solutions without losing
much in accuracy on both synthetic data and real problems.

Comparison with αβ-swap algorithm We compare the GR-
SA with αβ-swap on both synthetic data and real problems.
As expected, the GRSA outperforms αβ-swap on both syn-
thetic data and the real problems of image restoration, stereo
matching and image segmentation, because the GRSA con-
siders more labels in every move. The GRSA achieves not
only a lower energy but also a better accuracy compared to
αβ-swap. For example, as shown in Fig. 10, the error in the
results obtained by αβ-swap on tsukuba is 10.3 (ET = 2),
while the error of the GRSA is 4.5.

In the experiments, we find that the GRSA takes a sim-
ilar time to converge as αβ-swap in most cases of synthetic
data and stereo matching. However, in image restoration, the
GRSA surprisingly converges faster than αβ-swap on both
the truncated convex and piecewise linear functions. This is
because although the GRSA takes more time in each cycle of
iterations, it needs far fewer cycles to converge as shown in
Fig. 7 (d) and (g). For example, the GRSA takes 21 cycles
while αβ-swap takes 55 cycles to converge for the image
penguin. In Fig. 7 (c) and (f), we also see that each cycle of
the GRSA decreases E(f) much more than αβ-swap does.

Comparison with the variations of range swap algorithms
To evaluate the effectiveness of the GRSA, we compare it
with different variations of range swap algorithms, including

16 Kangwei Liu et al.

10 20 30 40 50
0

50

100

150

200

Label size

T
im

e
(s

ec
.)

α−expansion
Range expansion
RE+Our graph
Our GREA

(a) time vs. label size

5 6 7 8 9
0

50

100

150

200

250

300

350

400

The truncated factor

T
im

e
(s

ec
.)

α−expansion
Range expansion
RE+our graph
Our GREA

(b) time vs. truncation factor

5 6 7 8 9
5.25

5.3

5.35
x 104

The truncated factor

E
ne

rg
y

α−expansion
Range expansion
RE+our graph
Our GREA

(c) energy vs. truncation factor

20

40

60

80

100

120

T
im

e
of

 p
er

 c
yc

le

3

4

5

N
um

be
r

of
 c

yc
le

s

The run time of each cycle
The number of cycles

α−expan. Range expan. RE+Our graph Our GREA

(d) time vs. cycles

Fig. 8 The evaluation of the GREA on synthetic data. Each result is an average of the results obtained from 50 MRFs with truncated convex
functions. (a) and (b) show the algorithms’ run time with different label sizes or different truncation factors T . (c) shows the energy with different
truncation factors T (size 100×100). (d) shows the number of cycles and the run time of each cycle when T = 8 and the MRFs’ size is 100×100.

0 2 4 6 8
x 104

100%

101%

102%

103%

104%

105%

106%

107%

108%

Time (sec.)

E
ne

rg
y

α−expansion
Range expansion
RE+Our graph
Our GREA

(a) Penguin: energy vs. time

0

0.5

1

1.5

2

2.5
x 104

T
im

e
of

 p
er

 c
yc

le

0

3

6

9

12

15

N
um

be
r

of
 c

yc
le

s

The number of cycles
The run time of each cycle

α−expan. Range expan.RE+Our graph Our GREA

(b) Penguin: time vs. cycles

0 5 10 15
x 104

101%

102%

103%

104%

105%

106%

107%

108%

Time (sec.)

E
ne

rg
y

100%

expansion
Range expansion
RE+Our graph
Our GREA

(c) House: energy vs. time

0.5

1

1.5

2

2.5

3

3.5
x 104

Ti
m

e
of

 p
er

 c
yc

le

0

5

10

15

N
um

be
r o

f c
yc

le
s

The number of cycles
The run time of each cycles

α−expan. Range expan.RE+Our graph Our GREA

(d) House: time vs. cycles

Fig. 9 The evaluation of the GREA on image restoration. (a) and (c) show the energy obtained by different algorithms with the run time on penguin
and house respectively. The value of the energy is plotted in percentage points, where 100% is set to the lowest value achieved by any algorithm.
(b) and (d) show the run time taken by every cycle of iterations in different algorithms, and the number of cycles that each algorithm takes to
converge.

Energy=1482258
(b) α-expansion

error1=16.1 # error2=10.3
Energy=2189043

(c) αβ-swap

error1=13.4 # error2=4.50
Energy=1449548

(d) TRWS

error1=12.9 # error2=4.48
Energy=1445585

(e) GRSA

error1=13.9 # error2=6.22

(a) Tsukuba

Fig. 10 The stereo matching results obtained by α-expansion, αβ-swap, TRW-S and the GRSA with the truncated convex function. The errors
(%) are tested on Middlebury Stereo Evaluation. Error1 is tested with the error threshold ET = 1, and error2 is tested with ET = 2.

R. swap Half and the randomized range move methods of
R. swap Rand1 and R. swap Rand2. From Tab. 1, we see
that although R. swap Rand1 and R. swap Rand2 yield
slightly better solutions than the GRSA, both of them are
much slower than the GRSA and they are even much slower
than the original range swap algorithm. For example, on
the image penguin R. swap Rand1 and R. swap Rand2 take
2103.1 and 2367.4 seconds to converge, and the original
range swap algorithm takes 1148.7 seconds. In contrast, the
GRSA takes 392.0 seconds and it runs more than 5 times
faster than both R. swap Rand1 and R. swap Rand2, while
it runs about 3 times faster than the original range swap
algorithm. The GRSA also runs much faster than R. swap
Half. For example, on the image penguin the GRSA runs
more than 2 times faster than R. swap Half.

