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Abstract Understanding images with people often entails
understanding their interactions with other objects or peo-
ple. As such, given a novel image, a vision system ought
to infer which other objects/people play an important role
in a given person’s activity. However, existing methods are
limited to learning action-specific interactions (e.g., how the
pose of a tennis player relates to the position of his rac-
quet when serving the ball) for improved recognition, mak-
ing them unequipped to reason about novel interactions with
actions or objects unobserved in the training data.

We propose to predict the “interactee” in novel images—
that is, to localize the object of a person’s action. Given
an arbitrary image with a detected person, the goal is to
produce a saliency map indicating the most likely positions
and scales where that person’s interactee would be found.
To that end, we explore ways to learn the generic, action-
independent connections between (a) representations of a
person’s pose, gaze, and scene cues and (b) the interactee
object’s position and scale. We provide results on a newly
collected UT Interactee dataset spanning more than 10,000
images from SUN, PASCAL, and COCO. We show that the
proposed interaction-informed saliency metric has practical
utility for four tasks: contextual object detection, image re-
targeting, predicting object importance, and data-driven nat-
ural language scene description. All four scenarios reveal
the value in linking the subject to its object in order to un-
derstand the story of an image.
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Fig. 1 Despite the fact we have hidden the remainder of the scene, can
you infer where is the object with which each person is interacting?
Our goal is to predict the position and size of such “interactee” objects
in a category-independent manner, without assuming prior knowledge
of the either the specific action or object types.

Keywords Human-object interaction · Importance ·
Objectness

1 Introduction

Understanding human activity is a central goal of computer
vision with a long history of research. Whereas earlier work
focused on precise body pose estimation and analyzed hu-
man gestures independent of their surroundings, recent re-
search shows the value in modeling activity in the context of
interactions. An interaction may involve the person and an
object, the scene, or another person(s). For example, a per-
son reading reads a book or paper; a person discussing chats
with other people nearby; a person eating uses utensils to
eat food from a plate. In any such case, the person and the
“interactee” object (i.e., the book, other people, food and
utensils, etc.) are closely intertwined; together they define
the story portrayed in the image or video.

Increasingly, research in human action recognition aims
to exploit this close connection (Peursum et al 2005, Gupta
et al 2009, Desai et al 2010, Yao and Fei-Fei 2010b;a, Ikizler-
Cinbis and Sclaroff 2010, Prest et al 2012, Delaitre et al
2012). In such methods, the goal is to improve recognition
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Fig. 2 Example test instances processed by our method. Given an image with a detected person (top row), our method returns an interaction-
informed saliency map (bottom row). This map captures the positions and scales of regions where the system expects to see an interactee. Its
predictions are the result of learning action- and object-independent cues that indicate “where to look” for the interactee relative to the person. In
these successful cases, even though the system posseses no object detector for the highlighted objects, it can nonetheless isolate those regions of
interest based on learned cues about where the person is looking, his/her body pose, and the general scene semantics. For example, our system
infers the interactee’s position and scale across different types of interactions, such as holding, riding, and eating. See Sec. 4 for details and more
examples, including failure cases.

by leveraging human action in concert with the object be-
ing manipulated by the person. However, prior work is re-
stricted to a closed-world set of objects and actions, and as-
sumes that during training it is possible to learn patterns be-
tween a particular action and the particular object category
it involves. For example, given training examples of using a
computer, typical poses for typing can help detect the nearby
computer, and vice versa; however, in existing methods, this
pattern would not generalize to help make predictions about,
say, a person operating a cash register. Furthermore, existing
work largely assumes that the interactions of interest involve
a direct manipulation, meaning that physical contact occurs
between the person and the interactee.

We seek to relax these assumptions in order to make pre-
dictions about novel, unseen human-object interactions. In
particular, we consider the following question: Given a per-
son in a novel image, can we predict the location of that
person’s “interactee”—the object or person with which he
interacts—even without knowing the particular action be-
ing performed or the category of the interactee itself? In
terms of English grammar, the interactee is the direct ob-
ject, i.e., the noun that receives the action of a transitive verb
or shows the results of the action. Critically, by posing the
question in this manner, our solution cannot simply exploit
learned action-specific poses and objects. Instead, we aim
to handle the open-world setting and learn generic patterns
about human-object interactions. In addition, we widen the
traditional definition of an interactee to include not only di-
rectly manipulated objects, but also untouched objects that

are nonetheless central to the interaction (e.g., the poster on
the wall the person is reading).

Our goal is challenging. A naive approach might simply
prioritize objects based on their proximity to a person. How-
ever, as we will show in results, doing so is inadequate—not
only because many objects of various scales may closely
surround a person, but also because the person need not be
touching the interactee (e.g., a supermodel looks in a mir-
ror). Furthermore, the task is not equivalent to detecting an
action, since an action may have multiple interchangeable
objects with disparate localization parameters (e.g., planting
a flower vs. planting a tree)

Why, then, should our goal be possible? Are there prop-
erties of interactions that transcend the specific interactee’s
category and can be learned? Figure 1 suggests that, at least
for human observers, it is plausible. In these examples, with-
out observing the interactee object or knowing its type, one
can still infer the interactee’s approximate position and size.
For example, in image A, we may guess the person is inter-
acting with a small object in the bottom left. We can do so
because we have a model of certain pose, gaze, and scene
layout patterns that exist when people interact with a per-
son/object in a similar relative position and size. We stress
that this is without knowing the category of the object, and
even without (necessarily) having seen the particular action
being performed.

Based on this intuition, our idea is to learn from data
how the properties of a person in an image (the “subject”) re-
late to the interactee localization parameters (the “object”).
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Task 4: Interactees in sentence generation Task 3: Interactees as important objects 

Task2: Interactee-aware image retargeting 
Task 1: Interactee-aware object 
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Fig. 3 Once we learn to predict where an interactee is likely to be found, we can tackle four fine-grained human-object interaction tasks: (1) object
detection exploiting a contextual prior given by the interactee’s likely placement, (2) image retargeting where the preference is to preserve not
only the subject (person), but also the key object of his interaction, (3) object importance ranking, where we prioritize mentioning an object that
is involved in the interaction, and (4) sentence descriptions of images, where we learn to focus a short natural language description of the scene
to include the major players (both subject and object).

Given instances labeled with both the person and interactee
outlines—from a variety of activities and objects—we train
a model that can map observed features of the person and
scene to a distribution over the interactee’s position and scale.
Then, at test time, given a novel image and a detected per-
son, we predict the most likely places the interactee will be
found.

In particular, we explore both learned and hand-crafted
descriptors for the task. The learned descriptors use convolu-
tional neural networks (CNNs) pre-trained for object recog-
nition, then fine-tuned for the interactee localization tasks.
Using content from both the person region and the entire
scene, these descriptors are free to learn any signal about
the interaction and scene layout that is predictive of find-
ing the region with the interactee. On the other hand, the
hand-crafted descriptors more explicitly encode cues likely
to inform about interactees’ placement, such as the subject’s
eye gaze, body pose, and relative positioning in the scene.

To build a predictive model from these features, we de-
velop and compare two methods—one non-parametric, one
parametric—that can accommodate varying levels of anno-
tated training data. Our non-parametric approach retrieves
annotated examples similar to a test instance in terms of
their interactions, then computes a locally weighted regres-
sion model to infer the new localization map. Our alterna-

tive parametric approach uses Mixture Density Networks
(MDNs) (Bishop 1994) to generate a mixture model over
scales and positions on the fly, where the connection be-
tween the image features and mixture model parameters are
directly learned.

Our method can be seen as an interaction-informed met-
ric for object saliency: it highlights regions of the novel im-
age most likely to contain objects that play an important role
in summarizing the image’s content. See Figure 2.

With this in mind, we develop four novel tasks to lever-
age the interactee predictions, as previewed in Figure 3. First,
we consider how they can improve the accuracy or speed of
an existing object detection framework, by guiding the de-
tector to focus on areas that are involved in the interaction.
Second, we use interactees to assist in image retargeting. In
this task, the image is automatically resized to a target as-
pect ratio by removing unimportant content and preserving
the parts related to the person and his interactee.

In the third and fourth tasks, we examine the interactee
as a means to answer the “what to mention” question about
image description. As object recognition techniques gain more
solid footing, it is now valuable to formulate the task not
merely in terms of labeling every object, but also in terms of
identifying which, among all true detections, a human ob-
server would bother to include when describing the scene.
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To this end, we explore using interactees to rank order ob-
jects in the scene by their importance, i.e., their probabil-
ity of being mentioned (Spain and Perona 2008; 2011, Berg
et al 2012). Then, as the fourth and final task, we map the
image to a natural language sentence description, using a
retrieval-based approach that finds images with similar in-
teractions in a captioned database.

