Salient Object Detection: A Discriminative
Regional Feature Integration Approach

Huaizu Jiang, Zejian Yuan, Ming-Ming Cheng, Yihong Gong,
Nanning Zheng, and Jingdong Wang

Abstract—Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have
been designed. In this paper, we formulate saliency map computation as a regression problem. Our method, which is based
on multi-level image segmentation, utilizes the supervised learning approach to map the regional feature vector to a saliency

score. Saliency scores across multiple layers are finally fused to produce the saliency map. The contributions lie in two-fold.
One is that we propose a discriminate regional feature integration approach for salient object detection. Compared with existing
heuristic models, our proposed method is able to automatically integrate high-dimensional regional saliency features and choose
discriminative ones. The other is that by investigating standard generic region properties as well as two widely studied concepts
for salient object detection, i.e., regional contrast and backgroundness, our approach significantly outperforms state-of-the-art
methods on six benchmark datasets. Meanwhile, we demonstrate that our method runs as fast as most existing algorithms.
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1 INTRODUCTION

CV

. Visual saliency has been a fundamental problem in
() neuroscience, psychology, neural systems, and com-
—puter vision for a long time. It is originally defined
as a task of predicting the eye-fixations on images [2].
Recently it is extended to identifying a region [3], [4]
(O containing the salient object, known as salient object
O\l detection or salient region detection. Applications of
O) salient object detection include object detection and
. recognition [5], [6], image compression [7], image
O cropping [8], photo collage [9], [10], dominant color
detection [11], [12] and so on.
The study on human visual systems suggests that
- - the saliency is related to uniqueness, rarity and sur-
2 prise of a scene, characterized by primitive features
like color, texture, shape, etc. Recently a lot of ef-
B forts have been made to design various heuristic
algorithms to compute the saliency [13]-[21]. Built
upon the feature integration theory [2], [22], almost all
the approaches compute conspicuity (feature) maps
from different saliency cues and then combine them
together to form the final saliency map. Hand-crafted
integration rules, however, are fragile and poor to
generalize. For instance, in a recent survey [23],
none of the algorithms can consistently outperforms
others on the benchmark data sets. Though some
learning-based salient object detection algorithms are
proposed [19], [24], [25], the potential of supervised
learning is not deeply investigated.
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In this paper, we formulate salient object detection
as a regression problem, learning a regressor that
directly maps the regional feature vector to a saliency
score. Our approach consists of three main steps. The
first one is multi-level segmentation, which decom-
poses the image to multiple segmentations. Second,
we conduct a region saliency computation step with
a Random Forest regressor that maps the regional
features to a saliency score. Last, a saliency map is
computed by fusing the saliency maps across multiple
layers of segmentations.

The key contributions lie in the second step, region
saliency computation. Firstly, unlike most existing
algorithms that compute saliency maps heuristically
from various features and combine them to get the
saliency map, which we call saliency integration,
we learn a Random Forest regressor that directly
maps the feature vector of each region to a saliency
score, which we call discriminative regional feature
integration (DRFI). This is a principle way in im-
age classification [26], but rarely studied in salient
object detection. Secondly, by investigating standard
generic region properties and two widely studied con-
cepts in salient object detection, i.e., regional contrast
and backgroundness, our proposed approach consis-
tently outperforms state-of-the-art algorithms on all
six benchmark data sets with large margins. Rather
than heuristically hand-crafting special features, it
turns out that the learned regressor is able to auto-
matically integrate features and pick up discrimina-
tive ones for saliency. Even though the regressor is
trained on a small set of images, it demonstrates good
generalization ability to other data sets.

The rest of this paper is organized as follows. Sec. 2
introduces related work and discusses their differ-
ences with our proposed method. The saliency com-
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putation framework is presented in Sec. 3. Sec. 4
describes the regional saliency features adopted in
this paper. Sec. 5 presents the learning framework
of our approach. Empirical analysis of our proposed
method and comparisons with other algorithms are
demonstrated in Sec. 6. Finally, Sec. 7 discusses and
concludes this paper.

2 RELATED WORK

Salient object detection, stemming from eye fixation
prediction, aims to separate the entire salient object
from the background. Since the pioneer work of Itti et
al. [2], it attracts more and more research interests
in computer vision, driven by applications such as
content-aware image resizing [8], picture collage [10],
etc. In the following, we focus on salient object
detection (segmentation) and briefly review existing
algorithms. A comprehensive survey can be found
from a recent work [23]. A literature review of eye
fixation prediction can be seen in [27], which also
includes some analysis on salient object detection.
We simply divide existing algorithms into two cat-
egories: unsupervised and supervised, according to
if the groundtruth annotations of salient objects are
adopted.

Unsupervised approaches. Most salient object detec-
tion algorithms characterize the uniqueness of a scene
as salient regions following the center-surround con-
trast framework [2], where different kinds of features
are combined according to the feature integration
theory [22]. The multi-scale pixel contrast is studied
in [19], [28]. The discriminant center-surround hy-
pothesis is analyzed in [16], [29]. Color histograms,
computed to represent the center and the surround,
are used to evaluate the center-surround dissimilar-
ity [19]. An information theory perspective is intro-
duced to yield a sound mathematical formulation,
computing the center-surround divergence based on
feature statistics [18]. A cost-sensitive SVM is trained
to measure the separability of a center region w.rt.
its surroundings [30]. The uniqueness can also be
captured in a global scope by comparing a patch
to its k nearest neighbors [17] or as its distance to
the average patch over the image along the principal
component axis coordinates [31].

