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Learning Optimal Parameters for Multi-target Tracking with Contextual

Interactions

Shaofei Wang - Charless C. Fowlkes

Abstract We describe an end-to-end framework for learn-
ing parameters of min-cost flow multi-target tracking prob-
lem with quadratic trajectory interactions including suppres-
sion of overlapping tracks and contextual cues about co-
occurrence of different objects. Our approach utilizes struc-
tured prediction with a tracking-specific loss function to learn
the complete set of model parameters. In this learning frame-
work, we evaluate two different approaches to finding an
optimal set of tracks under a quadratic model objective, one
based on an LP relaxation and the other based on novel
greedy variants of dynamic programming that handle pair-
wise interactions. We find the greedy algorithms achieve
almost equivalent accuracy to the LP relaxation while being
up to 10x faster than a commercial LP solver. We evaluate
trained models on three challenging benchmarks. Surpris-
ingly, we find that with proper parameter learning, our simple
data association model without explicit appearance/motion
reasoning is able to achieve comparable or better accuracy
than many state-of-the-art methods that use far more complex
motion features or appearance affinity metric learning.

Keywords Multi-target Tracking - Data Association -
Network-flow - Structured Prediction

1 Introduction

Multi-target tracking is an active area of research in com-
puter vision, driven in part by the desire to build autonomous
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systems that can navigate in crowded urban environments
(see e.g., Geiger et al (2013)). Thanks to advances of object
detector performance in single, static images, “tracking-by-
detection” approaches that build tracks on top of a collection
of candidate object detections have shown great promise.
Tracking-by-detection avoids some problems such as drift
and is often able to recover from extended periods of occlu-
sion since it is “self-initializing”. Finding an optimal set of
detections corresponding to each track can often be formu-
lated as a discrete optimization problem of selecting a set
of low-cost paths through a graph of candidate detections
for which there are efficient combinatorial algorithms (such
as min-cost matching or min-cost network-flow) that yield
globally optimal solutions (Zhang et al (2008); Pirsiavash
et al (2011)).

Tracking by detection differs from traditional generative
formulations of multi-target tracking, which draw a distinc-
tion between the problem of estimating a latent continuous
trajectory for each object from the discrete per-frame data as-
sociation problem of assigning observations (e.g., detections)
to underlying tracks. Such methods (e.g., Milan et al (2012,
2013); Wu et al (2012)) allow for explicitly specifying an
intuitive model of trajectory smoothness but face a difficult
joint inference problem over both continuous and discrete
variables which can seldom be solved with any guarantee of
optimality.

In tracking by detection, trajectories are implicitly de-
fined by the selected group of detections associated with a
track. For example, a track may skip over some frames en-
tirely due to occlusions or missing detections. The transition
cost of utilizing a given edge between detections in succes-
sive frames thus could be interpreted as some approximation
of the marginal likelihood associated with integrating over
a set of underlying continuous trajectories associated with
the corresponding pair of detections. This viewpoint immedi-
ately raises difficulties, both in (1) encoding strong trajectory
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Fig. 1: Our tracking framework incorporates quadratic interactions between objects in order to resolve appearance ambiguity
and to boost weak detections. The parameters of the interactions are learned from training examples, allow the tracker to
successfully learn mutual exclusion between cyclist and pedestrian, and boost to intra-class co-occurrence of nearby people.

models with only pairwise potentials and (2) identifying the
parameters of these potentials from training data.

The contribution of this paper is in demonstrating that
carefully optimizing the parameters of relatively simple com-
binatorial tracking-by-detection models can yield state-of-
the-art performance on difficult tracking benchmarks. Build-
ing on our preliminary work (Wang and Fowlkes (2015)),
we introduce a simple multi-target, multi-category tracking
model that extends min-cost flow with quadratic interactions
between tracks in order to capture contextual interactions
within a frame. To perform inference, we propose a family of
greedy-dynamic programming algorithms that produce high-
quality solutions on par with linear programming relaxations
of the quadratic tracking objective while being substantially
faster than a general purpose LP solver.

For learning, we use a structured prediction SVM (Taskar
et al (2003)) to optimize the complete set of tracking pa-
rameters from labeled training data. Structured prediction
has been applied in tracking to learning inter-frame affinity
metrics (Kim et al (2013)) and association (Lou and Ham-
precht (2011)) as well as a variety of other learning tasks such
as fitting CRF parameters for segmentation (Szummer et al
(2008)) and word alignment for machine translation (Lacoste-
Julien et al (2006)).

The structure of the remainder of the paper is as follows.
We provide a brief overview of recent related work in Section
2 and review the now classical network-flow model for multi-
target tracking in Section 3 before introducing our quadratic
interaction model. In Section 4 we describe inference algo-
rithms for network-flow models with quadratic interactions,
namely, a standard LP-relaxation and rounding method, and
a family of novel greedy dynamic programming algorithms
that can handle quadratic interactions. In Section 5 we de-
scribe the features we used for learning tracking potentials
in network-flow model with quadratic costs. In Section 6 we
describe an approach to joint learning of model parameters in

order to maximize tracking performance on a training data set
using techniques for structured prediction. We conclude with
experimental results (Section 7) which demonstrate that with
properly learned parameters, even the basic network-flow
yields better results than many state-of-the-art methods on
challenging MOT and KITTI benchmarks. We also find that
quadratic terms offer further improvements in performance
for multi-category object tracking.

2 Related Work

Multi-target tracking problems have been tackled in a number
of different ways. One approach is to first group detections
into candidate tracklets and then perform scoring and associ-
ation of these tracklets (Yang and Nevatia (2012); Brendel
et al (2011); Wang et al (2014)). Compared to individual
detections, tracklets allow for evaluating much richer trajec-
tory and appearance models while maintaining some benefits
of purely combinatorial grouping. However since the prob-
lem is at least two-layered (tracklet-generation and tracklet-
association), these models are difficult to reason about mathe-
matically and typically lack guarantees of optimality. Further-
more, tracklet-generation can only be done offline (or with
substantial latency) and thus approaches that rely on tracklets
are inherently limited in circumstances where online tracking
is desired.

An alternative to tracklets is to attempt to include higher-
order constraints directly in a combinatorial framework (Butt
and Collins (2013); Chari et al (2015)). Such methods of-
ten operate directly over raw detections, either in an online
or offline-fashion. Offline formulations benefit from having
a single well-defined objective function or likelihood, and
thus can give either globally optimal solution (Zhang et al
(2008)), or provide approximate solution with a certificate
of (sub)optimality (Chari et al (2015)). Tang et al (2015)
propose a subgraph multi-cut approach which differs from
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traditional “path-finding” algorithms such as Zhang et al
(2008), Pirsiavash et al (2011) and Butt and Collins (2013).
Although designed to work directly on raw detections, in
practice Tang et al (2015) use tracklets to reduce the dimen-
sion of the inference problem. Such is the trade-off between
finding globally optimal solutions and using rich tracking
features.

Milan et al (2012) attempt to solve both data association
and trajectory smoothing problem simultaneously, which re-
sults in a problem with varying dimensionality and difficult
approximate inference. Brau et al (2013) avoid this varying
dimensionality problem by integrating out trajectory-related
variables and using Markov Chain Monte Carlo sampling to
estimate the marginal likelihoods for data association and tra-
jectory estimation. Segal and Reid (2013) propose yet another
way to avoid varying dimensionality: instead of explicitly
enumerating number of tracks, they assign a latent variable
for each real detection/track and conduct data association on
these latent variables.

