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Abstract This paper addresses the problem of image-
based event recognition by transferring deep representations
learned from object and scene datasets. First we empiri-
cally investigate the correlation of the concepts of object,
scene, and event, thus motivating our representation trans-
fer methods. Based on this empirical study, we propose an
iterative selection method to identify a subset of object and
scene classes deemed most relevant for representation trans-
fer. Afterwards, we develop three transfer techniques: (1)
initialization-based transfer, (2) knowledge-based transfer,
and (3) data-based transfer. These newly designed transfer
techniques exploit multitask learning frameworks to incor-
porate extra knowledge from other networks or additional
datasets into the fine-tuning procedure of event CNNs. These
multitask learning frameworks turn out to be effective in
reducing the effect of over-fitting and improving the general-
ization ability of the learned CNNs.We perform experiments
on four event recognition benchmarks: the ChaLearn LAP
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Cultural Event Recognition dataset, the Web Image Dataset
for Event Recognition, the UIUC Sports Event dataset, and
the Photo Event Collection dataset. The experimental results
show that our proposed algorithm successfully transfers
object and scene representations towards the event dataset
and achieves the current state-of-the-art performance on all
considered datasets.

Keywords Event recognition · Deep learning · Transfer
learning · Multitask learning

1 Introduction

Image classification is a fundamental and challenging prob-
lem in computer vision and many research efforts have been
devoted to this topic during the past few years (Krizhevsky
et al. 2012; Ioffe and Szegedy 2015; Everingham et al. 2010;
Simonyan and Zisserman 2015; He et al. 2015; Shen et al.
2016; Wang et al. 2017). The majority of these contributions
focus on the problem of object recognition or scene recog-
nition, partially due to the simplicity of object and scene
concepts and the availability of large-scale datasets (e.g.,
ImageNet (Deng et al. 2009) and Places (Zhou et al. 2014)).
On the other hand, event recognition (Wang et al. 2015b; Sal-
vador et al. 2015; Park and Kwak 2015; Xiong et al. 2015; Li
and Li 2007) in static images is also important for semantic
image understanding. Being able to selectively retrieve event
images helps us to keep nice memories of particular episodes
of our lives, to locate where images were taken, to analyze
people’s culture and so on.

In general, an event captures the complex behavior of a
group of people, interacting withmultiple objects, and taking
place in a specific environment. As illustrated in Fig. 1, the
characterization of the concept “event” is relatively compli-
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Fig. 1 Examples of event images from the ChaLearn Cultural Event
Recognition dataset (top row) and the Web Image Dataset for Event
Recognition (WIDER) (bottom row)

cated comparedwith the concepts of object and scene. Images
from the same “event” categorymay vary evenmore in visual
appearance and structure. Multiple high-level semantic cues,
such as interacting objects, scene context, human poses, and
garments, can provide useful information for event under-
standing.

Convolutional Neural Networks (CNNs) (LeCun et al.
1998) have delivered great successes in large-scale image
classification, in particular for object recognition (Krizhevsky
et al. 2012; He et al. 2015) and scene recognition (Shen et al.
2016; Wang et al. 2017). Large-scale image datasets (Deng
et al. 2009; Zhou et al. 2014) (more than 1 million images)
with human annotated labels have proven of great impor-
tance for this success. However, for event recognition, the
current public datasets (Baro et al. 2015; Xiong et al. 2015)
are relatively small and could be easily over-fitted by deep
models. Moreover, the inherent complexity of the concept
of event increases the difficulty of training an event CNN
from scratch. Therefore, transferring deep models success-
fully trained on other datasets to the case of event recognition
comes out to be a practical approach. Specifically, in this
paper, we aim to study why the deep representations learned
from object and scene datasets are helpful for event recogni-
tion andhow to effectively transfer these deep representations
for more accurate event recognition.

This paper makes three main contributions to transferring
deep object and scene representations for event recogni-
tion. The first one is an empirical study on the correlation
between classes of object, scene, and event. We exploit more
accurate and universal concept classifiers to perform this
study, includingCNNs learned from the ImageNet andPlaces
datasets. Our study empirically proves that there exists corre-
lation among these three concepts. This justifies to pre-train
event recognition networks with models learned from object
and scene recognition datasets. Furthermore, it guides us to
incorporate the tasks of object and scene recognition into
the fine-tuning process for event recognition via a multitask
learning framework.

The second contribution is to select object and scene cate-
gories most relevant for representation transfer. In particular,

based on our empirical investigation, we propose an itera-
tive selection method to identify subsets of discriminative
and diverse object and scene categories. They increase the
relevance between themain task and auxiliary task in our pro-
posed data-based transfer method, resulting in better event
recognition performance.

The third contribution is to design new transfer tech-
niques. We propose three transfer techniques to fine tune
the CNN models learned from object and scene datasets
for event recognition: (1) initialization-based transfer, (2)
knowledge-based transfer, and (3) data-based transfer. Our
novel multitask based transfer methods are able to reduce the
effect of over-fitting and improve the generalization ability of
learned models. The experimental results indicate that they
are fit to replace the existing fine-tuning for event recognition
in still images.

Based on the transferred event models, coined as OS2E-
CNNs, we propose an effective event recognition pipeline,
that achieves the state-of-the-art performance on four public
event recognition datasets. Meanwhile, we extensively study
different aspects of our proposed method and try to provide
more insights.

The remainder of this paper is organized as follows. In
Sect. 2, we review work related to ours. Then, we present an
empirical study of the correlation of objects and scenes with
events in Sect. 3. Section 4 gives the description of our pro-
posed transfer techniques of adapting object and scene CNNs
for event recognition.We propose a simple yet effective event
recognition pipelinewith our learnedOS2E-CNNs in Sect. 5.
The experimental evaluation and exploration is described in
Sect. 6. Finally, we discuss our method and offer some con-
clusions in Sect. 7.

2 Related Work

In this section, we briefly review previous work that is related
to ours, and highlight its difference from ours.

2.1 Event Recognition in Videos

The analysis of human action and event is an active research
area andmuchof theprior art has focusedonvideodata (Duan
et al. 2012; Bhattacharya et al. 2014; Wang et al. 2013,
2016a, b, 2015a, 2016c; Simonyan and Zisserman 2014;
Ramanathan et al. 2015;Habibian andSnoek 2014;Mazloom
et al. 2014; Izadinia andShah 2012; Tang et al. 2012).Wefirst
review related work on event recognition in videos to well
motivate our work on event recognition in still images. Most
of the prior work in video based action and event recogni-
tion relied onmodeling the motion information and temporal
dynamics (Simonyan andZisserman 2014; Ramanathan et al.
2015;Gan et al. 2015; Jain et al. 2015; Tang et al. 2012;Wang
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et al. 2016c). For examples, Simonyan and Zisserman (2014)
developed a two-stream CNN for action recognition, where
one captured the static appearance and the other described
the temporal motion information. Jain et al. (2015) integrated
object responses with motion features for action recognition
in videos. Ramanathan et al. (2015) proposed a new tempo-
ral embedding method to capture video structure for event
retrieval and recognition. Gan et al. (2015) proposed a deep
architecture to jointly model spatial and temporal evidence
for event recognition in videos. Tang et al. (2012) proposed
a latent learning framework to capture the temporal structure
of video. Wang et al. (2016c) modeled long-term tempo-
ral structure with a sparse sampling strategy and temporal
aggregation module, which obtained good performance on
the standard action recognition benchmarks.