The center-surround difference framework is also
investigated to compute the saliency from region-
based image representation. The multi-level image
segmentation is adopted for salient object detection
based on local regional contrast [32]. The global re-
gional contrast is studied in [15], [21] as well. To
further enhance the performance, saliency maps on
hierarchical segmentations are computed and finally
combined through a tree model via dynamic pro-
gramming [33]. Both the color and textural global
uniqueness are investigated in [34], [35].

Recently, Cheng et al. [36] propose a soft image
abstraction using a Gaussian Mixture Model (GMM),
where each pixel maintains a probability belonging to
all the regions instead of a single hard region label,
to better compute the saliency. The global unique-
ness can also be captured with the low-rank matrix
recovery framework [37]-[39]. The low-rank matrix
corresponds to the background regions while sparse
noises are indications of salient regions. A submod-
ular salient object detection algorithm is presented
in [40], where superpixels are gradually grouped
to form potential salient regions by iteratively opti-
mizing a submodular facility location problem. The
Bayesian fraemwork is introduced for salient object
detection in [41], [42]. A partial differential equation
(PDE) is also introduced for salient object detection in
a recent work [43].

In addition to capturing the uniqueness, many other
priors are also proposed for saliency computation.
Centeral prior, i.e., the salient object usually lies in
the center of an image, is investigated in [32], [44].
Object prior, such as connectivity prior [45], concavity
context [20], and auto-context cue [46], background-
ness prior [47]-[50], generic objectness prior [51]-[53],
and background connectivity prior [38], [54], [55]
are also studied for saliency computation. Example-
based approaches, searching for similar images of the
input, are developed for salient object detection [8],
[56]. The depth cue is leveraged for saliency analysis
derived from stereopsic image pairs in [57] and a
depth camera (e.g., Kinect) in [58]. Li et al. [59] adopt
the light field camera for salient object detection.
Besides, spectral analysis in the frequency domain is
used to detect salient regions [13].

Supervised approaches. Inspired by the feature in-
tegration theory, some approaches focus on learning
the linear fusion weight of saliency features. Liu ef
al. [19] propose to learn the linear fusion weight
of saliency features in a Conditional Random Field
(CRF) framework. Recently, the large-margin frame-
work was adopted to learn the weights in [60]. Due
to the highly non-linear essence of the saliency mech-
anism, the linear mapping might not perfectly capture
the characteristics of saliency. In [24], a mixture of
linear Support Vector Machines (SVM) is adopted
to partition the feature space into a set of sub-
regions that were linearly separable using a divide-
and-conquer strategy. Alternatively, a Boosted Deci-
sion Tree (BDT) is learned to get an initial saliency
map, which will be further refined using a high
dimensional color transform [61]. In [25], generic re-
gional properties are investigated for salient object
detection. Li et al. [62] propose to generate a saliency
map by adaptively averaging the object proposals [63]
with their foreground probabilities that are learned
based on eye fixations features using the Random
Forest regressor. Additionally, Wang et al. [64] learn



a Random Forest to directly localize the salient object
on thumbnail images. In [65], a saliency map is used
to guide the sampling of sliding windows for object
category recognition, which is online learned during
the classification process.

Our proposed discriminative regional feature inte-
gration (DRFI) approach is a supervised salient object
detection algorithm. Compared with unsupervised
methods, our approach extends the contrast value
used in existing algorithms to the contrast vector
to represent a region. More importantly, instead of
designing heuristic integration rules, our approach
is able to automatically combine the high-dimensional
saliency features in a data-driven fashion and pick
up the discriminative ones. Compared with existing
supervised methods, our method learns a highly non-
linear combination of saliency features and does not
require any assumption of the feature space. The
most similar approaches to ours might be [25], [61].
[25] is a light touch on the discriminative feature
integration without presenting a deep investigation,
which only considers the regional property descriptor.
In [61], the learned saliency map is only used as a
pre-processing step to provide a coarse estimation of
salient and background regions while our approach
directly output the saliency map.

It is noted that some supervised learning ap-
proaches exist to predict eye fixation [66], [67]. The
features, e.g., the local energy of the steerable pyramid
lters [68] in [66] and the perceptual Gestalt group-
ing cues in [67], seem to be more suitable for eye
fixation prediction, while our approach is specifically
designed for salient object detection. We also note the
discriminative feature fusion has also been studied in
image classification [69], which learns the adaptive
weights of features according to the classification task
to better distinguish one class from others. Instead,
our approach integrates three types of regional fea-
tures in a discriminative strategy for the saliency
regression on multiple segmentations.

3 IMAGE SALIENCY COMPUTATION

The pipeline of our approach consists of three main
steps: multi-level segmentation that decomposes an
image into regions, regional saliency computation that
maps the features extracted from each region to a
saliency score, and multi-level saliency fusion that
combines the saliency maps over all the layers of seg-
mentations to get the final saliency map. The whole
process is illustrated in Fig. 1.

Multi-level segmentation. Given an image I, we
represent it by a set of M-level segmentations S =
{81,82,- -+ ,Sm}, where each segmentation S, is a
decomposition of the image I. We apply the graph-
based image segmentation approach [70] to generate
multiple segmentations using M groups of different
parameters.

Input Image

Multi-Level
Saliency Fusion

Multi-Level
saliency Computation

Fig. 1. The framework of our proposed discriminative
regional feature integration (DRFI) approach.

Due to the limitation of low-level cues, none of the
current segmentation algorithms can reliably segment
the salient object. Therefore, we resort to the multi-
level segmentation for robustness purpose. In Sec. 5.1,
we will further demonstrate how to utilize multi-
level segmentation to generate a large amount of
training samples.

