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Abstract

Recent studies have demonstrated the power of recurrent neural networks for machine
translation, image captioning and speech recognition. For the task of capturing temporal
structure in video, however, there still remain numerous open research questions. Current
research suggests using a simple temporal feature pooling strategy to take into account the
temporal aspect of video. We demonstrate that this method is not sufficient for gesture
recognition, where temporal information is more discriminative compared to general video
classification tasks. We explore deep architectures for gesture recognition in video and
propose a new end-to-end trainable neural network architecture incorporating temporal
convolutions and bidirectional recurrence. Our main contributions are twofold; first,
we show that recurrence is crucial for this task; second, we show that adding temporal
convolutions leads to significant improvements. We evaluate the different approaches on
the Montalbano gesture recognition dataset, where we achieve state-of-the-art results.

1 Introduction

Gesture recognition is one of the core components in the thriving research field of human-
computer interaction. The recognition of distinct hand and arm motions is becoming in-
creasingly important, as it enables smart interactions with electronic devices. Furthermore,
gesture identification in video can be seen as a first step towards sign language recognition,
where even subtle differences in motion can play an important role. Some examples that
complicate the identification of gestures are changes in background and lighting due to the
varying environment, variations in the performance and speed of the gestures, different clothes
worn by the performers and different positioning relative to the camera. Moreover, regular
hand motion or out-of-vocabulary gestures should not to be confused with one of the target
gestures.

Convolutional neural networks (CNNs) (LeCun et al., 1998) are the de facto standard approach
in computer vision. CNNs have the ability to learn complex hierarchies with increasing levels
of abstraction while being end-to-end trainable. Their success has had a huge impact on
vision based applications like image classification (Krizhevsky et al., 2012), object detection

*Now at Google DeepMind.



(Sermanet et al., 2013), human pose estimation (Toshev & Szegedy, 2014) and many more.
A video can be seen as an ordered collection of images. Classifying a video frame by frame
with a CNN is bound to ignore motion characteristics, as there is no integration of temporal
information. Depending on the task at hand, aggregating the spatial features produced by the
CNN with temporal pooling can be a viable strategy (Karpathy et al., 2014; Ng et al., 2015).
As we’ll show in this paper, however, this method is of limited use for gesture recognition.

Apart from a collection of frames, a video can also be seen as a time series. Some of the most
successful models for time series classification are recurrent neural networks (RNNs) with
either standard cells or long short-term memory (LSTM) cells (Hochreiter & Schmidhuber,
1997). Their ability to learn dynamic temporal dependencies has allowed researchers to achieve
breakthrough results in e.g. speech recognition (Graves et al., 2013), machine translation
(Sutskever et al., 2014) and image captioning (Vinyals et al., 2015). Before feeding video to
recurrent models, we need to incorporate some form of spatial or spatiotemporal feature ex-
traction. This motivates the concept of combining CNNs with RNNs. CNNs have unparalleled
spatial (and spatiotemporal with added temporal convolutions) feature extraction capabilities,
while adding recurrence ensures the modeling of feature evolution over time.

For general video classification datasets like UCF-101 (Soomro et al., 2012), Sports-1M
(Karpathy et al., 2014) or HMDB-51 (Kuehne et al., 2011), the temporal aspect is of less
importance compared to a gesture recognition dataset. For example, the appearance of a
violin almost certainly suggests the target class is “playing violin”, as no other class involves
a violin. The model has no need to capture motion information for this particular example.
That being said, there are some categories where modeling motion in some way or another is
always beneficial. In the case of gesture recognition, however, motion plays a more critical
role. Many gestures are not only defined by their spatial hand and/or arm placement, but
also by their motion pattern.

In this work, we explore a variety of end-to-end trainable deep networks for video classification
applied to frame-wise gesture recognition with the Montalbano dataset that was introduced in
the ChaLearn LAP 2014 Challenge (Escalera et al., 2014). We study two ways of capturing the
temporal structure of these videos. The first method involves temporal convolutions to enable
the learning of motion features. The second method introduces recurrence to our networks,
which allows the modeling of temporal dynamics, which plays an essential role in gesture
recognition.

2 Related Work

An extensive evaluation of CNNs on general video classification is provided by Karpathy
et al. (2014) using the Sports-1M dataset. They compare different frame fusion methods to a
baseline single-frame architecture and conclude that their best fusion strategy only modestly
improves the accuracy of the baseline. Their work is extended by Ng et al. (2015), who show
that LSTMs achieve no improvements over a temporal feature pooling scheme on the UCF-101
dataset for human action classification and only marginal improvements on the Sports-1M
dataset. For this reason, the single-frame and the temporal pooling architectures are important
baseline models.