Meanwhile, there was some work on event recognition,
focusing on semantic representations (i.e., the responses of
high level concepts, like objects, scenes, and actions) (Ebadol-
lahi et al. 2006; Liu et al. 2013; Mazloom et al. 2014;
Habibian and Snoek 2014; Izadinia and Shah 2012). For
instance, Ebadollahi et al. (2006) first explored the seman-
tic representation for event recognition. Habibian and Snoek
(2014) comprehensively studied the problem of represent-
ing videos with the responses of concept detectors, and
extensively investigated different aspects of this semantic
representations. Liu et al. (2013) modeled the event class
with a set of complementary concepts and these concepts
were treated as attributes in a semantic space. Mazloom et al.
(2014) proposed a new algorithm to learn what concepts are
most informative per event, called as conceptlets, and solved
this problem with an importance sampling method. Izadinia
and Shah (2012) proposed a large margin formulation to
model the relation between high-level event and low-level
event (atomic actions), and used the low-level event detec-
tion scores as feature representations.Marszalek et al. (2009)
used scene information as contextual cues to improve action
recognition performance in videos. Hauptmann et al. (2008)
proposed to use semantic concepts of object and scene for
video event retrieval.

Our work differs from these methods on event or action
recognition in videos from three aspects. First, our method is
designed for event recognition in still images, and thesemeth-
ods based on motion dynamics cannot be directly adapted
from video domain to image domain. Second, our study
is conducted in a deep learning scenario and based on the
two standard object and scene benchmarks. Our method
relies on more accurate CNN classifiers and the concept
scores aremore reliable than those traditional detectors.More
importantly, althoughwith similar intuition to those semantic
representations, ourmain goal is different from theirs. Instead
to directly employing concept responses as visual represen-
tations, we aim to use the concept correlation to learn more

effective visual representations within our proposed multi-
task based transfer framework.

2.2 Event Recognition in Still Images

For still images, action recognition (Yao et al. 2011; Yao
and Li 2010; Desai and Ramanan 2012; Delaitre et al. 2011;
Gkioxari et al. 2015; Cooper et al. 2003; Bossard et al. 2013;
Vu et al. 2014) tended to receive more attention than event
recognition. Some work aimed to explore the relationship
between multiple cues for holistic image understanding and
action recognition. For example, Yao et al. (2012) devel-
oped an approach for holistic scene understanding that jointly
reasons about regions, location, class and spatial extent of
objects, presence of a class in the image, as well as the
scene type. Vu et al. (2014) used scene information to predict
actions for still images. Among the work on event recogni-
tion in still images, Li andLi (2007) proposed a coupled LDA
framework to jointly infer the category of event, object, and
scene. This method coupled two LDA models and was diffi-
cult to scale up to large-scale datasets. Bossard et al. (2013)
proposed a latent sub-event approach for event recognition in
photo collections and developed aStopwatchHiddenMarkov
model. Cooper et al. (2003) presented a similarity-based
method to cluster digital photos by time and image content.
Xiong et al. (2015) designed a deep CNN architecture by fus-
ing the responses of multiple channels for objects, faces, and
people, and performed event recognition in an end-to-end
manner.

Recently, at the ChaLearn Looking at People (LAP) chal-
lenge (Baro et al. 2015; Escalera et al. 2015), several deep
learning based methods for the task of cultural event recog-
nition were presented (Wei et al. 2015; Liu et al. 2015;
Rothe et al. 2015; Wang et al. 2015b, c). Liu et al. (2015)
proposed to use selective search to generate a set of pro-
posals and to exploit a feature hierarchy to represent these
proposals for event recognition. Wei et al. (2015) designed
an ensemble method to incorporate the spatial structure
into deep representations within a deep spatial pyramid
framework (Gao et al. 2015). Rothe et al. (2015) devel-
oped a deep linear discriminative retrieval approach for
event recognition by extracting features from four layers of
CNNs.

This paper is based on our previous challenge solutions
(Wang et al. 2015b, c), where we proposed the object-scene
convolutional neural networks (OS-CNNs) to transfer the
deep representations of object and scene models for event
recognition. This network architecture was adopted by other
participants (Wei et al. 2015; Liu et al. 2015; Rothe et al.
2015) at the ICCV ChaLearn LAP challenge (Escalera et al.
2015). We substantially extend our previous work by empiri-
cally investigating the correlation of object, scene, and event,
identifying a small subset of discriminative object and scene

123



Int J Comput Vis (2018) 126:390–409 393

classes, and proposing new transfer techniques to improve
the generalization capacity of learned event models.

2.3 Transfer Learning

Many approaches have been proposed in recent years to solve
the visual domain adaption problem (Fernando et al. 2013;
Gong et al. 2014; Kulis et al. 2011), also called as the visual
dataset bias problem (Torralba and Efros 2011). These meth-
ods recognized that there is a shift in the distribution of the
source and target data representations, and they usually tried
to learn a feature space transformation to align the source and
target representations. Recently, supervised CNN represen-
tations have been shown to be effective for a variety of visual
recognition tasks (Girshick et al. 2014; Oquab et al. 2014;
Chatfield et al. 2014; Sharif Razavian et al. 2014; Azizpour
et al. 2015). Sharif Razavian et al. (2014) proposed to treat
CNNs as generic feature extractors, yielding an astound-
ing baseline for many visual tasks. Girshick et al. (2014)
designed a region-based object detection pipeline and trans-
ferred classificationmodels to the detection task. Oquab et al.
(2014) proposed a transfer framework to adapt a representa-
tion learned from the ImageNet dataset for various tasks on
the Pascal VOC dataset (Everingham et al. 2010). Chatfield
et al. (2014) comprehensively studied three types of models
learned in the ImageNet dataset and transferred these repre-
sentations to the Pascal VOC dataset. Azizpour et al. (2015)
empirically analyzed different factors of transferability for
a generic CNN representation on a variety of tasks. Tzeng
et al. (2015) recently proposed to jointly learn deep mod-
els between source and target domains, where both domains
shared the same task.

There are also someworks on domain adaptionwith appli-
cation in event recognition from videos (Ma et al. 2014; Yang
et al. 2012; Yan et al. 2015). Ma et al. (2014) proposed an
algorithm to adapt knowledge from another source for event
detection even if the features of the source and the target
are partially different, but overlapping. Yang et al. (2012)
developed a robust cross-media transfer for event detection
by taking different types of noisy social multimedia data as
input. Yan et al. (2015) developed an event oriented dic-
tionary learning method by leveraging training samples of
selected concepts from the Semantic Indexing dataset.

We focus on event recognition in still images by trans-
ferring deep representations in object and scene models. In
our case, both the distributions of input images and final
targets are different from those of the source tasks. Further-
more we propose multitask learning frameworks, which try
to utilize extra knowledge or data to guide the fine-tuning
procedure on the target dataset. Therefore, our proposed
transfer methods can help to reduce the effect of over-
fitting and improve the generalization ability of the learned
models.

3 An Empirical Study

In this section, we quantitatively study the correlation among
the concepts of object, scene and event by using more accu-
rate and universal concept classifiers learned from standard
benchmarks (i.e., ImageNet and Places). Then, we propose
to select a subset of discriminative object and scene cate-
gories to better fine tune these deep representations for event
recognition.

3.1 Evaluating Object and Scene Responses

In order to empirically study the correlation between the pres-
ence of object or scene and event classes, we choose the CNN
learned in the ImageNet dataset (Deng et al. 2009) and Places
dataset (Zhou et al. 2014) as a accurate and universal object
and scene detector, respectively. These two datasets are cur-
rently the largest object recognition and scene recognition
datasets, where we use 1000 object classes from ImageNet
and 205 scene classes from Places. These categories almost
cover all common object and scene classes, that possibly
correlate with the event classes. We now first introduce the
training details of these object and scene CNNs. Then, we
describe how to calculate the object and scene responses for
each image.