To facilitate our data-driven strategy as well as quanti-
tative evaluation, we collect interaction annotations for over
15,000 images containing people from the Common Objects
In Context (COCO) dataset (Lin et al 2014), and hundreds
of images containing people from PASCAL Actions (Ever-
ingham et al 2010) and SUN scenes (Xiao et al 2010). Re-
sults on these challenging datasets evaluate our methods’ lo-
calization accuracy compared to several baselines, including
an existing high-level “objectness” saliency method (Alexe
et al 2010) and a naive approach that simply looks for in-
teractees nearby a person. We also perform a human subject
study to establish the limits of human perception for esti-
mating unseen interactees. Finally, we demonstrate practical
impact for the four tasks discussed above.

To recap, our main contributions are:

– We define the problem of interactee localization, which
to our knowledge has not been considered in any prior
work.1

– We develop learned person and scene embeddings that
preserve information relevant to human-object interac-
tions. We further introduce and analyze two learning frame-
works for making interactee predictions.

– We gather a large annotated dataset for human-object
interactions spanning hundreds of diverse action types,
which is necessary to train and evaluate methods for the
proposed task. It will be made publicly available.

– We analyze the performance of our approaches com-
pared to multiple baselines and existing methods, in-
cluding methods from the object importance and object
proposal literature. We also examine the impact of learned
versus hand-crafted features for our task.

– We demonstrate the practical value of interactees for four
tasks: object detection, image retargeting, object impor-
tance, and image description.

In the following, we next review related work (Sec. 2).
Then we introduce our approach (Sec. 3), including system-
atically defining what qualifies as an interactee, explaining
our data collection effort, defining our learning models, and
developing the four tasks to exploit it. Finally, we provide
experimental results in Sec. 4.

1 This manuscript is an extension of our initial conference pa-
per (Chen and Grauman 2014). Please see the cover letter for an
overview of the new additions to both the method and results that are
contained in this article.

2 Related Work

Human-object interactions for recognition A great deal of
recent work in human activity recognition aims to jointly
model the human and the objects with which he or she in-
teracts (Peursum et al 2005, Gupta et al 2009, Desai et al
2010, Yao and Fei-Fei 2010b;a, Ikizler-Cinbis and Sclaroff
2010, Farhadi and Sadeghi 2011, Prest et al 2012, Delaitre
et al 2012). The idea is to use the person’s appearance (body
pose, hand shape, etc.) and the surrounding objects as mu-
tual context—knowing the action helps predict the object,
while knowing the object helps predict the action or pose.
For example, the Bayesian model in (Gupta et al 2009) inte-
grates object and action recognition to resolve cases where
appearance alone is insufficient, e.g., to distinguish a spray
bottle from a water bottle based on the way the human uses
it. Or, while it may be hard to infer body pose for a ten-
nis serve, and hard to detect a tennis ball, attempting to
do both jointly reduces ambiguity (Yao and Fei-Fei 2010a).
Similarly, structured models are developed to recognize ma-
nipulation actions (Kjellstrom et al 2008) or sports activi-
ties (Yao and Fei-Fei 2010b, Desai et al 2010) in the context
of objects. Novel representations to capture subtle interac-
tions, like playing vs. holding a musical instrument, have
also been developed (Yao and Fei-Fei 2010a). Object recog-
nition itself can benefit from a rich model of how human
activity (Peursum et al 2005) or pose (Delaitre et al 2012)
relates to the object categories. While most such methods
require object outlines and/or pose annotations, some work
lightens the labeling effort via weakly supervised learning (Ikizler-
Cinbis and Sclaroff 2010, Prest et al 2012).

While we are also interested in human-object interac-
tions, our work differs from all the above in three signifi-
cant ways. First, whereas they aim to improve object or ac-
tion recognition, our goal is to predict the location and size
of an interactee—which, as we will show, has applications
beyond recognition. Second, we widen the definition of an
“interactee” to include not just manipulated objects, but also
those that are untouched yet central to the interaction. Third,
and most importantly, the prior work learns the spatial rela-
tionships between the human and object in an action-specific
way, and is therefore inapplicable to reasoning about inter-
actions for any action/object unseen during training. In con-
trast, our approach is action- and object-independent; the
cues it learns cross activity boundaries, such that we can pre-
dict where a likely interactee will appear even if we have not
seen the particular activity (or object) before. This means,
for example, our method can learn that a person by a kitchen
counter with arms outstretched is manipulating something
around a certain size—whether he is making toast or blend-
ing juice.
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Carried object detection Methods to detect carried objects
(e.g., (Haritaoglu et al 2000, Damen and Hogg 2008)) may
be considered an interesting special case of our goal. Like
us, the intent is to localize an interactee object that (in prin-
ciple) could be from any category, though in reality the ob-
jects have limited scale and position variety since they must
be physically carried by the person. However, unlike our
problem setting, carried object detection typically assumes
a static video camera, which permits good background sub-
traction and use of human silhouette shapes to find outliers.
Furthermore, it is specialized for a single action (carrying),
whereas we learn models that cross multiple action category
boundaries.

Social interactions Methods for analyzing social interac-
tions estimate who is interacting with whom (Cristani et al
2011, Marin-Jimenez et al 2011, Fathi et al 2012), detect
joint attention in video (Park and Shi 2015), predict where
people are looking (Recasens et al 2015), or categorize how
people are touching (Yang et al 2012). The “interactee” in
our setting may be another person, but it can also belong
to another object category. Furthermore, whereas the social
interaction work can leverage rules from sociology (Cristani
et al 2011) or perform geometric intersection of mutual gaze
lines (Marin-Jimenez et al 2011, Fathi et al 2012), our task
requires predicting a spatial relationship between a person
and possibly inanimate object. Accordingly, beyond gaze,
we exploit a broader set of cues in terms of body posture
and scene layout, and we take a learning approach rather
than rely only on spatial reasoning. Furthermore, unlike any
of the above, we study how person-centric saliency affects a
third party’s impression of what is important in an image.

Object affordances Methods to predict object affordances
consider an object (Koppula and Saxena 2013, Desai and
Ramanan 2013) or scene (Gupta et al 2011) as input, and
predict which actions are possible as output. They are espe-
cially relevant for robot vision tasks, letting the system pre-
dict, for example, which surfaces are sittable or graspable.
Our problem is nearly the inverse: given a human pose (and
other descriptors) as input, our method predicts the local-
ization parameters of the object defining the interaction as
output.

Saliency and importance Saliency detection, studied for many
years, also aims to make class-independent predictions about
potentially interesting regions in an image. While many meth-
ods look at low-level image properties (e.g., (Itti et al 1998,
Hou and Zhang 2007)), a recent trend is to learn metrics for
“object-like” regions based on cues like convexity, closed
boundaries, and color/motion contrast (Liu et al 2007, Alexe
et al 2010, Carreira and Sminchisescu 2010, Endres and

Hoiem 2010, Lee et al 2011, Zitnick and Dollár 2014). In ob-
ject detection, these “object proposal” methods have gained
traction as a way to avoid naive sliding window search. Re-
lated to our work, such metrics are category-independent by
design: rather than detect a certain object category, the goal
is to detect instances of any object category, even those not
seen in training. However, neither saliency nor object pro-
posals have been studied for identifying interactees, and, in
contrast to our approach, none of the existing methods ex-
ploit person-centric cues to learn what is salient.

More related to our work are methods that model impor-
tance (Spain and Perona 2008; 2011, Hwang and Grauman
2010, Berg et al 2012). They attempt to isolate those objects
within a scene that a human would be most likely to notice
and mention. Using compositional cues like object size and
position (Spain and Perona 2008; 2011) as well as seman-
tic cues about object categories, attributes, and scenes (Berg
et al 2012), one can learn a function that ranks objects by
their importance, or their probability of being mentioned
by a human. Similarly, a multi-view embedding between
ranked word-lists and visual features can help retrieve im-
ages sharing prominent objects (Hwang and Grauman 2010).
Like these methods, we aim to prioritize objects worth men-
tioning in a scene. Unlike these methods, we propose a novel
basis for doing so—the importance signals offered by a human-
object interaction. In addition, unlike methods that exploit
object category-specific cues (Berg et al 2012, Hwang and
Grauman 2010, Spain and Perona 2008; 2011), we learn a
category-independent metric to localize a probable impor-
tant object, relative to a detected person.

Different from any of the above saliency and importance
work, our method predicts regions likely to contain an ob-
ject involved in an interaction. We compare our method to
representative state-of-the-art objectness (Alexe et al 2010)
and importance (Berg et al 2012) metrics in our experiments,
showing the advantages of exploiting human interaction cues
when deciding which regions are likely of interest.

