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Abstract

This work addresses the problem of semantic foggy scene understanding (SFSU). Although extensive research has been
performed on image dehazing and on semantic scene understanding with clear-weather images, little attention has been paid
to SFSU. Due to the difficulty of collecting and annotating foggy images, we choose to generate synthetic fog on real images
that depict clear-weather outdoor scenes, and then leverage these partially synthetic data for SESU by employing state-of-the-
art convolutional neural networks (CNN). In particular, a complete pipeline to add synthetic fog to real, clear-weather images
using incomplete depth information is developed. We apply our fog synthesis on the Cityscapes dataset and generate Foggy
Cityscapes with 20,550 images. SFSU is tackled in two ways: (1) with typical supervised learning, and (2) with a novel type
of semi-supervised learning, which combines (1) with an unsupervised supervision transfer from clear-weather images to
their synthetic foggy counterparts. In addition, we carefully study the usefulness of image dehazing for SFSU. For evaluation,
we present Foggy Driving, a dataset with 101 real-world images depicting foggy driving scenes, which come with ground
truth annotations for semantic segmentation and object detection. Extensive experiments show that (1) supervised learning
with our synthetic data significantly improves the performance of state-of-the-art CNN for SFSU on Foggy Driving; (2) our
semi-supervised learning strategy further improves performance; and (3) image dehazing marginally advances SFSU with
our learning strategy. The datasets, models and code are made publicly available.

Keywords Foggy scene understanding - Semantic segmentation - Object detection - Depth denoising and completion -
Dehazing - Transfer learning

1 Introduction

Cameras and the accompanying vision algorithms are widely
used for applications such as surveillance (Buch et al.
2011), remote sensing (Dai and Yang 2011), and auto-
mated cars (Janai et al. 2017), and their deployment keeps
expanding. While these sensors and algorithms are constantly
getting better, they are mainly designed to operate on clear-
weather images and videos (Narasimhan and Nayar 2002).
Yet, outdoor applications can hardly escape from “bad”
weather. Thus, such computer vision systems should also
function under adverse weather conditions. Here we focus
on the presence of fog.
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Fog degrades the visibility of a scene significantly
(Narasimhan and Nayar 2003; Tan 2008). This causes prob-
lems not only to human observers, but also to computer vision
algorithms. During the past years, a large body of research has
been conducted on image defogging (dehazing) to increase
scene visibility (Nishino et al. 2012; He et al. 2011; Wang
and Fan 2014). Meanwhile, marked progress has been made
in semantic scene understanding with clear-weather images
and videos (Ren et al. 2015; Cordts et al. 2016; Yu and
Koltun 2016). In contrast, the semantic understanding of
foggy scenes has received little attention, despite its impor-
tance in outdoor applications. For instance, an automated car
still requires a robust detection of road lanes, traffic lights,
and other traffic agents in the presence of fog. This work
investigates semantic foggy scene understanding (SFSU).

High-level semantic scene understanding is usually tack-
led by learning from many annotations of real images (Rus-
sakovsky et al. 2015; Cordts et al. 2016). Yet, the difficulty of
collecting and annotating images for unusual weather condi-
tions such as fog renders this standard protocol problematic.
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Fig. 1 The pipeline of semantic foggy scene understanding with par-
tially synthetic data: from a fog simulation on real outdoor scenes, to b
training with pairs of such partially synthetic foggy images and semantic

To overcome this problem, we depart from this traditional
paradigm and propose another route, also different from mov-
ing to fully synthetic scenes. Instead, we choose to generate
synthetic fog into real images that contain clear-weather out-
door scenes, and then leverage these partially synthetic foggy
images for SFSU.

Given the fact that large-scale annotated data are available
for clear-weather images (Everingham et al. 2010; Geiger
et al. 2012; Cordts et al. 2016; Russakovsky et al. 2015), we
present an automatic pipeline to add synthetic yet highly real-
istic fog to such datasets. Our fog simulation uses the standard
optical model for daytime fog (Koschmieder 1924) (which
has already been used extensively in image dehazing) to over-
lay existing clear-weather images with synthetic fog in a
physically sound way, simulating the underlying mechanism
of foggy image formation. We leverage our fog simulation
pipeline to create our Foggy Cityscapes dataset, by adding
fog to urban scenes from the Cityscapes dataset (Cordts et al.
2016). This has led to 550 carefully refined high-quality syn-
thetic foggy images with fine semantic annotations inherited
directly from Cityscapes, plus an additional 20,000 syn-
thetic foggy images without fine annotations. The resulting
“synthetic-fog” images are used to adapt two semantic seg-
mentation models (Yu and Koltun 2016; Lin et al. 2017)
and an object detector (Girshick 2015) to foggy scenes. The
models are trained in two fashions: (1) by the typical super-
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annotations as well as pairs of foggy images and clear-weather images,
and ¢ scene understanding of real foggy scenes. This figure is seen better
on a screen

vised learning scheme, using the 550 high-quality annotated
foggy images, and (2) by a novel semi-supervised learning
approach, which augments the dataset that is used in (1)
with the additional 20,000 foggy images and draws the miss-
ing supervision for these images from the predictions of the
source, clear-weather model on their clear-weather counter-
parts. For evaluation purposes, we collect and annotate a new
dataset, Foggy Driving, with 101 images of driving scenes in
the presence of fog. See Fig. 1 for the whole pipeline of
our work. In addition, this work studies the utility of three
state-of-the-art image dehazing methods for SFSU as well as
human understanding of foggy scenes.

The main contributions of the paper are: (1) an automatic
and scalable pipeline to impose high-quality synthetic fog
on real clear-weather images; (2) two new datasets, one syn-
thetic and one real, to facilitate training and evaluation of
models used in SFSU; (3) a new semi-supervised learning
approach for SFSU; and (4) a detailed study of the benefit
of image dehazing for SFSU and human perception of foggy
scenes.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 is devoted to our fog
simulation pipeline, followed by Sect. 4 that introduces our
two foggy datasets. Section 5 describes supervised learning
with our synthetic foggy data and studies the usefulness of
image dehazing for SFSU in this context. Finally, Sect. 6
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extends the learning to a semi-supervised paradigm, where
supervision is transferred from clear-weather images to their
synthetic foggy counterparts, and Sect. 7 concludes the paper.

2 Related Work

Our work is relevant to image defogging (dehazing), depth
denoising and completion, foggy scene understanding, syn-
thetic visual data, and transfer learning.

2.1 Image Defogging/Dehazing

Fog fades the color of observed objects and reduces their
contrast. Extensive research has been conducted on image
defogging (dehazing) to increase the visibility of foggy
scenes. This ill-posed problem has been tackled from
different perspectives. For instance, in contrast enhance-
ment (Narasimhan and Nayar 2003; Tan 2008) the rationale
is that clear-weather images have higher contrast than images
degraded by fog. Depth and statistics of natural images are
exploited as priors as well (Nishino et al. 2012; Fattal 2008;
Berman et al. 2016; Fattal 2014). Another line of work is
based on the dark channel prior (He et al. 2011), with the
empirically validated assumption that pixels of clear-weather
images are very likely to have low values in some of the
three color channels. Certain works focus particularly on
enhancing foggy road scenes (Tarel et al. 2012; Negru et al.
2015). Methods have also been developed for nighttime (Li
et al. 2015), given its importance in outdoor applications.
Fast dehazing approaches have been developed in Tarel and
Hautiere (2009) and Wang et al. (2017) towards real-time
applications. Recent approaches also rely on trainable archi-
tectures (Tang et al. 2014), which have evolved to end-to-end
models (Ren et al. 2016; Zhang et al. 2017; Ling et al. 2016).
For a comprehensive overview of defogging/dehazing algo-
rithms, we point the reader to Xu et al. (2016) and Li et al.
(2016). All these approaches can greatly increase visibility.
Our work is complementary and focuses on the semantic
understanding of foggy scenes.