CNNmodels.We choose the network architecture of incep-
tion with Batch Normalization (BN inception) (Ioffe and
Szegedy 2015), due to its balance between accuracy and effi-
ciency. This network starts with 2 convolutional and max
pooling layers, subsequently has 10 inception layers, and
ends with a global average pooling layer and a fully con-
nected layer. For both object and scene CNNmodels, we use
the same training policy. Specifically, we use a multi-GPU
parallel version (Wang et al. 2015d) of the Caffe toolbox (Jia
et al. 2014), which is publicly available.1 These networks
are learned using the mini-batch stochastic gradient decent
algorithm, where the batch size is set to 256 and momen-
tum to 0.9. The learning rate is initialized as 0.1 and reduced
by a factor of 10 every 200,000 iterations. The whole train-
ing procedure stops at 750,000 iterations. Concerning data
augmentation, we use the common techniques such as con-
ner cropping, scale jittering, and horizontal flipping (Wang
et al. 2015d). The training images are resized to 256 × 256
and these cropped regions are resized to 224× 224. Our BN
inception models achieve a top-5 error of 7.9% on the Ima-
geNet validation set and 11.8% on the Places validation set
with a single crop.

Object and scene responses. After the training of object
and scene CNNs, we treat them as universal object and

1 https://github.com/yjxiong/caffe.
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scene detectors, respectively. More concretely, we choose
the ChaLearn Culture Event Recognition dataset (Escalera
et al. 2015) for our empirical investigation. We use these
object and scene CNN models to scan over the training
dataset and compute the likelihood of the existence of certain
object and scene classes for each image. Specifically, we first
resize each image into three different scales of 256 × 256,
384 × 384, and 512 × 512 to handle scale variations. Then,
we crop 224 × 224 regions from these resized images in a
3 × 3 grid. Finally, each crop is fed into the CNN models
to obtain score vectors So and Ss to represent the distribu-
tion of object and scene classes. These scores of multiple
crops from every single image are averaged to yield the
image-level object and scene distribution, denoted by Φo

and Φs .

3.2 Exploring Object and Scene Responses

After having calculated the object and scene responses for the
training images, we are ready to quantitatively analyze the
correlation among these three concepts: object, scene, and
event. Here we try to answer the question of whether and
how different event classes tend to co-exist with distinctive
sets of objects and scenes.

More specifically, given a set of event training images
{Ii , yi , Φo(Ii ),Φs(Ii )}Ni=1, where Ii denotes the image, yi is
its event label, andΦo(Ii ) andΦs(Ii ) are the scores of object
and scene responses calculated as described in the previous
subsection. Φo(Ii ) and Φs(Ii ) could be interpreted as dis-
tribution p(o|Ii ) and p(s|Ii ), we estimate the conditional
distribution p(o|e) and p(s|e) as follows:

p(o|e) = 1

Ne

∑

i :yi=e

Φo(Ii )[o],

p(s|e) = 1

Ne

∑

i :yi=e

Φs(Ii )[s],
(1)

where p(o|e) and p(s|e) are the conditional distributions of
object class o and scene class s given event class e,Φ[ j] rep-
resents the j th element ofΦ, and Ne is the number of images
belonging to the eth event class (i.e., Ne = ∑N

i=1 I(yi = e)).
We take the score average of images from the same event
class to estimate the conditional distribution of object and
scene given a specific event class. Meanwhile, we estimate
the prior probability of event e as follows:

p(e) = Ne

N
, (2)

where N is the total number of training images.
To investigate the correlation between object or scene

and event, we first visualize several examples of conditional
probabilities p(o|e) and p(s|e) in Fig. 2. We notice that

some event classes show strong responses to specific object
or scene classes. For example, in the event of aomori
nebuta, the object class comic book has the highest
response. In the event of beltane fire, there is a strong
preference for the object class torch. For scene responses,
the event of afrika burn yields a high response for the
desert scene class and the event of bastille day for
the tower scene class. In such cases, the corresponding
object and scene class may act as a strong visual attribute that
can be exploited for event recognition. On the other hand,
some event classes, such as battle of the orange
and boston marathon, may have strong response scores
formultiple object and scene classes simultaneously. In these
situations, the co-occurrence of several object and scene
classes may contribute to the prediction of event classes.
From these examples in Fig. 2, we conclude that some event
classes may have strong responses to a specific object and
scene class, or a small subset of object and scene classes.
Therefore, the deep representations learned in object and
scene models should be also discriminative and helpful for
event recognition, and pre-trained models provide good ini-
tialization for fine-tuning on the event dataset. In the next
subsection, we will define a quantitative measure to evaluate
the discriminative capacity of object and scene classes for
event recognition.

To further analyze the object and scene responses on the
whole event dataset, we estimate the marginal distributions
of object and scene as follows:

p(o) =
∑

e

p(o|e)p(e), p(s) =
∑

e

p(s|e)p(e). (3)

With the above equations,we can estimate the distributions of
common objects and scenes in the ChaLearn Cultural Event
Recognition dataset. As shown in Fig. 3, we plot the dis-
tribution of object and scene classes, where we only show
the top 100 object and scene classes for visual clarity. The
distributions of object and scene responses both exhibit the
property of long tails, where most of the probability resides
in a small subset of these object and scene classes. These uni-
versal object and scene classes do not relate to event classes
equally and many classes only weakly correlate with the
event classes. Hence, it is possible to identify a small subset
of object and scene classes for more efficient and effective
representation transfer.

3.3 Selecting Object and Scene Classes

In this subsection, we aim to measure the discriminative
capacity of object and scene classes, and find a subset that
is most discriminative for distinguishing the event classes.
These subsets of object and scene classes enhance the
relevance of object and scene recognition with event clas-
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Fig. 2 ChaLearn Cultural Event categories with corresponding his-
tograms of object responses (i.e., p(o|e)) and scene responses (i.e.,
p(s|e)). Top row: event categories with relatively low-entropy object

responses. Middle row: event categories with relatively low-entropy
scene responses. Bottom row: event categories with high-entropy object
and scene responses. Best viewed in color (Color figure online)

Fig. 3 The overall object responses (i.e., p(o)) and scene responses
(i.e., p(s)) on the ChaLearn Cultural Event Recognition dataset. We
notice that the distributions of object responses and scene responses

yielded a “long tail”, which means the most probability goes to a small
portion of the object and scene classes. Best viewed in color (Color
figure online)

sification, thus contributing to the better performance of our
proposed data-based transfer method in Sect. 4.

Specifically, the selection of the subsets of object and
scene classes is according to the following two principles:

– Each selected object or scene should only occur in a small
number of event classes. We call this property the dis-
criminative capacity of a single object or scene.
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– Each object or scene in the subset should have a low cor-
relationwith the others.We call this property the diversity
capacity of the subset.

Formulation. Based on these principles, we formulate the
subset selection as an inference problemon a fully-connected
graph, where each node corresponds to an object or scene
class, and each edge encodes the correlation between the con-
nected pair of nodes. Each node is associated with a binary
hidden variable hi ∈ {0, 1}, representing whether the object
or scene class is selected or not. Therefore, given a set of
object or scene classes h = {hi }Ni=1, we want to minimize
the following energy function:

E(h) =
N∑

i=1

φ(hi ) + λ

N∑

i=1

N∑

j=1, j �=i

ψ(hi , h j ),

s.t.
N∑

i=1

hi = K

(4)

where φ(hi ) is a unary term to represent the cost of selecting
the i th class,ψ(hi , h j ) is a pairwise term to denote the cost of
having both i th and j th classes, K is the number of categories
to be selected, and λ is a weight parameter to balance these
two terms (set to 0.5). The unary term is a penalty func-
tion to ensure the discriminative capacity of each selected
class, and the pairwise term is a penalty function to encour-
age the diversity of the selected subset. It should be noted that
our formulation is similar to plenty of works on graph-based
formulation for selection in different problems, such as part
selection (Juneja et al. 2013), attribute selection (Zheng et al.
2014), and feature selection (Das et al. 2012).