Comparison with other state-of-the-art algorithms In stereo
matching, we compare the performance of the GRSA with
α-expansion, BPS and TRW-S, all of which have many
successful applications. Tab. 2 shows the performance ob-
tained with both truncated convex functions and piecewise
linear functions. We see that the range swap + t and RE +
our graph algorithms obtain the best results on truncated
convex functions. The GRSA, range swap algorithm and
TRWS also have competitive results. On the piecewise linear
functions, the GRSA obtains the best results compared to α-
expansion, αβ-swap, BPS and TRW-S. Besides the energy,
the GRSA also yields competitive results in terms of accu-
racy. Fig. 10 shows the solutions obtained by α-expansion,
αβ-swap, TRW-S and the GRSA. It is seen that the GRSA
not only obtains lower energy, but also yields promising
results compared to these four algorithms.

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 17

Fig. 11 The images taken from the Berkeley Segmentation Dataset (Martin et al. 2001).

Algorithm Energy 1 Energy 2 Energy 1 Energy 2 Energy 1 Energy 2 Energy 1 Energy 2 Energy 1 Energy 2
(Tsukuba) (Tsukuba) (Venus) (Venus) (Barn) (Barn) (Cones) (Cones) (Teddy) (Teddy)

BPS 1686577 1460496 3299917 2633931 1348521 1173486 18272332 15226621 13883973 15214693
TRW-S 1449548 1371572 2630498 2603053 1194482 1172694 17765423 15076300 13530967 11331054
αβ-swap 2189043 1371721 2922213 2952128 1776277 1177890 18013820 15578786 13825543 11373350

Range swap 1449334 - 2629676 - 1193442 - 17788537 - 13520524 -
Range swap+t 1431401 - 2629664 - 1189356 - 17788537 - 13519552 -

Our GRSA 1445585 1367681 2630819 2600259 1202651 1172674 17799329 15257479 13521650 11313025
α-expansion 1482258 1369101 2712361 2611608 1218686 1175235 17977155 15378752 14016262 11342616
Range expan. 1433469 - 2635454 - 1193549 - 17799663 - 13526149 -
RE+Our graph 1431655 - 2626416 - 1193442 - 17795254 - 13505214 -

Our GREA 1434967 1368658 2637047 2603042 1193442 1174693 17825171 15310238 13526071 11331918

Table 2 The results for stereo matching. “Energy 1” denotes the energies obtained using the truncated convex function, while “Energy 2” denotes
the energies obtained using the piecewise linear function.

Algorithm Energy Time Energy Time Energy Time Energy Time
(Image1) (Image1) (Image2) (Image2) (Image3) (Image3) (Image4) (Image4)

αβ-swap 13345579 2.1 14497307 2.5 7698050 1.7 11220891 1.3
α-expansion 13524060 1.5 14580819 1.5 7710817 1.8 11238419 2.0
Range swap 13254189 113.2 14411202 60.5 7657174 75.8 11135438 60.8

RS+Our graph 13254189 47.0 14411202 21.4 7657174 26.2 11135438 21.0
Our GRSA 13259583 9.9 14411259 9.9 7657174 11.1 11135679 9.2

Range expan. 13587626 115.7 14476909 100.0 7657289 102.0 11145059 96.8
RE+Our graph 13254189 90.9 14411202 65.4 7657174 54.6 11135438 55.7

Our GREA 13254189 29.3 14411202 20.2 7657174 15.2 11135438 13.3

Table 3 The results for image segmentation. The optimization algorithms are evaluated on four images.

6.4 Evaluation on GREA

Comparison with traditional range expansion algorithm
Efficiency: To evaluate the efficiency of the GREA on differ-
ent influential factors, we compare the run time of the GREA
with previous range expansion algorithm on synthetic data.
As shown in Fig. 8, we observe that the run time of the
previous range expansion rapidly increases as the number
of labels or the truncation factor increases. In contrast, the
run time of the GREA increases much more slowly.

The GREA also runs much faster on real problems. In
Fig. 9(a) and (b), we see that the GREA runs about 50
times faster than previous range expansion algorithm (e.g.,
on image penguin, previous range expansion algorithm takes
68532.4 seconds, while our GREA takes 1349.3 seconds).
The GREA shows high efficiency compared to previous
range expansion because of two important reason: 1) The

set cover formulation in GREA greatly reduces the number
of unnecessary moves and the run time in each cycle of iter-
ations. In Fig. 8(d) and Fig. 9(b),(d), we see that the GREA
takes similar number of cycles to converge, but runs several
times faster in each cycle compared to previous range ex-
pansion algorithms. 2) The improved graph construction is
much faster than previous graph construction methods. In
Fig. 8(d) and Fig. 9(b),(d), we see that although the methods
of range expansion and RE + our graph have the same
number of moves in each cycle, the method RE + our graph
runs much faster with our improved graph construction.

Performance: Fig 8(c) shows the comparison of the
solution qualities of different algorithms. We see that our
GREA performs better than α-expansion, while it performs
similarly to the previous range expansion algorithm. Fig. 9
and Tab. 2 show the performance of our GREA on image
restoration and stereo matching. We see that the method

18 Kangwei Liu et al.

RE + our graph obtains the best results among the algo-
rithms. On stereo matching, previous range expansion and
the GREA yield promising and similar results. On image
restoration, the GREA obtains better solutions than previous
range expansion because of the improved graph construction
method (see Tab. 1), although it takes fewer moves in the op-
timization. On image segmentation, we see that the GREA
yields the best results among the compared algorithms (see
Tab. 3).