Regional saliency computation. In our approach, we
predict saliency scores for each region that is jointly
represented by three types of features: regional con-
trast, regional property, and regional backgroundness,
which will be described in Sec. 4. At present, we
denote the feature as a vector x. Then the feature x
is passed into a random forest regressor f, yielding a
saliency score. The Random Forest regressor is learnt
from the regions of the training images and integrates
the features together in a discriminative strategy. The
learning procedure will be given in Sec. 5.

Multi-level saliency fusion. After conducting re-
gion saliency computation, each region has a saliency
value. For each level, we assign the saliency value
of each region to its contained pixels. As a result,
we generate M saliency maps {A1, Ag,--- , A}, and
then fuse them together, A = g(Aq,---,Ap), to get
the final saliency map A, where g is a combinator
function introduced in Sec. 5.3.

4 REGIONAL SALIENCY FEATURES

In this section, we present three types of regional
saliency features, leading to a 93-dimensional feature
vector for each region.

4.1 Regional contrast descriptor

A region is likely thought to be salient if it is dif-
ferent from others. Unlike most existing approaches
that compute the contrast values, e.g., the distances
of region features like color and texture, and then
combine them together directly forming a saliency
score, our approach computes a contrast descriptor, a
vector representing the differences of feature vectors
of regions.



Color and texture features Differences of features Contrast | Backgroundness
[ features [ dim definition |  dim

a; | average RGB values 3 d(af ay) 3 c1~cs b1 ~ b3
h; | RGB histogram 256 || x(hi ny) 1 Ca ba

ay | average HSV values 3 d(ali a3) 3 c5 ~ C7 bs ~ by
hy | HSV histogram 256 XQ(hgi ,hs ) 1 cs bs

a3 | average L*a*b* values 3 d(a?}?i7 agf) 3 Ccy ~ C11 by ~ b11
hs | L*a*b* histogram 256 x2(h}§i ,h3) 1 12 bio

r | absolute response of LM filters 15 d(r™, rs) 15 C13 ~ Co7 b1z ~ bor
h, | max response histogram of the LM filters | 15 x(hf hy) 1 ca8 bag
hs | histogram of the LBP feature 256 2 (hy'i he) 1 C29 bag

Fig. 2. Color and texture features describing the visual characteristics of a region which are used to compute the regional

feature vector. d(x1,x2) = (|Jz11 — x21], -
h:. h b 2(hy;—h9;)?
X (hyho) = 307, Syt

,|T1a — z24|) Where d is the number of elements in the vectors x; and x2. And
with b being the number of histogram bins. The last two columns denote the symbols for

reglonal contrast and backgroundness descriptors. (In the definition of a feature, S corresponds to R; for the regional contrast
descriptor and B for the regional backgroundness descriptor, respectively.)

To compute the contrast descriptor, we describe
each region R; € S, by a feature vector, including
color and texture features, denoted by vEi, The de-
tailed description is given in Fig. 2. For color features,
we consider RGB, HSV, and L*a*b* color spaces. For
texture features, we adopt the LBP feature [71] and
the responses of the LM filter bank [72].

As suggested in previous works [15], [21], the re-
gional contrast value z§, derived from the k-th feature
channel is computed by checking R; against all other
regions,

N,
) = ZajwijDk(vRivij% (1)
j=1

where Dy (v® vEi) captures the difference of the
k-th channel of the feature vectors v and v'%
Specifically, the difference of the histogram feature

is computed as the x? distance and as their abs201ute

P —p7" |
differences for other features. w;; = e 272 is a
spatial weighting term, where p; and p; are the mean
positions of R; and R;, respectively. o, controls the
strength of the spatial weighting effect. We empirically
set it as 1.0 in our implementation. «; is introduced
to account for the irregular shapes of regions, defined
as the normalized area of the region R;. N,, is the
number of regions in S,,. As a result, we get a 29-
dimensional feature vector. The details of the regional
contrast descriptor are given in Fig. 2.

4.2 Regional backgroundness descriptor

There exist a few algorithms attempting to make use
of the characteristics of the background (e.g., homo-
geneous color or textures) to heuristically determine
if one region is background, e.g., [47]. In contrast,
our algorithm extracts a set of features and adopts
the supervised learning approach to determine the
background degree (accordingly the saliency degree)
of a region.

It has been observed that the background identi-
fication depends on the whole image context. Image

regions with similar appearances might belong to the
background in one image but belong to the salient
object in some other images. It is not enough to merely
use the property features to check if one region is in
the background or the salient object.

Therefore, we extract the pseudo-background re-
gion and compute the backgroundness descriptor for
each region with the pseudo-background region as a
reference. The pseudo-background region B is defined
as the 15-pixel wide narrow border region of the
image. To verify such a definition, we made a simple
survey on the MSRA-B data set with 5000 images and
found that 98% of pixels in the border area belongs to
the background. The backgroundness value z} of the
region R; on the k-th feature is then defined as

mz(Ri) = Dk(VR'i,vB). 2)

We get a 29-dimensional feature vector. See details in
Fig. 2.

4.3 Regional property descriptor

Additionally, we consider the generic properties of a
region, including appearance and geometric features.
These two features are extracted independently from
each region like the feature extraction algorithm in
image labeling [73]. The appearance features attempt
to describe the distribution of colors and textures
in a region, which can characterize their common
properties for the salient object and the background.
For example, the background usually has homoge-
neous color distribution or similar texture pattern. The
geometric features include the size and position of
a region that may be useful to describe the spatial
distribution of the salient object and the background.
For example, the salient object tends to be placed near
the center of the image while the background usually
scatters over the entire image. Finally, we obtain a 35-
dimensional regional property descriptor. The details
are given in Fig. 3.