Another way to capture motion is to convert a video stream to a dense optical flow. This is a



way to represent motion spatially by estimating displacement vectors of each pixel. It is a core
component in the two-stream architecture described by Simonyan & Zisserman (2014) and is
used for human pose estimation (Jain et al., 2014), for global video descriptor learning (Ng
et al., 2015) and for video captioning (Venugopalan et al., 2015). We have not experimented
with optical flow, because (i) it has a greater computational preprocessing complexity and (ii)
our models should implicitly learn to infer motion features in an end-to-end fashion, so we
chose not to engineer them.

Neverova et al. (2014) present an extended overview of their winning solution for the ChaLearn
LAP 2014 gesture recognition challenge and achieve a state-of-the-art score on the Montalbano
dataset. They propose a multi-modal ‘ModDrop’ network operating at three temporal scales
and use an ensemble method to merge the features at different scales. They also developed a
new training strategy, ModDrop, that makes the network’s predictions robust to missing or
corrupted channels.

Most of the constituent parts in our architectures have been used before in other work for
different purposes. Learning motion features with three-dimensional convolution layers has
been studied by Ji et al. (2013) and Taylor et al. (2010) to classify short clips of human actions
on the KTH dataset. Baccouche et al. (2011) proposed including a two-step scheme to model
the temporal evolution of learned features with an LSTM. Finally, the combination of a CNN
with an RNN has been used for speech recognition (Hannun et al., 2014), image captioning
(Vinyals et al., 2015) and video narration (Donahue et al., 2015).

3 Architectures

In this section, we briefly describe the different architectures we investigate for gesture
recognition in video. An overview of the models is depicted in Figure 1. Note that we pay
close attention to the comparability of the network structures. The number of units in the
fully connected layers and the number of cells in the recurrent models are optimized based on
validation results for each network individually. All other hyper-parameters mentioned in this
section and in Section 4.2 are optimized for the temporal pooling architecture. As a result,
improvements over our baseline models are caused by architectural differences rather than
better optimization, other hyper-parameters or preprocessing.

3.1 Baseline Models

Single-Frame The single-frame architecture (Figure la) worked well for general video
classification (Karpathy et al., 2014), but is not a very fitting solution for our frame-wise
gesture recognition setting. Nevertheless, this will give us an indication on how much static
images contribute to the recognition. It has 3x3 convolution kernels in every layer. Two
convolutional layers are stacked before performing max-pooling on non-overlapping 2x 2 spatial
regions. The shorthand notation of the full architecture is as follows: C(16) - C'(16) - P -
C(32)-C(32)- P-C(64) - C(64) - P-C(128) - C(128) - P - D(2048) - D(2048) - S, where
C'(n.) denotes a convolutional layer with n. feature maps, P a max-pooling layer, D(ng) a
fully connected layer with ng units and S a softmax classifier. We deploy leaky rectified linear
units (leaky ReLUs) in every layer. Their activation function is defined as a : x — max(az, x),
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Figure 1: Overview (a) Single-frame CNN architecture. (b) Temporal feature pooling
network (max- or mean-pooling), spanning multiple video frames. (¢) Model with bidirectional
recurrence. (d) Adding temporal convolutions and three-dimensional max-pooling (MP refers to
max-pooling). (e) Architecture with added temporal convolutions and bidirectional recurrence.

where o = 0.3. Leaky ReLUs seemed to work better than conventional ReLLUs and showed
promising results in other work (Maas et al., 2013; Graham, 2014; Dieleman et al., 2015; Xu
et al., 2015).

Temporal Feature Pooling The second baseline model exploits a temporal feature pooling
strategy. As suggested by Ng et al. (2015), we position the temporal pooling layer right
before the first fully connected layer as illustrated in Figure 1b. This layer performs either
mean-pooling or max-pooling across all video frames. The structure of the CNN-component is
identical to the single-frame model. This network is able to collect all the spatial features in a
given time window. However, the order of the temporal events is lost due to the nature of
pooling across frames.

3.2 Bidirectional Recurrent Models

The core idea of RNNs is to create internal memory to learn the temporal dynamics in
sequential data. An issue (in our case) with conventional recurrent networks is that their states
are built up from previous time steps. A gesture, however, generally becomes recognizable
only after a few time steps, while the frame-wise nature of the problem requires predictions



from the very first frame. This is why we use bidirectional recurrence, which enables us to
process sequences in both temporal directions.

Describing the proposed model (Figure 1c) formally, we start with the CNN (identical to the
single-frame model) transforming an input frame x; to a more compact vector representation
V¢!