Online tracking algorithms take advantage of previously
identified track associations to build rich feature models over
past trajectories that facilitate data association at the cur-
rent frame. The capability to perform streaming data asso-
ciation on incoming video-frames without seeing the entire
video is a desirable property for real-time applications such
as autonomous driving. However, when the whole video is
available, online tracking may make errors that are avoid-
able in offline algorithms that access future frames to resolve
ambiguities. Kim et al (2015) revisit the legacy Multiple
Hypothesis Tracking method and introduc a novel online
recursive appearance filter. Choi (2015) proposes a novel
flow-descriptor designed specifically for multi-target tracking
and introduces a delay period to allow correction of possible
errors made in previous frames (thus the name “near online”),
which yields state-of-the-art accuracy. Solera et al (2015)
use the relatively simple Hungarian Matching with the novel
extension to choose either “simple” or “complex” features
depending on the difficulty of the inference problem at each
frame.

For any multi-target tracking approach, there are a large
number of associated model parameters which must be accu-
rately tuned to achieve high performance. This is particularly
true for (undirected) combinatorial models based on, e.g.,
network-flow, where parameters have often been set empiri-
cally by hand or learned using piecewise training. Solera et al
(2015) and Dehghan et al (2015) both use structured SVM to
learn parameters of their online data association models. Choi
and Savarese (2012) use structured SVM to learn parameters
for offline multi-target tracking with quadratic interactions
for the purpose of activity recognition. Our work differs in
that it focuses on generic activity-independent tracking and
global end-to-end formulation of the learning problem. In
particular, we develop a novel loss function that penalizes

false transition and id-errors based on the MOTA (Bernardin
and Stiefelhagen (2008)) tracking score.

Finally, recent work has also pursued detectors which
are specifically optimized for tracking scenarios. Tang et al
(2013) propose to learn multi-person detector by using hard-
negatives acquired from a tracker’s output, in order to let
the detector to solve ambiguities that the tracker cannot han-
dle. Dehghan et al (2015) propose to use a target identity-
aware network-flow model to process videos in batches of
frames, and learn people detectors for each individual person
in an online fashion.

3 Models for Multi-target Data Association

We begin by formulating multi-target tracking and data asso-
ciation as a min-cost network flow problem equivalent to that
of Zhang et al (2008), where individual tracks are described
by a first-order Markov Model whose state space is a set of
spatial-temporal locations in a video. This framework incor-
porates a state transition likelihood that generates dynamics
associated with a pair of successive detections along a track,
and an observation likelihood that generates appearance fea-
tures for objects and background in a given frame. In the
subsequent section we augment this model with quadratic
interactions between pairs of tracks.

3.1 Tracking by Min-cost Flow

For a given video sequence, we consider a discrete set of
candidate object detection sites V' where each candidate site
x = (I,0,t) € V is a tuple described by its location [, scale
o and discrete time . We write & = {¢,(z)|z € V} for
the appearance features (image evidence) extracted at each
corresponding spatial-temporal location in a video. A single
tracked object consists of an ordered set of detection sites,
T = {x1,...,x,}, where the times of successive sites are
strictly increasing.

We model the whole video by a collection of tracks T =
{T1, ..., T}, each of which independently generates fore-
ground object appearances at the corresponding sites accord-
ing to distribution p4(¢,) while the remaining site appear-
ances are generated by a background distribution pyg(¢q).
Each site can only belong to at most a single track which we

express by the constraint 7 € 2. Weuse B=V \ | Tto
TeT
denote the sites which are unclaimed by any track. Our task

is to infer a collection of tracks that maximize the posterior
probability P(7|®). Assuming that tracks behave indepen-
dently of each other and follow a first-order Markov model,
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we can write an expression for MAP inference:

T* = argmax P(®|T) x P(T)
Ten

= argmax H I H Pro(da())] H Pog(Pa(x)) ¥

Ten

TeT zeT z€B
n—1
T [psten) TT pe(@isalzipe(an)]
TeT i=1

(1

where ps, p. and p; represent the likelihoods for tracks start-
ing, ending and transitioning between given sites. Dividing
through [ ], oy pvg(@a(z)) yields an equivalent problem that
depends only on the appearance features at active track loca-
tions:

T* = argmax H [ H l(¢a($))} X

TER TeT seT
n—1 (2)

T [ps(@y) T] pe(@isalzi)pe(@n)]

TeT i=1
where

 pra(a(2))
Ga(@) =7 (Ga@)

is the appearance likelihood ratio that a specific location x
corresponds to the object tracked.

The set of optimal (most probable) tracks under this
model can be found by solving an integer linear program
(ILP) over flow variables f that indicate which detections are
active in each frame { f;} and which pairs of detections are
associated between frames { f;; }. Figure 2 shows a graphical
representation where an individual object track corresponds
to a directed st-path traversing edges that encode start, detec-
tion, transition and end costs. By taking a negative log of the
MAP objective, this equivalent formulation can be written
as:

mfin Zcfff + Z cij fij +Zcifi + ZCﬁff €)

i€V ijeE iV iev

s.t. fis+iji:fi:ff+Zfij 4
J J

is7 zt?fzaflje{oal} (5)

where F is the set of valid transitions between sites in suc-
cessive frames and the costs are given by:

pralale))
Pog(Pa(s))’ Cij log pi(z;|z:), ©

Cf = —Ings(xi)a Cﬁ = _1nge(xi)

c; = —log

and the integrality constraint on f enforces the requirement
that each site belongs to at most a single track.

This ILP is a well studied problem known as minimum-
cost network flow (Ahuja et al (1993)) with unit capacity

(a) network-flow model

(b) pairwise cost

Fig. 2: Graphical representation of network flow model and
its extension with pairwise costs. (a) Basic network-flow
model for multi-target tracking, as described by Zhang et al
(2008). A pair of nodes (connected by red edge) represent a
detection, blue edges represent possible transitions between
detections and track birth/death events are modeled by black
edges. Costs ¢; in Eq. 3 are for red edges, c;; are for blue
edges, ¢! and ¢f are for black edges. (b) Network-flow model
extended with pairwise cost. A green node represents a de-
tection site while an undirected edge between green nodes
encodes the pairwise cost for choosing both detection sites
as part of the solution. To simplify our description, in later
text we will refer to a green node (a red edge and the two
nodes associated with it) as a “detection node”. The set V'
consists of all detection nodes in the graph, whereas the set
E consists of all transition edges in the graph.

edges. In particular, the flow constraints satisfy the toral
unimodularity property and thus an integral solution can be
found by LP relaxation or via efficient specialized solvers
such as network simplex, successive shortest path and push-
relabel with bisectional search (Zhang et al (2008)).

3.2 Track Interdependence

The aforementioned model assumes tracks are independent
of each other, which is not always true in practice. In order
to allow interactions between multiple objects, we add a
pairwise cost term denoted g;; for jointly activating a pair
of flows f; and f; corresponding to detections at sites z; =
(l;,04,t;) and z; = (l;,05,t;). Adding this term to Eq. 3
yields an Integer Quadratic Program (IQP):

: s rs trt
min E s ff+ E cijfij + E ¢ifi + E ¢ fi
i€V ijeR i€V i€V

+ > aififi

ij€EC

s.t. ff—!—ijz' Zfizfit"‘Zfij
Jj J

(7

S fi fiy € {0,1}

In our experiments, we only consider pairwise interactions
between pairs of sites in the same video frame which we
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denote by EC' = {ij : t; = t;}. One could easily extend
such formulation to include transition-transition interactions
to model high order dynamics.

Unlike min-cost flow (Eq. 3), finding the global minimum
of the IQP problem (Eq. 7) is NP-hard (Zaied and Shawky
(2014)) due to the quadratic terms in the objective. In the next
section we discuss two different approximations for finding
high-quality solutions f. In Section 6 we describe how the
costs ¢ and q can be learned from data.

4 Inference

We evaluate two different schemes for finding high-quality
approximate solutions to the quadratic tracking objective.
The first is a standard approach of introducing auxiliary vari-
ables and relaxing the integrality constraints to yield a linear
program (LP) that lower-bounds the original objective. We
also consider a family of greedy approximation algorithms
based on successive rounds of dynamic programming that
also yields good solutions while avoiding the expense of
solving a large scale LP. The resulting tracks (encoded by the
optimal flows f) are used for both test-time track prediction
as well as for optimizing parameters during learning (see
Section 6).