The above analysis show that the GREA runs much
faster than previous range expansion algorithms, and also
achieves competitive solutions on both synthetic data and
real problems.

Comparison with the variations of range expansion al-
gorithms To evaluate the effectiveness of the GREA, we
compare it with different variations of range expansion
algorithms, including R. expan. Half and the randomized
range move methods of R. expan. Rand1 and R. expan.
Rand2. From Tab. 1, we see that the GREA not only runs
much faster than these three variations of range expansion
algorithms, but also yields better solutions than them. For
example, on the image penguin the energies obtained by
R. expan. Half, R. expan. Rand1 and R. expan. Rand2 are
15974414, 15828659 and 15799637, respectively, while the
energy obtained by the GREA is 15693819. Meanwhile, on
the image penguin R. expan. Half, R. expan. Rand1 and R.
expan. Rand2 take 10206.1, 16220.0 and 27366.1 seconds
to converge, respectively. In contrast, the GREA only takes
1349.3 seconds and it runs 7 times faster than R. expan. Half,
12 times faster than R. expan. Rand1 and 20 times faster than
R. expan. Rand2.

Comparison with other state-of-the-art algorithms First, we
compare the performance of the GREA with α-expansion,
which is one of the most successful algorithms. In Fig. 8(c),
we see that GREA outperforms α-expansion on synthetic
data, because GREA considers more labels in each move.
GREA also performs better than α-expansion on real prob-
lems. In Fig. 7 and Tab. 1, Tab. 2, we see that GREA per-
forms better than α-expansion on both image restoration and
stereo matching tasks, e.g., on image venus, α-expansion
obtains the energy 2712361, while GREA obtains 2637047.

We also compare the stereo matching performance of
GREA with αβ-swap, BPS and TRW-S, all of which have
many successful applications. Tab. 2 shows the performance
obtained on both truncated convex and piecewise linear
functions. We see that GREA performs much better than
αβ-swap and BPS, e.g., on image Venus, αβ-swap ob-
tains energy 2922213 with truncated convex function, BPS
achieves 3299917, while the GREA achieves the best solu-
tion with energy 2637047. We also observe that the GREA
outperforms TRW-S in most cases, e.g., on image Tsukuba,

the TRW-S obtains energy 1449548, while the GREA ob-
tains 1434967.

7 Conclusions and discussions

In this paper, we presented two generalized range move
algorithms (GRMAs) for the approximate optimization of
MRFs, and extended the GRMAs to more general energy
functions than only truncated convex functions. In the GR-
MAs, we choose subsets of labels that satisfy the submodu-
lar condition for every move, and we propose a sufficient
condition for choosing the submodular labels feasibly. In
the iterative optimization, we dynamically obtain the range
moves by solving a set cover problem (SCP) and greatly
reduce the number of unnecessary moves. We also pro-
posed an improved graph construction for the GRMAs. The
new graph construction not only runs faster than previous
graph constructions but also yields better solutions. The
experiments show that the GRMAs run several times faster
than previous range move algorithms, while they achieve
competitive solutions. The GRMAs can be regarded as a
generalization of several types of move-making algorithms.

In future work, the GRMAs will be further improved.
For example, although Theorem 1 provides a sufficient con-
dition to obtain the submodular sets, it is not a necessary
condition. It is of interest to investigate whether there is a
better way of finding submodular sets of labels. We also
observe that there are still many moves that do not lower
E(f) significantly in the iterations of the GRMAs. It is
of interest to find those moves which lead to the biggest
decrease of E(f) in each iteration.

Acknowledgements This work is funded by the National Basic Re-
search Program of China (Grant No. 2012CB316302), National Nat-
ural Science Foundation of China (Grant No. 61322209, Grant No.
61175007 and Grant No. 61403387). We thank Olga Veksler for her
great help to this work, and we thank Pushmeet Kohli for his valuable
comments.

References

Batra D, Kohli P (2011) Making the right moves: Guiding alpha-
expansion using local primal-dual gaps. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp 1865–1872

Besag J (1986) On the statistical analysis of dirty pictures. Journal of
the Royal Statistical Society 48(3):259–302

Boykov Y, Jolly (2001) Interactive graph cuts for optimal boundary
and region segmentation of objects in nd images. In: IEEE Inter-
national Conference on Computer Vision, pp 105–112

Boykov Y, Jolly MP (2000) Interactive organ segmentation using graph
cuts. In: Medical Image Computing and Computer-Assisted Inter-
vention, pp 276–286

Boykov Y, Kolmogorov V (2003) Computing geodesics and minimal
surfaces via graph cuts. In: IEEE International Conference on
Computer Vision, pp 26–33

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 19

Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy min-
imization via graph cuts. IEEE Transactions on Pattern Analysis
and Machine Intelligence 23(11):1222–1239

Chekuri C, Khanna S, Naor J, Zosin L (2004) A linear programming
formulation and approximation algorithms for the metric labeling
problem. SIAM Journal on Discrete Mathematics 18(3):608–625

Feige U (1998) A threshold of ln n for approximating set cover. Journal
of the ACM 45(4):634–652

Gould S, Amat F, Koller D (2009) Alphabet soup: A framework for
approximate energy minimization. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp 903–910

Greig D, Porteous B, Seheult AH (1989) Exact maximum a posteri-
ori estimation for binary images. Journal of the Royal Statistical
Society pp 271–279

Gridchyn I, Kolmogorov V (2013) Potts model, parametric maxflow
and k-submodular functions. In: IEEE International Conference
on Computer Vision, pp 2320–2327