To meet the requirement of discriminative capacity, the
responses of selected objects and scenes should peak for a
small subset of events. Entropy is a natural measure to quan-
tify the peaked nature of a probability distribution. Therefore,
we adopt the conditional entropy H(E |o) to represent the
discriminative capacity of the oth object, which is defined as
follows:

H(E |o) = −
∑

e

p(e|o) log2 p(e|o), (5)

where p(e|o) is the conditional event distribution given a
specific object class, which can be computed from Eqs. (1)
and (2) using Bayes’ formula. So, if hi = 1, then φ(hi ) =
H(E |i).

As to a subset’s diversity capacity, we need to consider
the correlation between pairs of classes. Instead of using
low-level features to calculate their similarity, we utilize the
conditional probability P(e|o) to measure their correlation.
If twoobject classeswould predict similar events, they should
have similar conditional probabilities p(e|o). Specifically, if
hi = 1 and h j = 1, then ψ(hi , h j ) =< p(e|i), p(e| j) >.

Algorithm 1: Selecting Objects.
Data: conditional distribution p(e|o), number: K .
Result: selected object classes: O = {oi }Ki=1.
- Compute the cost of discriminative capacity of each object φ(o)
defined in Eq. (5).
- Initialization: n ← 0, O ← ∅.
while n < K do

1. For each remaining object o, update the correlation
measure:

S(O, o) = 1

|O|
∑

oi∈O
< p(e|oi ), p(e|o) >,

2. Choose the object class : o∗ ← argmino φ(o) + λS(O, o).
3. Update: n ← n + 1, O ← O ∪ {o∗}

end
- Return object classes: O.

Optimization. In general, the pairwise potential φ(hi , h j ) is
calculated from the event dataset and it is highly dependent
on the dataset. So we can not assume any property about
the pairwise potential and make sure the it strictly follow
the submodular property (Zheng et al. 2014). Therefore, the
problem defined in Eq. (4) is a NP-hard problem in general.

Inspired by the part selection method (Juneja et al. 2013),
we design a greedy selection method as shown in Algo-
rithm 1. We first pick the object class that has the lowest
conditional entropy. Then we update the correlation of the
remaining object classes with the selected one with the aver-
age similarity. After this, we choose the object class which
simultaneously minimizes the cost of discriminative and
diversity capacity and go to the next iteration. The whole
iteration is repeated until K objects are selected. In practice,
we also try other more complex approximate algorithms of
sequential tree-reweighted algorithm (TRW-S) (Kolmogorov
2006), which show similar performance to our proposed
greedy selection method.

4 Transferring Deep Representations

In this section, we focus on how to transfer these deep object
and scene representations for the task of event recognition.
The representations of object and scene CNNs are learned to
maximize theperformance in classifying each image into pre-
defined object and scene classes, respectively. The difference
between object or scene recognition and event recognition
is double: (1) domain difference: the distribution of event
images is different from those of object and scene images.
(2) target difference: the final recognition objective is dif-
ferent. Therefore, transferring these deep representations is
necessary to deal with the problems of domain and target
difference.
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Some challenges remain for this transfer. As said, the sizes
of the event recognition datasets (e.g., ChaLearn Cultural
Event Recognition dataset (Escalera et al. 2015) are rela-
tively small compared with those of the large-scale object
and scene recognition datasets (e.g., ImageNet (Deng et al.
2009) and Places (Zhou et al. 2014)). However, CNNs come
with millions of parameters and may easily over-fit with lim-
ited training samples. Hence, the question of how to adapt
deep representations to new tasks with limited training sam-
ples needs to be explored.As shown in Fig. 4, we try to design
effective transfer techniques, able to reduce over-fitting to the
training data and to improve the generalization capacity of
the learned model.

4.1 Baseline: Initialization-Based Transfer

Fine-tuning yields a simple yet effective method to trans-
fer deep models learned in a large-scale dataset to a new
task, where only a smaller training dataset is available.

We choose fine-tuning as a baseline transfer technique. We
call this transfer method as initialization based transfer,
because we simply copy the weights of pre-trained models
to the corresponding layers of event models as initialization.
Specifically, suppose we have M event classes, we then min-
imize the cross-entropy loss function in the target dataset De

defined as follows:

�C (De) = −
∑

Ii∈De

M∑

m=1

I(yi = m) log pi,m, (6)

where (Ii , yi ) is a pair of an image and its label, De is the
event dataset, pi,m is the mth output of the softmax layer for
image Ii .

In practice, we choose theBN inception architecture (Ioffe
and Szegedy 2015), but we make two important modifica-
tions when minimizing the above loss function to improve
the final recognition performance:

Fig. 4 Illustration of three transfer techniques that we propose: a ini-
tialization based transfer, b knowledge based transfer, and c data based
transfer. In initialization based transfer, we use the pre-trained models
to initialize the event CNNs and fine-tune them on the target dataset. In

knowledge based transfer, we utilize the soft codes produced by object
or scene networks to guide the training of event CNNs. In data based
transfer, we exploit object or scene training data to jointly learn event
and object or scene CNNs in a weight-sharing scheme
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– We freeze the BN layers in the event CNNs. In the orig-
inal training of the BN inception network (Ioffe and
Szegedy 2015), it estimates the activation mean and vari-
ance within each batch, and uses them to transform these
activation values into a standard distribution. This data
adaptively estimating the activation mean and variance
contributes to accelerating theCNN’s convergence.Yet, it
also increases the risk of over-fitting when having limited
training samples. Therefore, we freeze themean and vari-
ance values estimated from the object and scene datasets.

– We add a dropout layer before the fully connected layer
in the BN inception network. In the original BN inception
network (Ioffe and Szegedy 2015), it turns out BN acts
as a kind of regularizer, and there is no need for a dropout
layer when training on the large-scale ImageNet dataset.
However, the size of the event recognition dataset ismuch
smaller than that of ImageNet, and in our experiments,
the effect of over-fitting will be more serious without the
dropout layer.

This transfer technique simply employs a pre-trained
model as initialization and ignores other information during
the fine-tuning procedure. Although the fine-tuning process
starts with a semantic and stable initialization, it may still
suffer from over-fitting, as we shall see in our experiments.
Incorporating other relevant tasks into the procedure of fine-
tuning will regularize the learning process of event CNNs
and thus relieve the over-fitting problem. We will design two
multitask based transfer methods in the following subsec-
tions.

4.2 Knowledge-Based Transfer

As shown in Sect. 3, the occurrence of object and scene is
highly correlated with specific event class. The fine-tuning
technique simply utilizes object and scene models as ini-
tialization but ignores the rich information coming from the
present object and scene background during the fine-tuning
procedure. This subsection aims to propose amultitask based
transfer method to incorporate object and scene recognition
into the fine-tuning process on the event dataset.

A complicating factor is that we only have event labels
on the target dataset, but no object and scene labels. To
overcome this, we utilize the pre-trained object and scene
CNNs to predict the likelihood of object and scene classes.
As shown in Fig. 4, we treat the output scores of object and
scene CNNs as soft codes and use these soft codes as supervi-
sion to guide the fine-tuning of event CNNs. The advantages
of using the soft codes of pre-trainedmodels are two-fold: (1)
we do not need to spend much time labeling the images with
object and scene annotations. (2) The soft codes also capture
the co-occurrence of multiple objects and scenes. Since the
knowledge of object and scene CNNs is explicitly exploited

to obtain the soft codes of images, we call this transfer tech-
nique as knowledge-based transfer. Specifically, during the
fine-tuning process,weminimize the following loss function:

�know(De,F) = �C (De) + α�so f t (De,F), (7)

where �C (De) is the loss function of event recognition as
defined in Eq. (6), �so f t (De,F) is the loss of measuring the
distance between prediction and the soft codes produced by
object or scene CNNs F, and α is a weight to balance these
two terms. The loss �so f t (De,F) is formulated as follows:

�so f t (De,F) = −
∑

Ii∈De

K∑

k=1

qi,k log fi,k, (8)

where qi the softmax output of the event network for object or
scene predictionwith image Ii , and fi is the softmaxoutput of
the pre-trained object or scene models, namely fi = F(Ii ).
Essentially, this is the cross-entropy loss and its goal is to
make the transferred event models imitate the object or scene
models.