Describing images As one of the four applications of inter-
actees, we explore image description. Recent work explores
ways to produce a sentence describing an image (Farhadi
et al 2010, Kulkarni et al 2011, Yao et al 2010, Ordonez
et al 2011, Donahue et al 2015, Fang et al 2015, Karpathy
and Fei-Fei 2015) or video clip (Guadarrama et al 2013).
Such methods often smooth the outputs of visual detectors,
making them better agree with text statistics (Kulkarni et al
2011, Guadarrama et al 2013, Pirsiavash et al 2014) or a se-
mantic ontology (Yao et al 2010). One general approach is to
produce a sentence by retrieving manually captioned images
that appear to match the content of the novel query (Farhadi
et al 2010, Ordonez et al 2011, Devlin et al 2015). An-
other is to employ language models to generate novel sen-
tences (Kulkarni et al 2011, Fang et al 2015, Kuznetsova
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et al 2012). Recently, methods based on multi-modal em-
beddings and deep learning show promise (Karpathy and
Fei-Fei 2015, Donahue et al 2015, Fang et al 2015). While a
few existing methods employ human activity detectors (Or-
donez et al 2011, Guadarrama et al 2013, Pirsiavash et al
2014), they do not represent human-object interactions, as
we propose.

Other methods explore various criteria for selectively com-
posing textual descriptions for images. In (Sadovnik et al
2012), the system composes a description that best discrimi-
nates one image from others in a set, thereby focusing on the
“unexpected”. In (Pirsiavash et al 2014), a language model
is used to help infer a person’s motivation, i.e., the pur-
pose of their actions. In (Ordonez et al 2013), a mapping
is learned from specific object categories to natural sound-
ing entry-level category names (e.g., dolphin vs. grampus
griseus). This notion of being selective about what to state in
a description relates to our goal of selecting relevant content
based on the interaction, but none of the prior work com-
poses a description with an explicit model of interactions.

For experiments demonstrating interactees’ potential to
aid image description, we make use of a simple retrieval-
based image description approach modeled after (Ordonez
et al 2011, Devlin et al 2015). We do not claim new con-
tributions for sentence generation itself; rather, we use this
area as a testbed for exploiting our contribution of interactee
localization.

3 Approach

In the following, we first precisely define what qualifies as
an interactee (Sec. 3.1) and interaction and describe our data
collection effort to obtain annotations for training and evalu-
ation (Sec. 3.2). Then, we explain the two proposed learning
and prediction procedures, namely, our interaction embedding-
based non-parametric approach (Sec. 3.3.3) and a paramet-
ric probabilistic approach (Sec. 3.3.4). Finally, we present
the four tasks that exploit our method’s interactee predic-
tions (Sec. 3.4).

3.1 Definition of Human-Interactee Interactions

An interactee refers to the thing a particular person in the
image is interacting with. An interactee could be an object,
a composition of objects, or another person. To character-
ize interactees, then, first we must define precisely what a
human-interactee interaction is. This is important both to
scope the problem and to ensure maximal consistency in the
human-provided annotations we collect.

Our definition considers two main issues: (1) the interac-
tions are not tied to any particular set of activity categories,

and (2) an interaction may or may not involve physical con-
tact. The former simply means that an image containing a
human-object interaction of any sort qualifies as a true pos-
itive; it need not depict one of a predefined list of actions
(in contrast to prior work (Yao et al 2011, Everingham et al
2010, Gupta et al 2009, Desai et al 2010, Yao and Fei-Fei
2010b, Ikizler-Cinbis and Sclaroff 2010, Prest et al 2012)).
By the latter, we intend to capture interactions that go be-
yond basic object manipulation activities, while also being
precise about what kind of contact does qualify as an interac-
tion. For example, if we were to define interactions strictly
by cases where physical contact occurs between a person
and object, then walking aimlessly in the street would be
an interaction (interactee=road), while reading a whiteboard
would not. Thus, for some object/person to be an interactee,
the person (“interactor”) must be paying attention to it/him
and perform the interaction with a purpose.

Specifically, we say that an image displays a human-
interactee interaction if either of the following holds:

1. The person is watching a specific object or person and
paying specific attention to it. This includes cases where
the gaze is purposeful and focused on some object/person
within 5 meters. It excludes cases where the person is
aimlessly looking around.

2. The person is physically touching another object/person
with a specific purpose. This includes contact for an in-
tended activity (such as holding a camera to take a pic-
ture), but excludes incidental contact with the scene ob-
jects (such as standing on the floor, or carrying a camera
bag on the shoulder).

An image can contain multiple human-interactee rela-
tionships. We assume each person in an image has up to one
interactee. This does not appear to be a limiting assump-
tion for static image analysis, in that a person’s attention
is by definition focused on one entity at the moment their
photograph is taken. At test time, our method predicts the
likely interactee location for each individual detected per-
son in turn.

3.2 Interactee Dataset Collection

Our method requires images of a variety of poses and in-
teractee types for training. We found existing datasets that
contain human-object interactions, like the Stanford-40 and
PASCAL Actions (Yao et al 2011, Everingham et al 2010),
were somewhat limited to suit the category-independent goals
of our approach. Namely, these datasets focus on a small
number of specific action categories, and within each ac-
tion class the human and interactee often have a regular
spatial relationship. Some classes entail no interaction (e.g.,
running, walking, jumping) while others have a low vari-
ance in layout and pose (e.g., riding horse consists of peo-
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We are investigating how humans interact with surrounding objects and other people. In this 

experiment, an interaction is defined as being one of two types: 

a.Physically touching an object or another person with a specific purpose. 

The touching should reveal a specific purpose. 

The person should be paying attention to the object or other person.

For example, holding a camera to take a picture => yes; walking forward and carrying a bag => 

no; standing on the floor =>no. 

---OR---

b. Watching a specific object/person and paying attention to it. 

If the gaze is purposeful and focused on an object or person within 5 meters, it is an interaction 

=> yes.

If the person is aimlessly looking around, it is not an interaction => no.

In the qualification task, you should be familiar with the definition of the interaction and tight bounding 

box. For each task, you will be shown one image. One person will be outlined with a green box. Tha 

person is interacting with another person or object. 

Your job is to draw a box around the "interactee" -that is, the object or person with which the 

person shown is interacting. 

Be sure to draw a tight bounding box, meaning that the box you draw is exactly as big as the 

interactee object and touches its outer boundaries.

In the example below, the "interactee" is the hole that the person outlined in green is looking at. So, the 

task would be to draw a tight pink bounding box around that hole, as shown here. 

In the following examples, the pink boxes illustrate what we mean by a good or bad "tight" 

bounding box.

(a) Instructions for crowdworkers for localizing an interactee in the im-
age.

Task start:

Click and draw a tight, precise bounding box on the object or person that the person in the given 

yellow bounding box is interacting with. 

Mode: Drawing Editing Operation: Delete Selected Rectangle

(b) Example task for localizing the interactee in an image.

Fig. 4 Interface for interactee annotations via crowdsourcing.

ple in fairly uniform poses with the horse always just below).
While our approach would learn and benefit from such con-
sistencies, doing so would essentially be overfitting, i.e., it
would fall short of demonstrating action-independent inter-
actee prediction.

Therefore, we curated our own dataset, the UT Inter-
action dataset, and gathered the necessary annotations. We
use selected images from three existing datasets, SUN (Xiao
et al 2010), PASCAL 2012 (Everingham et al 2010), and Mi-
crosoft COCO (Lin et al 2014). The selection is based solely
on the need for the images to contain people. SUN is a large-
scale image dataset containing a wide variety of indoor and
outdoor scenes. Using all available person annotations2, we
selected those images containing more than one person. The
SUN images do not have action labels; we estimate these se-
lected images contain 50-100 unique activities (e.g., talking,
holding, cutting, digging, and staring). PASCAL is an action
recognition image dataset. We took all images from those
actions that exhibit the most variety in human pose and in-
teractee localization—using computer and reading. We pool
these images together; our method does not use any action
labels. For COCO, we consider the subset of COCO training
images that contain at least one person with an area exceed-
ing 5,000 pixels and for which more than four out of five
annotators report there is an interaction (see below). This
yields a large number (more than 100) of unique activities
including skiing, skateboarding, throwing, batting, holding,
etc.

We use Amazon Mechanical Turk (MTurk) to get bound-
ing box annotations for the people and interactees in each
image. Figure 4(a) shows the instructions collecting the in-
teractee localization in the form of bounding boxes. We de-
fine what interaction means in our task, and we show exam-
ples of good localizations in the instructions. Next, we select
images that are considered to have an interaction by most of
the annotators and collect the interactee’s localization for
them. Figure 4(b) shows an example annotation task.

We get each image annotated by five to seven unique
workers (due to the larger number of images in COCO, we
have five unique workers for this dataset), and keep only
those images for which at least four workers said it con-
tained an interaction. This left 355/754/10,147 images from
SUN/PASCAL/COCO respectively.