Ishikawa H (2003) Exact optimization for markov random fields with
convex priors. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 25(10):1333–1336

Kappes JH, Andres B, Hamprecht FA, Schnörr C, Nowozin S, Batra D,
Kim S, Kausler BX, Lellmann J, Komodakis N, Rother C (2013)
A comparative study of modern inference techniques for discrete
energy minimization problem. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp 1328–1335

Kohli P, Osokin A, Jegelka S (2013) A principled deep random field
model for image segmentation. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp 1971–1978

Kolmogorov V (2006) Convergent tree-reweighted message passing
for energy minimization. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28(10):1568–1583

Kolmogorov V, Rother C (2007) Minimizing nonsubmodular functions
with graph cuts-a review. IEEE Transactions on Pattern Analysis
and Machine Intelligence 29(7):1274–1279

Kolmogorov V, Zabin R (2004) What energy functions can be mini-
mized via graph cuts? IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(2):147–159

Kumar MP (2014) Rounding-based moves for metric labeling. In:
Advances in Neural Information Processing Systems, pp 109–117

Kumar MP, Koller D (2009) Map estimation of semi-metric mrfs
via hierarchical graph cuts. In: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pp 313–320

Kumar MP, Torr PH (2009) Improved moves for truncated convex
models. In: Advances in Neural Information Processing Systems,
pp 889–896

Kumar MP, Veksler O, Torr PH (2011) Improved moves for truncated
convex models. The Journal of Machine Learning Research 12

Lempitsky V, Rother C, Blake A (2007) Logcut-efficient graph cut
optimization for markov random fields. In: IEEE International
Conference on Computer Vision, pp 1–8

Lempitsky V, Rother C, Roth S, Blake A (2010) Fusion moves for
markov random field optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(8):1392–1405

Liu K, Zhang J, Huang K, Tan T (2014) Deformable object matching
via deformation decomposition based 2d label mrf. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, pp 2321–
2328

Liu K, Zhang J, Yang P, Huang K (2015) GRSA: Generalized range
swap algorithm for the efficient optimization of mrfs. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp
1761–1769

Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human
segmented natural images and its application to evaluating seg-
mentation algorithms and measuring ecological statistics. In: IEEE
International Conference on Computer Vision, vol 2, pp 416–423

Nagarajan R (2003) Intensity-based segmentation of microarray im-
ages. IEEE Transactions on Medical Imaging 22(7):882–889

Poggio T, Torre V, Koch C (1989) Computational vision and regular-
ization theory. Image understanding 3(1-18):111

Rother C, Kolmogorov V, Lempitsky V, Szummer M (2007) Optimiz-
ing binary mrfs via extended roof duality. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp 1–8

Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Jour-
nal of Computer Vision 47

Schlesinger D, Flach B (2006) Transforming an arbitrary minsum
problem into a binary one. TU, Fak. Informatik

Slavłk P (1996) A tight analysis of the greedy algorithm for set cover
pp 435–441

Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agar-
wala A, Tappen M, Rother C (2008) A comparative study of ener-
gy minimization methods for mrfs with smoothness-based priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence
30(6):1068–1080

Tappen MF, Freeman WT (2003) Comparison of graph cuts with belief
propagation for stereo using identical mrf parameters. In: IEEE
International Conference on Computer Vision, pp 900–906

Veksler O (2007) Graph cut based optimization for mrfs with truncated
convex priors. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp 1–8

Veksler O (2012) Multi-label moves for mrfs with truncated convex
priors. International Journal of Computer Vision 98(1):1–14

A Proof of Theorem 1

A.1 Related lemmas and definitions

Before proving Theorem 1, we first give the following lemmas and the
definition of submodular set.

Lemma 5 For b1, b2 > 0, the following conclusion holds.

a1

b1
≥
a2

b2
⇔

a1

b1
≥
a1 + a2

b1 + b2
≥
a2

b2
. (16)

The proof is straightforward and we omit it.

Lemma 6 Assuming that function g(x) is convex on [a, b] and there
are three points x1, x, x2 ∈ [a, b] satisfying x1 > x > x2, there is

g(x1)− g(x)
x1 − x

≥
g(x1)− g(x2)
x1 − x2

≥
g(x)− g(x2)
x− x2

. (17)

Proof Since x1 > x > x2, there exists λ ∈ (0, 1) satisfying x =
(1− λ)x1 + λx2. Then by the definition of convex function, there is
(1− λ)g(x1) + λg(x2) ≥ g(x) and thus

(1− λ)(g(x1)− g(x)) ≥ λ(g(x)− g(x2)) (18)

Considering that x1 > x2 and 0 < λ < 1, we can divide λ(1 −
λ)(x1 − x2) on both sides of (18) and obtain

g(x1)− g(x)
λ(x1 − x2)

≥
g(x)− g(x2)

(1− λ)(x1 − x2)
(19)

g(x1)− g(x)
x1 − x

≥
g(x)− g(x2)
x− x2

. (20)

At last, the conclusion (17) can be proved by applying Lemma 5 to
(20).