2.2 Depth Denoising and Completion

Synthesizing a foggy image from its real, clear counterpart
generally requires an accurate depth map. In previous works,
the colorization approach of Levin et al. (2004) has been used
to inpaint depth maps of the indoor NYU Depth dataset (Sil-
berman et al. 2012). Such inpainted depth maps have been
used in state-of-the-art dehazing approaches such as Ren
et al. (2016) to generate training data in the form of synthetic
indoor foggy images. In contrast, our work considers real
outdoor urban scenes from the Cityscapes dataset (Cordts
etal.2016), which contains significantly more complex depth

configurations than NYU Depth. Furthermore, the available
depth information in Cityscapes is not provided by a depth
sensor, but it is rather an estimate of the depth resulting from
the application of a semiglobal matching stereo algorithm
based on Hirschmiiller (2008). This depth estimate usually
contains a large amount of severe artifacts and large holes
(cf. Fig. 1), which render it inappropriate for direct use in fog
simulation. There are several recent approaches that handle
highly noisy and incomplete depth maps, including stereo-
scopic inpainting (Wang et al. 2008), spatio-temporal hole
filling (Camplani and Salgado 2012) and layer depth denois-
ing and completion (Shen and Cheung 2013). Our method
builds on the framework of stereoscopic inpainting (Wang
et al. 2008) which performs depth completion at the level of
superpixels, and introduces a novel, theoretically grounded
objective for the superpixel-matching optimization that is
involved.

2.3 Foggy Scene Understanding

Semantic understanding of outdoor scenes is a crucial enabler
for applications such as assisted or autonomous driving. Typ-
ical examples include road and lane detection (Bar Hillel et al.
2014), traffic light detection (Jensen et al. 2016), car and
pedestrian detection (Geiger et al. 2012), and a dense, pixel-
level segmentation of road scenes into most of the relevant
semantic classes (Brostow et al. 2008; Cordts et al. 2016).
While deep recognition networks have been developed (Yu
and Koltun 2016; Lin et al. 2017; Zhao et al. 2017; Girshick
2015;Renetal. 2015) and large-scale datasets have been pre-
sented (Geiger et al. 2012; Cordts et al. 2016), that research
mainly focused on clear weather. There is also a large body
of work on fog detection (Bronte et al. 2009; Pavli¢ et al.
2012; Gallen et al. 2011; Spinneker et al. 2014). Classifi-
cation of scenes into foggy and fog-free has been tackled
as well (Pavli¢ et al. 2013). In addition, visibility estima-
tion has been extensively studied for both daytime (Tarel
et al. 2010; Miclea and Silea 2015; Hautiere et al. 2006)
and nighttime (Gallen et al. 2015), in the context of assisted
and autonomous driving. The closest of these works to ours
is Tarel et al. (2010), in which synthetic fog is generated and
foggy images are segmented to free-space area and vertical
objects. Our work differs in that: (1) our semantic understand-
ing task is more complex, with 19 semantic classes that are
commonly involved in driving scenarios, 8 of which occur as
distinct objects; (2) we tackle the problem with modern deep
CNN for semantic segmentation (Yu and Koltun 2016; Lin
et al. 2017) and object detection (Girshick 2015), taking full
advantage of the most recent advances in this field; and (3) we
compile and release a large-scale dataset of synthetic foggy
images based on real scenes plus a dataset of real-world foggy
scenes, featuring both dense pixel-level semantic annotations
and annotations for object detection.

@ Springer
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2.4 Synthetic Visual Data

The leap of computer vision in recent years can to an impor-
tant extent be attributed to the availability of large, labeled
datasets (Everingham et al. 2010; Russakovsky et al. 2015;
Cordts et al. 2016). However, acquiring and annotating such
a dataset for each new problem is not (yet) doable. Thus,
learning with synthetic data is gaining attention. We give
some notable examples. Dosovitskiy et al. (2015) use the
renderings of a floating chair to train dense optical flow
regression networks. Gupta et al. (2016a) impose text onto
natural images to learn an end-to-end text detection sys-
tem. Vazquez et al. (2014) train pedestrian detectors with
virtual data. In Ros et al. (2016) and Richter et al. (2016)
the authors leverage video game engines to render images
along with dense semantic annotations that are subsequently
used in combination with real data to improve the seman-
tic segmentation performance of modern CNN architectures
on real scenes. Going one step further, Johnson-Roberson
et al. (2017) shows that for the task of vehicle detection,
training a CNN model only on massive amounts of synthetic
images can outperform the same model trained on large-scale
real datasets like Cityscapes. By contrast, our work tackles
semantic segmentation and object detection for real foggy
urban scenes, by adding synthetic fog to real images taken
under clear weather. Hence, our approach is based on only
partially synthetic data. In the same vein, Abu Alhaija et al.
(2017) is based on real urban scenes, augmented with vir-
tual cars. A very interesting project is “FOG” (Colomb et al.
2008). Its team developed a prototype of a small-scale fog
chamber, able to produce stable visibility levels and homo-
geneous fog to test the reaction of drivers.

2.5 Transfer Learning

Our work bears resemblance to works from the broad field
of transfer learning. Model adaptation across weather condi-
tions to semantically segment simple road scenes is studied
in Levinkov and Fritz (2013). More recently, a domain
adversarial based approach was proposed to adapt seman-
tic segmentation models both at pixel level and feature level
from simulated to real environments (Hoffman et al. 2017).
Our work generates synthetic fog from clear-weather data
to close the domain gap. Combining our method and the
aforementioned transfer learning methods is a promising
direction for future work. The supervision transfer from
clear weather to foggy weather in this paper is inspired
by the stream of work on model distillation/imitation (Hin-
ton et al. 2015; Gupta et al. 2016b; Dai et al. 2015). Our
approach is similar in that knowledge is transferred from one
domain (model) to another by using paired data samples as
a bridge.

@ Springer

3 Fog Simulation on Real Outdoor Scenes

To simulate fog on input images that depict real scenes with
clear weather, the standard approach is to model the effect
of fog as a function that maps the radiance of the clear scene
to the radiance observed at the camera sensor. Critically,
this space-variant function is usually parameterized by the
distance ¢ of the scene from the camera, which equals the
length of the path along which light has traveled and is closely
related to scene depth. As a result, the pair of the clear image
and its depth map forms the basis of our foggy image syn-
thesis. In this section, we first detail the optical model which
we use for fog and then present our complete pipeline for
fog simulation, with emphasis on our denoising and comple-
tion of the input depth. Finally, we present some criteria for
selecting suitable images to generate high-quality synthetic
fog.

3.1 Optical Model of Choice for Fog

In the image dehazing literature, various optical models have
been used to model the effect of haze on the appearance of
a scene. For instance, optical models tailored for nighttime
haze removal have been proposed in Zhang et al. (2014) and
Li et al. (2015), taking into account the space-variant light-
ing that characterizes most nighttime scenes. This variety of
models is directly applicable to the case of fog as well, since
the physical process for image formation in the presence of
either haze or fog is essentially similar. For our synthesis
of foggy images, we consider the standard optical model
of Koschmieder (1924), which is used extensively in the lit-
erature (He et al. 2011; Fattal 2008; Tang et al. 2014; Tarel
and Hautieére 2009; Ren et al. 2016) and is formulated as

I(x) = R(x)t(x) + L(1 — 1(x)), ey

where I(x) is the observed foggy image at pixel x, R(x) is
the clear scene radiance and L is the atmospheric light. This
model assumes the atmospheric light to be globally constant,
which is generally valid only for daytime images. The trans-
mission 7(x) determines the amount of scene radiance that
reaches the camera. In case of a homogeneous medium, trans-
mission depends on the distance £(x) of the scene from the
camera through

1(x) = exp (=pL(x)) . @)

The parameter § is named attenuation coefficient and it effec-
tively controls the thickness of the fog: larger values of 8
mean thicker fog. The meteorological optical range (MOR),
also known as visibility, is defined as the maximum distance
from the camera for which #(x) > 0.05, which implies that
if (2) is valid, then MOR = 2.996/8. Fog decreases the
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MOR to less than 1 km by definition (Federal Meteorological
Handbook No. 1: Surface Weather Observations and Reports
2005). Therefore, the attenuation coefficient in homogeneous
fog is by definition

B>299 x 10> m™, (3)

where the lower bound corresponds to the lightest fog con-
figuration. In our fog simulation, the value that is used for
always obeys (3).