In this transfer technique, we propose a multitask learn-
ing framework to jointly fine tune the network weights for
event recognition and imitate the object and scene networks
to recognize the objects and scene present. This additional
imitation task exploits these soft codes of pre-trained models
to guide the fine-tuning process and acts as a kind of regular-
izer to improve the generalization capacity of event models.

4.3 Data-Based Transfer

In this subsection, we approach learning the event models
together with object and scene recognition from a differ-
ent perspective. In order to incorporate the object and scene
recognition into the fine-tuning process, we jointly train
CNNs for relevant tasks on different datasets in a weight
sharing scheme. We find that this weight sharing scheme is
another effective strategy to regularize the fine-tuning of the
event network.

Specifically, we simultaneously fine-tune two different
networks on two datasets: one network is fine-tuned on the
subset of ImageNet (Deng et al. 2009) or Places (Zhou et al.
2015) for object recognition or scene recognition, and the
other one is fine tuned on the event recognition dataset to clas-
sify events. As shown in Fig. 4, these two networks have their
own data layers to handle different datasets, fully-connected
layers to deal with different targets, and loss layers to update
the weights for different tasks. The weights of the remaining
layers are shared by these two networks, which means that
they should be updated synchronously during back propaga-
tion. Therefore, during the training process, we minimize the
following loss function:
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Fig. 5 Pipeline of event recognition with OS2E-CNNs. It is composed
of three steps: (1) data pre-processing, (2) OS2E-CNNs prediction, and
(3) score fusion. In the data pre-processing step we transform each
image into a set of image regions with a multi-ratio and multi-scale

cropping strategy. Then, these crop regions are fed into OS2E-CNNs
to predict the score of different event classes. Finally, these scores of
different image regions are fused to yield the final recognition result

�data(De, D) = �C (De) + β�C (D), (9)

where �C (De) is the loss function for event recognition on
the target dataset as defined in Eq. (6), and �C (D) is the loss
function on the auxiliary dataset for object or scene recogni-
tion, β is a parameter to keep a balance between these two
terms.

This transfer technique aims to utilize useful informa-
tion hidden in other datasets to help the fine-tuning of event
models and we call this method as data-based transfer. The
weight sharing scheme couples two networks together and
jointly updates the network weights during fine-tuning pro-
cess. This jointly updating convolutional weights is capable
of exploiting the supervision information from two related
datasets to guide network training, and can prevent it from
over-fitting into any single dataset. The supervision informa-
tion from the other dataset acts as a regularizer to improve
the quality of fine-tuning on the target dataset. The proposed
selection algorithm in Sect. 3.3 is able to identify a small set
of discriminative and relevant object or scene classes. Simply
utilizing the images from these subsets is able to enhance the
relevance between main task and auxiliary tasks, thus con-
tributing to improve the performance of event recognition.

5 Event Recognition with OS2E-CNNs

After the introduction of transfer techniques from object and
scene models to event CNNs, we are ready to describe how
to deploy these fine-tuned CNNs for event recognition.

The pre-trained object and scene CNNs are fine-tuned
for event recognition on the event dataset and we call
these learned networks OS2E-CNNs, which is short for
convolutional neural networks transferred from object and
scene recognition to event recognition. As shown in Fig. 5,
the OS2E-CNNs are composed of two streams: (1) O2E-

CNNs: event CNNs transferred from object models and
object datasets. (2) S2E-CNNs: event CNNs transferred
from scene models and scene datasets. In order to effi-
ciently deploy OS2E-CNNs, our current implementation
treats OS2E-CNNs as “end-to-end predictors” without train-
ing explicit classifiers such as SVMs. As illustrated in Fig. 5,
our event recognition pipeline involves three steps: (1) data
pre-processing, (2) network prediction, and (3) score fusion.

Data pre-processingWeconduct common data augmenta-
tion techniques to enrich the image samples. Specifically, we
design a multi-ratio and multi-scale cropping technique, to
deal with the aspect and scale variations existed in the event
images. More details about this cropping will be explained
in Sect. 6.2.

Network prediction We first subtract their mean pixel
value from the cropped image regions and then feed the
results into the O2E-CNN and S2E-CNN independently. The
O2E-CNN and S2E-CNN produce prediction scores at the
softmax layer. These score vectors S(R) represent the like-
lihood of event categories for each image region R.

Score fusion We combine the scores of the different net-
works for different crops. First, for each cropped region R,
the prediction score of the OS2E-CNN is a weighted average
of O2E-CNN and S2E-CNN results:

Sos(R) = αoSo(R) + αs Ss(R), (10)

where So(R) and Ss(R) are the score vectors of the O2E-
CNN and S2E-CNN for region R. αo and αs are their fusion
weights and in the current implementation are equal. Then,
for the whole image I, the prediction score is obtained by
fusing across these cropped regions:

Sos(I) =
∑

Ri∈I
Sos(Ri ). (11)
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6 Experiments

In this section, we describe the detailed experimental setting
and report the performance of our method. First, we intro-
duce the datasets used for evaluation and their corresponding
experimental setup. Next, we describe the implementation
details of our method. Then, we investigate our method from
the aspects of cropping strategy, object and scene selection,
and transfer techniques. We also compare our method with
the winners of the ICCV15 ChaLearn Looking at People
(LAP) challenge. Furthermore, we fix the parameter settings
and perform experiments on other event recognition datasets.
Finally, we give examples for which our method fails to pre-
dict the correct labels.

6.1 Datasets and Evaluation Protocol

The ICCV15 ChaLearn LAP challenge (Escalera et al.
2015)2 provides a large dataset for Cultural Event Recog-
nition in still images. There are 100 event classes in total,
including 99 event classes and 1 background class. Thewhole
dataset is divided into three parts: development data (14,332
images), validation data (5,704 images), and evaluation data
(8,669 images). The performance is measured by computing
the average precision (AP) for each event class and reporting
the mean AP over all the classes (mAP). We perform exper-
iments under two different settings on this dataset. The first
is the validation setting, where we train OS2E-CNN models
on the development data and test on the validation data. We
study different configurations of our method to determine the
optimal setting. The second experiment uses the challenge
setting, wherewemerge the development data and validation
data into a single training dataset, and re-train OS2E-CNNs
on this new training dataset. We send our recognition results
to the challenge organizers and obtain the final performance
back.

TheWeb Image Dataset for Event Recognition (Xiong
et al. 2015)3 is probably the largest image benchmark for
event recognition. In its current version, there are 50,574
images and 61 event categories. The whole dataset is divided
into 25,275 training images and 25,299 testing images. The
evaluation measure is based on the mean recognition accu-
racy across all the event classes. WIDER focuses on event
categories in our daily life, such as parade, dancing, meeting,
press conference, and so on. Therefore, it is complementary
to the ChaLearn Cultural Event Recognition dataset from the
aspect of event classes.

2 http://gesture.chalearn.org/.
3 http://personal.ie.cuhk.edu.hk/~xy012/event_recog/WIDER/.

The UIUC Sports Event dataset (Li and Li 2007)4 is
probably the first image benchmark for event recognition.
It is composed of 8 sports event categories. The num-
ber of images in each event category ranges from 137 to
250. We follow the original evaluation setting, where 70
images of each class are selected as training samples and
60 images are selected as testing samples. The final evalua-
tion is based on the mean recognition accuracy across the 8
event classes. Recognition accuracy has already saturated
(around 95%) and it is difficult to achieve improvements
over the state-of-the-art. Nevertheless, this dataset can verify
the effectiveness of our proposed different transfer tech-
niques if our method is still able to boost the recognition
performance.