The precise location and scale of the various annotators’
interactee bounding boxes will vary. Thus, we obtain a sin-
gle ground truth interactee bounding box via an automatic
consensus procedure. First, we apply mean shift to the co-
ordinates of all annotators’ bounding boxes. Then, we take
the largest cluster, and select the box within it that has the
largest mean overlap with the rest.

The interactee annotation task is not as routine as others,
such as tagging images by the objects they contain. Here
the annotators must give careful thought to which objects
may qualify as an interactee, referring to the guidelines we
provide them. In some cases, there is inherent ambiguity,
which may lead to some degree of subjectivity in an indi-
vidual annotator’s labeling. Furthermore, there is some vari-

2 http://groups.csail.mit.edu/vision/SUN/
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umbrella 0.48 

skis 0.11 

surfboard 0.11 

kite 0.06 

snowboard 0.03 

horse 0.15 

motorcycle 0.14 

skis 0.14 

bicycle 0.11 

surfboard 0.10 

baseball bat 0.37 

tennis racket 0.23 

umbrella 0.08 

frisbee 0.05 

baseball glove 0.02 

horse 0.58 

motorcycle 0.17 

elephant 0.08 

boat 0.03 

bicycle 0.02 

surfboard 0.10588 

laptop 0.10588 

motorcycle 0.094118 

horse 0.082353 

cow 0.082353 

skateboard 0.50 

skis 0.18 

snowboard 0.09 

surfboard 0.09 

cake 0.02 

Fig. 5 Examples for six of the 40 interaction types, as visualized with two image exemplars (left image pair in each example) plus the distribution
over the interactee’s category for all training images containing that discovered interaction type (right list of objects and probabilities for each
example). For legibility, we list only the top five categories with the highest probability for each distribution. Yellow boxes indicate person region,
blue boxes indicate ground truth interactee region. In examples in the top row, the distribution over object categories has lower entropy, meaning
that the presence of that subject-interactee layout leaves relatively few possibilities for the category of the interactee. As we move downward, the
entropy of the distributions are higher. The examples in the bottom row show cases where the object distribution has high entropy, meaning that
the interaction type is often shared across different interactee categories. See text for details.

ability in the precision of the bounding boxes that MTurkers
draw (their notion of “tight” can vary). This is why we enlist
multiple unique workers on each training example, then ap-
ply the consensus algorithm to decide ground truth. Overall,
we observe quite good consistency among annotators. The
average standard deviation for the center position of bound-
ing boxes in the consensus cluster is 8 pixels. See Figure 12,
columns 1 and 3, for examples.

3.3 Localizing Interactees in Novel Images

We explore two different methods for interactee localiza-
tion: (1) a non-parametric regression approach that uses a
learned interaction embedding and (2) a network-based prob-
abilistic model.

In both methods, to capture the properties of the inter-
actee in a category-independent manner, we represent its
layout with respect to the interacting person. In particular, an
interactee’s localization parameters consist of y = [x, y, a],
where (x, y) denotes the displacement from the person’s cen-
ter to the interactee box’s center, and a is the interactee’s
area. Both the displacement and area are normalized by the
scale of the person, so that near and far instances of a sim-
ilar interaction are encoded similarly. Given a novel image

with a detected person, we aim to predict y, that person’s
interactee.

In the following, we first visualize the newly collected
annotations in terms of the interactee types discovered (Sec. 3.3.1).
Then we overview the features our methods use for learn-
ing to predict interactees, including a deep learning based
feature embedding (Sec. 3.3.2). Finally, we define the two
models we investigate to make predictions based on those
features (Secs. 3.3.3 and 3.3.4).

3.3.1 Visualizing Discovered Interaction Types

To visualize the types of interactions captured in our new
annotations, we quantize the space of normalized interactee
localization parameters [x, y, a]. Specifically, we apply k-
means to [x, y] and [a] from training examples with k = 10

and k = 4 to get 10 and 4 clusters, respectively, for inter-
actees’ displacement and area. Next, we determine the inter-
actee’s location by its similarity to these clusters. This yields
T = 10 × 4 = 40 interaction types; images mapping to the
same interaction type may contain different activities and
objects, so long as the interactee is positioned and scaled in
a similar manner relative to its “subject” person.

Figure 5 shows examples of six such interaction types,
selected to convey the range of specificity present in the
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Fig. 6 Interaction-guided fine-tuning and network architecture of our
interaction-guided embedding. We fine AlexNet (Krizhevsky et al
2012), which was originally trained for a 1000-way object recognition
task (top), to revise the features to target our interactee localization
task (bottom). The 40-D output layer on the bottom corresponds to the
T = 40 interaction types discovered in the data via quantization of the
interactee boxes’ displacements and areas.

data. For each type shown, we display two image examples
and the distribution of interactee objects present across all
training instances containing that interaction type. Whereas
the top row has relatively low entropy in that distribution,
the bottom row has high entropy, and the middle row has
entropy in between. This shows the spectrum of discovered
interaction types in the data. Some are fairly object-specific,
where seeing the relative layout of subject and object already
gives a strong prior about what object (interactee category)
may be present. For instance, in the top right example, the
interaction layout suggests the person is riding something,
whether a horse or a motorcycle. Such cases naturally sup-
port the proposed application of interactees for object detec-
tor priming (defined below in Sec. 3.4.1), where we limit the
application of an object detector to likely objects and likely
places, based on the predicted interactee. On the other hand,
some interaction types are fairly object-independent, mean-
ing that many object types are interchangeable given that
person-object layout. For instance, in the bottom right exam-
ple, where an upright person is interacting with something
of similar scale to his left, the interactee may be a surfboard,
a laptop, a horse, etc.

3.3.2 Interactee Descriptors

To learn the relationship between the interactee’s location y
and the image content, we extract three types of features. We
explore both learned and hand-crafted descriptors.

First, we learn interaction-guided deep person features.
Inspired by the idea that lower layer neurons in a CNN tend
to capture the general representation and the higher layer
neurons tend to capture the representation specific to the tar-

Query Top 5 neighbors

Fig. 7 Example of nearest pose neighbors by our xcnn−p feature ver-
sus HOG feature.

get task (Yosinski et al 2014), we fine-tune a deep convo-
lutional neural network (CNN) for interactee localization.
In particular, as shown in Figure 6, we use the quantiza-
tion of the space of interactee localization parameters dis-
cussed above, then fine-tune a pre-trained object recognition
network (Krizhevsky et al 2012) to produce the proper dis-
cretized parameters when given a detected person (bound-
ing box). The last layer provides the learned feature map,
xcnn−p. This embedding discovers features informative for
an interaction, which may include body pose cues indicat-
ing where an interactee is situated (e.g., whether the arms
are outstretched, the legs close together, the torso upright or
leaning, etc.), as well as attentional cues from the person’s
head orientation, eye gaze, or body position.

To illustrate qualitatively what the interaction-guided per-
son descriptors capture, Figure 7 shows some example near-
est neighbor retrievals for a query image, whether using sim-
ilarity in the learned feature space (top row of 5 images for
each example) or using similarity in Histogram of Oriented
Gradients (HOG) (Dalal and Triggs 2005) space. Note that
the more the retrieved examples correspond to the same lo-
calization of the interactee relative to the subject—even if
not the same object category—the better these results are.
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The examples suggest that our xcnn−p embedding is better
able to represent precise interactions.

In a similar manner to the person embedding, we also
learn interaction-guided deep scene features. We fine-tune a
scene recognition network (Zhou et al 2014) to discover fea-
tures about the entire scene that are useful for predicting the
interaction, yielding an interaction-guided scene descriptor
xcnn−s. Intuitively, this embedding learns cues surround-
ing the person that are relevant to his interactee’s placement,
such as context for the activities that might be taking place.
It is also free to capture the appearance of the interactee it-
self (though due to the cross-category nature of interactions
discussed above, this may or not be learned as useful.)

In the learned features defined thus far, the algorithm is
free to learn anything about the scene and person that is in-
formative for predicting the interactee localization correctly.
To further inject our domain knowledge about cues likely
to be indicative of an interactee’s placement, we next also
consider an array of hand-crafted features. In particular, we
extract descriptors for pose, scene layout, and attention, as
follows.

– For the person’s pose, we take the Histogram of Oriented
Gradients (HOG) (Dalal and Triggs 2005) xh computed
in the person bounding box, plus the box’s aspect ratio
(xa = h

w ) (e.g., the aspect ratio will be large for a stand-
ing person, smaller for a sitting person).

– For scene layout, we take a GIST descriptor, xg , and
the person’s normalized position within the image, xp.
The latter captures how the person is situated within the
scene, and thus where there is “room” for an interactee.
For example, assuming a photographer intentionally framed
the photo to capture the interaction, then if the person is
to the far right, the interactee may tend to be to the left.

– For attention, we use poselets (Maji et al 2011) to esti-
mate the head and torso orientation, θh and θt, to cap-
ture the direction of attention, whether physical or non-
physical. A poselet is an SVM that fires on image patches
with a given pose fragment (e.g., a bent leg, a tilted head).
The head orientation offers coarse eye gaze cues, while
the torso tells us which objects the person’s body is fac-
ing.