Model (1) provides a powerful basis for simulating fog on
outdoor scenes with clear weather. Even though its assump-
tion of homogeneous atmosphere is strong, it generates
synthetic foggy images that can act as good proxies for real
world foggy images where this assumption might not hold
exactly, as long as it is provided with an accurate trans-
mission map ¢. Straightforward extensions of (1) are used
in Tarel et al. (2012) to simulate heterogeneous fog on syn-
thetic scenes.

To sum up, the necessary inputs for fog simulation using
(1) are a color image R of the original clear scene, atmo-
spheric light L and a dense transmission map ¢ defined at
each pixel of R. Our task is thus twofold:

1. estimation of 7, and
2. estimation of L from R.

Step 2 is simple: we use the method proposed in He et al.
(2011) with the improvement of Tang et al. (2014). In the
following, we focus on step 1 for the case of outdoor scenes
with a noisy, incomplete estimate of depth serving as input.

3.2 Depth Denoising and Completion for Outdoor
Scenes

The inputs that our method requires for generating an accu-
rate transmission map ¢ are:

e the original, clear-weather color image R to add synthetic
fog on, which constitutes the left image of a stereo pair,

e the right image Q of the stereo pair,

e the intrinsic calibration parameters of the two cameras of
the stereo pair as well as the length of the baseline,

e a dense, raw disparity estimate D for R of the same res-
olution as R, and

e a set M comprising the pixels where the value of D is
missing.

These requirements can be easily fulfilled with a stereo cam-
era and a standard stereo matching algorithm (Hirschmiiller
2008).

The main steps of our pipeline are the following:

1. calculation of a raw depth map d in meters,

2. denoising and completion of d to produce a refined depth
map d’ in meters,

3. calculation of a scene distance map ¢ in meters from d’,

4. application of (2) to obtain an initial transmission map 7,
and

5. guided filtering (He et al. 2013) of 7 using R as guidance
to compute the final transmission map ¢.

The central idea is to leverage the accurate structure that
is present in the color images of the stereo pair in order to
improve the quality of depth, before using the latter as input
for computing transmission. We now proceed in explaining
each step in detail, except step 4 which is straightforward. In
step 1, we use the input disparity D in combination with the
values of the focal length and the baseline to obtain d. The
missing values for D, indicated by M, are also missing in d.

Step 2 follows a segmentation-based depth filling approach,
which builds on the stereoscopic inpainting method pre-
sented in Wang et al. (2008). More specifically, we use a
superpixel segmentation of the clear image R to guide depth
denoising and completion at the level of superpixels, making
the assumption that each individual superpixel corresponds
roughly to a plane in the 3D scene.

First, we apply a photo-consistency check between R and
Q, using the input disparity D to establish pixel correspon-
dences between the two images of the stereo pair, similar to
Eq. (12) in Wang et al. (2008). All pixels in R for which
the color deviation (measured as difference in the RGB color
space) from the corresponding pixel in Q has greater mag-
nitude than € = 12/255 are deemed invalid regarding depth
and hence are added to M.

We then segment R into superpixels with SLIC (Achanta
et al. 2012), denoting the target number of superpixels as K
and the relevant range domain scale parameter as m = 10. For
depth denoising and completion on Cityscapes, we use K =
2048. The final number of superpixels that are output by SLIC
is denoted by K. These superpixels are classified into reliable
and unreliable ones with respect to depth information, based
on the number of pixels with missing or invalid depth that
they contain. More formally, we use the criterion of Eq. (2)
in Wang et al. (2008), which states that a superpixel T is
reliable if and only if

card(T \ M) > max{P, rcard(T)}, “4)

setting P = 20 and A = 0.6.

For each superpixel that fulfills (4), we fit a depth plane
by running RANSAC on its pixels that have a valid value
for depth. We use an adaptive inlier threshold to account
for differences in the range of depth values between distinct
superpixels. For a superpixel T, the inlier threshold is set as

@ Springer
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6 = 0.0lmedian{d(x)}. 5)
xeT\M

We use adaptive RANSAC and set the maximum number of
iterations to 2000 and the bound on the probability of having
obtained a pure inlier sample to p = 0.99.

The greedy approach of Wang et al. (2008) is used sub-
sequently to match unreliable superpixels to reliable ones
pairwise and assign the fitted depth planes of the latter to
the former. Different than Wang et al. (2008), we propose a
novel objective function for matching pairs of superpixels.
For a superpixel pair (s, ¢), our proposed objective is formu-
lated as

E(s, 1) = [Cy — C/” + allxs — x| (6)

The first term measures the proximity of the two super-
pixels in the range domain, where we denote the average
CIELAB color of superpixel s with C;. In other words,
we penalize the squared Euclidean distance between the
average colors of the superpixels in the CIELAB color
space, which has been designed to increase perceptual uni-
formity (Comaniciu and Meer 2002). On the contrary, the
objective of Wang et al. (2008) uses the cosine similarity of
average superpixel colors to form the range domain cost:

_ G G
ICsII IICeI

(N

The disadvantage of (7) is that it assigns zero matching cost
to dissimilar colors in certain cases. For instance, in the RGB
color space, the pair of colors (8, 8, §) and (1 -6, 1 -6, 1 -9§),
where § is a small positive constant, is assigned zero penalty,
even though the former color is very dark gray and the latter
is very light gray.

The second term on the right-hand side of (6) measures
the proximity of the two superpixels in the spatial domain
as the squared Euclidean distance between their centroids
X; and x;. By contrast, the spatial proximity term of Wang
et al. (2008) assigns zero cost to pairs of adjacent superpixels
and unit cost to non-adjacent pairs. This implies that close
yet non-adjacent superpixels are penalized equally to very
distant superpixels by Wang et al. (2008). As aresult, a certain
superpixel s can be erroneously matched to a very distant
superpixel ¢ which is highly unlikely to share the same depth
plane as s, as long as the range domain term for this pair
is minimal and all superpixels adjacent to s are dissimilar
to it with respect to appearance. Our proposed spatial cost
handles these cases successfully: ¢ is assigned a very large
spatial cost for being matched to s, and other superpixels
that have less similar appearance yet smaller distance to s
are preferred.

In(6), @ > Oisaparameter that weights the relative impor-
tance of the spatial domain term versus the range domain

@ Springer

term. Similarly to Achanta et al. (2012), we set o = mz/Sz,
where S = /N/K, N denotes the total number of pixels
in the image, and m = 10 and K are the same as for SLIC.
Our matching objective (6) is similar to the distance that is
defined in SLIC (Achanta et al. 2012) and other superpixel
segmentation methods for assigning an individual pixel to a
superpixel. In our case though, this distance is rather used to
measure similarity between pairs of superpixels.

After all superpixels have been assigned a depth plane, we
use these planes to complete the missing depth values for pix-
els belonging to M. In addition, we replace the depth values of
pixels which do not belong to M but constitute large-margin
outliers with respect to their corresponding plane (deviation
larger than 6 = 50 m) with the values imputed by the plane.
This results in a complete, denoised depth map d’, and con-
cludes step 2.

In step 3, we compute the distance £(x) of the scene from
the camera at each pixel x based on d’(x), using the coor-
dinates of the principal point plus the focal length of the
camera.

Finally, in step 5 we post-process the initial transmission
map f with guided filtering (He et al. 2013), in order to smooth
transmission while respecting the boundaries of the clear
image R. We fix the radius of the guided filter window to
r = 20 and the regularization parameter to u = 1073, i.e. we
use the same values as in the haze removal experiments of He
et al. (2013).

Results of the presented pipeline for fog simulation on
example images from Cityscapes are provided in Fig. 2 for
B = 0.01, which corresponds to visibility of ca. 300 m. We
compare our fog simulation to an alternative implementation,
which employs nearest-neighbor interpolation to complete
the missing values of the depth map before computing the
transmission and does not involve guided filtering as a post-
processing step.

3.3 Input Selection for High-Quality Fog Simulation

Applying the presented pipeline to simulate fog on large
datasets with real outdoor scenes such as Cityscapes with
the aim of producing synthetic foggy images of high quality
calls for careful refinement of the input.