20 Kangwei Liu et al.

Lemma 7 Assuming that g(x) is convex on [a, b] and there are four
points x1, x2, x3, x4 ∈ [a, b] satisfying x1 > x3 ≥ x4 and x1 ≥
x2 > x4, there is

g(x1)− g(x3)
x1 − x3

≥
g(x2)− g(x4)
x2 − x4

. (21)

Proof Since g(x) is convex on [a, b] and x1 > x3 ≥ x4, it is
straightforward to obtain

g(x1)− g(x3)
x1 − x3

≥
g(x1)− g(x4)
x1 − x4

(22)

by Lemma 6 (the case when x3 = x4 is trivial).
By the same way, there is

g(x1)− g(x4)
x1 − x4

≥
g(x2)− g(x4)
x2 − x4

. (23)

Combining (22) and (23), we obtain the inequality (21) which
completes the proof. ut

Lemma 8 Given a function g(x) (x= |α−β|) on domain X=[0, c],
assume g(x) is locally convex on intervalXs=[a, b] (0 ≤a<b≤ c),
and it satisfies a{g(a+1)− g(a)} ≥ g(a)− g(0). Then we have

g(x1)− g(x3)
x1 − x3

≥
g(x2)− g(0)

x2
(24)

where x1, x2, x3 ∈ Xs where x3 < x1 and x2 < x1.

Proof Since x1 > x3 ≥ a and x1 ∈ N, we have x1 ≥ a + 1 > a.
Then considering that x1 > x3 ≥ a, we can use Lemma 7 to obtain

g(x1)− g(x3)
x1 − x3

≥
g(a+ 1)− g(a)
a+ 1− a

≥
g(a)− g(0)

a
, (25)

where the second inequality comes from a{g(a+1)−g(a)} ≥ g(a)−
g(0).

If x2 = a, the conclusion is obtained from (25). Otherwise, there
is x1 > x2 > a and x1 > x3 ≥ a. Using Lemma 7, we obtain

g(x1)− g(x3)
x1 − x3

≥
g(x2)− g(a)
x2 − a

. (26)

Combining (25) and (26), we can obtain

g(x1)− g(x3)
x1 − x3

≥max

{
g(x2)− g(a)
x2 − a

,
g(a)− g(0)

a

}
≥
g(x2)− g(a) + g(a)− g(0)

x2 − a+ a

=
g(x2)− g(0)

x2
,

where the second inequality is due to Lemma 5 and this completes the
proof.

Definition 1 Given a pairwise potential θ(α, β), we call Ls a sub-
modular set of labels, if it satisfies

θ(li+1, lj)− θ(li+1, lj+1)− θ(li, lj) + θ(li, lj+1) ≥ 0 (27)

for any pair of labels li, lj ∈ Ls(1 ≤ i, j < m).

A.2 Proof of Theorem 1

Theorem 1 Given a pairwise function θ(α, β) = g(x) (x = |α −
β|), assume there is an interval12 Xs = [a, b] (0 ≤ a < b) satisfying:
(i) g(x) is convex on [a, b], and (ii) a · (g(a+ 1)− g(a)) ≥ g(a)−
g(0) ≥ 0. Then Ls = {l1, · · · , lm} is a submodular subset, if |li −
lj | ∈ [a, b] for any pair of labels li, lj such that li 6= lj and li, lj ∈
Ls.

Proof Since θ(α, β) is semimetric and satisfies θ(α, β) = θ(β, α),
we only consider li, li+1, lj , lj+1 ∈ Ls where i ≥ j. Let

x1 = li+1 − lj , x2 = li+1 − lj+1,

x3 = li − lj , x4 = li − lj+1

We have x1 > x2 ≥ x3 > x4, and x1−x2 = x3−x4. We can define

λ =
x3 − x4
x1 − x4

=
x1 − x2
x1 − x4

, (0 < λ < 1) (28)

then, we get

x3 = λx1+(1−λ)x4, x2 = λx4+(1−λ)x1. (29)

If a = 0, i.e. Xs = [0, b] we have x1, x2, x3, x4 ∈ Xs
according to the assumption in Theorem 1. Since g(x) is convex on
Xs, with Eq. (29) we obtain

g(x3) ≤ λg(x1) + (1− λ)g(x4),
g(x2) ≤ λg(x4) + (1− λ)g(x1)

(30)

Summing the two equations in Eq. (30), we can get

g(x2) + g(x3) ≤ g(x1) + g(x4)

Thus, θ(li+1,lj)−θ(li+1,lj+1)−θ(li,lj)+θ(li,lj+1) ≥ 0 is satisfied
for any pair of labels li, lj ∈ Ls.

If a > 0 (Xs = [a, b]), we prove the theorem in three cases:
1) i = j; 2) i > j + 1; 3) i = j + 1.

1. When i = j, we have

θ(li+1,lj)− θ(li+1,lj+1)− θ(li,lj) + θ(li,lj+1)

=θ(li+1,li)− θ(li+1,li+1)− θ(li,li) + θ(li,li+1)

=2(g(li+1 − li)− g(0))
≥2(g(a)− g(0)) ≥ 0

2. When i > j + 1, we have x1, x2, x3, x4 ∈ Xs according to the
assumption in Theorem 1. Since g(x) is convex on Xs, with Eq.
(29) we obtain

g(x3) ≤ λg(x1) + (1− λ)g(x4),
g(x2) ≤ λg(x4) + (1− λ)g(x1)

(31)

Summing the two equations in Eq. (31), we get

g(x2) + g(x3) ≤ g(x1) + g(x4)

Thus, θ(li+1,lj)− θ(li+1,lj+1)− θ(li,lj) + θ(li,lj+1) ≥ 0 is
satisfied for any pair of label li, lj ∈ Ls and i > j + 1.