Ve = CNN((L‘t) (1)

A bidirectional RNN computes two hidden sequences: the forward hidden sequence hf) and
the backward hidden sequence h®):

WD =y, ) and (2)
b b
B = 1, (v, 1Y), (3)

where H represents a recurrent layer and depends on the type of memory cell. There are
two different cell types in widespread use: standard cells and LSTM cells (Hochreiter &
Schmidhuber, 1997) (we use the modern LSTM cell structure with peephole connections (Gers
et al., 2003)). Both cell types will be compared in this work. Finally, the output predictions
y¢ are computed with a softmax classifier which takes the sum of the forward and backward
hidden states as input:

Y = softmaX(Wy(th) + hib)) +by). (4)

3.3 Adding Temporal Convolutions

Our final set of architectures extends the CNN layers with temporal convolutions (convolutions
over time). This enables the extraction of hierarchies of motion features and thus the capturing
of temporal information from the first layer, instead of depending on higher layers to form
spatiotemporal features. Performing three-dimensional convolutions is one approach to achieve
this. However, this leads to a significant increase in the number of parameters in every layer,
making this method more prone to overfitting. Therefore, we decide to factorize this operation
into two-dimensional spatial convolutions and one-dimensional temporal convolutions. This
leads to fewer parameters and optionally more nonlinearity if one decides to activate both
operations. We opt to not include a bias or another nonlinearity in the spatial convolution
step to maintain the comparability between architectures.

First, we compute spatial feature maps s; for every frame x;. A pixel at position (i,7) of the
k-th feature map is determined as follows:

N
sty =0 (Wi #al). )
n=1

where N is the number of input channels and Wspa are trainable parameters. Finally, we
convolve across the time dimension for every position (i, 5), add the bias b%) and apply the
activation function a:

M
vgcj) =a (b(k) + Z (Wt(ekng * sgn))t> , (6)



where the variables Wiemp and b are trainable parameters and M is the number of spatial
feature maps.

Two different architectures are proposed using this new layer. In the first model (Figure
1d), we replace the convolutional layers of the single-frame CNN with the spatiotemporal
layer defined above. Furthermore, we apply three-dimensional max-pooling to reduce spatial
as well as temporal dimensions while introducing slight translational invariance in time.
Note that this architecture implies a sliding window approach for frame-wise classification,
which is computationally intensive. In the second model, illustrated in Figure le, the time
dimensionality is retained throughout the network. That means we only carry out spatial max-
pooling. To this end, we are able to stack a bidirectional RNN with LSTM cells, responding
to high-level temporal dependencies. It also incidentally resolves the need for a sliding window
approach to implement frame-wise video classification.

4 Experiments

4.1 Montalbano Gesture Recognition Dataset

The ChaLearn Looking At People (LAP) 2014 Challenge (Escalera et al., 2014) consists of three
tracks: human pose recovery, human action/interaction recognition and gesture recognition.
The dataset accompanying the gesture recognition challenge, called the Montalbano dataset,
will be used throughout this work. The dataset is multi-modal, because the gestures are
captured with a Microsoft Kinect that has a depth sensor. In all sequences, a single user is
recorded in front of the camera, performing natural communicative Italian gestures. Each
data file contains an RGB-D (where “D” stands for depth) image sequence and a skeletal pose
stream provided by the Microsoft Kinect API. The gesture vocabulary contains 20 Italian
cultural/anthropological signs. The gestures are not segmented, which means that sequences
typically contain several gestures. Gesture performances appear randomly within the sequence
without a prearranged rest pose. Moreover, several unannotated out-of-vocabulary gestures
are present.

It is the largest publicly available gesture dataset of its kind. There are 1,720,800 labeled
frames across 13, 858 video fragments of about 1 to 2 minutes sampled at 20Hz with a resolution
of 640x480. The gestures are performed by 27 different individuals under diverse conditions;
these include varying clothes, positions, backgrounds and lighting. The training set contains
11,116 gestures and the test set contains 2, 742. The class imbalance is negligible. The starting
and ending frames for each gesture are annotated as well as the gesture class label.

To speed up the training, we crop part of the images containing the user and rescale them to
64 by 64 pixels using the skeleton information (other than that, we do not use any pose data).
However, we show in Section 4.3 that we even achieve good results when we do not crop the
images and leave out depth information.



4.2 End-To-End Training

We train our models from scratch in an end-to-end fashion, backpropagating through time
(BTT) for our recurrent architectures. The network parameters are optimized by minimizing
the cross-entropy loss function using mini-batch gradient descent with the Adam update
rule (Kingma & Ba, 2015). We found that Adam works great in practice, especially when
experimenting with very different layer types in the same model. All our models are trained
the same way with early stopping, a mini-batch size of 32, a learning rate of 10~2 and an
exponential learning rate decay. Before training, we initialize the weights with a random
orthogonal initialization method (Saxe et al., 2013).