To be more precise, the sky is clear in the majority of
scenes in Cityscapes, with intense direct or indirect sunlight,
as shown in Fig. 3a. These images usually contain sharp
shadows and have high contrast compared to images that
depict foggy scenes. This causes our fog simulation to gen-
erate synthetic images which do not resemble real fog very
well, e.g. Fig. 3b. Therefore, our first refinement criterion is
whether the sky is overcast, ensuring that the light in the input
real scene is not strongly directional.

Secondly, we observe that atmospheric light estimation
in step 2 of our fog simulation sometimes fails to select a
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(a)

Fig. 2 Comparison of our fog simulation to nearest-neighbor interpolation for depth completion on images from Cityscapes. This figure is better
seen on a screen and zoomed in. a Input from Cityscapes. b Nearest-neighbor depth completion. ¢ Our fog simulation

(b)

Fig. 3 Sunny scene from Cityscapes and the result of our fog simula-
tion. a Input image from Cityscapes. b Output of our fog simulation

pixel with ground truth semantic label sky as the representa-
tive of the value of atmospheric light. In rare cases, it even
happens that the sky is not visible at all in an image. This
results in an erroneous, physically invalid value of atmo-
spheric light being used in (1) to synthesize the foggy image.
Consequently, our second refinement criterion is whether the
pixel that is selected as atmospheric light is labeled as sky,
and affords an automatic implementation.

4 Foggy Datasets

We present two distinct datasets for semantic understand-
ing of foggy scenes: Foggy Cityscapes and Foggy Driving.
The former derives from the Cityscapes dataset (Cordts et al.
2016) and constitutes a collection of synthetic foggy images
generated with our proposed fog simulation that automat-
ically inherit the semantic annotations of their real, clear
counterparts. On the other hand, Foggy Driving is a collec-
tion of 101 real-world foggy road scenes with annotations
for semantic segmentation and object detection, used as a
benchmark for the domain of foggy weather.

4.1 Foggy Cityscapes

We apply the fog simulation pipeline that is presented in
Sect. 3 to the complete set of images provided in the
Cityscapes dataset. More specifically, we first obtain 20,000
synthetic foggy images from the larger, coarsely annotated
part of the dataset, and keep all of them, without applying
the refinement criteria of Sect. 3.3. In this way, we trade the
high visual quality of the synthetic images for a very large
scale and variability of the synthetic dataset. We do not make
use of the original coarse annotations of these images for
semantic segmentation; rather, we produce labellings with
state-of-the-art semantic segmentation models on the origi-
nal, clear images and use them to transfer knowledge from
clear weather to foggy weather, as will be discussed in Sect. 6.
We name this set Foggy Cityscapes-coarse.

In addition, we use the two criteria of Sect. 3.3 in con-
junction to filter the finely annotated part of Cityscapes
that originally comprises 2975 training and 500 validation
images, and obtain a refined set of 550 images, 498 from
the training set and 52 from the validation set, which fulfill
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(a)

Fig.4 Different versions of an exemplar scene from Foggy Cityscapes for varying visibility. a clear-weather. b § = 0.005.¢ = 0.01.d g = 0.02

(b)

both criteria. Running our fog simulation on this refined set
provides us with a moderate-scale collection of high-quality
synthetic foggy images. This collection automatically inher-
its the original fine annotations for semantic segmentation,
as well as bounding box annotations for object detection
which we generate by leveraging the instance-level semantic
annotations that are provided in Cityscapes for the 8 classes
person, rider, car, truck, bus, train, motorcycle and bicycle.
We term this collection Foggy Cityscapes-refined.

Since MOR can vary significantly in reality for different
instances of fog, we generate five distinct versions of Foggy
Cityscapes, each of which is characterized by a constant sim-
ulated attenuation coefficient 8 in (2), hence a constant MOR.
In particular, we use 8 € {0.005, 0.01, 0.02, 0.03, 0.06},
which correspond approximately to MOR of 600, 300, 150,
100 and 50m respectively. Figure 4 shows three of the
five synthesized foggy versions of a clear scene in Foggy
Cityscapes.

4.2 Foggy Driving

Foggy Driving consists of 101 color images depicting real-
world foggy driving scenes. We captured 51 of these images
with a cell phone camera in foggy conditions at various areas
of Zurich, and the rest 50 images were carefully collected
from the web. We note that all images have been preprocessed
so that they have a maximum resolution of 960 x 1280 pixels.

We provide dense, pixel-level semantic annotations for all
images of Foggy Driving. In particular, we use the 19 eval-
uation classes of Cityscapes: road, sidewalk, building, wall,
fence, pole, traffic light, traffic sign, vegetation, terrain, sky,
person, rider, car, truck, bus, train, motorcycle and bicy-

(c) (d)

cle. Pixels that do not belong to any of the above classes
or are not labeled are assigned the void label, and they are
ignored for semantic segmentation evaluation. At annota-
tion time, we label individual instances of person, rider, car,
truck, bus, train, motorcycle and bicycle separately following
the Cityscapes annotation protocol, which directly affords
bounding box annotations for these 8 classes.

In total, 33 images have been finely annotated (cf. the
last three rows of Fig. 13) in the aforementioned procedure,
and the rest 68 images have been coarsely annotated (cf. the
top three rows of Fig. 13). We provide per-class statistics
for the pixel-level semantic annotations of Foggy Driving in
Fig. 5. Furthermore, statistics for the number of objects in the
bounding box annotations are shown in Fig. 6. Because of the
coarse annotation that is created for one part of Foggy Driv-
ing, we do not use this part in evaluation of object detection
approaches, as difficult objects that are not included in the
annotations may be detected by a good method and missed by
acomparatively worse method, resulting in incorrect compar-
isons with respect to precision. On the contrary, the coarsely
annotated images are used without such issues in evaluation
of semantic segmentation approaches, since predictions at
unlabeled pixels are simply ignored and thus do not affect
the measured performance.

Foggy Driving may have a smaller size than other recent
datasets for semantic scene understanding, however, it fea-
tures challenging foggy scenes with comparatively high
complexity. As Table 1 shows, the subset of 33 images with
fine annotations is roughly on par with Cityscapes regard-
ing the average number of humans and vehicles per image.
In total, Foggy Driving contains more than 500 vehicles
and almost 300 humans. We also underline the fact that
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Fig.5 Number of annotated pixels per class for Foggy Driving
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Fig.6 Number of objects per class in Foggy Driving. a includes statistics for the complete set of eight classes for which instances are distinguished,

whereas b presents a zoomed version of (a) for six of these classes

Table 1 Absolute and average number of annotated pixels, humans and
vehicles for Foggy Driving (“Ours”), KITTI and Cityscapes

Pixels Humans Vehicles h/im v/im
Ours (fine) 38.3M 236 288 7.2 8.7
Ours (coarse) 34.6M 54 221 0.8 3.3
KITTI 0.23G 6.1k 30.3k 0.8 4.1
Cityscapes 943G 24.0k 41.0k 7.0 11.8

“h/im” stands for humans per image and “v/im” for vehicles per image.
Only the training and validation sets of KITTI and Cityscapes are con-
sidered

Maximum entries are given in bold

Table 1 compares Foggy Driving—a dataset used purely for
testing—against the unions of training and validation sets of
KITTTI (Geiger et al. 2012) and Cityscapes, which are much
larger than their respective testing sets that would provide a
better comparison.

As a final note, we identify the subset of the 19 annotated
classes that occur frequently in Foggy Driving. These “fre-
quent” classes either have a larger number of total annotated
pixels, e.g. road, or a larger number of total annotated poly-
gons or instances, e.g. pole and person, compared to the rest
of the classes. They are: road, sidewalk, building, pole, traf-
fic light, traffic sign, vegetation, sky, person, and car. In the
experiments that follow in Sect. 5.1, we occasionally use this
set of frequent semantic classes as an alternative to the com-
plete set of semantic classes for averaging per-class scores,
in order to further verify results based only on classes with
plenty of examples.