4.1 LP Relaxation and Rounding

If we relax the integer constraints and deform the costs as
necessary to make the objective convex, then the global opti-
mum of Eq. 7 can be found in polynomial time. For example,
one could apply Frank-Wolfe algorithm to optimize the re-
laxed, convexified QP while simultaneously keeping track
of good integer solutions (Joulin et al (2014)). However, for
real-world tracking over long videos, the relaxed QP is still
quite expensive to solve. Instead we follow the approach
proposed by Chari et al (2015), reformulating the IQP as an
equivalent ILP problem by replacing the quadratic terms f; f;
with a set of auxiliary variables u;;:

mfin Zcfff + Z cijfij + Zcifi + Zcﬁfit

eV ijeE iev eV
®)
+ E QijUij
ijeEC

s.t. ff+iji:fi:ff+Zfij
Jj J
1‘87 itafbfij 6{071}

wig < fisuig < fj fit fi <wg+1
The new constraint sets enforce u;; to be 1 only when f;
and f; are both 1. By relaxing the integrality constraints, the

program in Eq. 8 can be solved efficiently via large scale LP
solvers such as CPLEX or MOSEK.

During test time we would like to predict a discrete set
of tracks. This requires rounding the solution of the relaxed
LP to some solution that satisfies not only integer constraints
but also flow constraints. Chari et al (2015) proposed two
rounding heuristics: a Euclidean rounding scheme that mini-
mizes ||f — ?H2 where f is the non-integral solution given by
the LP relaxation. When f is constrained to be binary, this
objective simplifies to a linear function (1 — 2?)Tf + ||?||2,
which can be optimized using a standard linear min-cost flow
solver. Alternately, one can use a linear under-estimator of
the objective in Eq. 7, similar to the Frank-Wolfe algorithm:

mfianfff + Z cijfij + deff

ieV ijer eV ©)
+Z(Ci+ Z ijUij + Z Qjitlyi) fi
eV ijEEC ji€eEC

Both of these rounding heuristics involve optimizing a new
linear objective function subject to the original integer and
flow constraints and thus can be solved as an ordinary min-
cost network flow problem. In our experiments we execute
both rounding heuristics and choose the solution with lower
cost under the original quadratic objective.

4.2 Greedy Dynamic Programming

As an alternative to the LP relaxation, we describe a family
of greedy algorithms inspired by the combination of dynamic
programming (DP) proposed by Pirsiavash et al (2011) for
approximately solving min-cost flow and the greedy forward
selection used for modeling contextual object interactions
by Desai et al (2009). Our general strategy is to sequentially
push units of flow through the tracking graph, updating the
edge costs at each step to capture the expected contribution
of quadratic interactions.

4.2.1 Successive Shortest Paths

We start by briefly describing the successive shortest path
(SSP) algorithm which solves for the min-cost flow with the
standard linear objective and refer the reader to Ahuja et al
(1993) for a comprehensive discussion. Consider the exam-
ple tracking graph shown in Figure 2. SSP finds the global
optimum of Eq. 3 by repeatedly searching for shortest st-path
in a so-called residual graph. In our model where all edges
have unit capacity, the residual graph G,.(f) associated with
flow f is given by reversing the orientation of every directed
edge used by the solution f and negating their associated
costs.

Starting from an empty flow f = 0, SSP simply iterates
two steps,

1. Find the minimum cost st-path in the residual graph
G.(f).
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2. If the cost of the path is negative, push a unit flow along
the path and update f.

until no negative cost path can be found.

We note that the first iteration of SSP looks like a single-
target data association problem. In particular, one can uti-
lize a simple dynamic program that makes a single sweep
over the graph nodes ordered by time to find the minimum
cost (shortest) path. However, the residual graph in subse-
quent iterations contains negative weight edges and is no
longer acyclic, hence requiring the use of a more general and
computationally expensive shortest path algorithm such as
Bellman-Ford.

Here we consider fast approximations to the full shortest
path problem based on carrying out multiple temporally-
ordered sweeps of the graph. This “K-Pass Dynamic Program”
approach introduced by Pirsiavash et al (2011) can be viewed
as a variant of Bellman-Ford that only considers a subset of
possible shortest paths using a problem-specific schedule for
performing edge relaxations. This approximate approach has
been shown to provide solutions which are nearly as good as
the full shortest path computation and provides a natural way
to incorporate quadratic cost terms.

4.2.2 One-pass Dynamic Programming

Assume the detection nodes are sorted in time. We denote
cost(i) as the cost of the shortest path from source node
to node i, link(i) as i¢’s predecessor in this shortest path,
and birth_node(4) as the first detection node in this shortest
path. We initialize cost(i) = ¢; + ¢, link(i) = (), and
birth_node(i) = i foralli € V.

To find the shortest path on the initial DAG G, we can
sweep from first frame to last frame, computing cost() as:

cost(i) = ¢; + min {c;, ¢;; + cost(j)} (10)
JujEeEE
and store the argmin in birth_node(i) or link(i) accordingly.
After sweeping through all frames, we find a node i
such that cost(i) 4 ¢! is minimum and reconstruct the cor-
responding shortest path (which terminates at ¢ and has cost
cost(i) + ct) by backtracking cached link variables. After
the shortest path is identified, we remove all nodes and edges
in this path from G; the resulting graph G’ will still be a
DAG. Without quadratic terms we can just repeat this proce-
dure until we cannot find any path that has a negative cost.
This can be viewed as a greedy version of SSP that does not
change paths once they have been added to the solution.

Quadratic cost updates The sequential greedy nature of one-
pass dynamic programming is well suited to incorporating
estimates of the quadratic cost terms in Eq. 7 by perform-
ing an additional contextual update step after each round of
dynamic programming. The complete algorithm is outlined

in Algorithm 1. After each new track is instanced, the edge
costs in the associated flow graph used for finding tracks in
subsequent iterations are updated to include the quadratic
penalties or boosts incurred by the newly instanced track. As
was the case with the LP+rounding scheme described in Sec-
tion 4.1, Algorithm 1 does not guarantee an optimal solution.
However, as we show in the experiments, it performs well in
practice.

Algorithm 1 One-pass DP with Quadratic Cost Update
1: Input: A Directed-Acyclic-Graph G with edge weights c;, ¢; ;
2: initialize 7 < 0
3: repeat

4: Find shortest st-path p on GG via dynamic programming
5: track_cost = cost(p)

6: if track_cost < O then

7: for all locations x; in p do

8: c;j =cj +qij +qj; forallij € EC

9: ci = +oo

10: end for

11: T+ TUp

12: end if

13: until track_cost > 0
14: Output: track collection T

4.2.3 Two-pass Dynamic Programming

Unlike a general shortest path algorithm such as Bellman-
Ford, one-pass dynamic programming can only find shortest
paths consisting of forward going edges. As proposed by Pir-
siavash et al (2011), one can improve this approximation
by carrying out multiple passes of DP that run forward and
backward in time to find paths in the residual graph G,.(f)
that reverse temporal direction one or more times. First we
describe the details of 2-pass dynamic programming without
quadratic contextual updates.

Let V; denote the set of forward edges in the current
residual graph, i.e., detection and transition variables in f
that equal 0, and V}, as the set of backward edges in current
residual graph, i.e., variables in f that equal 1. The 2-pass DP
algorithm proceeds as follows:

1. Perform a pass of forward DP (from first frame to last
frame) on all nodes. When computing cost of a specific
node, simply ignore all its predecessors that belong to V},.