In summary, we obtain a 93-dimensional (2 x 29 +
35) feature vector for each region. Fig. 4 demonstrates



description notation [dim
average normalized x coordinates p1 1
average normalized y coordinates D2 1
10th percentile of the normalized x coord. D3 1
10th percentile of the normalized y coord. D4 1
90th percentile of the normalized = coord. Ds 1
90th percentile of the normalized y coord. Pe 1
normalized perimeter 7 1
aspect ratio of the bounding box Ps 1
variances of the RGB values P9 ~pi1| 3
variances of the L*a*b* values pi2 ~ pia| 3
variances of the HSV values P15 ~pi7| 3
variance of the response of the LM filters |pig ~ ps2| 15
variance of the LBP feature D33 1
normalized area P34 1
normalized area of the neighbor regions D35 1

Fig. 3. The regional property descriptor. (The abbrevi-
ation coord. indicates coordinates.)

visualizations of the most important features for each
kind of regional feature descriptor.

5 LEARNING

In this section, we introduce how to learn a Random
Forest to map the feature vector of each region to
a saliency score. Learning the multi-level saliency
fusion weight is also presented.

5.1

We use supervised multi-level segmentation to gener-
ate training samples. We first learn the similarity score
of each adjacent regions, to show the probability that
the adjacent regions both belong to the salient region
or the background. Similar regions will be grouped
together in a hierarchical way. Training samples of the
saliency regressor are those confident regions in the
grouping hierarchy.

By learning the similarity score, we hope that those
regions from the object (or background) are more
likely to be grouped together. In specific, given an
over-segmentation of an image, we connect each re-
gion and its spatially-neighboring regions forming a
set of pairs P = {(R;, R;)} and learn the probability
p(a; = a;), where a; is the saliency label of the region
R;. Such a set of pairs into two parts: a positive
part Pt = {(R;,R;)la; = a;} and a negative part
P~ = {(Ri, Rj)|a; # a;}. Following [74], each region
pair is described by a set of features including the
regional saliency of two regions (2x93 features), the
feature contrast of two regions (similar to the regional
contrast descriptor, 29 features), and the geometry
features of the superpixel boundary of two regions
(similar to p; ~ pr in Fig. 3, 7 features). Given these
222-dimensional feature, we learn a boosted decision
tree classifier to estimate the similarity score of each
adjacent region pair.

Based on the learned similarity of two adja-
cent regions, we produce multi-level segmentation

Generating training samples

Fig. 4. lllustration of the most important features.
From top to bottom: input images, the most important
contrast feature (c;2), the most important background-
ness feature (b12), the most important property feature
(ps), and the saliency map of our approach (DRFIs)
produced on a single-level segmentation. Brighter area
indicates larger feature value (thus larger saliency
value according to c¢;2, b12 and the saliency map).

{81, 85,...,8,} to gather a large mount of train-
ing samples. Specifically, denote S{ as the over-
segmentation of the image generated using the graph-
based image segmentation algorithm [70]. The regions
in 8} are represented by a weighted graph, which con-
nects the spatially neighboring regions. The weight
of each edge is the learned similarity of two adjacent
superpixels. Similar to the pixel-wise grouping in [70],
pairs of regions are sequentially merged in the order
of decreasing the weights of edges. We change the
tolerance degree of small regions, i.e., the parameter k
of the approach [70] (see the details in [70]) to generate
the segmentations from S} to S%,}. To avoid too fine
groupings, we discard S! if Igél > 0.6, where | - |
denotes the number of superpixels.

Given a set of training images with ground
truth annotations and their multi-level segmenta-
tion, we can collect lots of confident regions R =
{RM R® ... R@} and the corresponding saliency
scores A = {a a® ... a(@} to learn a Random
Forest saliency regressor. Only confident regions are
kept for training since some regions may contain
pixels from both the salient object and background.
A region is considered to be confident if the number
of pixels belonging to the salient object or the back-



ground exceeds 80% of the total number of pixels
in the region. Its saliency score is set as 1 or 0 ac-
cordingly. In experiments we find that few regions of
all the training examples, around 6%, are unconfident
and we discard them from training.

One benefit to generate multi-level segmentation is
that a large amount of training samples can be gath-
ered. In the Sec. 6.3, we empirically analyze different
settings of M, and validate our motivation to generate
training samples based on multi-level image segmen-
tation. Additionally, with the guiding of learned sim-
ilarity metric, there might be only a few large regions
left in the high-level segmentation, which are help-
ful for the Random Forest regressor to learn object-
level properties. However, the learned similarity is
hard to generalize across datasets. This is why our
approach did not perform the best on SED2 dataset
in our pervious version [1]. To this end, we adopt the
unsupervised multi-level segmentation in the testing
phrase, which is also more efficient without learning
the similarity score.

5.2 Learning the regional saliency regressor

Our aim is to learn the regional saliency estimator
from a set of training examples. As aforementioned,
each region is described by a feature vector x € R,
composed of the regional contrast, regional property,
and regional backgroundness descriptors (i.e., d = 93).
From the training data X = {x(*),x(®) ... x(@)1 and
the saliency scores A = {a") o), ... a(@)}, we learn
a random forest regressor f, : R — R which maps
the feature vector of each region to a saliency score.

A Random Forest saliency regressor is an ensemble
of T decision trees, where each tree consists of split
and leaf nodes. Each split node stores a feature index
f and a threshold 7. Given a feature vector x, each
split node in the tree makes a decision based on the
feature index and threshold pair (f, 7). If x(f) < 7 it
traverses to the left child, otherwise to the right child.
When reaching a leaf node, its stored prediction value
will be given. The final prediction of the forest is the
average of the predictions over all the decision trees.