5 Supervised Learning with Synthetic Fog

We first show that our synthetic Foggy Cityscapes-refined
dataset can be used per se for successfully adapting modern
CNN models to the condition of fog with the usual supervised

learning paradigm. Our experiments focus primarily on the
task of semantic segmentation and additionally include com-
parisons on the task of object detection, evidencing clearly
the usefulness of our synthetic foggy data in understanding
the semantics of real foggy scenes such as those in Foggy
Driving.

More specifically, the general outline of our main experi-
ments can be summarized in two steps:

1. fine-tuning a model that has been trained on the origi-
nal Cityscapes dataset for clear weather by using only
synthetic images of Foggy Cityscapes-refined, and

2. evaluating the fine-tuned model on Foggy Driving and
showing thatits performance is improved compared to the
original, clear-weather model. Thus, the reported results
pertain to Foggy Driving unless otherwise mentioned.

In other words, all models are ultimately evaluated on data
from a different domain than that of the data on which they
have been fitted, revealing their true generalization potential
on previously unseen foggy scenes.

We also consider dehazing as an optional preprocessing
step before feeding the input images to semantic segmenta-
tion models for training and testing, and examine the effect
of this dehazing preprocessing on the performance of such
a model using state-of-the-art dehazing methods. The effect
of dehazing on semantic segmentation performance is addi-
tionally correlated with its utility for human understanding of
foggy scenes by conducting a user study on Amazon Mechan-
ical Turk.

5.1 Semantic Segmentation

Our model of choice for conducting experiments on seman-
tic segmentation with the supervised pipeline is the modern
dilated convolutions network (DCN) (Yu and Koltun 2016).
In particular, we make use of the publicly available Dila-
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tionl0 model, which has been trained on the 2975 images of
the training set of Cityscapes. We wish to note that this model
was originally trained and tested on 1396 x 1396 image crops
by Yu and Koltun (2016), but due to GPU memory limita-
tions we train it on 756 x 756 crops and test it on 700 x 700
crops. Still, Dilationl0 enjoys a fair mean intersection over
union (IoU) score of 34.9% on Foggy Driving.

In the following experiments of Sect. 5.1, we fine-tune
Dilationl0 on the training set of Foggy Cityscapes-refined
which consists of 498 images, and reserve the 52 images
of the respective validation set for additional evaluation. In
particular, we fine-tune all layers of the original model for 3k
iterations (ca. 6 epochs) using mini-batches of size 1. Unless
otherwise mentioned, the attenuation coefficient 8 used in
Foggy Cityscapes is equal to 0.01.

Overall, we consider four different options with respect
to dehazing preprocessing: applying no dehazing at all,
dehazing with multi-scale convolutional neural networks
(MSCNN) (Ren et al. 2016), dehazing using the dark channel
prior (DCP) (He et al. 2011), and non-local image dehaz-
ing (Berman et al. 2016). Unless otherwise specified, no
dehazing is applied. Our experimental protocol is consistent
with respect to dehazing preprocessing: the same option for
dehazing preprocessing is used both at training time and test
time. More specifically, at training time we first process the
synthetic foggy images of Foggy Cityscapes-refined accord-
ing to the specified option for dehazing preprocessing and
then use the processed images as input for fine-tuning Dila-
tion10. At evaluation time, we process the images in Foggy
Driving with the same dehazing preprocessing that was used
at training time (if any was), and use the processed images
to test the fine-tuned model.

Benefit of Fine-tuning on Synthetic Fog Our first experi-
ment evidences the benefit of fine-tuning on Foggy Cityscapes-
refined for improving semantic segmentation performance on
Foggy Driving. Table 2 presents comparative performance of
the original Dilationl0 model against its fine-tuned counter-
parts in terms of mean IoU over all annotated classes in Foggy
Driving as well as over frequent classes only. All four options
regarding dehazing preprocessing are considered. Note that
we also evaluate the original Dilation10 model for all dehaz-
ing preprocessing alternatives (only relevant at test time in
this case) in the first row of each part of Table 2. Indeed,
all fine-tuned models outperform Dilationl0 irrespective of
the type of dehazing preprocessing that is applied, both for
mean IoU over all classes and over frequent classes only.
The best-performing fine-tuned model, which we refer to as
FT-0.01, involves no dehazing and outperforms Dilation10
significantly, i.e. by 3% for mean IoU over all classes and
5% for mean IoU over frequent classes. Note additionally
that F7-0.01 has been fine-tuned on only 498 training images
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Table 2 Performance comparison on Foggy Driving of Dilationl0
versus fine-tuned versions of it using Foggy Cityscapes-refined, for four
options regarding dehazing preprocessing

No dehazing MSCNN DCP Non-local
Mean IoU over all classes (%)
W/ FT 349 34.7 29.9 29.3
FT 37.8 371 374 36.6
Mean IoU over frequent classes in Foggy Driving (%)
W/ FT 524 524 45.5 46.2
FT 574 56.2 56.7 551

“FT” stands for using fine-tuning and “W/o FT” for not using fine-tuning
Best results are given in bold

Table 3 Performance comparison on Foggy Driving of various fine-
tuned versions of Dilation10 that correspond to different fog simulation
methods for generating the training dataset Foggy Cityscapes-refined
that is used for fine-tuning, and different learning rate policies during
fine-tuning

Constant L. “Poly” L.r.
Nearest neighbor 329 36.2
Ours w/o guided filtering 33.0 36.8
Ours 344 378

Mean IoU (%) over all classes is used to report results
Best results are given in bold

of Foggy Cityscapes-refined, compared to the 2975 training
images of Cityscapes for DilationI0.

Comparison of Fog Simulation Approaches Next, we com-
pare in Table 3 the utility of our proposed fog simulation
method for generating useful synthetic training data in terms
of semantic segmentation performance on Foggy Driving,
against two alternative approaches: the baseline that we con-
sidered in Fig. 2 and a truncated version of our method, where
we omit the guided filtering step. We consider two differ-
ent policies for the learning rate when fine-tuning on Foggy
Cityscapes-refined: a constant learning rate of 107> and a
polynomially decaying learning rate, commonly referred to
as “poly” (Chen et al. 2018), with a base learning rate of
107 and a power parameter of 0.9. Our method for fog sim-
ulation consistently outperforms the two baselines and the
“poly” learning rate policy allows the model to be fine-tuned
more effectively than the constant policy. In all other experi-
ments with DCN, we use the “poly” learning rate policy with
the parameters specified above for fine-tuning.

Increasing Returns at Larger Distance As can easily be
deduced from (2), fog has a growing effect on the appearance
of the scene as distance from the camera increases. Ideally, a
model that is dedicated to foggy scenes must deliver a greater
benefit for distant parts of the scene. In order to examine this
aspect of semantic segmentation of foggy scenes, we use the
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Fig. 7 Performance of semantic segmentation models on Foggy
Cityscapes-refined at distinct ranges of scene distance from the camera

completed, dense distance maps of Cityscapes images that
have been computed as an intermediate output of our fog
simulation, given that Foggy Driving does not include depth
information. In more detail, we consider the validation set
of Foggy Cityscapes-refined, the images of which are unseen
both for Dilationl0 and our fine-tuned models, and bin the
pixels according to their value in the corresponding distance
map. Each distance range is considered separately for evalu-
ation by ignoring all pixels that do not belong to it. In Fig. 7,
we compare mean loU of Dilation10 and FT-0.01 individu-
ally for each distance range. F7-0.01 brings a consistent gain
in performance across all distance ranges. What is more, this
gain is larger in both absolute and relative terms for pixels
that are more than 50 m away from the camera, implying that
our model is able to handle better the most challenging parts
of a foggy scene. Note that most pixels in the very last dis-
tance range (more than 400 m away from the camera) belong
to the sky class and their appearance does not change much
between the clear and the synthetic foggy images.