2. Set costen (i) = cost(i) — ¢; for all i € V4 and perform
one pass of backward DP (from last frame to first frame)
on V. Update cost (i) and cost., (i) for i € V, at each
step,

cost(i) = costen(j) — cij (11

€08ten (1) = min (costen (i), cost(i) — ¢;) (12)

where j is i’s backward predecessor and c;; is from the
original graph. Set cost(i) = +oo for any backward
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detection 7 that has no backward transition edge coming
to it (i.e., the last node of each instanced track).

3. Perform a second pass of forward DP on ¢ € V. To avoid
running into cyclic path, we need to backtrack shortest
paths for all j € N(7), where N (i) is all neighboring
nodes that are connected to ¢ via a forward edge. In prac-
tice we only need to check j € N (i) such that j and %
share the same birth node, as they cannot form a cyclic
path otherwise. Furthermore, one can keep a cache of
shortest path so far for each node, reducing the backtrack
to a constant O(1) operation.

4. Find node 7 with minimum cost(i)+c!, the (approximate)
shortest path is then path(i).

5. Update solution f by setting all forward variables along
path(i) to 1 and all backward variables along path(i) to
0.

It is straightforward to see that during the first iteration, 1-
pass DP and 2-pass DP behave identically. Since we enforce
the path found by 2-pass DP never goes into a source node or
out of a sink node, each iteration generates exactly one more
track (either by splitting a previously found track into two or
by instancing an entirely new track). Therefore the algorithm
will terminate after at most |V| iterations.

Quadpratic cost updates The path found by 2-pass DP may
contain both forward and backward detection edges which
correspond to newly instanced and removed detections re-
spectively. When we augment the flow with this new path,
we also update the (unary) cost of other nodes by adding or
subtracting the pairwise cost imposed by turning on or off
selected nodes on the path. The entire procedure is described
as Algorithm 2 and illustrated in Figure 3.

Algorithm 2 Two-pass DP with Quadratic Cost Update

1: Input: A Directed-Acyclic-Graph G with node and edge
weights ¢;, ¢; ;

2: initialize f = 0

3: repeat

4: Find a shortest st-path p in G,-(f) using 2-pass DP
5: track_cost = cost(p)

6: if track_cost < 0 then

7 for all locations z; € p do

8: if f; = O then

9: ¢; =cj +qij +4q5i,Vij € EC
10: else

11: cj =c¢j —qij — qji,Vij € EC
12: end if

13: end for

14: f(p)=1-f(p)

15: end if

16: until track_cost > 0
17: Output: Solution f

Notice that to simplify our notation, we construct tempo-
rary residual graph at the beginning of each iteration based

on the current costs. In practice, we instead update edge costs
and directions on the original graph at the end of each it-
eration. When operating in place on the residual graph, the
signs of the cost updates are reversed when updating costs of
reversed detection edges (i.e., when turning off a detection,
we subtract pairwise costs from forward detection edges but
add pairwise costs to reversed detection edges).

4.2.4 Caching DP messages

Similar to the speed-up techniques employed by Pirsiavash
et al (2011), DP algorithms with contextual updates only
need to re-evaluate a subset of all detection nodes in each
round of shortest path computation. For one-pass DP, we
need to re-evaluate detection nodes who have the same birth
node as either newly found shortest path or suppressed nodes,
i.e., nodes whose cost has been increased due to most recent
contextual update. Then, we also need to count the effect of
boosted nodes whose cost has been decreased due to most re-
cent contextual update; this is done by first setting all boosted
nodes to be active, re-evaluating their successors and prop-
agating this activity to nodes whose /ink points back to the
active nodes. The caching scheme is similar for two-pass DP,
only difference being that we have to conduct two forward
passes and one backward pass, thus we need to maintain
separate caches for each pass.

4.2.5 Time Complexity Analysis

For the basic network-flow problem in Eq. 3 with n total
variables in f and k detections, exact successive shortest path
using Dijkstra’s algorithm has a worst-case performance of
O(nlog k) operations per path and terminates after adding
fewer than k paths yielding O(nk log k) worst-cast perfor-
mance. The family of DP algorithms introduced by Pirsiavash
et al (2011) takes O(n) to find a single track and thus has
worst-case performance of O(kn) for basic network-flow
problem.

For solving the linear program in Eq. 8, a general solver
such as simplex has average run times of O(n?), where n
is the total number of variables (unary and pairwise). For
a video with k total detections, our one-pass DP algorithm
takes O(n) to find a single track, achieving a worst case
O(kn) time complexity. Notice that k is often much smaller
than n; in fact, for short sequences n often grows quadrati-
cally with k. The same O(kn) worst-case time complexity
applies for 2-pass DP or any number of constant passes be-
cause the complexity of every iteration of multi-pass DP still
scales linearly with n.
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Fig. 3: An illustration for 2-pass DP with quadratic interac-
tions. (a) the initial DAG graph, a pair of nodes indicate a
candidate detection; (b) first iteration of the algorithm, red
edges indicates the shortest path found in this iteration; (c)
we reverse all the edges along the shortest path (green edges),
and add the pairwise cost imposed by this path to other can-
didates detections at each time point (red node pairs). (d)
In the second iteration of the algorithm, red edges and blue
edges indicate the new shortest path which happens to tra-
verse three of the reversed edges (shown in blue); (e) we
again reverse all the edges along the shortest path yielding
two instanced st-tracks (green edges). We again update pair-
wise cost: blue node pair indicates we subtract the pairwise
cost imposed by “turning off” a candidate, red pair indicates
adding in pairwise cost of newly instanced candidates, and
the blue-red pair indicates we first add the pairwise cost by
newly instanced candidates, then subtract the pairwise cost
by newly uninstanced candidates. Additions and subtractions
are done to the non-negated edge costs and then negated if
necessary.

5 Features for Scoring Tracks

In order to learn the tracking potentials (c and q) we parame-
terize the flow cost objective by a vector of weights w and
a set of features ¥ (X, f) that depend on features extracted
from the video, the spatio-temporal relations between can-

didate detections, and which tracks are instanced. With this
linear parameterization we write the cost of a given flow as
C(f) = wl'W(X, f) where the vector components of the
weight and feature vector are given by:

ws > 0s(@i) f7
Wy ZijeE Vi (@i, 5) fi
W= | Ws (X, f) = Zz‘jeEC Vs(wi; x;) fif;

Wq 21 ¢a(xz)fz
(13)

Here w, represents local appearance template for the tracked
objects of interest, w; represents weights for transition fea-
tures, ws represents weights for pairwise interactions, wg
and wg represents weights associated with track births and
deaths. ¥ (X, f) are corresponding features. Given the wegiht
vector w, we extract features on each node ¢, including de-
tections ¢, (;) and track birth/deaths ¢g(zf),pp(x!), along
with features on each edge ij € F and ij € EC, including
transitions v (x;, ;) and pairwise interactions ¢(x;, x;).
Then we multiply corresponding weight vectors and fea-
tures on each edge. In this way we can obtain costs of each
node/edge in the network and conduct standard inference as
described in Section 4. We describe each type of features as
below:

Local appearance and birth/death model We make use of
off-the-shelf detectors (Dollar et al (2014); Felzenszwalb
et al (2010); Wang et al (2013)) to capture local appearance.
Our local appearance feature thus consists of the detector
score along with a constant 1 to allow for a variable bias. In
applications with static cameras it can be useful to learn a
spatially varying bias to model where tracks are likely to ap-
pear or disappear. However, most videos in our experiments
are captured from moving platforms, we thus use a single
constant value 1 for the birth and death features.

Transition model We connect a candidate x; at time ¢; with
another candidate x; at a later time ¢; + n, only if the overlap
ratio between x;’s window and x;’s window exceeds 0.3. The
overlap ratio is defined as two windows’ intersection over
their union. We use this overlap ratio to compute a binary
overlap feature associated with each transition link which
is 1 if the overlap ratio is lower than 0.5, and O otherwise.
In order to handle occlusion, we allow up to 8 frames(10
on PETS+TUD-Stadtmitte) gap between the two detection
sites of a transition edge. We jointly encode the overlap and
frame gap with a single 16 dimensional (20 on PETS+TUD-
Stadtmitte) binary feature for each transition link.