The Photo Event Collection dataset (Bossard et al.
2013)5 is proposed for classifying the photo collections into
pre-defined event classes such as birthday, wedding, grad-
uation, and so on. This dataset contains more than 61,000
images from 807 collections, annotated with 14 social event
classes. We use this dataset to verify the effectiveness of
our proposed method for image-level event recognition,
although it is mainly designed for collection-level event
classification. We follow the train and test split released
by the original paper, where each class has 30 collec-
tions for training and 10 collections for testing. We directly
assign the collection-level label to each image contained
in this collection and simply use the image itself for event
recognition, without any meta information such as temporal
information.

6.2 Implementation Details

Training.During the fine-tuning procedure of OS2E-CNNs,
we first resize each training image to 256 × 256. At each
iteration, we randomly crop a region from the whole image.
To deal with scale and aspect ratio variations, we design
a multi-scale and multi-ratio cropping strategy, where the
cropped width w and height h are randomly picked from
{256, 224, 192, 160, 128}. Then these cropped regions are
resized to 224 × 224 for network training. These cropped
regions also undergo random horizontal flipping. The net-
work weights are learned using the mini-batch stochastic
gradient descent with momentum (set to 0.9). At each iter-
ation, a mini-batch of 256 images is constructed by random
sampling. The dropout ratio for the added dropout layer
is set as 0.7. As we pre-train the network weights with
the ImageNet and Places models, we set a smaller learning
rate for fine-tuning. Specifically, we initialize the learning
rate as 0.01. After this, we decrease the learning rate by a
factor of 10 every K iterations. The whole training proce-

4 http://vision.stanford.edu/lijiali/event_dataset/.
5 https://www.vision.ee.ethz.ch/datasets_extra/pec/.
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dure stops at 2.5K iterations. K is related to the training
set size and we set it to 5000 for the validation setting of
ChaLearn Cultural Event Recognition, 7000 for the chal-
lenge setting of this dataset, 10,000 for the Web Image
Dataset for Event Recognition, 300 for the UIUC Sports
Event dataset, and 1000 for the Photo Collection Event
dataset.

Testing. We first resize the image with two different aspect
ratios: (1) keeping the image aspect ratio fixed and setting
the smaller side to 256, (2) resizing the image to 256× 256.
Second, to deal with scale variations, we change the image
resolutionswith the smaller side as 384, 512, or thewhole size
as 384×384, 512×512. Finally, we densely crop 224×224
regions in a grid of 3× 3 from these images. Hence, we crop
a total number of 2 × 3 × 9 = 54 regions from a single
image.

6.3 Exploration of Testing Strategy

We begin our experiment by exploring the effectiveness
of the multi-ratio and multi-scale cropping strategy pro-
posed in Sect. 5. Specifically, in this experiment, we use
the ChaLearn Cultural Event Recognition dataset under the
validation setting and choose initialization-based transfer to
learn the OS2E-CNN models. The results are reported in
Table 1 and we notice that the strategy of multi-ratio and
multi-scale cropping is helpful for improving recognition
performance.

First, given a fixed image aspect ratio, we resize the image
to three different scales: (1) the original scale, (2) 1.5 times
that scale, and (3) double the scale. The performance of
using three different scales is improved to 85.3% for the
OS2E-CNN compared with the original performance 83.4%.

This improvement suggests the multi-scale cropping method
can handle scale variations of the test images. Second, we
choose two aspect ratios for the testing images (256× N vs.
256 × 256) and the first aspect ratio obtains better perfor-
mance (85.3% vs. 85.0%). We fuse the recognition results
of these two aspect ratios and boost the recognition per-
formance to 85.6%. This improvement may be ascribed to
an aspect ratio difference among test images and testing
on different ratios could be helpful to handle this issue. In
the remainder of this section, we will use this multi-scale
and multi-ratio cropping technique for other experimental
explorations.

6.4 Evaluation on Object and Scene Selection

In this subsection, we verify the effectiveness of the object
and scene selection method proposed in Sect. 3.3, on the
ChaLearn Cultural Event Recognition dataset under the vali-
dation setting. Our experiment is performed in two scenarios:
(1) using the object and scene responses as features for event
recognition, and (2) transferring deep object and scene rep-
resentations for event recognition via a data based transfer
method. We also visualize the conditional probability of top
selected object and classes.

First, we treat the object and scene responses Φo(I) and
Φs(I) as features and train a linear SVM to classify event
classes. To make the training of SVMs more stable, we nor-
malize these responseswith �2-norm (Vedaldi and Zisserman
2012). The experimental results are reported in Table 2.
The object responses achieve a mAP of 70.2% and scene
responses obtain a mAP of 61.5%. The feature concatena-
tion of both responses further improves the performance to
72.1%. Following this, we plot themAP values with different

Table 1 Performance of
different cropping strategies on
the ChaLearn Cultural Event
Recognition dataset under the
validation setting

Ratio Scale O2E-CNNs (%) S2E-CNNs (%) OS2E-CNNs (%)

256 × N Scale 1 82.1 80.5 84.2

Scale 1.5 81.8 81.1 84.1

Scale 2 77.2 76.1 79.4

Combine 83.4 82.8 85.3

256 × 256 Scale 1 80.4 78.2 82.8

Scale 1.5 82.4 80.8 84.3

Scale 2 81.7 80.5 83.5

Combine 83.2 82.0 85.0

Combine Scale 1 82.0 80.3 84.1

Scale 1.5 83.2 82.1 85.0

Scale 2 81.2 80.3 83.0

Combine 83.9 83.0 85.6

Bold values indicate the best results
We use two image aspect ratios and three different scales.
These cropped regions from different resolutions and scales are complementary to each other
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Table 2 Event recognition results using the object and scene responses
on the ChaLearn Cultural Event Recognition dataset under the valida-
tion setting

Responses Objects (%) Scenes (%) Fusion (%)

Performance (mAP) 70.2 61.5 72.1

Objects and scenes can provide useful visual cues for event recognition,
which achieves a relatively high recognition performance
The combination of objects and scenes can further boost the recognition
performance
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Fig. 6 Exploration of the object and scene selection algorithm on the
ChaLearn Cultural Event Recognition dataset under the validation set-
ting. The results are compared with the random selection algorithm

numbers of selected object and scene classes in Fig. 6. We
compare ourmethodwith a baseline of randomselection. The
performance gap is relatively largewhen the selected number
is small and this gap becomes smaller when more classes are
selected. As more classes are selected, those discriminative
object and scene classes are more easily picked by a random
sampling method. Our method can select a subset of classes,
that achieves the 95% performance of using all classes. For
instance, it obtains a performance of around 67% with 300
object classes and 59% with 150 scene classes.

Then, we study the effectiveness of object and scene
selection for data-based transfer method. We perform an
exploration study on the number of selected classes, and the
experimental results are shown in the left of Fig. 7. Select-
ing subsets of discriminative classes is able to enhance the
relevance of the main task and auxiliary tasks in the data-

based transfer method, thus improving the performance of
the main task (i.e., event recognition) (Caruana 1997). From
experimental results, the number of selected object and scene
classes has an influence on the relevance of the main task
and auxiliary tasks, where 300 object classes and 150 scene
classes achieve the best performance. Therefore, we fix the
number of selected object classes as 300 and scene classes
as 150 in the remaining experiments.