Generalization in Synthetic Fog across Densities In order
to verify the ability of a model that has been fine-tuned
on Foggy Cityscapes-refined for a fixed value @) of the
attenuation coefficient, hence fixed fog density, to generalize
well to new, unseen fog densities, we evaluate the model on
multiple versions of the validation set of Foggy Cityscapes-
refined, each rendered using a different value for § which is
in general not equal to ). In particular, we use the five dif-
ferent versions of Foggy Cityscapes-refined as described in
Sect. 4.1 and obtain five models by fine-tuning Dilation10 on
the training set of each version. In congruence with notation
in previous experiments, we denote such a fine-tuned model
by FT:B", e.g. FT-0.02. Afterwards, we evaluate each of
these models plus Dilation10 on the validation set of each of
the five foggy versions plus the original, clear-weather ver-
sion where B = 0. The mean IoU performance of the six
models is presented in Fig. 8. Whereas the performance of
Dilationl0 drops rapidly as 8 increases, all five fine-tuned
“foggy” models are more robust to changes in S across the

w
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attenuation coefficient 8 (m—1)

Fig. 8 Performance of semantic segmentation models on various ver-
sions of the validation set of Foggy Cityscapes-refined corresponding
to different values of attenuation coefficient 8

examined range. Analyzing the performance of each fine-
tuned model individually, we observe that performance is
high and fairly stable in the range [0, )] and drops for
B > BW. This implies that a “foggy” model is able to gen-
eralize well to lighter synthetic fog than what was used to
fine-tune it. Moreover, all “foggy” models compare favor-
ably to Dilationl0 across the largest part of the range of 8,
with most “foggy” models being beaten by Dilation10 only
for clear weather. Note also that the performance gain with
“foggy” models under foggy conditions is much larger than
the corresponding performance loss for clear weather.

Effect of Synthetic Fog Density on Real-world Perfor-
mance Our final experiment on semantic segmentation
serves two purposes: to examine the effect of varying the
fog density of the synthetic training data as well as that of
dehazing preprocessing on the performance of the fine-tuned
model on real foggy data. To this end, we use three of the
versions of Foggy Cityscapes-refined corresponding to the
values {0.005, 0.01, 0.02} for 8 and consider all four options
regarding dehazing preprocessing for fine-tuning Dilation10.
The performance of the 12 resulting fine-tuned models on
Foggy Driving in terms of mean IoU over all annotated
classes as well as over frequent classes only is reported in
Table 4. We first discuss the effect of varying fog density for
each dehazing option individually and defer a general com-
parison of the various dehazing preprocessing options to the
next paragraph.

The two conditions that must be met in order for the exam-
ined models to achieve better performance are:

1. agood matching of the distributions of the synthetic train-
ing data and the real, testing data, and
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Table 4 Performance comparison on Foggy Driving of fine-tuned ver-
sions of Dilationl0 using Foggy Cityscapes-refined, for three different
values of attenuation coefficient 8 in fog simulation and four options
regarding dehazing preprocessing

B =0.005 B =0.01 B =0.02

Mean IoU over all classes (%)

No dehazing 37.6 378 36.1

MSCNN 38.3 37.1 36.9

DCP 36.6 374 36.1

Non-local 36.2 36.6 35.3
Mean IoU over frequent classes in Foggy Driving (%)

No dehazing 57.0 574 56.2

MSCNN 573 56.2 56.3

DCP 56.0 56.7 55.2

Non-local 55.1 55.1 54.5

Best results are given in bold

2. aclear appearance of both sets of data, in the sense that the
segmentation model should have an easy job in mining
discriminative features from the data.

Focusing on the case that does not involve dehazing, we
observe that the models with § = 0.005 and 8 = 0.01
perform significantly better than that with 8 = 0.02, imply-
ing that according to point 1 Foggy Driving is dominated by
scenes with light or medium fog. On the other hand, each of
the three dehazing methods that are used for preprocessing
has its own particularities in enhancing the appearance and
contrast of foggy scenes while also introducing artifacts to
the output. More specifically, MSCNN is slightly conserva-
tive in removing fog, as was found for other learning-based
dehazing methods in Li et al. (2016), and operates best
under lighter fog, providing a significant improvement in
this setting with regard to point 2. In conjunction with the
light-fog character of Foggy Driving, this explains why fine-
tuning on light fog (8 = 0.005) combined with MSCNN
preprocessing delivers one of the two best overall results.
By contrast, the more aggressive DCP is known to oper-
ate better at high levels of fog, as its estimated transmission
is biased towards lower values (Tang et al. 2014). The per-
formance of models with DCP preprocessing thus peaks at
medium rather than low simulated-fog density, which sig-
nifies a trade-off between removing fog to the proper extent
and minimal introduction of artifacts. Non-local dehazing has
also been found to operate best at medium levels of fog (Li
et al. 2016), which results in a similar performance trend to
DCP.

Effect of Dehazing Preprocessing on Real-world Per-
formance and Discussion Comparing the four options
regarding dehazing preprocessing via Table 4, we observe
that applying no dehazing is the best or second best option for
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both measures and across all three values of 8. Only MSCNN
marginally beats the no-dehazing option in some cases, while
overall these two options are roughly on a par. The absence of
a significant performance gain on Foggy Driving when per-
forming dehazing preprocessing can be ascribed to generic
as well as method-specific reasons.

First, in the real-world setting of Foggy Driving, the homo-
geneity and uniformity assumptions of the optical model (1)
that is used by all examined dehazing methods may not hold
exactly. Of course, this model is also used in our fog simula-
tion, however, foggy image synthesis is a forward problem,
whereas image defogging/dehazing is an inverse problem,
hence inherently more difficult. Thus, the artifacts that are
introduced by our fog simulation are likely to be less promi-
nent than those introduced by dehazing. This fact appears
to outweigh the potential increase in visibility for dehazed
images as far as point 2 above is concerned. An interest-
ing insight that follows is the use of forward techniques to
generate training data for hard target domains based on data
from the source domain as an alternative to the application
of inverse techniques to transform such target domains into
the easier source domain.

Second, the optical model (1), on which most of the
popular dehazing approaches rely, assumes a linear rela-
tion between the irradiance at a pixel and the actual value
of the pixel in the processed hazy image. Therefore, these
approaches require that an initial gamma correction step be
applied before dehazing, otherwise their performance may
deteriorate significantly. This in turn implies that the value
of gamma must be known for each image, which is not the
case for Cityscapes and Foggy Driving. Manually search-
ing for “best” per-image values is also infeasible for these
large datasets. In the absence of any further information, we
have used a constant value of 1 for gamma as Berman et al.
(2016) recommend, which is probably suboptimal for most
of the images. We thus wish to point out that future work
on outdoor datasets, whether considering fog/haze or not,
should ideally record the value of gamma for each image, so
that dehazing methods can show their full potential on such
datasets.

Specifically for DCP, performance decreases compared
to MSCNN partly due to the light-fog character of Foggy
Driving which does not match the optimal operating point
of DCP. On the other hand, non-local dehazing uses a dif-
ferent model for estimating atmospheric light than the one
that is shared by our fog simulation, MSCNN, and DCP, and
thus already faces greater difficulty in dehazing images from
Foggy Cityscapes.
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Fig. 9 Example images from Foggy Driving and their dehazed versions using three state-of-the-art dehazing methods that are examined in our

experiments. a Foggy. b DCP. ¢ MSCNN. d Non-local

5.2 Linking the Objective and Subjective Utility of
Dehazing Preprocessing in Foggy Scene
Understanding

Our experiments in Sect. 5.1 indicate that using any of the
three examined state-of-the-art dehazing methods to prepro-
cess foggy images before feeding them to a CNN for semantic
segmentation does not provide a clear benefit over feeding
the foggy images directly in the objective terms of mean IoU
performance of the trained model. In this section, we com-
plement this objective evaluation with a study of the utility
of dehazing preprocessing for human understanding of foggy
scenes and show that the comparative results of the objective
evaluation generally agree with the comparative results of
the human-based evaluation.

Both for the objective semantic-segmentation-based and
the subjective human-based evaluation, we compare the four
aforementioned options with regard to dehazing preprocess-
ing individually on each image of our datasets. Figure 9
presents examples of the tetrads of images that we consider:
the foggy image, which either belongs to the validation set of
Foggy Cityscapes-refined with B = 0.01 or to Foggy Driving
and corresponds to no usage of dehazing, and its dehazed
versions using DCP, MSCNN and non-local dehazing. For
comparative objective evaluation of the four alternatives on
each image, we use the mean IoU scores of the respective
fine-tuned DCN models that are considered in the experi-
ment of Table 2, measured on that image. The classes that do
not occur in an image are not considered for computing mean
IoU on this image. The four alternatives are ranked for each
image according to their mean IoU scores on it. Compara-
tive evaluation based on human subjects considers the same
tetrads of images but employs a more composite protocol,
which is detailed below.