Pairwise interactions The weight vector w encodes valid
geometric configurations of two tracked objects in a frame.
Ys(x;, x;) is a discretized spatial-context feature that bins
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relative location of detection window at location x; and win-
dow at location x; into one of the D relations including on
top of, above, below, next-to, near, far and overlap (similar
to the spatial context by Desai et al (2009)). To mimic the
temporal NMS described by Pirsiavash et al (2011) we add
one additional relation, strict overlap, which is set to 1 if the
ratio of the intersection area of two boxes over the area of
the first box is greater than 0.9. If we assume that there are
K classes of objects in the video, then wg is a DK 2 yector,
ws = [why, wlhy, ., wl;, .. whg]T, in which wg; is a
length of D column vector that encodes valid geometric con-
figurations of object of class 7 w.r.t. object of class j. This
allows the model to capture intra- and inter-class contextual
relationships between tracks.

6 Learning

We formulate parameter learning of tracking models as a
structured prediction problem. With some abuse of notation,
assume we have N labeled training videos (X,,,f,) € X xF
indexed by n = 1, ..., N. Given ground-truth tracks in train-
ing videos specified by flow variables f,,, we discriminatively
learn tracking model parameters w using a structured SVM
with margin scaling:

* : 1 2
w* = argmin §||W|| + Czn:fn (14)

w,£, >0
st wi(X,, ) — wiw(X,,£,) > L(£,,f) — & Vn,f

U(X,,f,) are the features extracted from nth training video.
L(f,, ?) is a loss function that penalizes any difference be-
tween the inferred label f and the ground truth label f,, and
which satisfies L(f, f) = 0. The constraint on the slack vari-
ables &, ensure that we pay a penalty for any training videos
in which the cost of the flow associated with ground-truth
tracks under model w is higher than some other incorrect
flow f.

6.1 Cutting Plane Optimization

We optimize the structured SVM objective in Eq. 14 using
a standard cutting-plane method (Joachims et al (2009)) in
which the exponential number of constraints (one for each
possible flow ?) are approximated by a much smaller number
of terms. Given a current estimate of w we find a “most
violated constraint” for each training video:

?:{ = argmin (w, W(Xn,?) —U(X,,fn)) — L(fn,?) (15)
f

We then add constraints for the flows {ﬁ’:} to the optimization
problem and solve for an updated w. This procedure is iter-
ated until no additional constraints are added to the problem.

In our implementation, at each iteration we add a single lin-
ear constraint which is a sum of violating constraints derived
from individual videos in the dataset. This linear combination
is also a valid cutting plane constraint (Desai et al (2009))
and yields faster overall convergence.

The key subroutine is finding the most-violated constraint
for a given video which requires solving the loss-augmented
inference problem Eq. 15. As long as the loss function L(f, f)
decomposes as a sum over flow variables then this problem
has the same form as our test-time tracking inference prob-
lem, the only difference being that the cost of variables in f
is augmented by their corresponding negative loss.

We note that this formulation allows for constraints cor-
responding to non-integral flows f s0 we can directly use the
LP relaxation (Eq. 8) to generate violated constraints during
training. Finley and Joachims (2008) point out that besides
optimality guarantees, including non-integral constraints nat-
urally pushes the SVM optimization towards model parame-
ters that produce integer solutions even before rounding.

6.2 Tracking Loss Function

We find that a critical aspect for successful learning is to
use a loss function that closely resembles major tracking
performance criteria, such as Multiple Object Tracking Accu-
racy (MOTA). Metrics such as false positive, false negative,
true positive, true negative and true/false birth/death can be
easily incorporated using a standard Hamming loss on the
flow vector. However, id switches and fragmentations are
determined by looking at labels of two consecutive transition
links simultaneously and hence cannot be optimized by our
inference routine (which only considers pairwise relations
between detections within a frame). Instead, we propose a
decomposable loss for transition links that attempts to cap-
ture important aspects of MOTA by taking into account the
length and localization of transition links rather than simply
using a constant (Hamming) loss on mislabled links.

We define a weighted Hamming loss to measure distance
between ground-truth tracks f and inferred tracks f that in-
cludes detections/birth/death, f;, and transitions, f;;. Let

L(E.£) =1, +) 1
[ 17

where 1 = {1, ..., l;, ..., lij, ..., g } is a vector indicating the
penalty for differences between the estimated flow f and the
ground-truth f.

In order to describe our transition loss, let us first denote
four types of transition links present in the tracking graph:
NN is the link from a false detection to another false detec-
tion, PN is the link from a true detection to a false detection,
N P is the link from a false detection to a true detection, PP+
is the link from a true detection to another true detection with

fi— 1 fqij—fz;
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10
ground-truth |prediction error type
Intra-frame loss:| v @ @ false detection
P @ @ missed detection
NN @ —@® | @®-® | false association
PN @®—@® | @®@® | wrong association
Inter-frame loss: | yp @—@ | @@ | wrong association
PP @®—® | ®® | track ID switch
PP @ * ® | ®-@® | missed association

Fig. 4: Possible intra-frame and inter-frame errors a tracker
could make which are penalized by our loss function. A blue
node/edge indicates that corresponding flow variable is set to
1 in either ground-truth or tracker prediction. Similarly red
node/edge indicates corresponding flow variable is set to 0.

the same identity, and PP~ is the link from a true detection
to another true detection with a different identity. These are
depicted visually in Figure 4.

For all the transition links with a frame gap larger than
1, we interpolate detections between its start detection and
end detection. The interpolated “virtual detections” are con-
sidered to be either true virtual detection or false virtual
detection, depending on whether they overlap with a ground
truth label or not. We define the losses for different types of
transitions as:

PP~ : l;; = (# true virt. det. + # false virt. det. + 2)
PPt : 1;; = (# true virt. det.)

1. NN : [;; = (#true virt. det. + # false virt. det.)

2. PN : l;; = (# true virt. det. + # false virt. det. + 1)
3. NP: l;; = (# true virt. det. + # false virt. det. + 1)
4,

5.

6.3 Ground-truth flows from training data

Available training datasets specify ground-truth bounding
boxes that need to be mapped onto ground-truth flow vari-
ables f,, for each video. To do this mapping, we first consider
each frame separately. We take the highest scoring detection
window that overlaps a ground truth label as true detection
and assign it a track identity label which is the same as the
ground truth label it overlaps. Next, for each track identity, we
run a simplified version of the dynamic programming algo-
rithm to find the path that claims the largest number of true de-
tections. After we iterate through all id labels, any instanced
graph edge will be a true detection/transition/birth/death
while the remainder will be false.

An additional difficulty of training which arises on the
KITTI tracking benchmark is special evaluation rules for
ground truth labels such as small/truncated objects and vans

for cars, sitting persons for pedestrians. This is resolved in our
training procedure by removing all detection candidates that
correspond to any of these “ambiguous” ground truth labels
during training; in this way we avoid mining hard negatives
from those labels. To speed up training on both MOT and
KITTI dataset, we partition full-sized training sequences into
10-frame-long subsequences with a 5-frame overlap, and
define losses on each subsequence separately.

7 Experimental results

Historically it has been challenging to make a meaningful
empirical comparison among tracking performance results
reported in the literature as the exact detection set, evaluation
script, amount of training data and even ground-truth labels
have varied greatly. As a result, there has been significant
recent efforts to establish standard benchmarks for evaluating
multi-target tracking algorithms. We focus our diagnostic
analysis on the KITTI and MOT Challenge datasets as they
have very clear train-test splits of data and the ground-truth
labels for testing data are strictly “held out”, invisible to all
competitors of the benchmark. To make our results easy to
compare to other algorithms, we always use the base detec-
tions, ground-truth and evaluation scripts provided by the
MOT and KITTI benchmark organizers when performing
training, inference and diagnostics.