Next, we compare with two other methods in the data-
based transfer method: (1) using all object and scene classes,
(2) selecting 300 object classes and 150 scene classes with
random selection. For fair comparison, these three meth-
ods all use the same pre-training models, namely CNNs
pre-trained on all object and scene classes. The results are
summarized in the right of Fig. 7. For the O2E-CNNs,
using all the objects (1000 classes) achieves the perfor-
mance of 85.0%, which is lower than that of employing 300
object classes. Using a smaller number of object classes may
enhance the relevance of main and auxiliary tasks. Compar-
ing the performance of random selection and our proposed
selectionmethod, this confirms the effectiveness of consider-
ing discriminative and diversity capacity during the selection
process. For S2E-CNNs, similar results to O2E-CNNs are
observed, and our proposed selection algorithm outperforms
the other two methods. Meanwhile, we also try the sequen-
tial tree-weighted algorithm (TRW-S) (Kolmogorov 2006)
to solve the optimization problem and it achieves a simi-
lar performance to our greedy selection method (85.4% for
O2E-CNN and 84.8% for S2E-CNNs).

Finally, we visualize the conditional probabilities p(e|o)
and p(e|s) of selected objects and scenes in Fig. 8. Here
we only plot the top 30 selected classes, listed in the same
order as theywere selected. Our selection algorithm is able to
choose discriminative object and scene classes, while keep-
ing their diversity. For example, the first selected object class
isbison, which is good at discriminating the event annual
bufallo roundup from other classes, and the first
selected scene class is desert/sand, a strong indicator
for event class afrika burn and sahara festival.
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Fig. 7 Exploration of the object and scene selection algorithm on the
ChaLearn Cultural Event Recognition dataset under the validation set-
ting. We choose the data-based transfer technique to study the effect of

selecting a subset of objects and scenes. Left: we study the influence
of the number of selected object and scene classes. Right: we compare
with the random selection and usage of all classes
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Fig. 8 Visualization of the conditional probabilities p(e|o) and p(e|s)
of selected objects and scenes for the ChaLearn Cultural Recognition
dataset. For visual clarification, we plot the top 30 objects (top row) and

scenes (bottom row) in the order they are selected. From these results,
we see that our selectionmethod is able to find a subset of discriminative
and diverse objects and scenes
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Fig. 9 Performance of different weights of auxiliary tasks on the ChaLearn Cultural Event Recognition dataset under the validation setting. We
study both knowledge based transfer and data based transfer methods and aim to find the optimal parameter setting

Meanwhile, our selected object and scene classes appear
across different event classes and ensure the subset diversity.

6.5 Exploration of Auxiliary Task Weights

We now explore the influence of different weights in the
multitask transfer framework: (1) knowledge-based transfer,
and (2) data-based transfer, on the ChaLearn Cultural Event
Recognition dataset under the validation setting. An impor-
tant parameter in this multitask framework is the weights
of auxiliary tasks, namely parameters α and β in Eqs. (7)
and (9).

We first study the effect of weight α in knowledge-based
transfer. As our goal is to perform event recognition, we con-
strain the weight of the auxiliary task to be less than 0.5.
Specifically, we choose three different weights 0.125, 0.25,
and 0.5, and the experimental results of both the O2E-CNN
and S2E-CNN are shown in the left of Fig. 9. For the O2E-
CNN, smaller weights achieve better performance and the
weight of 0.125 gets the best performance of around 84.8%.
However, for the S2E-CNN, the best weight is 0.25, where it
obtains a performance of around 84.0%. The effect of over-
fitting is more serious for the S2E-CNN than the O2E-CNN,
and we need to set a higher weight for the auxiliary task to
better regularize the training of event CNNs.

We then compare the performance of O2E-CNNs and
S2E-CNNs by using different weight values in data-based
transfermethod. The results are reported in the right of Fig. 9.
The performance of data-based transfer is less sensitive to
the weight setting, where weight 0.125 achieves the lowest
performance, and the weights 0.25 and 0.5 obtain a similar
performance. Hence, in the remaining experimental explo-
rations, we fix the weight of the auxiliary task to 0.5 for
both the O2E-CNN and S2E-CNN in the data-based transfer
method.

6.6 Comparison of Transfer Techniques

In this subsection we study the performance of different
transfer techniques proposed in Sect. 4. We test them on
the ChaLearn Cultural Event recognition dataset under the

validation setting. For fair comparison, these three transfer
methods are all initialized with the models pre-trained on all
object and scene classes.

First, we compare the performance of using different pre-
trained models: object CNNs pre-trained on the ImageNet
dataset and scene CNNs pre-trained on the Places dataset.
From these results in Table 3, we observe that deep repre-
sentations transferred from object CNNs outperform those
transferred from scene CNNs. The superior performance of
O2E-CNNs may imply that the objects more strongly cor-
relate with events, tallying with the fact that the selected
object classes in Fig. 8 have lower conditional entropy and
yield stronger discriminative capacity than the selected scene
classes. Furthermore, we fuse the prediction results of O2E-
CNNs and S2E-CNNs, enabling further improvements in
recognition performance.

Then, we compare the recognition results of three transfer
methods. We see that initialization-based transfer is already
effective for fine-tuning event CNNs, and it obtains a per-
formance of 85.6% for OS2E-CNNs. The newly designed
knowledge-based transfer and data-based transfer achieve
better performance, which indicates that incorporating rele-
vant tasks into the fine-tuning process contributes to improve
the generalization ability of the final event models. Data-
based transfer is better than knowledge-based transfer but
requires additional training images. Furthermore, we fuse
the prediction scores of knowledge-based transfer and data-
based transfer, getting a slightly better performance.

Finally, we study the fine-tuning procedure with more
details. Specifically, we plot the training and testing loss of
three transfer methods in Fig. 10. First, there exists a gap
between the training and test loss for all transfer methods.
This indicates over-fitting is still a serious problem for fine-
tuningCNNson a small dataset. Second,we see that the effect
of over-fitting is more severe in the scenario of initialization-
based transfer. As the iteration number increases, the test
loss stops decreasing and even increases by around 0.3. On
the other hand, for knowledge-based and data-based transfer,
the extra tasks are helpful to reduce the degree of over-fitting
throughout.
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Table 3 Performance of
different transfer techniques on
the ChaLearn Cultural Event
Recognition dataset under the
validation setting

Method O2E-CNNs (%) S2E-CNNs (%) OS2E-CNNs (%)

Initialization 83.9 83.0 85.6

Knowledge 84.8 84.0 86.3

Data 85.5 84.8 87.0

Know.+Data 85.6 85.4 87.2

ALL 86.0 85.6 87.2

We compare our proposed three transfer techniques and the data-based transfer achieves the best performance
for both O2E-CNN and S2E-CNN
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Fig. 10 Training and testing the loss of O2E-CNN (top row) and S2E-
CNN (bottom row) on the ChaLearn Cultural Event Recognition dataset
under the validation setting. We compare our proposed three transfer

techniques. The results indicate that knowledge-based transfer and data-
based transfer help to reduce the effect of over-fitting

6.7 Challenge Results

In this subsection we report the experimental results on
ChaLearnCultural Event Recognition dataset under the chal-
lenging setting.We can not access the labels of testing images
and the parameter settings are determined according to the
study under the validation setting as described in previous
subsections.

The numerical results are reported in Table 4. We com-
pare the performance of our proposed method with the
winners of the ICCV ChaLearn Looking at People (LAP)
challenge (Wei et al. 2015; Liu et al. 2015; Wang et al.
2015c; Rothe et al. 2015). These winner solutions all employ
the pre-trained models learning from ImageNet and Places,
so it is fair to compare our method with them. The perfor-
mance of initialization-based transfer achieves a mAP value

Table 4 Performance of different transfer techniques on the ChaLearn
Cultural Event Recognition dataset under challenge setting

Method Networks Explicit classifiers Performance

CAS 4 LDA+LR 85.4

FV 5 SPM+FV+LR 85.1

MMLAB 4 FV+SVM 84.7

CVL_ETHZ 2 LDA+k-NN 79.8

Initialization 2 None 85.9

Knowledge 2 None 86.2

Data 2 None 86.9

Data+Know. 4 None 87.0

All 6 None 87.1

Bold value indicates the best results
Our method outperforms these winners of the ICCVChaLearn Looking
at People (LAP) challenge
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of 85.9%,which outperforms all thewinners. This result may
be ascribed to the better network structure and the proposed
multi-ratio and multi-scale cropping strategy. We also notice
that the newly designed multitask transfer techniques obtain
higher mAP values, and the data-based transfer method gets
the best performanceof 86.9%among the three transfermeth-
ods. Finally, we combine the prediction results of different
transfer techniques, which yields the best performance of
87.1%on the test data of theChaLearnCultural EventRecog-
nition dataset.