Training a Random Forest regressor is to inde-
pendently build each decision tree. For each tree,
the training samples are randomly drawn with
replacement, X, = {x() x(2) ... x(el A =
{a®) at2) ... q(tQ)} where t; € [1,Q],i € [1,Q].
Constructing a tree is to find the pair (f,7) for each
split node and the prediction value for each leaf
node. Starting from the root node, m features F,,
are randomly chosen without replacement from the full
feature vector. The best split will be found among

these features F,,, to maximize the splitting criterion

* *\ qu,GDl (a(ti))Q ZMEDT (a(ti))2
)= é@%ﬁ%( D D,
N 2
Zti €D (a(t’l))

where D; = {(x), o)) |x®)(f) < 7},

D, = {(x*),a®))|x*)(f) > 7}, and D = D; U D,.
Such a spliting procedure is repeated until |[D| < 5
and a leaf node is created. The prediction value of the
leaf node is the average saliency scores of the training
samples falling in it. We will empirically examine the
settings of parameters 7" and m in Sec. 6.3.

Learning a saliency regressor can automatically in-
tegrate the features and discover the most discrimi-
native ones. Additionally, in the training procedure
of the random forest, the feature importance can be
estimated simultaneously. Refer to the supplementary
for more details. Fig. 6 presents the most important 60
features.

5.3 Learning the multi-level saliency fusor

Given the multi-level saliency maps
{A1,Ay,--- Ay} for an image, our aim is to
learn a combinator g(A1, Ay, -+, Ap) to fuse them

together to form the final saliency map A. Such
a problem has been already addressed in existing
methods, such as the conditional random field
solution [19]. In our implementation, we find that
a linear combinator, A = Z%lemAm, performs
well by learning the weights using a least square
estimator, ie., minimizing the sum of the losses
(|1A = Z%:l wmAn,||%) over all the training images.

In practice, we found that the average of multi-
level saliency maps performs as nearly well as a
weighted average.

6 EXPERIMENTS

In this section, we empirically analyze our proposed
approach. Comparisons with state-of-the-art methods
on benchmark data sets are also demonstrated.

6.1

We evaluate the performance over five data sets that
are widely used in salient object detection and seg-
mentation.

MSRA-B.! This data set [19] includes 5000 images,
originally containing labeled rectangles from nine
users drawing a bounding box around what they
consider the most salient object. There is a large varia-
tion among images including natural scenes, animals,
indoor, outdoor, etc. We manually segment the salient

Data sets

1. http:/ /research.microsoft.com/en-us/um/people/jiansun/
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object (contour) within the user-drawn rectangle to
obtain binary masks. The ASD data set [13] is a subset
(with binary masks) of MSRA-B, and thus we no
longer make evaluations on it.

iCoSeg.? This is a publicly available co-segmentation
data set [75], including 38 groups of totally 643 im-
ages. Each image is along with a pixel-wise ground-
truth annotation, which may contain one or multiple
salient objects. In this paper, we use it to evaluate the
performance of salient object detection.

SED.3 This data set [76] contains two subsets: SED1
that has 100 images containing only one salient object
and SED2 that has 100 images containing exactly two
salient objects. Pixel-wise groundtruth annotations for
the salient objects in both SED1 and SED2 are pro-
vided. We only make evaluations on SED2. Similar
to the larger MSRA-B dataset, only single one salient
object exists in each image in SED1, where state-of-
the-art performance was reported in our previous ver-
sion [1]. Additionally, evaluations on SED2 may help
us check the adaptability of salient object detection
algorithms on multiple-object cases.

ECSSD.* To overcome the weakness of existing data
set such as ASD, in which background structures
are primarily simple and smooth, a new data set
denoted as Extended Complex Scene Saliency Dataset
(ECSSD) is proposed recently in [77]. It contains 1000
images with diversified patterns in both foreground
and background, where many semantically meaning-
ful but structurally complex images are available.
Binary masks for salient objects are produced by 5
subjects.

DUT-OMRON.’ Similarly, this dataset is also intro-
duced to evaluate salient object detection algorithms
on images with more than a single salient object and
relatively complex background. It contains 5,168 high
quality natural images, where each image is resized
to have a maximum side length of 400 pixels. Anno-
tations are available in forms of both bounding boxes
and pixel-wise binary object masks. Furthermore, eye
fixation annotations are also provided makeing this
dataset suitable for simultaneously evaluating salient
object localization and detection models as well as
fixation prediction models.

We randomly sample 3000 images from the MSRA-
B data set to train our model. Five-fold cross valida-
tion is run to select the parameters. The remaining
2000 images are used for testing. Rather than training
a model for each data set, we use the model trained
from the MSRA-B data set and test it over others. This
can help test the adaptability to other different data
sets of the model trained from one data set and avoid
the model overfitted to a specific one.

2. http://chenlab.ece.cornell.edu/ projects/touch-coseg

3. http://www.wisdom.weizmann.ac.il/ ~vision/Seg_Evaluation_DB/
4. http:/ /www.cse.cuhk.edu.hk/leojia/projects /hsaliency

5. http://ice.dlut.edu.cn/Iu/dut-omron/homepage.htm

6.2 Evaluation Metrics

We evaluate the performance using the measures
used in [23] based on the overlapping area between
groundtruth annotation and saliency prediction, in-
cluding the PR (precision-recall) curve, the ROC (re-
ceiver operating characteristic) curve and the AUC
(Area Under ROC Curve) score. Precision corresponds
to the percentage of salient pixels correctly assigned,
and recall is the fraction of detected salient pixels
belonging to the salient object in the ground truth.