To aid comparison to older methods that have not been
evaluted on MOT or KITTI, we also include results on PETS
and the TUD-Stadtmitte sequence, based on what we believe
to be the most popular public detection set, ground-truth and
evaluation script. However, we note that for these videos
the evaluation is less standardized and since ground-truth
annotations have been used widely to tune models, there may
be overfitting. We thus view these results as less informative
than those on MOT and KITTI test benchmarks.

7.1 Datasets and Benchmarks

The Multiple Object Tracking Benchmark' (Leal-Taixé et al
(2015)) targets primarily pedestrian tracking. It contains se-
quences from widely-used multi-target tracking benchmarks
such as TUD, ETH, PETS09, TownCentre and KITTI, aug-
mented with several additional newly acquired sequences.
The dataset is split into 11 training sequences and 11 testing
sequences, with ground-truth labels of testing set held out on
a private server.

The KITTI Tracking Benchmark? (Geiger et al (2012))
involves multi-category tracking of cars, pedestrians and cy-
clists. It consists of 21 training sequences and 29 testing

! http://nyx.ethz.ch/
2 http://www.cvlibs.net/datasets/kitti/eval_
tracking.php
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sequences which is much larger than the MOT dataset. Simi-
lar to the MOT benchmark, the ground-truth labels for testing
set are also held out. Labels for the cyclist category are avail-
able on the training set but the benchmark server does not
provide test-set benchmarks for cyclist. For both MOT and
KITTI we allow up to 8 frames gap between two detection
sites of a transition edge and determined the best regulariza-
tion parameters via leave-one-video-out cross-validation on
the training data.

Finally, in order to compare to previous related work such
as Brau et al (2013) and Chari et al (2015), we use data pro-
vided by Milan et al (2013)? consisting of 5 sequences from
PETS09 dataset and the single TUD-Stadtmitte sequence.
For this data, we report leave-one-video-out cross-validation
results. We allow up to 10 frames gap between two detection
sites of a transition edge in this setup and partition videos
into 15-frame long sequences during training stage.

7.2 Evaluation Metrics

To evaluate the performance of each proposed tracker, we
employ a standard battery of performance measure, which
consists of the popular CLEAR MOT metric (Bernardin and
Stiefelhagen (2008)) and the Mostly-Tracked/Mostly-Lost
metric (Li et al (2009)):

MOT A(1): Multi-object Tracking Accuracy.

MOT P(7): Multi-object Tracking Precision.

MT(1): ratio of mostly-tracked ground-truth trajectories.
M L(]): ratio of mostly-lost ground-truth trajectories.
IDSW (J): total number of identity-switches.
FRAG(]): total number of times ground-truth trajecto-
ries are interrupted.

For measurements with (1), higher scores indicate bet-
ter performance; for measurements with ({), lower scores
indicate better performance.

7.3 Tracking Benchmark Results

We start by comparing our model with various state-of-the-
art results on the three datasets. Most competing methods on
these datasets model high order dynamics of either motion
or appearance, or both, while our model uses very simple
motion model to build transition links, and do not explicitly
employ any appearance affinity model.

The MOT Benchmark For the MOT Benchmark, we only
use a subset of contextual features that includes the over-
lap and near relationships due to the varying view angle of
benchmark videos. Surprisingly, on MOTA score alone, we

3 http://www.milanton.de/data/

outperform many state-of-the-art works without employing
any explicit appearance/motion model. We expect this is not
because appearance/motion features are useless but rather
that the parameters of these features have not been optimally
learned/integrated into competing tracking methods.

The KITTI Tracking Benchmark * Due to the high-speed
motion of vehicle platforms, for the KITTI dataset we use
pre-computed frame-wise optical flow (Liu (2009)) to pre-
dict candidate detection locations in future frames in order to
generate candidate transition links between frames. We evalu-
ated two different detectors, DPM and the regionlets detector
(Wang et al (2013)) which produced the best result in terms
of MOTA, IDs and FRAG during cross-validation. Results
on the benchmark test set are summarized in the upper part
of Table 2. Notice that for cars on regionlet detection set, we
achieve almost equivalent MOTA score to that of Choi (2015)
which employs a novel flow descriptor, explicit high order
dynamics and even inter-trajectory interactions.

PETS and TUD-Stadtmitte Similar to the MOT benchmark
we use only a subset of contextual features. Since cameras are
fixed for all sequences in this setup, we take advantage of a
Kalman filter to predict object’s position in future frames and
build transition links accordingly. The results are reported in
Table 4. Despite the fact that our model is relatively simple,
we still achieve comparable or better accuracy than state-
of-the-art methods on most sequences. The work of Chari
et al (2015) performs well on these sequences but we note
that it utilizes both body and head detectors to aid detection
of heavily overlapping pedestrians. Interestingly, the model
of Milan et al (2013) outperforms both our model and Chari
et al (2015), while on MOT and KITTI our model achieves a
much better MOTA than their Discrete-Continuous optimiza-
tion framework (+5.6% on MOT, +10.3% on KITTI-car and
+5.9% on KITTI-pedestrian).

7.4 Diagnostic Analysis

We conduct cross-validation experiments on the training
set for MOT and KITTI benchmarks to study the effect of
quadratic terms, loss function and inference algorithm. The
results are summarized in Table 1 and 2. As shown in right
side of Table 1, our novel loss function is superior to tradi-
tional Hamming loss in terms of maximizing MOTA. The
1-pass DP proposed in section 4 achieves up to 10x speedup
with negligible loss in most metrics; 2-pass DP performs bet-
ter than 1-pass DP in most metrics, while still being up to 3x

4 In a recent update of the benchmark server, the organizers changed
their evaluation script to count detections in “don’t care” regions as false
positives, which we believe is not consistent with general consensus
of what “don’t care” regions mean. Thus we report the results up to
05/24/2016 which were evaluated using old evaluation script.
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MOT dataset
Benchmark on MOT test set Cross-validation on MOT training set
Method MOTA | MOTP| MT | ML |IDSW |FRAG Method MOTA [MOTP| MT | ML |IDSW |FRAG

Bae and Yoon (2014) | 15.1% | 70.5% | 3.2% |55.8% | 637 | 1716 SSP 28.7% | 72.9% | 15.1% | 50.5% | 440 541

Yoon et al (2015) 18.6% | 69.6% | 5.3% |53.3% | 684 | 1282 ||LP+Hamming | 25.3% | 72.4% |17.4% |46.5% | 567 604

Milan et al (2016) 19.6% | 71.4% | 5.1% | 54.9% | 521 819 LP 28.5% | 72.8% | 15.1% | 48.9% | 440 563

Milan et al (2015)* 22.5% | 711.7% | 5.8% |63.9% | 697 737 DP1 27.6% | 72.4% | 15.5% |49.1% | 492 626

Leal-Taixé et al (2014)* | 23.1% | 70.9% | 4.7% | 52.0% | 1018 | 1061 DP2 28.5% | 72.9% | 15.5% | 48.9% | 476 592
Xiang et al (2015) 30.3% | 711.3% | 13.0% | 38.4% | 680 | 1500
Kim et al (2015) 32.4% | 71.8% | 16.0% | 43.8% | 435 826
Choi (2015) 33.7% | 711.9% | 12.2% | 44.0% | 442 823
Ours(LP) 252% | 71.7% | 5.8% |53.0% | 646 849

Table 1: Benchmark and cross-validation results on MOT dataset. Gray background indicates the method uses target-specific
appearance model, while asterisk(*) indicates method uses image-evidence, method with neither gray background nor asterisk
can operate purely on bounding boxes without accessing images. We denote variants of our model as follows: 1) SSP is
a model without any pairwise cost terms, learned and tested with successive shortest path algorithm. 2) LP are models
with pairwise terms, learned with LP-Relaxation while tested with LP-Rounding. 3) DP1 and DP2 are models learned with
LP-Relaxation and tested with 1-pass and 2-pass DP respectively. 4) LP+Hamming is the same as LP, except that models are
learned using Hamming loss instead of the loss described in Section 6.