3. When i = j + 1, we have

x1 = lj+2 − lj , x2 = lj+2 − lj+1,

x3 = lj+1 − lj , x4 = 0

12 Here, the interval [a, b] denotes the set of integers {x|a ≤ x ≤ b}.

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 21

Thus, we have x1 = x2 + x3, and x1, x2, x3 ∈ Xs but x4 /∈ Xs.
With Lemma 8, we have

g(x1)− g(x3)
x1 − x3

≥
g(x2)− g(0)

x2
. (32)

Thus we can get

g(x2) + g(x3) ≤ g(x1) + g(x4)

and θ(li+1,lj) − θ(li+1,lj+1)−θ(li,lj)+θ(li,lj+1) ≥ 0 is satisfied
for any pair of labels li, lj ∈ Ls and i = j + 1.

Therefore, θ(li+1,lj)− θ(li+1,lj+1)−θ(li,lj)+θ(li,lj+1) ≥ 0 is
satisfied for any pair of labels li, lj ∈ Ls. The proof is completed.

A.3 Proof of Corollary 1

Corollary 1 (Theorem 1) Assuming the interval [a, b] is a candidate
interval, then {α, α+x1, α+x1 +x2, · · · , α+x1 + · · ·+xm} ⊆
L is a submodular set for any α ≥ 0, if x1, · · · , xm ∈ [a, b] and
x1 + · · ·+ xm ≤ b.

Proof LetLs = {α, α+x1, α+x1+x2, · · · , α+x1+ · · ·+xm}.
We consider a pair of labels α1 and α2, which can be any pair of
distinct labels chosen in Ls. According to the definition, there always
exist p, q (1 ≤ p, q ≤ m) such that

|α1 − α2| = xp + xp+1 + · · ·+ xq.

Since xi ∈ [a, b] for ∀i ∈ [p, q], we have |α1 − α2| ≥ a.
Since x1 + · · ·+ xm≤b, we have xp + xp+1 + · · ·+ xq ≤ b.
Thus, |α1 − α2| ∈ [a, b] for any pair of labels α1, α2 ∈ Ls
Thus, Ls is a submodular set according to Theorem 1.

B Proof of Proposition 1

Proposition 1 Let L1, · · · ,Lk be a set of range swap moves, which
cover all pairs of labels li, lj ∈ L. Let f̂ be a local minimum obtained
by these moves. Then, f̂ is also a local minimum for αβ-swap.

Proof Firstly, we assume that within one swap move on the pair
of labels α, β, αβ-swap can achieve a better solution f∗ such that
E(f∗) < E(f̂).

LetLi be a move that covers α, β, i.e. α, β ∈ Li. The range swap
move on Li minimizes:

Es(f)=
∑
p∈PLi

θp(fp)+
∑

(p,q)∈E,{p,q}∩PLi 6=∅

θpq(fp, fq) (33)

where PLi denotes the set of vertices whose labels belong to Li. We
have Pα,Pβ ∈ PLi .

With the assumption, the swap move on α, β can achieve a better
solution E(f∗) < E(f̂). This means that the energy E(f̂) can be
decreased by changing the labels of some vertices p ∈ Pα to β, or
changing the labels of vertices p ∈ Pβ to α. Therefore, the range
swap move on Li can decreaseE(f̂). This is inconsistent with the fact
that E(f̂) is a local minimum of the range swap moves.

Thus,E(f̂) cannot be decreased by any move in theαβ-swap, and
the proof is completed.

p2

t

p3

pm

q2

q3

qm

(a)

p1 q1

s

l1

l2

lm

∞

p2

t

p3

pm

q2

q3

qm

p1 q1

s

l1

l2

lm

fq

a

fp fq

p2

t

p3

pm

q2

q3

qm

p1 q1

s

l1

l2

lm

∞
fq

(b)

p2

t

p3

pm

q2

q3

qm

p1 q1

s

l1

l2

lm

∞ ∞

la

lb

Fig. 12 The graph construction in the st-mincut problem to solve the
range swap move. The edges in the st-cut are marked red when nodes
p, q are assigned label la and lb, respectively.

C Proof of Proposition 2

Proposition 2 Let f̂ be a local minimum obtained by αβ-swap. With
the initial labeling f̂ , the range swap moves on L′ = {L1, · · · ,Lk}
yield a local minimum f† such that E(f†) < E(f̂), unless the
labeling f̂ exactly optimizes the energy:

Es(f) =
∑

p∈PLi

θp(fp) +
∑

(p,q)∈E,{p,q}∩PLi 6=∅
θpq(fp, fq)

for each Li ⊆ L′.

Proof Assume the labeling f̂ does not exactly optimize the energy

Es(f)=
∑
p∈PLi

θp(fp)+
∑

(p,q)∈E,{p,q}∩PLi 6=∅

θpq(fp, fq) (34)

where Li ⊆ L
′
.

Obviously,E(f̂) can be decreased by the range swap move onLi,
since this move can obtain a labeling f∗ which is a global minimization
of Es(f) in (34).

Thus, the proof of Proposition 2 is completed.

D Proof of Lemma 1

Lemma 1 When edges (pa, pa+1) and (qb, qb+1) are in the st-
cut C, that is, fp, fq are assigned the labels la, lb respectively, let
cut(la, lb) denote the cost of the pairwise edges in E3 in the st-cut.
We have the following relationship

cut(la, lb) =

a∑

i=b+1

i∑
j=b+1

c(pi, qj), if la ≥ lb ;

b∑
i=a+1

i∑
j=a+1

c(qi, pj), if la < lb .

Proof We will show the proof of the case where la ≥ lb, and the
similar argument applies when la < lb.