Recurrent Networks As described in Section 4.1, the video files in the Montalbano dataset
contain approximately 1 to 2 minutes of footage, consisting of multiple gestures. Recurrent
models are trained on random fragments of 64 frames and produce 64 predictions, one for
every frame. To summarize, a data sample has 4 channels (RGB-D), 64 frames each, with
a resolution of 64 by 64 pixels; or in shorthand notation: 4@64x64x64. We optimized the
number of cells for each model based on validation results. For LSTM cells, we only saw a
small improvement between 512 and 1024 units, so we settled at 512. For RNNs with standard
cells, we used 2048 units. The location of gestures within the long sequences is not given. A
gesture is generally about 20 to 50 frames long. If a small fraction of a gesture is located
at the beginning or the end of the 64 considered frames, the model does not have enough
information to label these frames correctly. That is why we allow a buildup in both forward
and backward direction for evaluation; we feed 64 frames into the RNN and keep the middle
32 for evaluation.

Non-Recurrent Networks The single-frame CNN is trained frame by frame and all other
non-recurrent networks are trained with the number of frames optimized for their specific
architecture. The best number of frames to mean-pool across is 32, determined by validation
scores with tested values in [8,16,32,64]. In the case of max-pooling, we find that pooling
over 16 frames gives better outcomes. Also, pretraining the CNNs frame-by-frame and
fine-tuning with temporal max-pooling gave slightly improved results. We observed no
improvements, however, using this technique with temporal mean-pooling. The architecture
with added temporal convolutions and three-dimensional max-pooling showed optimal results
by considering 32 surrounding frames. The targets for all the non-recurrent networks are the
labels associated with the centermost frame of the input video fragment. We evaluate these
models using a sliding window with single-frame steps.

Regularization and Data-Augmentation We employed many different methods to regu-
larize the deep networks. Data augmentation has a significant impact on generalization. For
all our trained models, we used the same augmentation parameters: [—5, 5] pixel translations
in vertical direction and [—10, 10] horizontal, [—2, 2] rotation degrees, [—2, 2] shearing degrees,
[%17 1.1] image scaling factors and [1—12, 1.2] temporal scaling factors. From each of these inter-
vals, we sample a random value for each video fragment and apply the transformations online
using the CPU. Dropout with p = 0.5 is used on the inputs of every fully connected layer. Fur-
thermore, using leaky ReLUs instead of conventional ReLLUs and factorizing three-dimensional

convolutions into spatial and temporal convolutions also reduce overfitting.



Architecture Jaccard Index Precision Recall Error Rate*

Single-Frame CNN (Figure 1a) 0.465 67.86% 57.57% 20.68%
Temp Max-Pooling (Figure 1b) 0.748 85.03% 82.92% 8.66%
Temp Mean-Pooling (Figure 1b) 0.775 85.93% 85.80% 8.55%
Temp Conv (Figure 1d) 0.842 89.36% 90.15% 4.67%
RNN, Standard Cells (Figure 1c) 0.885 92.77% 93.56% 3.58%
RNN, LSTM Cells (Figure 1c¢) 0.888 93.75% 93.28% 3.55%
Temp Conv + LSTM (Figure le) 0.906 94.49% 94.57% 2.77%

Table 1: A comparison of the results for our different architectures on the Montalbano
gesture recognition dataset. The Jaccard index indicates the mean overlap between the binary
predictions and the binary ground truth across gesture categories. We also compute precision
and recall scores for each gesture class and report the mean score across classes.

*The error rate is based on majority voted frame-wise predictions from isolated gesture
fragments.

4.3 Results

We follow the Chal.earn LAP 2014 Challenge score to measure the performance of our
architectures. This way, we can compare with previous work on the Montalbano dataset. The
competition score is based on the Jaccard index, which is defined as follows:

|As,n N Bs,n|

Jop = om_28n
o |As,n U Bs,n|

(7)
The binary ground truth for gesture category n in sequence s is denoted as the binary vector
As n, whereas B, , denotes the binary predictions. The Jaccard index Js, can be seen as
the overlap rate between Ay, and B;,. To compute the final score, the mean Jaccard index
among all categories and sequences is computed:

1 S N
avg Nigz:: 5,1 (8)

where N = 20 is the number of categories and S the number of sequences in the test set.