For a grayscale saliency map, whose pixel values
are in the range [0, 255], we vary the threshold from
0 to 255 to obtain a series of salient object segmen-
tations. The PR curve is created by computing the
precision and recall values at each threshold. The ROC
curve can also be generated based on true positive
rates and false positive rates obtained during the
calculation of the PR curve.

6.3 Parameters Analysis

In this section, we empirically analyze the perfor-
mance of salient object detection against the set-
tings of parameters during both training and testing
phrases. Since we want to test the cross-data gen-
eralization ability of our approach, we run five-fold
cross-validation on the training set. Settings of pa-
rameters are thus blind to other testing data and fair
comparisons with other approaches can be conducted.
Average AUC scores resulting from cross-validation
under different parameter setting are plotted in Fig. 5.

Training parameters analysis.. There are three param-
eters during training, number of segmentations M,
to generate training samples, number of trees 7' and
number of randomly chosen features m when training
the Random Forest regressor.

Larger number of segmentations lead to larger
amount of training data. As a classifier usually ben-
efits more from greater quantity of training samples,
we can observe from Fig. 5(a) that the performance
steadily increase when M, becomes larger. We finally
set M; = 48 to generate around 1.7 million samples to
train our regional Random Forest saliency regressor.

As shown in Fig. 5(b), the performance of our ap-
proach with more trees in the Random Forest saliency
regressor is higher. The more trees there are, the
less variances are among the decision trees, and thus
the better performance can be achieved. Though the
performance keeps increasing as more trees adopted,
we choose to set T' = 200 trees to train the regressor
to balance the efficiency and the effectiveness.

When splitting each node during the construction
a decision tree, only m randomly chosen features can
be observed . Intuitively, on one hand, increasing
m will give the node greater chance to select more
discriminative features. On the other hand, however,
larger m will bring smaller variances between de-
cision trees. For instance, suppose m is set to the
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Fig. 5. Empirical analysis of parameters in terms of the AUC scores based on five-fold cross-validation of the
training set. From left to right, (a) AUC scores versus the number of segmentations to generate training samples,
(b)(c) AUC scores versus number of decision trees and number of randomly chosen features at each node in the
Random Forest saliency regressor, and (d) number of segmentations in generating saliency maps.
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Fig. 6. The most important 60 regional saliency features given by Random Forest regressor, occupying around
90% of the energy of total features. There are 5 contrast features, 20 backgroundness features, and 35 property
features. From left to right: the first and second 30 important features, respectively. See Fig. 2 and Fig. 3 for the

description of the features.

dimension of the feature vector, i.e., all of the features
can be seen during the splitting, most likely the same
most discriminative feature will be chosen at each
split node. Consequently, nearly identical decision
trees are built that can not complement each other
well and thus may result in inferior performance.
According to Fig. 5(c), we empirically set m = 15 since
the performance is the best.

Testing parameters analysis. One can see in Fig. 5(d)
that the AUC scores of the saliency maps increase
when more layers of segmentations are adopted. The
reason is that there may exist some confident regions
that cover the most (even entire) part of an object in
more layers of segmentations. However, a larger num-
ber of segmentations introduce more computational
burden. Therefore, to balance the efficiency and the
effectiveness, we set M to 15 segmentations in our
experiments.

6.4 Feature Importance

Our approach uses a wide variety of features. In
this section, we empirically analyze the usefulness of
these regional saliency features. Fig. 6 shows the rank
of the most important 60 regional features produced
during the training of Random Forest regressor, which
occupy around 90% of the energy of total features.
The feature rank indicates that the property descrip-
tor is the most critical one in our feature set (occupies
35 out of top 60 features). The reason might be that
salient objects share some common properties, vali-
dating our motivation to exploit the generic regional

properties for salient object detection that are widely
studied in other tasks such as image classification [26].
For example, high rank of geometric features ps,p3
and pg might correspond to the compositional bias of
salient objects. The importance of variance features
piz and pgg, on the other hand, might be related
with the background properties. Among the contrast-
based descriptors, regional contrast descriptor is the
least important. Since it might be affected by cluttered
scenes and less important compared with the regional
backgroundness descriptor which is in some sense
more robust. Moreover, we also observe that color
features are much more discriminative than texture
features.

To further validate the importance of features across
different data sets, we train classifiers by removing
each kind of feature descriptor on each benchmark
data set (testing set of MSRA-B). AUC scores of
saliency maps are demonstrated in Fig. 7. As can
be seen, removing some feature descriptors does not
necessarily lead to performance decrease. Consistent
with the feature rank given by the Random Fore-
stregressor, regional contrast descriptor is the least
important one on most of the benchmark data sets as
least performance drop are observed with its removal
on most of the data sets. Regional property descriptor
still plays the most important role on MSRA-B, ECSSD
and DUT-OMRON. Since there are multiple salient
objects in an image in SED2 and iCoSeg, the common
properties learned from the training data, where only
a single salient object exists in most of the images,
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Fig. 7. Feature importance across different data sets.
For each data set, we report the AUC scores of
saliency maps by removing each kind of descriptor
to see the performance drop. Additionally, we also
demonstrate the performance exploiting only the top
60 features shown in Fig. 6.

may not perform the best. The backgroundness de-
scriptor performs well on MSRA-B, SED2, and iCoSeg.
However, it plays the least important role on ECSSD
data set. Its removal even leads to better performance,
which indicates the pseudo-background assumption
might not always hold well. Finally, instead of con-
sidering all of the 93 features, we also adopt only the
top 60 features for training. Surprisingly, this feature
vector performs as well as the entire feature descrip-
tor, even slightly better on DUT-OMRON, implying
some features contribute little.