As the definition of st-cut, an st-cut only consists of edges going
from the source’s (s) side to the sink’s (t) side. The cost of an st-cut
is the sum of capacity of each edge in the cut. As shown in Fig. 12, if
nodes p, q are assigned la and lb, respectively, the st-cut is specified
by the edges

(pa, pa+1)∪(qb, qb+1)∪{(pi, qj), b+1 ≤ i ≤ a, b+1 ≤ j ≤ i}.

22 Kangwei Liu et al.

where (pa, pa+1) and (qb, qb+1) are the unary edges, while (pi, qj)
denote the pairwise edges.

As a result, the cost of the pairwise edges in the st-cut is

cut(la, lb) =

a∑
i=b+1

i∑
j=b+1

c(pi, qj), where la ≥ lb. (35)

The proof is completed.

E Proof of Lemma 2

Lemma 2 For the graph described in Sec.5.1, Property 2 holds true.

Proof As described in Sec.5.1, we construct a directed graph G =
(V ,E), such that a set of nodes {p1, p2, · · · , pm} ⊂ V is defined for
each p ∈ Ps. In addition, a set of edges are constructed to model the
unary and pairwise potentials.

Assume that p and q are assigned the labels la, lb respectively.
In other word, we have f ′p = la and f ′q = lb. For brevity, we only
consider the case where la ≥ lb, and a similar argument applies when
la < lb.

We observe that the st-cut will consist of only the following edges:

{(pi, pj), b+ 1 ≤ i ≤ a, b+ 1 ≤ j ≤ i}.

Using Eq. 10 to sum the capacities of the above edges, we obtain
the cost of the st-cut

cut(f ′p, f
′
q) =

a∑
i=b+1

i∑
j=b+1

c(pi, qj)

=
a∑

i=b+1

i∑
j=i

c(pi, qj) +
a∑

i=b+1

i−1∑
j=b+1

c(pi, qj)

=
a∑

i=b+1

i∑
j=i

ψ(i, j)

2
+

a∑
i=b+1

i−1∑
j=b+1

ψ(i, j)

(36)

whereψ(i, j) = θ(li, lj−1)−θ(li, lj)−θ(li−1, lj−1)+θ(li−1, lj)
for 1 < j ≤ i ≤ m.

Since the pairwise potentials satisfy θ(α, β) = 0 ⇔ α = β and
θ(α, β) = θ(β, α) ≥ 0, when i = j, ψ(i, j) can be simplified as

ψ(i, j) = 2θ(li, lj−1), i = j.

Using the above equation, we have

a∑
i=b+1

i∑
j=i

ψ(i, j)

2
=

a∑
i=b+1

θ(li, li−1), (37)

and

a∑
i=b+1

i−1∑
j=b+1

ψ(i, j)

=

a∑
i=b+1

{θ(li, lb)− θ(li−1, lb)− θ(li, li−1)}

=θ(lb+1, lb)− θ(lb, lb)− θ(lb+1, lb)+

=θ(la, lb)−
a∑

i=b+1

θ(li, li−1)

(38)

Using Eq. 36 37 and 38, we have

cut(f ′p, f
′
q) = θ(la, lb)

This proves that Property 2 holds true.

F Proof of Lemma 3

Lemma 3 When the pairwise function is a truncated function θ(fp, fq)
= min{d(|fp − fq|), T}, for the case f ′p ∈ Ls and f ′q = fq /∈ Ls,
we have the following properties:

– If fq > lm, we have

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤d(|f ′p−l1|)+T.

– If fq < l1 and fp ∈ Ls or fp < l1,

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤min{d(|f ′p−f ′q|), d(|f ′p−l1|)+T}

– If fq < l1 and fp > lm, we have

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤min{d(|f ′p−f ′q|)+

T

2
, d(|f ′p−l1|)+T}

Proof With Property 6, we have the cost of the st-cut is

cut(f ′p, f
′
q)=

θ(la, l1) +

a∑
i=2

c(pi, q1) + θ(l1, fq), fp ∈ Ls;

θ(la, l1) +
a∑
i=2

c(pi, q1) + θ(l1, fq)

+δ, fp /∈ Ls.

where f ′p = la and δ = max(0,
θ(fp,fq)−θ(l1,fq)−θ(fp,l1)

2
).

For brevity, we define

η=

{
0, fp ∈ Ls;
δ, fp /∈ Ls,

and the cost of the st-cut can be rewritten as

cut(f ′p, f
′
q)=θ(la, l1) +

a∑
i=2

c(pi, q1) + θ(l1, fq) + η. (39)

As described in Sec.5.2.2, the graph G is constructed with the following
edges

c(p1, q1) = θ(l1, fq) fp ∈ Ls;
c(a, q1) = θ(l1, fq) + δ fp /∈ Ls,

c(pi, q1) = max(0, θ(li, fq)−θ(li, l1)−θη−
i−1∑
j=2

c(pj , q1)), (40)

where we define θη = θ(l1, fq) + η for brevity. We have

θ(l1, fq) ≤ T

θ(l1, fq) + δ = max(θ(l1, fq),
θ(fp, fq) + θ(l1, fq)− θ(fp, l1)

2
)

≤ T,

and thus

θη = θ(l1, fq) + η ≤ T. (41)

Firstly, we prove the following inequality holds true for the case
f ′p ∈ Ls and f ′q = fq /∈ Ls.

θ(la, fq) ≤ cut(f ′p, f ′q) ≤ d(|la − l1|) + T (42)

where f ′p = la and f ′q = fq .
When a = 1, we have

cut(l1, f
′
q) = θ(l1, fq) + η.