An overview of the results for our different architectures is shown in Table 1. The predictions
of the single-frame baseline achieve a Jaccard index below 0.5. This is to be expected as no
motion features are extracted. We observe a significant improvement with temporal feature
pooling (a Jaccard index of 0.775 vs. 0.465). Furthermore, mean-pooling performs better than
max-pooling. Adding temporal convolutions and three-dimensional max-pooling improves the
Jaccard index to 0.842.

The three last entries in Table 1 use recurrent networks. Surprisingly, the RNNs are only
acting on high-level spatial features, yet are surpassing a CNN learning hierarchies of motion
features (a Jaccard index of 0.842 vs. 0.888). The difference in performance for the two types
of cells is very small and they can be considered equally capable for this type of problem where
temporal dependencies are not too long-ranged. Finally, combining the temporal convolution
architecture with an RNN using LSTM cells improves the score even more (0.906). This



Model Crop Depth Pose Jaccard Index

Chang (2014) (MRF, KNN, PCA, HoG) yes no yes 0.827
Monnier et al. (2014) (AdaBoost, HoG) yes yes yes 0.834
Neverova et al. (2014) (Multi-Scale DNN)  yes yes no 0.836
Neverova et al. (2014) (Multi-Scale DNN)  yes yes yes 0.870

no no no 0.842
Temp Conv + LSTM yes no no 0.876

yes yes no 0.906

Table 2: Montalbano gesture recognition dataset results compared to previous work. Crop:
the cropping of specific areas in the video using the skeletal information. Depth: the usage of
depth-maps. Pose: the usage of the skeletal stream as features. Note that even when we do
not use depth images, we still achieve better results.

deep network not only learns multi-level spatiotemporal features, but is capable of modeling
temporal dynamics within them.

In Table 2, we compare our results with previous work. Our best model outperforms the
method of Neverova et al. (2014) when we only consider RGB-D pixels as input features (0.906
vs. 0.836). When we remove depth information and perform no preprocessing other than
rescaling the images, we still achieve better results (0.842). Moreover, we even achieve better
results without the need for depth images or pose information (0.876 vs. 0.870).

To illustrate the differences in output predictions of the different architectures, we show
them for a randomly selected sequence in Figure 2. We see that the single-frame CNN has
trouble classifying the gestures, while the temporal pooling is significantly more accurate.
However, the latter still has difficulties with boundaries. Adding temporal convolutions shows
improved results, but the output contains more jagged predictions. This seems to disappear
by introducing recurrence. The output of the bidirectional RNN matches the target labels
strikingly well.

In Figure 3, we show that adding temporal convolutions enables neural networks to capture
motion information. When the user is standing still, the units of the feature map are inactive,
while the feature map from the network without temporal convolutions has a lot of active
units. When the user is moving, the feature map shows strong activations at the movement
locations. This suggests that the model has learned to extract motion features.

5 Conclusion and Future Work

We showed in this paper that adding bidirectional recurrence and temporal convolutions
improves frame-wise gesture recognition in video significantly. We observed that RNNs
responding to high-level spatial features perform much better than single-frame and temporal
pooling architectures, without the need to take into account the temporal aspect in the lower
layers of the network. However, adding temporal convolutions in all layers of the architecture
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Figure 2: The output probabilities are shown for a sequence fragment in the test set. The
dashed line represents silences. The non-recurrent models make more mistakes and have
difficulties making hard decisions to where the gesture starts or ends and are unable to smooth
out predictions in time. Adding recurrence enables deep networks to learn the behavior of the
manual annotators with great accuracy.

has a notable impact on the performance, as they are able to learn hierarchies of motion
features, unlike RNNs. Standard cells and LSTM cells appear to be equally strong for this
problem. Furthermore, we observed that RNNs outperform non-recurrent networks and are
able to predict the beginning and ending frames of gestures with great accuracy, whereas other
models show uncertainty at these boundaries.

In the future, we would like to build upon this work for research in the domain of sign language
recognition. This is even more challenging than gesture recognition. The vocabulary is larger,
the differences in finger positions and hand movements are more subtle and signs are context
dependent, as they are part of a language. Sign language is not related to written or spoken
language, which complicates annotation and translation. Moreover, signers communicate
simultaneously with facial, manual (both hands are separate communication channels) and
body expressions. This means that sign language video cannot be translated the way speech
recognition can transcribe audio to written sentences.
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Figure 3: Motion Features This figure illustrates the effect of integrating temporal con-
volutions. The depicted spatial feature map is the most active 4-layer-deep feature map,
extracted from an architecture without temporal convolutions. The spatiotemporal feature
map is extracted from a model with temporal convolutions. The strong activations in the
spatiotemporal feature maps while moving indicate learned motion features.
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