We visualize the most important features of each
descriptor in Fig. 4. As we can see, even the most
powerful backgroundness feature provide far less ac-
curate information of salient objects. By integrating
all of the weak information, much better saliency
maps can be achieved. Note that we do not adopt
the multi-level fusion enhancement. Another advan-
tages of our approach is the automatic fusion of
features. For example, the rules to employ geometric
features are discovered from the training data instead
of heuristically defined as previous approaches [32],
which might be poor to generalize.

6.5 Performance Comparison

We report both quantitative and qualitative compar-
isons of our approach with state-of-the-art methods.
To save the space, we only consider the top four
models ranked in the survey [23]: SVO [51], CA [17],
CB [32], and RC [15] and recently-developed methods:
SF [21], LRK [78], HS [33], GMR [48], PCA [31],
MC [50], DSR [49], RBD [55] that are not covered
in [23]. Note that we compare our approach with the
extended version of RC. In total, we make compar-
isons with 12 approaches. Additionally, we also report

] || MSRA-BiCoSeg | ECSSD | DUT-OMRON | SED2 | DUT-OMRON*

SVO || 0.899 |0.861(0.799| 0.866 |0.834| 0.793
CA 0.860 |0.837(0.738| 0.815 |0.854| 0.760
CB 0.930 |0.852|0.819| 0.831 |0.825| 0.624
RC 0.937 |0.880(0.833| 0.859 |0.840| 0.679
SF 0917 |0911|0.777| 0.803 |0.872| 0.715
LRK | 0.925|0.908|0.810) 0.859 |0.881| 0.758
HS 0.930 |0.882{0.829| 0.860 |0.820| 0.735
GMR || 0.942 10.902|0.834| 0.853 [0.831| 0.646
PCA | 0.938 |0.895|0.817| 0.887 0.776
MC 0.951 |0.898(0.849| 0.887 |0.863| 0.715
DSR 0.921(0.856| 0.899 ]0.895| 0.776
RBD || 0.945 0.941|0.840| 0.894 |0.873| 0.779
DRFls|| 0.954 0.902

DRFI || 0.971 [0.968|0.875| 0931 [0.933| 0.822

Fig. 8. AUC: area under ROC curve (larger is better).
The best three results are highlighted with red, ,
and blue fonts, respectively.

the performance of our DRFI approach with a single
layer (DRFIs).

Quantitative comparison.. Quantitative comparisons
are shown in Fig. 8, Fig. 9 and Fig. 10. As can be seen,
our approach (DRFI) consistently outperforms others
on all benchmark data sets with large margins in
terms of AUC scores, PR and ROC curves. In specific,
it improves by 1.57%, 2.66%, 2.34%, 3.45% and 3.21%
over the best-performing state-of-the-art algorithm
according to the AUC scores on MSRA-B, iCoSeg,
ECSSD, DUT-OMRON, and SED2, respectively.

Our single-level version (DRFIs) performs best on
iCoSeg, ECSSD, and DUT-OMRON as well. It im-
proves by 0.32%, 0.23%, and 1.22% over the best-
performing state-of-the-art method in terms of AUC
scores on these three data sets, respectively. It is
slightly worse (but still one of the top 3 best models)
on MSRA-B and SED2 data set. Such improvement
is substantial by considering the already high per-
formance of state-of-the-art algorithms. More impor-
tantly, though the Random Forest regressor is trained
on MSRA-B, it performs best on other challenging
data sets like ECSSD and DUT-OMRON.

With the multi-level enhancement, performance of
our approach can be further improved. For instance,
it improves by 1.22% on MSRA-B and 1.78% on DUT-
OMRON.

Qualitative comparison. We also provide the qualita-
tive comparisons of different methods in Fig. 11. As
can be seen, our approach (shown in Fig. 11 (n)(0))
can deal well with the challenging cases where the
background is cluttered. For example, in the first
two rows, other approaches may be distracted by the
textures on the background while our method almost
successfully highlights the entire salient object. It is
also worth pointing out that our approach performs
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terms of ROC curves. See supplemental materials for more evaluations.

well when the object touches the image border, e.g.,
the first and last third rows in Fig. 11, even though
it violates the pseudo-background assumption. With
the multi-level enhancement, more appealing results
can be achieved.

6.6 Robustness Analysis

As suggested by Fig. 6 and Fig. 7, the region back-
groundness and property descriptors, especially the
geometric properties, play important roles in our
approach. In natural images, the pseudo-background
assumption may not be held well. Additionally, the
distributions of salient objects may be different from
our training set. It is natural to doubt that whether
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Fig. 11. Visual comparison of the saliency maps. Our method (DRFI) consistently generates better saliency
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our approach can still perform well on these chal- OMRON data set) according to the AUC scores.
lenging cases. To this end, we select 635 images from
DUT-OMRON dataset (we call it DUT-OMRON?¥),
where salient objects touch the image border and
are far from the image center. Quantitative compar-
isons with state-of-the-art approaches are presented
in Fig. 8, Fig. 9, and Fig. 10. Check our project website
jlanghz.com/drfi and the supplementary material for
more details.