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs 23

Using the equation above and Eq. 41, we obtain

θ(l1, fq) ≤ cut(l1, f ′q) ≤ d(|l1 − l1|) + T

and thus, the inequality (42) is true when a = 1.
We assume inequality (42) holds true when a = k (k ≥ 2), and

we obtain the following results

θ(lk, fq) ≤ cut(lk, f ′q) ≤ d(|lk − l1|) + T (43)

where

cut(lk, f
′
q)=θ(lk, l1) +

k∑
i=2

c(pi, q1) + θη. (44)

When a = k + 1,

cut(lk+1, f
′
q)=θ(lk+1, l1) +

k+1∑
i=2

c(pi, q1) + θη. (45)

Using Eq. 40, 44 and 45,

cut(lk+1, f
′
q)=cut(lk, f

′
q) + θ(lk+1, l1)+c(pk+1, q1)−θ(lk, l1)

=cut(lk, f
′
q) + θ(lk+1, l1)−θ(lk, l1)

+ max(0, θ(lk+1, fq)− θ(lk+1, l1)

+ θ(lk, l1)− cut(lk, f ′q))

If θ(lk+1, fq)−θ(lk+1, l1)−cut(lk, f ′q)+θ(lk, l1)≤0, we have

cut(lk+1, f
′
q)= cut(lk, f

′
q) + θ(lk+1, l1)−θ(lk, l1),

≤ θ(lk+1, l1)−θ(lk, l1) + d(|lk − l1|) + T

≤ d(|lk+1 − l1|) + T

and

θ(lk+1, fq) ≤ cut(lk, f ′q) + θ(lk+1, l1)− θ(lk, l1),
θ(lk+1, fq) ≤ cut(lk+1, f

′
q).

If θ(lk+1, fq)−θ(lk+1, l1)−cut(lk, f ′q)+θ(lk, l1)≥0, we have

θ(lk+1, fq) ≤ cut(lk+1, f
′
q)= θ(lk+1, fq) ≤ d(|lk+1−l1|)+T.

Inequality (42) is true and the proof is completed.
Then, we prove if fq < l1 it holds true that

cut(f ′p, f
′
q) ≤ d(|la−f ′q|) + η, (46)

where f ′q = la.
When a = 1, it holds true that

cut(l1, f
′
q) = θ(l1, fq) + η ≤ d(|la−f ′q|) + η.

We assume when a = k (k ≥ 2), it hold true that

cut(lk, f
′
q) = θ(lk, l1) +

k∑
i=2

c(pi, q1) + θ(l1, fq) + η

≤ d(|lk−f ′q|) + η.

When a = k + 1,

cut(lk+1, f
′
q)=θ(lk+1, l1) +

k+1∑
i=2

c(pi, q1) + θη. (47)

Using Eq. 40 and 47,

cut(lk+1, f
′
q) =cut(lk, f

′
q) + θ(lk+1, l1)−θ(lk, l1)

+ max(0, θ(lk+1, fq)− θ(lk+1, l1)

+ θ(lk, l1)− cut(lk, f ′q))

If θ(lk+1, fq)−θ(lk+1, l1)−cut(lk, f ′q)+θ(lk, l1)≤0, we have

cut(lk+1, f
′
q)= cut(lk, f

′
q) + θ(lk+1, l1)−θ(lk, l1),

≤ θ(lk+1, l1)−θ(lk, l1) + d(|lk − f ′q|) + η

As l1, lk, lk+1 ∈ Ls, we have θ(lk, l1) = d(|lk − l1)|, and
θ(lk+1, l1) = d(|lk+1 − l1)|. As d(·) is a convex function and
f ′q < l1 < lk < lk+1, using Lemma 7, we have

d(|lk − f ′q|)− d(|lk − l1|)
lk − f ′q − lk − l1

≤
d(|lk+1 − f ′q|)− d(|lk+1 − l1|)

lk+1 − f ′q − lk+1 + l1

d(|lk − f ′q|)− d(|lk − l1|) ≤ d(|lk+1 − f ′q|)− d(|lk+1 − l1|)
.

Therefore,

cut(lk+1, f
′
q) ≤ θ(lk+1, l1)−θ(lk, l1) + d(|lk − f ′q|) + η

≤ d(|lk+1 − f ′q|) + η

If θ(lk+1, fq)−θ(lk+1, l1)−cut(lk, f ′q)+θ(lk, l1)≥0, we have

cut(lk+1, f
′
q)= θ(lk+1, fq) ≤ d(|lk+1 − f ′q|) + η.

Therefore, if fq < l1 and fp ∈ Ls or fp < l1,

cut(f ′p, f
′
q) ≤ d(|la−f ′q|) + η, where f ′q = la

holds true and the proof is completed.
If fp ∈ Ls, we have η = 0.

If fq < l1 and fp < l1, we have θ(fp, fq) < θ(l1, fq) and

θ(fp, fq)− θ(l1, fq)− θ(fp, l1)
2

< 0.

Therefore, δ = 0, and η = 0.
Using the above results and inequalities (42) and (46), we obtain

the following results

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤min{d(|f ′p−f ′q|), d(|f ′p−l1|)+T}

for the case where fq < l1 and fp ∈ Ls or fp < l1.
If fq < l1 and fp > lm, we have

θ(fp, fq)− θ(l1, fq)− θ(fp, l1)
2

<
T

2
.

Using the above results and inequalities (42) and (46), we obtain
the following results

θ(f ′p, f
′
q)≤cut(f ′p, f ′q)≤min{d(|f ′p−f ′q|)+

T

2
, d(|f ′p−l1|)+T}

for the case where fq < l1 and fp > lm.
The proof of Lemma 2 is completed.