Combining the learned and hand-crafted features, we have
the complete feature vector

x = [θh, θt,xh,xa,xg,xp,xcnn−p,xcnn−s]. (1)

In Sec. 4 we analyze the relative impact of the descrip-
tors; the primary conclusion is that all contribute to inter-
actee localization accuracy.

3.3.3 Non-parametric Regression with Interaction-guided
Embedding

Our first method for this task is simple and data-driven. It
predicts the interactee in a novel image using the learned
interaction-guided embedding together with non-parametric
regression.

We compute and store the descriptor above x for each
interactee-annotated training image, yielding a set ofN train-
ing pairs {(xi,yi)}Ni=1. To infer the interactee parameters

ŷq = [x̂q, ŷq, âq] (2)

for a novel query image xq , we use non-parametric locally
weighted regression. The idea is to retrieve training images
most similar to xq , then combine their localization parame-
ters. Rather than simply average them, we attribute a weight
to each neighbor that is a function of its similarity to the
query. In particular, we retrieve the K nearest neighbors
xn1 , . . . ,xnK

from the training set based on their Euclidean
distance to xq . We normalize distances per feature by the
standard deviation of the L2 norms between training fea-
tures of that type. Then, the estimated interactee parameters
are

ŷq =

K∑
i=1

wiyni
, (3)

where wi = exp(−‖xq − xni
‖).

Note that while interactees are a function of the action
being performed, there is not a one-to-one correspondence.
That is, the same action can lead to different interactees
(e.g., climb a tree vs. climb a ladder), and vice versa (e.g.,
climb a tree vs. trim a tree). This supports our use of a category-
independent spatial representation of the interactee. Our method
can benefit from any such sharing across verbs; we may
retrieve neighbor images that contain people doing activi-
ties describable with distinct verbs, yet that are still relevant
for interactee estimation. For example, a person cutting pa-
per or writing on paper may exhibit both similar poses and
interactee locations, regardless of the distinct action mean-
ings. Thus, there is value here in not collapsing the dataset
to verb-specific models.

A natural question is whether one could simply learn the
localization parameters “end-to-end” from the image rather
than using the person/scene embeddings as an intermedi-
ary to a non-parametric learning approach. In practice, we
found such an approach inferior to ours. This indicates there
is value in 1) separating the person and scene during feature
learning (more data would likely be needed if one wanted to
treat the person as a latent variable) and 2) augmenting the
learned features with semantically rich features like gaze.
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3.3.4 Probabilistic Model with Mixture Density Network

We expect the non-parametric method described above to
fare best when there is ample labeled data for learning. Since
this is not always the case, as an alternative approach, we
also consider a parametric model to represent interactee lo-
calization. In particular, we show how to localize interactees
using Mixture Density Networks (MDN) (Bishop 1994) to
build a predictive distribution for the interactee localization
parameters. An MDN is a neural network that takes as in-
put the observed features, their associated parameters, and
as output produces a network able to predict the appropriate
Gaussian mixture model (GMM) parameters for a novel set
of observed features.

To build a predictive distribution for the interactee local-
ization parameters, we want to represent a conditional prob-
ability density P (y|x). Here we model density as a mixture
of Gaussians with m modes:

P (y|x) =
m∑
i=1

αiN (x;µi,Σi), (4)

where αi denotes the prior mixing proportion for component
i, µ is its mean, and Σi is its covariance matrix. We use
the N labeled training examples {(xi,yi)}Ni=1 to train the
MDN.

In testing, given a novel test image, we extract the de-
scriptors from the person bounding box in the image. Then,
we use the learned MDN to generate the GMM P (yt|xt)

representing the most likely positions and scales for the tar-
get interactee.

In this way, we can assign a probability to any candidate
position and scale in the novel image. To estimate the sin-
gle most likely parameters, we use the center of the mixture
component with the highest prior (αi), following (Bishop
1994). The output interactee box is positioned by adding the
predicted (x̂, ŷ) vector to the person’s center, and it has side
lengths of

√
â.

Figure 8 recaps the two learning algorithms we consider
for interactee localization. The lefthand side depicts the non-
parametric regression approach: given the training images in
original image space (top), we learn CNN features that push
those instances with similar interactee localizations together
in the embedding space (bottom). Then, a weighted com-
bination of the labels for the nearest training instances pro-
vides the localization for a test image. The righthand side de-
picts the MDN approach: given training images represented
by the hand-crafted descriptors, we train a Mixture Density
Network to produce Gaussian mixture model parameters for
a distribution over likely localization parameters. Then, the
peak of that distribution provides the most likely localiza-
tion for a test image. These two pipelines primarily differ
in terms of their (non)-parametric natures, as well as where

Non-parametric interaction 

guided embedding 
Mixture density network 

CNN MDN 

Fig. 8 Comparison of the two learning approaches. Similarly colored
points denote image instances with similar interactee localization pa-
rameters. See text for details.

learning is injected for the features. For the former, learning
is injected “early”, in that the feature space already captures
the desired localization loss. In general we would expect the
non-parametric approach to be more reliable, but more ex-
pensive at test time, when ample labeled data is available.
On the other hand, the MDN approach has the advantage
of allowing sampling of multiple sub-optimal solutions. We
provide some analysis of their contrasts in Sec. 4.

3.4 Applications of Interactee Prediction

Our method is essentially an object saliency metric that ex-
ploits cues from observed human-interactions. Therefore, it
has fairly general applicability. To make its impact concrete,
aside from analyzing how accurate its predictions are against
human-provided ground truth, we also study four specific
applications that can benefit from such a metric.

In the first task, we use the interactee localization to im-
prove the accuracy or speed of an existing object detection
framework by guiding the detector to focus on areas that are
involved in the interaction (Sec. 3.4.1). In the second task,
we use the interactee prediction to assist image retargeting.
In this task, the image is resized by removing the unimpor-
tant content and preserving the parts related to the person
and interactee (Sec. 3.4.2). In the third and fourth tasks, we
explore how to leverage inferred interactees to detect im-
portant objects and generate image descriptions (Secs. 3.4.3
and 3.4.4). These tasks aim to mimic human-generated im-
age descriptions by focusing on the prominent object(s) in-
volved in an interaction. Well-focused descriptions can ben-
efit image retrieval applications, where it is useful to judge
similarity not purely on how many objects two images share,
but rather on how many important objects they share.
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3.4.1 Task 1: Interactee-aware Contextual Priming for
Object Detection

First, we consider how interactee localization can prime an
object detector. As shown in Figure 5, a good interactee pre-
diction can sometimes place a strong prior on which ob-
ject detectors are relevant to apply, and where they are most
likely to fire. Thus, the idea is to use our method to predict
the most likely place(s) for an interactee, then focus an off-
the-shelf object detector to prioritize its search around that
area. This has potential to improve both object detection ac-
curacy and speed, since one can avoid sliding windows and
ignore places that are unlikely to have objects involved in the
interaction. It is a twist on the well-known GIST contextual
priming (Torralba 2003), where the scene appearance helps
focus attention on likely object positions; here, instead, the
cues we read from the person in the scene help focus at-
tention. Importantly, in this task, our method will look at the
person, but will not be told which action is being performed;
this distinguishes the task from the methods discussed in
related work, which use mutual object-pose context to im-
prove object detection for a particular action category.

To implement this idea, we run the Deformable Part Model
(DPM) (Felzenszwalb et al 2010) object detector on the en-
tire image, then we apply our method to discard the detec-
tions that are outside the 150% enlarged predicted interactee
box (i.e., scoring them as −∞). To alternatively save run-
time, one could apply DPM to only those windows near the
interactee.

3.4.2 Task 2: Interactee-aware Image Retargeting

As a second application, we explore how interactee predic-
tion may assist in image retargeting. The goal is to adjust the
aspect ratio or size of an image without distorting its per-
ceived content. This is a valuable application, for example,
to allow dynamic resizing for web page images, or to trans-
late a high-resolution image to a small form factor device
like a cell phone. Typically retargeting methods try to avoid
destroying key gradients in the image, or aim to preserve the
people or other foreground objects. Our idea is to protect not
only the people in the image from distortion, but also their
predicted interactees. The rationale is that both the person
and the focus of their interaction are important to preserve
the story conveyed by the image.

To this end, we consider a simple adaption of the Seam
Carving algorithm (Avidan and Shamir 2007). Using a dy-
namic programming approach, this method eliminates the
optimal irregularly shaped “seams” from the image that have
the least “energy”. The energy is defined in terms of the
strength of the gradient, with possible add-ons like the pres-
ence of people (see (Avidan and Shamir 2007) for details).
To also preserve interactees, we augment the objective to in-

A little boy in a chair eating a cake. 