Benchmark on KITTI test set (as of 05/24/2016)
Benchmark on Car, DPM detections Benchmark on Pedestrian, DPM detections
Method MOTA | MOTP | MT ML |IDSW | FRAG Method MOTA | MOTP | MT ML |IDSW | FRAG
Geiger et al (2014) | 54.2% | 78.4% | 13.9% | 34.3% | 31 535 | Geigeretal (2014) | NA NA NA NA NA NA
Milan et al (2014) | 50.2% | 77.1% | 14.5% | 34.0% | 125 398 | Milanetal (2014) | 27.4% | 68.5% | 7.9% |52.9% | 96 610
Yoon et al (2015) | 51.5% | 75.2% | 15.2% | 33.5% | 51 382 | Yoonetal (2015) | 34.5% | 68.1% | 10.0% | 47.4% | 81 692
Choi (2015) 652% | 78.2% | 31.6% [ 27.9% | 13 154 Choi (2015) 36.9% | 67.8% | 14.4% | 42.6% | 34 800
Ours(LP) 60.5% | 76.9% |27.7% | 23.8% | 16 430 Ours(LP) 333% | 67.4% | 9.6% |45.0% | 72 825
Benchmark on Car, Regionlet detections Benchmark on Pedestrian, Regionlet detections
Yoon et al (2015) | 65.3% | 75.4% | 26.8% | 11.4% | 215 742 | Yoon et al (2015) | 43.7% | 71.0% | 16.8% | 41.2% | 156 760
Choi (2015) 77.8% | 79.5% | 43.1% | 14.6% | 36 225 Choi (2015) 46.4% | 71.5% |23.4% | 34.7% | 63 672
Ours(LP) 77.2% | 77.8% | 43.1% | 9.0% 63 558 Ours(LP) 43.8% | 70.5% | 16.8% | 34.7% | 73 814

Cross-validation result on KITTI training set

Benchmark on Car, DPM detections Benchmark on Car, Regionlet detections
Method | MOTA | MOTP | MT ML |IDSW | FRAG || Method | MOTA | MOTP | MT | ML |IDSW | FRAG
SSP | 64.9% | 77.9% | 27.3% | 19.6% 3 186 SSP | 80.5% | 80.1% |44.4% | 7.9% | 17 293
LP 65.4% | 77.6% |29.6% | 18.3% 4 215 LP 81.0% | 80.1% | 44.3% | 7.2% | 23 305
DP1 | 66.0% | 77.4% |30.5% | 18.3% | 15 218 DP1 | 79.0% | 79.5% |44.1% | 7.1% | 149 509
DP2 | 65.7% | 77.6% | 30.7% | 18.3% 4 203 DP2 | 80.7% | 80.0% |44.4% | 7.2% | 62 360

Benchmark on Pedestrian, DPM detections Benchmark on Pedestrian, Regionlet detections
Method | MOTA | MOTP | MT ML | IDSW | FRAG || Method | MOTA | MOTP | MT | ML |IDSW | FRAG
SSP | 49.7% | 72.8% | 19.2% | 24.0% | 22 231 SSP | 71.8% | 76.1% | 55.7% | 9.0% | 71 381
LP 51.2% | 72.5% |21.6% | 22.8% | 46 314 LP 72.6% | 76.2% |56.3% | 7.8% | 58 383
DP1 | 51.4% | 72.6% | 19.2% | 24.0% | 34 280 DPl | 69.3% | 75.6% |52.7% | 7.8% | 124 474
DP2 | 51.8% | 72.5% |20.4% | 23.4% | 38 295 DP2 | 71.0% | 76.2% |55.7% | 7.8% | 104 415

Benchmark on Cyclist, DPM detections Benchmark on Cyclist, Regionlet detections
Method | MOTA | MOTP | MT | ML |IDSW | FRAG || Method | MOTA | MOTP| MT | ML |IDSW | FRAG
SSP | 52.2% | 79.7% | 32.4% | 29.7% | 5 11 SSP | 84.9% | 82.3% | 73.0% (2.7% | 7 18
LP | 572% | 79.5% |43.2% |27.0% | 9 18 LP |832% |822% |78.4% |2.7% | 10 22
DP1 | 56.5% | 79.4% |29.7% |32.4% | 6 13 DP1 | 80.1% | 81.8% |70.3% | 2.7% | 12 29
DP2 | 56.8% | 79.6% |29.7% |32.4% | 5 12 DP2 | 82.0% | 82.2% | 73.0% |2.7% | 13 24

Table 2: Benchmark and cross-validation results on KITTI data set. Gray background indicates the method uses target-specific
appearance model. We evaluate two different detectors, Deformable Part Models (DPM) and Regionlet, and different inference
models with linear (SSP) and quadratic (LP,DP1,DP2) cost models, each trained using SSVM.
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MOTA on individual MOT test sequences

Pirsiavash et al (2011) | Milan et al (2016) | Ours(LP)
ETH-Jelmoli 29.1 30.2 39.5
ETH-Crossing 20.0 16.5 24.9
ETH-Linthescher 15.9 17.0 15.6
KITTI-16 232 34.0 39.2
KITTI-19 8.3 17.4 28.2
TUD-Crossing 48.6 57.3 60.0
ADL-Rundle-1 -3.7 10.0 14.0
Venice-1 10.9 13.1 17.8
PETS09-S21.2 33.8 37.5 41.5
AVG-TownCentre 6.6 8.2 14.7
ADL-Rundle-3 12.8 16.9 28.0

Table 3: Per-sequence accuracy comparison against purely motion-based algorithms on MOT test-set.

MOTA on other sequences

Brau et al (2013)* | Milan et al (2013) | Chari et al (2015) | Ours(SSP) | Ours(LP) | Ours(SSP+Overfit) | Ours(LP+Overfit)
TUD-Stadtmitte 70.0 56.2 51.6 48.1 48.6 46.6 49.0
PETS09-S2.L.1 83.0 90.3 85.5 83.3 83.5 85.8 86.2
PETS09-S2.L.2 NA 58.1 50.4 46.0 50.7 479 52.8
PETS09-S2.L.3 NA 39.8 40.3 40.7 41.3 40.3 41.3
PETS09-S1.L1-2 NA 60.0 62.0 57.2 59.9 57.2 59.4
PETS09-S1.L.2-1 NA 29.6 322 26.9 27.5 25.6 26.6
Accumulated NA 55.4 53.9 49.8 51.6 50.1 52.6

Table 4: Results on PETS and TUD-Stadtmitte. An asterisk(*) indicates that the method uses different detector, training
data and ground-truth than other methods. SSP and LP corresponding to cross-validation results of linear/quadratic models.
+Overfit indicates the models are trained using all six sequences, thus overfiting to the training data.

faster than LP inference (Figure 6) on long video sequence
with dense objects.

We found SSP (min-cost flow without quadratic terms)
achieves slightly better overall accuracy on the MOT dataset.
MOT only contains a single object category and includes
videos from many different viewpoints (surveillance, vehicle,
street level) which limits the potential benefits of simple 2D
context features. However, by properly learning the detec-
tor confidence and transition smoothness in the SSP model,
many false tracks can be pruned even without contextual
knowledge.

For traditional multi-category detector such as DPM,
quadratic interactions were very helpful to improve the track-
ing performance on KITTI; this is most evident for tracking
cyclist, as shown in Table 2, where LP, DP1 and DP2 all
achieve considerable improvement over the baseline linear
objective.