6.8 Evaluation on Other Event Datasets

We present the experimental results of our method on the
other event recognition datasets in this subsection. Specifi-
cally, we perform experiments on theWeb Image Dataset for
Event Recognition (WIDER) (Xiong et al. 2015), the UIUC
Event8 dataset (Li and Li 2007), and the Photo Event Col-
lection dataset (PEC) (Bossard et al. 2013). We use the same
parameter settings with the ChaLearn Cultural Event Recog-
nition dataset (i.e., no specific tuning).

First, we report the numerical results on WIDER in
Table 5. We see that our newly proposed transfer methods
outperform initialization-based transfer, in keeping with our
findings on theChaLearnCulturalEventRecognitiondataset.
Knowledge-based transfer and data-based transfer improve
the performance of initialization-based transfer by 1.2 and
1.6%, respectively. We also compare the performance of our
method with two other approaches: (1) baseline CNN mod-
els and (2) deep channel fusion (Xiong et al. 2015), which
obtained the state-of-the-art performance on this dataset. Our
initializationbased transfermethod is able to improve the per-
formance by 8.4% and our multitask based transfer is better
than previous method by around 10.6%.

Second, the results on the UIUC Event8 dataset are sum-
marized in Table 6. This dataset is relatively small and the
state-of-the-art performance is very high (around 95%). Our
baseline of initialization-based transfer achieves a perfor-
manceof 96.9%, andour new transfermethods are still able to
boost the performance to 98.8 and 98.0%. The performance
of data-based transfer is a bit lower than that of knowledge-
based transfer. This couldbe ascribed to the smaller size of the
UIUC Event8 dataset, which requires fewer iterations before
convergence. So, the fine-tuning is not able to fully exploit
the extra ImageNet and Places images in data-based transfer.
We compare with the baseline of Couple LDA (Li and Li
2007) and recent deep learning methods (Zhou et al. 2014,
2015). Our proposed transfer methods outperform these pre-
vious approaches and obtain the state-of-the-art performance
of 98.8% on this dataset.

Finally, we report the performance of event recognition
on the Photo Event Collection dataset (PEC). We simply use
the original image without temporal information to perform

Table 5 Event recognition performance on the Web Image Dataset for
Event Recognition (WIDER)

Method Performance (%)

Baseline CNN (Xiong et al. 2015) 39.7

Deep channel fusion (Xiong et al. 2015) 42.4

Initialization 50.8

Knowledge 52.0

Data 52.6

Data+Know. 53.0

All 52.8

Bold value indicates the best results
We test our proposed transfer methods and compare with the state-of-
the-art performance

Table 6 Event recognition on the UIUC Sports Event dataset

Method Accuracy (%)

Couple LDA (Li and Li 2007) 73.4

ImageNet CNN Feature (Zhou et al. 2014) 94.4

Places CNN Feature (Zhou et al. 2014) 94.1

GoogLeNet GAP (Zhou et al. 2015) 95.0

Initialization 96.9

Knowledge 98.8

Data 98.0

Data+Know. 98.4

All 98.2

Bold value indicates the best results
We test our proposed transfer methods and compare with the state-of-
the-art performance

Table 7 Event recognition on the PhotoCollection Event dataset (PEC)

Method Accuracy (%)

Aggregated SVM (Bossard et al. 2013) 41.4

Bag of Sub-events (Bossard et al. 2013) 51.4

HMM (Bossard et al. 2013) 53.6

SHMM (Bossard et al. 2013) 55.7

Initialization 60.6

Knowledge 62.0

Data 61.7

Data+Know. 62.2

All 61.9

Bold value indicates the best results
We test our proposed transfer methods and compare with the state-of-
the-art performance

image-level event recognition. As this dataset is designed
for collection classification, no previous works report perfor-
mance on image-level event recognition. For completeness,
we also report the performance of several methods using
temporal information for collection-level event recognition,
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Fig. 11 We show several failure cases from the ChaLearn Cultural
Event Recognition dataset at the top 2 rows and from the Web Image
Dataset forEventRecognition (WIDER) at the bottom2 rows.Wenotice
that sometimes the ground truth labels contain noise and our prediction

results seem more reasonable. For example, the second image of last
row is more likely to be event car racing than group and the sev-
enth image of last row is more likely to be event of basketball than
group

including Aggregated SVM, HMM, SHMM. It should be
noted that these numbers cannot be directly compared with
our result due to the different evaluation tasks. We mainly
compare the performance of our proposed transfer methods
and the results are summarized in Table 7. We see that our
newly designed transfer methods outperform the initializa-
tion based transfer consistently, which again demonstrates
the superiority of our proposedmultitaskbased transfermeth-
ods to the fine-tuning baseline.

6.9 Visualization of Recognition Examples

Several failure examples are given in Fig. 11. In these
cases, our method produces a wrong label with high con-
fidence. In the top two rows, we show some failure cases
from the ChaLearn Cultural Event Recognition dataset.
From these samples, we see that the event class Chinese
new year may be easily confused with the event class
pingxi lattern festival, that the event harbin
ice and snow festival comes close in appearance
to the events sapporo snow festival and quebec
winter carnival, that the event class carnival of
venice looks like mardi gras, and so on. In the bot-
tom two rows, we give some failure cases from the Web
Image Dataset for Event Recognition (WIDER). We see that
our method may confuse the class balloonist with the
class family group, the class jockey with the class
of people marching, the class gymnastics with the
class aerobics, and so on. Also, we notice that sometimes

the ground truth contains noise and our prediction results
seemmore reasonable. For example, the second image of last
row is more likely to be event car racing than group
and the seventh image of last row is more likely to be event
of basketball than group.

7 Conclusions

We have presented a deep architecture, coined as OS2E-
CNN, for event recognition in still images. It transfers deep
representations from object and scene models to the event
recognition task. Objects, scenes, and events are indeed
semantically related. We empirically studied the relation
among categories of object, scene, and event. It appears
that the likelihood of object and scene classes matters for
event understanding in still images. Yet, not all object and
scene classes strongly correlate with the event classes, and
we designed an effectivemethod to select a subset of discrim-
inative and diverse object and scene classes, which helps us
better fine tune deep representations in the data-based trans-
fer method. To adapt these deep learned representations of
object and scene models, we developed three transfer meth-
ods: (1) initialization-based transfer, (2) knowledge-based
transfer, and (3) data-based transfer. The latter two transfer
techniques exploit multitask learning frameworks to incor-
porate the extra knowledge from other networks or extra
data from public datasets into the fine-tuning procedure of
event models. It turns out that these new transfer methods
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are effective to reduce over-fitting and to improve the gen-
eralization ability. Our method achieves the state-of-the-art
performance and outperforms competing approaches on four
public benchmarks.

In the future, wemay consider incorporating more seman-
tic cues such as human pose and garments into a unified
framework for event recognition from still images. The con-
cept of event is a higher-level concept than other semantic
ones such as objects and scenes, and we consider investigat-
ing into a new recognition framework, that is able to exploit
the hierarchical structure among the task of object recogni-
tion, scene recognition, and event recognition.
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