A small boy is reaching up for a frisbee. 

Fig. 9 When describing an image, people usually mention the object
with which the person is interacting, even if it may be small or ap-
pear non-salient to traditional metrics. For example, here the interactee
objects are the cake and the frisbee.

crease the energy of those pixels lying within our method’s
predicted interactee box. Specifically, we scale the gradi-
ent energy g within both person and interactee boxes by
(g + 5) ∗ 5.

3.4.3 Task 3: Interactees as Important Objects

A good visual recognition system ought to be able to parse
and name every object in the scene. An even better recog-
nition system would decide which among all the things it
can recognize are even worth mentioning. Thanks to rapid
progress in recognition algorithms over the last 10 years, re-
searchers are gradually shifting their focus to this next level
of analysis. In particular, exciting new developments show
ways to map an image (or its detected visual concepts) to
a natural language sentence (Farhadi et al 2010, Kulkarni
et al 2011, Yao et al 2010, Ordonez et al 2011, Guadarrama
et al 2013, Donahue et al 2015, Fang et al 2015, Karpathy
and Fei-Fei 2015), or even explicitly rank the detected con-
cepts by their perceived importance (Spain and Perona 2008;
2011, Hwang and Grauman 2010, Berg et al 2012, Sadovnik
et al 2012). Methods that can concisely describe only the im-
portant parts of a scene will facilitate a number of interesting
applications, including auto-captioning systems to assist the
visually impaired, or image and video retrieval systems that
index only the most important visual content.

In the next and final two tasks, we apply interactees to
explore the “what to mention” question from a person-centric
perspective. Given a novel image containing one or more
people, how well does the interactee prediction indicate the
objects in the scene are essential to generating an informa-
tive description? As above, the key hypothesis is that a per-
son’s interactions give vital cues. For example, in Figure 9,
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each image contains a dozen or more recognizable objects,
but a human viewer has bias towards noticing the object with
which each person interacts: the baby is eating cake or the
boy is reaching for the frisbee. Notably, not only do we fo-
cus on people and their activity—what they are doing, we
also focus on the direct object of that activity—what they
are doing t with/to.

In particular, in the third application we use interactees
to gauge object importance within a scene. Following prior
work (Spain and Perona 2008; 2011, Berg et al 2012), we de-
fine “important” objects as those mentioned by a human de-
scribing an image. Our intuition that people tend to mention
interactees is supported by data; in COCO, 80% of true in-
teractees appear in the human descriptions. Despite the fact
that a person is the most commonly depicted object category
in captioned images (Ordonez et al 2011), existing methods
to estimate object importance employ only generic compo-
sitional (like size and position) and semantic (like the type
of object or attribute) cues (Spain and Perona 2008; 2011,
Hwang and Grauman 2010, Berg et al 2012). The novelty of
our approach to importance is to inject human-object inter-
action cues into the predictions.

We use predicted interactees to generate important ob-
ject hypotheses, as follows. Given a detected person, we
project the predicted interactee bounding box (square box
with the predicted area) into the query image. This is essen-
tially a saliency map of where, given the scene context and
body pose, we expect to see an object key to the person’s in-
teraction. Then, we sort all recognized objects in the scene
by their normalized overlap with the interactee regions. The
first object in this list is returned as an important object.

3.4.4 Task 4: Interactees in Sentence Generation

Finally, in the fourth task, we generate complete sentences
for the query image that account for its interactee. While
the importance task above focuses solely on the question of
whether an object is important enough to mention, the sen-
tence task entails also describing the activity and scene.

We take a retrieval-based approach, inspired by (Ordonez
et al 2011, Devlin et al 2015). Again we use a non-parametric
model. Intuitively, if the content of a query image closely
resembles a database image, then people will describe them
with similar sentences.

Given a novel query, we compute x and its estimated
interactee spatial parameters ŷ, and use them together to re-
trieve the Ks nearest images in a database annotated with
human-generated sentences. In particular, we use Euclidean
distance to sort the neighbors, normalizing distances for x
and ŷ. Then, we simply adopt the sentence(s) for the query
that are associated with those nearest examples.

We stress that our contribution is not a new way to infer
sentences. Rather, it is a new way to infer importance, which

can be valuable to description methods. Current methods
for sentence generation (Farhadi et al 2010, Kulkarni et al
2011, Yao et al 2010, Ordonez et al 2011, Donahue et al
2015, Fang et al 2015, Karpathy and Fei-Fei 2015, Devlin
et al 2015) are primarily concerned with generating a fac-
tually correct sentence; the question of “what to mention”
is treated only implicitly via text statistics. While we show
the impact of our idea for retrieval-based sentence genera-
tion, it has potential to benefit other description algorithms
too. Arguably, once relevant high-level entities from visual
processing are available (both object orderings as inferred
by our method, as well as activities, scenes, etc.), the sen-
tence generation step becomes a natural language process-
ing problem.

4 Experimental Results

Our experiments evaluate three primary things: (1) how ac-
curately do we predict interactees, compared to several base-
lines? (Sec. 4.2), (2) how well can humans perform this
task? (Sec. 4.3), and (3) the four applications of interactee
localization (Sec. 4.4).

4.1 Datasets and Implementation Details

We experiment with images containing people from three
datasets: PASCAL Actions 2012 (Everingham et al 2010),
SUN (Xiao et al 2010), and COCO (Lin et al 2014). All
three consist of natural, real-world snapshots with a wide
variety of human activity. See Figure 10 for example images
originating from the three datasets.

For PASCAL and SUN, we use the subsets (cf. Sec. 3.2)
collated for human interactions, containing 754 and 355 im-
ages, respectively. As PASCAL Actions and SUN do not
have sentence data, we use them solely to evaluate inter-
actee localization accuracy. For COCO, we use the 10,147
total images for which we obtained interactee bounding box
annotations on MTurk (see Sec. 3.2). COCO contains five
human-written sentences per image, as well as object bound-
aries for 80 common object categories, which we exploit
below. For PASCAL and SUN we use a random 75%-25%
train-test split and for COCO we use a random 80%-20%
train-test split. We use the same train-test split for all our
experiments.

For the feature embeddings, we fine-tune AlexNet (Krizhevsky
et al 2012) and Places-CNN (Zhou et al 2014) with the Caffe
deep learning toolbox (Jia et al 2014), for the deep person
and scene features, respectively. We use an SGD solver with
10,000 iterations and a learning rate of 0.001. To form the
target labels, we quantize the interactee’s displacement and
area into 10 and 4 bins, respectively, so the network provides
T = 40 outputs in the last layer. We extract the features
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SUN PASCAL-Action MS-COCO 

Fig. 10 Example images from the SUN, PASCAL-Action, and COCO datasets, which we get annotated for interactions and interactees.

from the 7th layer (fc7) as xcnn−p and xcnn−s from each
network. For HOG, each box is resized to 80 × 80 and we
use cell size 8.

We localize interactee regions of interest automatically
with our two proposed methods. The inferred interactee lo-
calization guides us where to focus in the image for our
four applications. We use annotated person boxes for our
method and baselines to let us focus evaluation on the “what
to mention” task, independent of the quality of the visual
detectors. We set K = 20 and Ks = 5 when retrieving
the near neighbor interactions and images, respectively. We
fixed K after initial validation showed values between 5-50
to perform similarly. For our embedding method, we use the
hand-crafted features and fine-tuned interaction guided deep
features. For our MDN method, we use the hand-crafted fea-
tures only.3

4.2 Accuracy of Interactee Localization

First we evaluate the accuracy of our interactee predictions.
Given an image, our system predicts the bounding box where
it expects to find the object that is interacting with the per-
son. We quantify error in the size and position of the box. In
particular, we report the difference in position/area between

3 We tried to incorporate the deep feature for our MDN method, but
the accuracy decreases due to the high feature dimensions that makes
the GMM fitting harder. Note that there are slight differences in Ta-
ble 1 between the errors reported for our MDN method here and in the
conference paper Chen and Grauman (2014). This is because we have
updated the hand-crafted features to be consistent with those used by
the embedding method.

the predicted and ground truth boxes, normalized by the per-
son’s size. We also evaluate the accuracy of our method and
baselines using the standard interaction over union (IOU)
score between the inferred and ground truth interactee bound-
ing boxes.

For core localization accuracy in this section, we com-
pare to three baselines:

– The Objectness (which we abbreviate as Obj) (Alexe
et al 2010) method, which is a category-independent salient
object detector. Note that while our methods exploit cues
about the person, the Objectness method is completely
generic and does not.

– A “Near Person” baseline, which simply assumes the in-
teractee is close to the person. It predicts a box centered
on the person, with a scale ∼ 0.74 of its area (a parame-
ter set by validation on the training data).

– A Random baseline, which randomly generates a posi-
tion and size.

We score each method’s most confident estimate in the be-
low results.