User Study via Amazon Mechanical Turk Humans are sub-
jective and are not good at giving scores to individual images

100

Correctness (%)
3

Percentage (%)

Fig. 10 Quality of our user survey on AMT, computed using known-
answer questions

in a linear scale (Kendall and Smith 1940). We thus follow
the literature (Rubinstein et al. 2010) and choose the paired
comparisons technique to let human subjects compare the
four options regarding dehazing preprocessing. The partic-
ipants are shown two images at a time that both pertain to
the same scene, side by side, and are simply asked to choose
the one which is more suitable for safe driving (i.e. easier to
interpret). Thus, six comparisons need to be performed per
scene, corresponding to all possible pairs.

We use Amazon Mechanical Turk (AMT) to perform these
comparisons. In order to guarantee high quality, we only
employ AMT Masters in our study and verify the answers
via a Known Answer Review Policy. Masters are an elite
group of subjects, who have consistently demonstrated supe-
rior performance on AMT. Each individual task completed
by the participants, referred to as Human Intelligence Task
(HIT), comprises five image pairs to be compared, out of
which three pairs are the true query pairs and the rest two
pairs have a known correct answer and are only used for
validation. In particular, each known-answer pair consists
of two versions of a scene from Foggy Cityscapes-refined
with different levels of fog, choosing from three versions of
the dataset corresponding to clear weather, § = 0.005 and
B = 0.01. The version with less fog is considered the correct
answer. In order to avoid answers based on memorized pat-
terns, the five image pairs in each HIT are randomly shuffled
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Table 5 Agreement coefficients for all pairwise comparisons of the
four dehazing options

Foggy versus DCP 0.155
Foggy versus MSCNN 0.115
Foggy versus non-local 0.010
DCP versus MSCNN 0.182
DCP versus non-local 0.036
MSCNN versus non-local 0.182
Mean 0.113

and the left-right order of the images in each pair is randomly
swapped. In addition, each HIT is completed by three differ-
ent subjects to increase reliability. The overall quality of the
user survey is shown in Fig. 10, which demonstrates that the
subjects have done a decent job: for 83% of the HITs, both
known-answer questions are answered correctly. We only use
results from these HITs in our following analysis.

Consistency of Subjects’ Answers We first study the con-
sistency of choices among subjects; all subjects are in high
agreement if the advantage of one option over the other is
obvious and consistent. To measure this, we employ the coef-
ficient of agreement (Kendall and Smith 1940):

M=@2)%é)—1» witho:ii(a;), ®)

2 i=1 j=1

where a;; is the number of times that option i is chosen over
option j, m = 3 is the number of subjects, and r = 4 is
the number of dehazing options. The maximum of p is 1 for
complete agreement and its minimum is —1/3 for complete
disagreement. The values of u for all pairs of options are
shown in Table 5. The small positive numbers in the table
suggest that subjects tend to agree when comparing options
pairwise but no single option has dominant advantage over
another one.

Ranking and Correlation with Objective Evaluation We
finally compute the overall ranking of all four options for each
image based on the number of times each option is chosen in
all relevant pairwise comparisons. The correlation of these
rankings with those induced by mean IoU performance is
measured with Kendall’s t coefficient (Kendall 1938) with
—1 < t < 1, where a value of 1 implies perfect agree-
ment, —1 implies perfect disagreement, and 0 implies zero
correlation. Figure 11 provides a complete overview of the
comparative results both for our user study and the semantic-
segmentation-based evaluation on Foggy Cityscapes-refined
and Foggy Driving, including rank correlation results for the
two types of evaluation.

The results in the top row of Fig. 11 indicate that none
of the three examined methods for dehazing preprocess-
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ing improves reliably the human understanding of synthetic
foggy scenes from Foggy Cityscapes or real foggy scenes
from Foggy Driving. In particular, the no-dehazing option
beats all other three options in pairwise comparisons on
Foggy Cityscapes-refined and loses only to DCP marginally
on Foggy Driving, while it is also ranked first on more images
than any other option for both datasets.

In addition, the rankings obtained with the two types of
evaluation are generally in congruence for the real-world case
of Foggy Driving. The no-dehazing and DCP options are
ranked higher than MSCNN and non-local dehazing both in
the user study and in the objective evaluation. The high per-
formance of DCP compared to MSCNN is due to the usage
of B = 0.01 for Foggy Cityscapes-refined (cf. the discus-
sion in Sect. 5.1). What is more, the two rankings exhibit a
positive correlation on average for Foggy Driving based on
the respective distribution of t in the bottom right chart of
Fig. 11, which supports our conclusion in Sect. 5.1 about the
marginal benefit of dehazing preprocessing for foggy scene
understanding.

5.3 Object Detection

For our experiment on object detection in foggy scenes,
we select the modern Fast R-CNN (Girshick 2015) as the
architecture of the evaluated models. We prefer Fast R-CNN
over more recent approaches such as Faster R-CNN (Ren
et al. 2015) because the former involves a simpler training
pipeline, making fine-tuning to foggy conditions straight-
forward. Consequently, we do not learn the front-end of the
object detection pipeline which involves generation of object
proposals; rather, we use multiscale combinatorial group-
ing (Arbeldez et al. 2014) for this task.

In order to ensure a fair comparison, we first obtain a base-
line Fast R-CNN model for the original Cityscapes dataset,
similarly to the preceding semantic segmentation experi-
ments. Since no such model is publicly available, we begin
with the model released by Girshick (2015) which has been
trained on PASCAL VOC 2007 (Everingham et al. 2010) and
fine-tune it on the union of the training and validation sets
of Cityscapes which comprises 3475 images. Fine-tuning
through all layers is run with the same configurations as
in Girshick (2015), except that we use the “poly” learning
rate policy with a base learning rate of 2 x 10~# and a power
parameter of 0.9, with 7k iterations (4 epochs).

This baseline model that has been trained on the real
Cityscapes with clear weather serves as initialization for
fine-tuning on our synthetic images from Foggy Cityscapes-
refined. To this end, we use all 550 training and validation
images of Foggy Cityscapes-refined and fine-tune with the
same settings as before, only that the base learning rate is set
to 10~* and we run 1650 iterations (6 epochs).
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We experiment with two values of the attenuation coeffi-
cient B for Foggy Cityscapes-refined and present comparative
performance on the 33 finely annotated images of Foggy
Driving in Table 6. No dehazing is involved in this exper-
iment. We concentrate on the classes car and person for
evaluation, since they constitute the intersection of the set
of frequent classes in Foggy Driving and the set of annotated
classes with distinct instances. Individual average precision
(AP) scores for car and person are reported, as well as mean
scores over these two classes (“mean frequent”) and over the
complete set of 8 classes occurring in instances (“mean all”).
For completeness, we note that the original VOC 2007 model
of Girshick (2015) exhibits an AP of 2.1% for car and 1.9%
for person.

Both of our fine-tuned models outperform the baseline
model by a significant margin for car. At the same time,
they are on a par with the baseline model for person. The
overall winner is the model that has been fine-tuned on light
fog, which we refer to as F7-0.005: it outperforms the base-
line model by 2.4% on average on the two frequent classes
and it is also slightly better when taking all 8 classes into
account.

We provide a visual comparison of F7-0.005 and the base-
line model for car detection on example images from Foggy
Driving in Fig. 12. Note the ability of our model to detect
distant cars, such as the two cars in the image of the second
row which are moving on the left side of the road and are
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Fig. 11 Comparison of four options for dehazing preprocessing, i.e. no

dehazing (“Foggy”), “DCP” (He et al. 2011), “MSCNN” (Ren et al.
2016), and “NonLocal” (Berman et al. 2016), on a the validation set
of Foggy Cityscapes-refined for B = 0.01 and b Foggy Driving, in
terms of subjective human understanding of the foggy scenes (top) and
performance of the corresponding fine-tuned DCN models (middle).