6.7 Efficiency

Since the computation on each level of the multiple
segmentations is independent, we utilize the multi-
thread technique to accelerate our C++ code. Fig. 12
summarizes the running time of different approaches,
tested on the MSRA-B data set with a typical 400x300
image using a PC with an Intel i5 CPU of 2.50GHz and
Not surprisingly, performances of all approaches 8GB memory. 8 threads are utilized for acceleration.
decline. But our approach DRFI still significantly out- As we can see, our approach can run as fast as most
performs other methods in terms of PR curve, ROC existing approaches. If equipped as a pre-processing
curve and AUC scores. Even with a single level, step for an application, e.g., picture collage, our ap-
our approach DRFIs performs slightly better than proach will not harm the user experiences.
others (ranked as the second best in terms of AUC For training, it takes around 24h with around 1.7
scores). In specific, DRFIs and DRFI are better than the million training samples. As training each decision
top-performing method by around 2.22% and 1.36% tree is also independent to each other, parallel com-
(compared with 2.20% and 1.26% on the whole DUT-  puting techniques can also be utilized for acceleration.


http://jianghz.com/drfi

Method | 5VO | CA | CB | RC | SF | LRK | HS
Times) | 565 | 523 | 140 | 0.38 | 0210 | 115 | 0365
Code | M+C | M+C | MiC | C C | M+C | EXE
Method GMR PCA MC DSR RBD DRFIs | DRFI*
Time(s) 1.16 2.07 0.129 4.19 0.267 0.183 0.418
Code | M+C | M4C | M+C | M+C | M C C

Fig. 12. Comparison of running time. M indicates the

code is written in MATLAB and EXE is corresponding to
the executable. (*8 threads are used for acceleration.)

7 DiscussiONs AND FUTURE WORK

7.1 Unsupervised vs Supervised

As data-driven approaches, especially supervised
learning methods, dominate other fields of computer
vision, it is somewhat surprising that the potential of
supervised salient object detection is relatively under
exploited. The main research efforts of salient ob-
ject detection still concentrate on developing heuris-
tic rules to combine saliency features. Note we are
not saying that heuristic models are useless. We in-
stead favor the supervised approaches for following
two advantages. On one hand, supervised learning
approaches can automatically fuse different kinds of
saliency features, which is valuable especially when
facing high-dimensional feature vectors. It is nearly
infeasible for humans, even domain experts, to design
rules to integrate the 93 dimensional feature vector of
this paper. For example, the sixth important feature
pi2 (variance of the L* values of a region) seems
to be rather obscure for salient object detection. Yet
integration rules discovered from training samples
indicate it is highly discriminative, more than the
traditional regional contrast features.

On the other hand, data-driven approaches always
own much better generalization ability than heuristic
methods. In a recent survey of salient object detec-
tion [23], none of existing unsupervised algorithms
can consistently outperforms others on all benchmark
data sets since different pre-defined heuristic rules
favor different settings of the data set (e.g., the num-
ber of objects, center bias, etc). Leveraging the large
amount of training samples (nearly two milliion), our
learned regional saliency regressor almost performs
the best over all six benchmark data sets. Even though
it is trained on a single data set, it performs better than
others on challenging cases which are significantly
different from the training set.

One potential reason that learning-based ap-
proaches is not favored for salient object detection
might be related to the efficiency. Though a lot of
training time is required to train a classifier, testing
time is more likely to be the major concern of a system
rather than the offline training time. Once trained, the
classifier can be used as an off-shelf tool. In this paper,
we demonstrate that a learning-based approach can
run as fast as some heuristic methods.
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Fig. 13. Failure cases of our approach.

7.2 Limitations of Our Approach

Since our approach mainly consider the regional
contrast and backgroudness features, it may fail on
cluttered scenes. See Fig. 13 for illustration. In the
first column, high saliency values are assigned to the
texture ares in the background as they are distinct in
terms of either contrast or background features. The
salient object in the second column have similar color
with the background and occupies a large portion of
the image, making it challenging to generate good
detection result. For the third column, it is not fair
to say that our approach completely fails. The flag
is indeed salient. However, as the statue violates the
pseudo-background assumption and occupying large
portions as well, it is difficult to generate an appealing
saliency map using our approach.

7.3 Conclusion and Future Work

In this paper, we address the salient object detection
problem using a discriminative regional feature inte-
gration approach. The success of our approach stems
from the utilization of supervised learning algorithm:
we learn a Random Forest regressor to automatically
integrate a high-dimensional regional feature descrip-
tor to predict the saliency score and automatically dis-
cover the most discriminative features. Experimental
results validate that compared with traditional ap-
proaches, which heuristically compute saliency maps
from different types of features

Our approach is closely related to the image la-
beling method [26]. The goal is to assign prede-
fined labels (geometric category in [26] and object or
background in salient object detection) to the pixels.
It needs further study to investigate the connection
between image labeling and salient object, and if
the two problems are essentially equivalent. Utilizing
the data-driven image labeling approaches for salient
object detection is also worth exploring in the future.

Additionally, there exist some obvious directions to
further improve our approach.

o Incorporating more saliency features. In this pa-
per, we consider only contrast, backgroundness,
and generic property features of a region. By con-
sidering more saliency features, better detection



results can be expected. For example, background
connectivity prior [55] can be incorporated to
relax the pseudo-background assumption. Addi-
tionally, spatial distribution prior [19], [21], focus-
ness prior [52], diverse density score [53] based
on generic objectness, and graph-based manifold
ranking score [48] can also be integrated.

Better fusion strategy. We simply investigate the
linear fusion of saliency maps with any post op-
timization step. As a future work, we can utilize
the optimization step of other approaches to en-
hance the performance. For example, we can run
saliency detection on hierarchical detections and
fuse them as suggested in [77]. The optimization
method proposed in [55] is also applicable.
Integrating more cues. A recent trend on salient
object detection is to integrate more cues in ad-
dition to traditional RGB data. Our approach is
natural to be extedned to consider cues such as
depth on RGB-D input, temporal consistency on
video sequences, and saliency co-occurrence for
co-salient object detection.
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