Table 1 shows the result. On three datasets, both of our
methods offer significant improvement in position and size
error over the baselines. The margins are largest on the most
diverse COCO dataset, where our data-driven approach (Ours-
embedding) benefits from the large training set (COCO has
more than 10 times the labeled instances than PASCAL or
SUN). Our interaction embedding method provides 16% lower
errors over our MDN method on average. This indicates the
strength of our learned features and data-driven estimation
approach. Our error reductions relative to Near Person av-
erage 17% overall, and up to 22% on COCO for object po-
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Metric Dataset Ours-embedding (w/CNN) Ours-embedding (w/o CNN) Ours-MDN Obj (Alexe et al 2010) Near Person Random

Position error
COCO 0.2256 0.2335 0.3058 0.3569 0.2909 0.5760

PASCAL 0.1632 0.1657 0.2108 0.2982 0.2034 0.5038
SUN 0.2524 0.2453 0.2356 0.4072 0.2456 0.6113

Size error
COCO 38.17 40.68 47.16 263.57 65.12 140.13

PASCAL 27.04 28.95 36.31 206.59 31.97 100.31
SUN 33.15 34.97 36.51 257.25 39.51 126.64

IOU
COCO 0.1989 0.1780 0.1153 0.0824 0.1213 0.0532

PASCAL 0.2177 0.1998 0.1369 0.0968 0.1415 0.0552
SUN 0.1710 0.1681 0.1145 0.1006 0.1504 0.0523

Table 1 Average interactee prediction performance as measured by position/size error and average IOU accuracy between prediction and ground
truth interactee on all three datasets.

sition. However, on the SUN dataset, our MDN method is
slightly better than our embedding method for interactee po-
sition; with only 355 images in SUN, our data-driven ap-
proach may suffer. Our gain over Near Person confirms that
this is a non-trivial prediction task, particularly when the
person is not touching the interactee (see the bottom ex-
ample in third column in Figure 11). As for the IOU met-
ric, our embedding method provides significantly higher ac-
curacy than other methods especially in COCO and PAS-
CAL datasets with the help of larger data size. Our MDN
method provides lower average IOU than the Near Person
baseline due the low score cases from incorrect interactee
localizations. For our non-parametric method, we also com-
pare to variants which lack interaction-guided embedding
features (Ours w/o CNN). As shown in the Table, our fine-
tuned features consistently improve the accuracy of our non-
parametric method.

Figure 11 shows example predictions by the embedding
variant of our method. We see that our method can often zero
in on regions where the interaction is likely to be focused,
even when the object may not have been seen in the train-
ing examples. On the other hand, we also find failure cases,
e.g., when a person’s pose is too rare (upside down in the
middle of fourth column) or the unusual cases with multiple
interactees (using cell phone while riding bike in the top of
fourth column).

4.3 Human Subject Experiment

Next we establish an “upper bound” on accuracy by asking
human subjects on MTurk to solve the same task as our sys-
tem. Note that when we collect the ground truth interactee
localization, the annotators see the content of entire image.
In this task, we remove the background from the original
image and ask the human subjects to infer where the inter-
actee might be. To have a fair comparison for the system,
we use our MDN method with features extracted from only
the person’s bounding box: poselet feature (Maji et al 2011),
head/torso orientation, and the person’s normalized position
within the image, without knowing what category the inter-
actee belongs to. Then, we construct an interface forcing hu-

Annotated-test Annotated-GT Annotated-test Annotated-GT 

Fig. 12 We remove the background from the original image and ask
human subjects to infer where the interactee might be. Red boxes de-
note their predictions, green box denotes consensus. Annotated-GT
shows the full image (which is the format seen for ground truth col-
lection, cf. Sec. 3.2). Annotated-test shows the human subject results.
Naturally, annotators can more reliably localize the interactee when it
is visible.

Human subject Ours-MDN
Position error Size error IOU Position error Size error IOU

SUN w/o visible 0.1625 29.61 2.2768 0.2767 32.33 0.0964
PASCAL w/o visible 0.1035 42.09 0.3935 0.2961 43.27 0.1320

Table 2 Results of the human subject test. This study demonstrates the
difficulty of the learning task, and gives a rough upper bound for what
an approach looking solely at the person in the image (but not the rest
of the scene) could potentially achieve.

mans to predict an interactee’s location with a similar lack
of information. Figure 12, columns 2 and 4, illustrate what
the human subjects see, as well as the responses we received
from 10 people.

Table 2 shows the human subjects’ results alongside the
system’s, for the subset of images in either dataset where
the interactee is not visible within the person bounding box
(since those cases are trivial for the humans and require no
inference). The humans’ guess is the consensus box found
by aggregating all 10 responses with mean shift as before.
The humans have a harder time on SUN than PASCAL, due
to its higher diversity of interaction types. This study elu-
cidates the difficulty of the task. It also establishes an (ap-
proximate) upper bound for what may be achievable for this
new prediction problem. Note that the numbers in Table 2
are not the same as those in Table 1 because 1) the test set
is small here to focus on cases where the interactee does not
overlap the person, and 2) we are depriving the system of
the full scene features to make the test consistent with the
human subject test.
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Low High Possible interactee location 

Fig. 11 Example interactee localizations. We display a heatmap for our embedding method’s predictions by overlaying the retrieved training
examples, such that they vote on likely areas of interest (white = high confidence). The yellow dotted boxes indicate the main person in the image.
The blue box indicates the ground truth interactee location. Our method can infer interactees in spite of varying interactions and object types. The
fourth column shows failure cases where there is less confidence in the prediction (see the upside down skater) or errors in unusual cases with
multiple interactees (see the guy using the cell phone while riding a bike). Best viewed in color.

4.4 Results for Applications of Interactee Prediction

Finally, we evaluate our idea in the context of the four tasks
defined above.

4.4.1 Task 1: Interactee-aware object detector contextual
priming

We first demonstrate the utility of our approach for contex-
tual priming for an object detector, as discussed in Sec. 3.4.1,
Task 1. We use the PASCAL training images to train DPMs
to find computers and reading materials, then apply our meth-
ods and the baselines to do priming. We experiment with
these two objects because the interactions between them and
the person are more diverse than other types of objects in the
dataset (for example, to detect a horse in riding-related im-
ages, the area below the person is always correct).

Figure 13 shows the results. We see our methods out-
perform the baselines, exploiting what they infer about the

person’s attention to better localize the objects. Note that
neither of our methods use the action category labels dur-
ing training. As was the case for pure localization accuracy
above, our interaction embedding method again outperforms
our MDN method. The MDN approach remains substan-
tially better than all the baselines on computer, though it un-
derperforms the Near Person baseline on reading materials.
In that case Near Person fares well for the reading instances
because the book or paper is nearly always centered by the
person’s lap.

This experiment gives a proof of concept on challenging
data that using the proposed interactee predictions can im-
prove a standard object detection pipeline by knowing where
it is most fruitful to look for an interacting object.

4.4.2 Task 2: Interactee-aware image retargeting

Next, we inject our interactee predictions into the Seam Carv-
ing retargeting algorithm, as discussed in Sec. 3.4.2, Task
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Predictions Predictions Retarget-Ours Retarget-Ours Retarget-Obj Retarget-Obj 

Fig. 14 Interactee-aware image retargeting example results. Our method successfully preserves the content of both the interactee (e.g., BBQ kit,
book, painting of horse, laptop) and person, while reducing the content of the background. Objectness cannot distinguish salient objects that are
and are not involved in the activity, and so may remove the informative interactees in favor of background objects. The bottom right example is a
failure case for our method, where our emphasis on the interactee laptop looks less pleasing than the baseline’s focus on the people.
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Fig. 13 Using the interactee prediction as context helps focus the
object detector. Numbers in legends denote mean average precision
(mAP).

2. Figure 14 shows example results. For reference, we also
show results where we adapt the energy function using Ob-
jectness’s top object region prediction. Both methods are in-
structed to preserve the provided person bounding box. We
retarget the source 500× 500 images to 300× 300.

We see that our method preserves the content related to
both the person and his interactee, while removing some un-
related background objects. In contrast, Objectness (Alexe
et al 2010), unaware of which among the prominent-looking
objects might qualify as an interactee, often discards the in-
teractee and instead highlights content in the background
less important to the image’s main activity.

4.4.3 Task 3: Interactees as important objects

Next, we use the interactee region of interest to predict ob-
ject importance (cf. Sec. 3.4.3, Task 3). Following (Spain
and Perona 2008, Berg et al 2012), we are given an image
plus a list of objects and their categories/locations. Ground
truth importance is judged by how often humans mention
the object in a caption. Here we use the COCO data, since
it comes with sentence annotations and ground truth object
outlines.