However, when we switch to the much more accurate
regionlet detector on KITTI, LP inference achieves only
slightly better results than SSP on car and pedestrian, while
losing to SSP on cyclist category. This is very similar to the
result on MOT dataset, where the LP and SSP models achieve
almost equivalent results. We attribute this to the increasingly
accurate regionlet detector squeezing out any relative gains to
be had from our simple quadratic interactions. Interestingly,

the gap between LP and the 1-pass DP approximation is also
larger. Since the regionlet detector can often find objects with
extreme occlusion and truncation, the tracking graph can be-
come quite complicated and using one-shot greedy decisions
for tracks can lead to inferior tracking result. Two-pass DP,
with its ability to “fix” potential errors from previously found
tracks, outperforms 1-pass DP by a noticeable margin in this
scenario.

7.5 Integrality Gap for Greedy Dynamic Programming

We compare the accumulated cost from DP1, DP2, LP and
the relaxed optimum on 21 training sequences of KITTI
dataset. The visual comparison, as well as the exact numbers
are reported in Fig 6. We note that the LP method often
produces integral results even before rounding. This may be
in part because the the structured SVM will tend penalize
fractional solution resulting in learned model parameters that
favors integral results. On the other hand, DP1 and DP2
which are greedy algorithms, do not benefit from this specific
property of structured SVM but they still manage to find
good approximation within 1% of the relaxed optimum.

We note that there are two ways in which the “greedy”
dynamic programming can be suboptimal. First, without
quadratic interactions, the dynamic programming approach
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(a) inter-frame weights

(b) intra-frame weights

Fig. 5: Visualization of the weight vector learned on KITTI
dataset for the DPM detector. Yellow has small cost, blue
has large cost. (a) shows transition weights for different
length of frame jumps. (b) shows learned pairwise contextual
weights between objects. The model encourages intra-class
co-occurrence when objects are close but penalizes overlap
and objects on top of others. Note the strong negative inter-
action learned between cyclist and pedestrian (two classes
which are easily confused by their respective detectors.). Fig-
ure is best viewed in color.

only approximately optimizes the min-cost flow objective.
This optimality gap only appears when tracks that would
have been found correctly by SSP cross in the video se-
quence. When there are no crossings, 1-pass greedy DP will
find globally optimal solution, and in most real-world track-
ing scenarios, 2-pass greedy DP is sufficient to fix most of
the errors 1-pass DP could have made.

Second, for models with quadratic interactions, the greedy
DP approach may instance a single track when it might have
been better (lower cost) to instance a pair of tracks which
have negative or zero interactions with each other while
each having strong positive interactions with the greedily
instanced track (remember we are minimizing the objective).
Greedy selection algorithms have some optimality guarantees
in the case of submodular set functions (i.e.strictly positive
pairwise interactions for the minimization problem). How-
ever, the theoretical bounds are quite loose. Empirically, we
observe that the integrality gap between the LP relaxation and
integral solutions produced by greedy DP are often within
1% of the relaxed optimum, as shown in Fig 6.

7.6 Running Time

We show running time comparison among DP1, DP2 and
LP on KITTI training set in Figure 6. For LP we only count
the time spent inside MOSEK library for relaxed inference,
Frank-Wolfe rounding, plus the time for backtracking final
tracks. For DP1 and DP2 we count the entire period spent in-
side our MATLAB function. On the DPM detection set, both
DP1 and DP2 run much faster than LP, with DP1 being up to
10x faster and DP2 up to 3x faster. On regionlet detection set,

(a) KITTI-DPM Speed (b) KITTI-Regionlet Speed
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(d) KITTI-Regionlet Cost

number of frames

(¢) KITTI-DPM Cost

DPM detections

Method | Time(seconds) | Time(FPS) Cost
DP1 62.5 128.1 -105356.636294
DP2 157.4 50.9 -105535.299785
LP 384.9 20.8 -105788.159640
Relax NA NA -105788.871516

Regionlet detections

Method | Time(seconds) | Time(FPS) Cost
DP1 60.7 131.9 -212669.923615
DP2 162.4 49.3 -213873.592597
LP 192.7 41.6 -214483.825168
Relax NA NA -214484.227818

(e) Detailed running time and cost

Fig. 6: Speed and quality comparison of proposed DP and
traditional LP approximation over 21 sequences of KITTI
training set. (a) and (b) are running time comparisons. Both
DP1 and DP2 run much faster than LP inference, with DP1
being up to 10x faster on specific videos. (c) and (d) are cost
comparisons. Notice that DP2 always finds lower total cost
than DP1, which often results in better tracking performance
(see Section 7.4 for details). Figures are best viewed in color.
Running times are averaged over three separate runs of each
instance.

the gap between DP2 and LP becomes smaller, this is most
likely due to the fact that regionlet detection set has fewer
candidate detections per sequence than DPM set, and the
overhead of MATLAB implementation comes to dominate.
In fact, for sequence 17 and sequence 20, on which both DP2
and LP take more than 10 seconds to finish using regionlet
detections, DP2 runs 2x and 1.5x faster than LP, respectively.

We note that our current implementation is not heavily
optimized. For example, the dynamic programming step in
our DP2 implementation only takes up to 50% of the total
running time while contextual updates take up the remainder.
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Fig. 7: Additional Qualitative Results on KITTI DPM detection set. With help of intra-class quadratic interactions, the tracker

is able to instantiate more correct trajectories.

Pedestrian

v @ by

Fig. 8: Additional Qualitative Results on KITTI DPM detection set. The linear cost tracking model has wrongly labeled “a
person pushing a cart” as “cyclist” (top-left), while our quadratic model is able to suppress cyclist trajectory with a high
penalty between co-occurrence of pedestrian and cyclist (bottom-left). The quadratic interaction is also helpful in that it
could help to suppress spatially infeasible co-occurrence from imperfect detectors, such as a car appearing on the back of a

pedestrian (left), or a car “flying” above a pedestrian (right).

This suggests there is plenty of room to further accelerate
and optimize the DP algorithms.

8 Conclusion and Future Work

We have described algorithms for multi-target track associa-
tion with quadratic interactions that are a natural extension
of previously published approaches (Zhang et al (2008); Pir-
siavash et al (2011)). Surprisingly, the resulting system is
able to outperform many far more complex state-of-the-art
methods on both MOT and KITTI benchmarks. In contrast,
simple application of the DP-based tracker described by Pir-
siavash et al (2011) does quite poorly on these datasets (e.g.,
MOTA=14.9 on the MOT benchmark). We attribute the per-
formance boost to our learning framework which produces
much better parameters than those estimated by hand-tuning
or piece-wise model training.

A basic assumption of the network-flow models is that
the entire video is available. However it can become on-
line by simply solving a new network-flow problem every
time we get a new frame; this might sound expensive at
first, but remember that we can use the caching strategy de-
scribed in Section 4.2.4 to save the effort of computing the
first pass of dynamic programming, which is often the most
time-consuming one. Lenz et al (2015) describes an online
successive-shortest-path algorithm with fixed size of mem-
ory, in which they fix the solution for nodes beyond a certain
number of frames. Obviously, our DP algorithms can do the
same to achieve online inference with bounded memory.

We stress that the ideas described here is also compli-
mentary to other existing methods. While we did not see
significant benefits to adding simple appearance-based affin-
ity features (e.g., RGB histogram or HOG) to our model,
many state-of-the-art systems perform hierarchical or stream-
ing data association which involves collecting examples from
extended period of trajectory to train target specific appear-
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Fig. 9: By learning a proper parameter set, even a network-flow model without pairwise potentials can prune away many false
tracks by reasoning about detection confidence and transition smoothness.

ance models in an online fashion. Such improved appearance
models can be adapted to our framework, providing a way to
explore more complicated affinity features while estimating
hyper-parameters automatically from data. One could also
introduce richer, trajectory level contextual features under
such a hierarchical learning framework.
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