Table 6 Performance comparison on Foggy Driving of baseline Fast
R-CNN model trained on Cityscapes (“W/o FT”) versus fine-tuned ver-
sions of it using Foggy Cityscapes-refined

Mean all Car Person Mean frequent
W/o FT 11.1 30.5 10.3 20.4
FT p=0.01 11.1 34.6 10.0 223
FT g = 0.005 11.7 353 10.3 228

“FT” stands for using fine-tuning and “W/o FT” for not using fine-
tuning. AP (%) is used to report results
Best results are given in bold

visible from their front part. These two cars are both missed
by the baseline model.

6 Semi-supervised Learning with Synthetic
Fog

While standard supervised learning can improve the perfor-
mance of SFSU using our synthetic fog, the paradigm still
needs manual annotations for corresponding clear-weather
images. In this section, we extend the learning to a new
paradigm which is also able to acquire knowledge from
unlabeled pairs of foggy images and clear-weather images.
In particular, we train a semantic segmentation model on
clear-weather images using the standard supervised learning
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For each combination of dataset and evaluation setting, we show the
percentage of scenes for which each option is ranked first overall on
the left, and the respective percentages for pairwise comparisons of the
options on the right. Bottom: Histograms of correlation of the rankings
obtained for the two evaluation settings over the datasets, measured with
Kendall’s
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Fig. 12 Qualitative results for detection of cars on Foggy Driving. From left to right: ground truth annotation, baseline Fast R-CNN model trained
on original Cityscapes, and our model F7-0.005 fine-tuned on Foggy Cityscapes-refined with light fog. This figure is seen better when zoomed in

on a screen

paradigm, and apply the model to an even larger set of clear
but “unlabeled” images (e.g. our 20,000 unlabeled images of
Foggy Cityscapes-coarse) to generate the class responses.
Since we have created a foggy version for the unlabeled
dataset, these class responses can then be used to supervise
the training of models for SFSU.

This learning approach is inspired by the stream of work
on model distillation (Hinton et al. 2015; Gupta et al. 2016b)
or imitation (Bucilud et al. 2006; Dai et al. 2015). Bucilua
et al. (2006), Hinton et al. (2015) and Dai et al. (2015) trans-
fer supervision from sophisticated models to simpler models
for efficiency, and Gupta et al. (2016b) transfers supervi-
sion from the domain of images to other domains such as
depth maps. In our case, supervision is transferred from clear
weather to foggy weather. The underpinnings of our proposed
approach are the following: (1) in clear weather, objects are
easier to recognize than in foggy weather, thus models trained
on images with clear weather in principle generalize bet-
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ter to new images of the same condition than those trained
on foggy images; and (2) since the synthetic foggy images
and their clear-weather counterparts depict exactly the same
scene, recognition results should also be the same for both
images ideally.

We formulate our semi-supervised learning (SSL) for
semantic segmentation as follows. Let us denote a clear-
weather image by x, the corresponding foggy one by x’, and
the corresponding human annotation by y. Then, the train-
ing data consist of both labeled data D; = {(x;, x; , y,')}f=1
and unlabeled data D, = {(x;, x;.)}lj‘:? 41> Where y/"" €
{1, ..., K} is the label of pixel (m, n), and K is the total num-
ber of classes. / is the number of labeled training images, and
u is the number of unlabeled training images. The aim is to
learn a mapping function ¢’ : X’ + ) from D; and D,. In
our case, D consists of the 498 high-quality foggy images
in the training set of Foggy Cityscapes-refined which have
human annotations with fine details, and D,, consists of the
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Fig. 13 Qualitative results for semantic segmentation on Foggy Driving, both for coarsely annotated images (top three rows) and finely annotated

images (bottom three rows). a Foggy image. b Ground truth. ¢ Lin et al. (2017). d Ours: Lin et al. (2017) fine-tuned with our SSL on Foggy
Cityscapes
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additional 20,000 foggy images in Foggy Cityscapes-coarse
which do not have fine human annotations.

Since D, does not have class labels, we use the idea of
supervision transfer to generate the supervisory labels for
all the images therein. To this end, we first learn a mapping
function ¢ : X — ) with D; and then obtain the labels
yj = ¢(xj) for x; and X, Vj € { + 1,....1 + u}. Dy

is then upgraded to D, = {(x;, x/j, y,-)}ljj;ﬂ. The proposed

scheme for training semantic segmentation models for foggy
images x’ is to learn a mapping function ¢’ so that human
annotations y and the transferred labels y are both taken into
account:

l I4u
n;)i,nZL@’(x;), Yo+ Y L&), 5)). ©)

i=1 j=i+1

where L(., .) is the Categorical Cross Entropy Loss function
for classification, and A = é X w is a parameter for balanc-
ing the contribution of the two terms, serving as the relative
weight of each unlabeled image compared to each labeled
one. We empirically set w = 5 in our experiment, but an
optimal value can be obtained via cross-validation if needed.
In our implementation, we approximate the optimization of
(9) by mixing images from D; and D, ina proportionof 1 : w
and feeding the stream of hybrid data to a CNN for standard
supervised training.

We select RefineNet (Lin et al. 2017) as the CNN model
for semantic segmentation, which is a more recent and better
performing method than DCN (Yu and Koltun 2016) that is
used in Sect. 5. The reason for using DCN in Sect. 5 is that
RefineNet had not been published yet at the time that we
were conducting the experiments of Sect. 5. We would like
to note that the state-of-the-art PSPNet (Zhao et al. 2017),
which has been trained on the Cityscapes dataset similarly to
the original version of RefineNet that we use as our baseline,
achieved a mean IoU of only 24.0% on Foggy Driving in our
initial experiments.

We use mean IoU for evaluation, similarly to Sect. 5, and
B = 0.01 for Foggy Cityscapes. We compare the perfor-
mance of three trained models: (1) original RefineNet (Lin
et al. 2017) trained on Cityscapes, (2) RefineNet fine-tuned
on Dy, and (3) RefineNet fine-tuned on D; and f)u. The mean
IoU scores of the three models on Foggy Driving are 44.3%,
46.3%, and 49.7% respectively. The 2% improvement of (2)
over (1) confirms the conclusion we draw in Sect. 5 that
fine-tuning with our synthetic fog can indeed improve the
performance of semantic foggy scene understanding. The
3.4% improvement of (3) over (2) validates the efficacy of
the SSL paradigm. Figure 13 shows visual results of (1) and
(3), along with the foggy images and human annotations.
The re-trained model with our SSL paradigm can better seg-
ment certain parts of the images which are misclassified by
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the original RefineNet, e.g. the pedestrian in the first exam-
ple, the tram in the fourth one, and the sidewalk in the last
one.

Both the quantitative and qualitative results suggest that
our approach is able to alleviate the need for collecting
large-scale training data for semantic understanding of foggy
scenes, by training with the annotations that are already
available for clear-weather images and the generated foggy
images directly and by transferring supervision from clear-
weather images to foggy images of the same scenes.

7 Conclusion

In this paper, we have demonstrated the benefit of synthetic
data that are based on real images for semantic understanding
of foggy scenes. Two foggy datasets have been constructed
to this end: the partially synthetic Foggy Cityscapes dataset
which derives from Cityscapes, and the real-world Foggy
Driving dataset, both with dense pixel-level semantic annota-
tions for 19 classes and bounding box annotations for objects
belonging to 8 classes. We have shown that Foggy Cityscapes
can be used to boost performance of state-of-the-art CNN
models for semantic segmentation and object detection on
the challenging real foggy scenes of Foggy Driving, both in
a usual supervised setting and in a novel, semi-supervised
setting. Last but not least, we have exposed through detailed
experiments the fact that image dehazing faces difficulties in
working out of the box on real outdoor foggy data and thus
is marginally helpful for SFSU. In the future, we would like
to combine dehazing and semantic understanding of foggy
scenes into a unified, end-to-end learned pipeline, which can
also leverage the type of synthetic foggy data we have intro-
duced. The datasets, models and code are available at http://
www.vision.ee.ethz.ch/~csakarid/SFSU_synthetic.
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