For this task we compare to the existing Object Predic-
tion importance method of (Berg et al 2012) (Sec. 4.1 in that
paper). It trains a logistic regression classifier with features
based on object size, location, and category. To ensure fair
comparison, we use the COCO data to train it to predict the
object most often mentioned in the image. We again com-
pare to the Near Person baseline, and two additional base-
lines:

– Prior, which looks at all objects present in the image and
picks the one most frequently mentioned across all train-
ing images

– Majority, which predicts people will mention the object
that happens most frequently in the test image.
All methods ignore the persons in the images, since all

images have a person. For this result, we discard images
with only a person and a single object since all methods can
only output that same object, leaving 1,617 test images.
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Method Mention rate (%)
Ground truth interactee 78.4 (0.6)
Ours-embedding 70.5 (0.4)
Importance (Berg et al 2012) 65.4 (0.4)
Ours-MDN 65.2 (0.5)
Near Person 67.5 (0.5)
Prior 64.6 (0.6)
Majority 51.7 (0.6)

Table 3 Average hit rates (higher is better) for predicted important
objects. Numbers in parens are standard errors.

Table 3 shows the result of 10 train/test splits. We mea-
sure accuracy by the hit rate—the average percentage of
ground truth sentences mentioning the object deemed most
important, per image. If each of the 5 ground truth captions
include the predicted object, the score is 100% for that im-
age. First, we see that interactees are correlated with impor-
tant objects; the ground truth interactee leads to a hit rate
of 78.4. Furthermore, our embedding method predictions
outperform the baselines. The nearest competing method is
Near Person. Even though the region of interest it predicts
is substantially less precise (as we saw in Table 1), it does
reasonably well because the step of identifying the anno-
tated COCO object nearest to that region is forgiving. In
other words, even a region of interest that is only partially
correct in is localization can have the desired effect in this
application, if it has no greater overlap with any of the other
annotated COCO objects. Nonetheless, the ground truth up-
per bound reinforces that better precision does translate to
better performance on solving this task. Similar to Sec 4.2,
our non-parametric method outperforms our MDN method.

The state-of-the-art importance method (Berg et al 2012)
is less accurate than our interactee-based method on this
data. We think this is because in the COCO data, an ob-
ject of the same category, size, and location is sometimes
mentioned, sometimes not, making the compositional and
semantic cues used by that method insufficient. In contrast,
our method exploits interactions to learn if an object would
be mentioned, independent of its position and category. This
result does not mean the properties used in (Berg et al 2012)
are not valuable; rather, in the case of analyzing images of
people involved in interaction, they appear insufficient if
taken alone.

4.4.4 Task 4: Interactees in sentence generation

Finally, we study how interactee detection can benefit retrieval-
based sentence generation (cf. Sec. 3.4.4, Task 4). For each
test image, we retrieve Ks = 5 images from the training
set, then compute the average similarity between the ground
truth query and training sentences. We use the standard BLEU
score (Papineni et al 2002) for n-gram overlap precision.

We compare our interaction embedding based regression
approach to a retrieval-based sentence generation method in

prior work (Ordonez et al 2011). For (Ordonez et al 2011),
there are two variations: Global Matching, which retrieves
neighbors based on GIST and Tiny Image descriptors, and
Global+Content Matching, which reranks that shortlist with
the local image content as analyzed by visual detectors. The
methods lack publicly available code, so we implement them
ourselves. The Global Matching is straightforward to imple-
ment. The Global + Content Matching version involves a
series of detectors for objects, stuff, attributes, scene, and
actions. We use the same poselet-based action feature (Maji
et al 2011), which captures cues most relevant to our person-
centric approach and utilizes the same ground truth person
bounding box used by our method.4 For this application, we
use our embedding method due to its advantage in handling
large scale data such as COCO, and because the interaction
fine-tuned feature can be directly applied to the retrieval-
based sentence generation method (as opposed to the MDN,
which produces probabilities for scales and positions, but no
descriptor.

Table 4 shows the results. Our interaction embedding
based non-parametric regression method consistently out-
performs the baselines and (Ordonez et al 2011). The result
confirms that a person-centric view of “what to mention” is
valuable.

We include an array of ablation studies to reveal the im-
pact of the different features. Without using CNN features,
our non-parametric method (Ours-embedding w/o cnn) still
outperforms the baselines (Ordonez et al 2011). The local
Content Matching does not improve accuracy over Global
Matching, and even detracts from it slightly. We suspect this
is due to weaknesses in poselets for this data, since the action
variation is very high in COCO. The authors also observed
only a slight gain with Content Matching in their own re-
sults (Ordonez et al 2011). Note that like our method, the
Content Matching method also has access to the correct per-
son bounding box on a test image. Our better results, there-
fore, cannot be attributed to having access to that informa-
tion.

Our complete method (Ours-embedding w/all) provides
higher accuracy than the baselines that also utilize CNN-
based features (Global Matching+AlexNet fc7 and Global
Matching+Places-CNN); the former uses CNN features from
the person bounding box, while the latter uses CNN features
from the whole image. To isolate the role of the interaction-
guided CNN features, we show results when only those de-
scriptors are used individually in conjunction with the non-
parametric locally weighted regression. As shown in Table 4,
our learned embedding features are helpful for the caption-
ing task, guiding the system to focus on the interaction (Ours

4 We omit the object, stuff, and attribute detectors because we could
not reproduce the implementation (hence the asterisk in the table). In
principle, any benefit from additional local content could also benefit
us.
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1-Gram BLEU 2-Gram BLEU 3-Gram BLEU 4-Gram BLEU Combined BLEU
Random 55.19 19.26 4.18 1.26 8.65
Global Matching (Ordonez et al 2011) 63.80 28.02 9.80 3.75 16.01
Global+Content Matching (Ordonez et al 2011)(Actions∗) 63.19 27.12 9.13 3.41 15.20
Global Matching+AlexNet fc7 68.21 33.38 13.32 5.44 20.16
Global Matching+Places-CNN 69.01 33.99 13.87 6.77 20.81
Ours-embedding w/o cnn feature 65.08 29.74 11.13 4.56 17.64
Ours-embedding w/cnn-p only 68.03 33.30 13.45 5.64 20.36
Ours-embedding w/cnn-s only 70.78 36.42 15.96 6.87 23.05
Ours-embedding w/all 73.85 40.33 18.88 8.68 26.43

Table 4 Average BLEU scores between query and retrieved sentences (higher = more similar). See text for details.

w/cnn-p>Global+AlexNet, Ours w/cnn-s>Global+Places-
CNN). Combining all the features provides the highest ac-
curacy. This indicates that features designed with domain
knowledge (about gaze, pose, etc.) remain valuable in this
setting, and can augment the automatically learned CNN
features.

Figure 15 shows example sentences generated by our
method, alongside those of the baselines. We see how mod-
eling person-centric cues of importance allows our method
to find examples with similar interactions. In contrast, the
baselines based on global image matching find images fo-
cused on total scene similarity. They often retrieve sentences
describing similar overall scene contexts, but are unable to
properly model the fine-grained interactions (e.g., in second
column, riding vs. carrying with a surfboard). The fourth
column shows a failure case by our method, where we mis-
predict the interactee (cyan box) and so retrieve people do-
ing quite different interactions.

5 Conclusions and Future Work

In this paper, we considered a new problem: how to predict
where an interactee object will appear, given cues from the
content of the image. While plenty of work studies action-
specific object interactions, predicting interactees in an action-
independent manner is both challenging and practical for
various applications. The proposed method shows promising
results to tackle this challenge. We demonstrate its advan-
tages over multiple informative baselines, including a state-
of-the-art object saliency and importance metrics, and illus-
trate the utility of knowing where interactees are for con-
textual object detection, image retargeting, image descrip-
tion, and object importance ratings. We also introduce a new
10,147-image dataset of interaction annotations for all per-
son images in COCO.

In future work, we plan to extend the ideas to video,
where an interactee will have a potentially more complex
spatio-temporal relationship with its subject, yet dynamic
cues may offer clearer evidence about the subject’s attention.
We are also interested in exploring how more sophisticated
language generation models could work in concert with our
visual model of interactions.
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A woman pouring 
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A young man making 

a drink in a blender in 

the kitchen.

A young man riding a 

skateboard across a sidewalk.

A young boy 

swinging a baseball 

bat over a base.

A man hitting a 

tennis ball back 

on the court.

A person riding a 

skateboard on a 

street. 

A person riding a 

surf board on a 

wave.

A man riding a snowboard 

in the air above a snow 

covered forest.
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Global 
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Fig. 15 Example sentences generated by our method and the Global Matching method (Ordonez et al 2011). Blue bbox: true interactee, cyan bbox:
our prediction. In the first three examples, ours is better because it correctly predicts the location of the interactee, and then uses the interactee’s
position and scale relative to the person to retrieve image examples with similar types of interaction. In the last one, our method fails to predict the
interactee correctly and thus retrieves poorly matched interactions. See text for details.
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