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Abstract In this paper, we address the multi-view subspace
clustering problem. Our method utilizes the circulant alge-
bra for tensor, which is constructed by stacking the subspace
representation matrices of different views and then rotating,
to capture the low rank tensor subspace so that the refine-
ment of the view-specific subspaces can be achieved, as well
as the high order correlations underlying multi-view data
can be explored. By introducing a recently proposed tensor
factorization, namely tensor-Singular Value Decomposition
(t-SVD) [16], we can impose a new type of low-rank ten-
sor constraint on the rotated tensor to ensure the consensus
among multiple views. Different from traditional unfolding
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based tensor norm, this low-rank tensor constraint has opti-
mality properties similar to that of matrix rank derived from
SVD, so the complementary information can be explored
and propagated among all the views more thoroughly and ef-
fectively. The established model, called t-SVD based Multi-
view Subspace Clustering (t-SVD-MSC), falls into the ap-
plicable scope of augmented Lagrangian method, and its
minimization problem can be efficiently solved with theo-
retical convergence guarantee and relatively low computa-
tional complexity. Extensive experimental testing on eight
challenging image dataset shows that the proposed method
has achieved highly competent objective performance com-
pared to several state-of-the-art multi-view clustering meth-
ods.

Keywords t-SVD - Tensor Multi-Rank - Multi-View
Features - Subspace Clustering

1 Introduction

Many scientific data have heterogeneous features, which are
collected from diverse domains or generated from various
feature extractors. For example, in real-world applications,
datasets are naturally comprised of multiple views: a) web-
pages can be represented by using both page-text and hyper-
links pointing to them; b) images can be described by differ-
ent kinds of features, such as color, edge and texture. Each
type of feature is referred to as a particular view, and com-
bining multiple views of dataset for data analysis has been
a popular practice for improving performance. Commonly,
the success of the multi-view learning stems from the fol-
lowing two principles: (1) Consensus principle, which aims
to maximize the agreement on multiple distinct views; (2)
Complementary principle, which means that each view of
the data may contain some knowledge that other views do
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not have; therefore, multiple views can be employed to com-
prehensively and accurately describe the data. For a compre-
hensive review of multi-view learning, please refer to [1]].

In this work, we mainly focus on multi-view clustering,
where the absence of a groundtruth to guide the learning
process makes the underlining task much harder. Basic as-
sumptions of the multi-view clustering: (1) The feature
in each individual view are sufficient to discover most of
the clustering information; (2) The feature in each individ-
ual view might be corrupted by noise, i.e., these noise might
result in a small portion of samples being assigned to wrong
clusters. As different views are different representations of
the same set of instances, we aim to capture the relation-
ship among multiple views to improve the clustering results
generated by the limited information from a single view.

Our work is motivated by self-representation based sub-
space clustering (i.e., low-rank representation (LRR) [21]))
and a new type of factorization for tensor and its approxi-
mation problem proposed in [31]]. While having promising
clustering performance, the method only considers the
single view feature. Then, the method [22]], which is most
relevant to our work, extends the LRR to the multi-view set-
ting by imposing unfolding based low rank (defined in
Eqn. (T9)) on tensor that stacked by the subspace represen-
tation matrices from all the views. While easy to implement,
different from matrix scenarios, such a simple rank-sum ten-
sor norm is short of a clear physical meaning for general
tensors. Furthermore, it tries to model the tensor low rank in
the matrix SVD-based vector space, resulting in the loss of
optimality in the representation.

By contrast, the high order constraint used in our ap-
proach is based on recently proposed tensor-Singular Value
Decomposition (t-SVD) and its derived tensor nuclear norm
(t-TNN) [16]]. t-SVD has a similar structure to the matrix
SVD, and model a tensor in the matrix space through a well-
defined t-product operation [31]], which can be shown in the
theoretical analysis in motivation subsection d.1] (due to the
need for some key notations and preliminaries, we postpone
the detailed motivation until section .1)). By applying this
well-defined tensor constraint to our multi-view model, a
natural physical meaning for low-rank structure underneath
tensor can be achieved. More importantly, in our approach,
each subspace representation matrix can be considered as a
view-specific distance metric learning among different sam-
ples but with measurement noisy. The proposed method can
filter out the noisy to ensure the consensus principle implic-
itly by using t-SVD based tensor multi-rank minimization
(see Fig. |I| (c)). In summary, for the first time to our knowl-
edge, we introduce a circulant algebra based low-rank tensor
constraint to achieve consensus among views and explore
complementary principle efficiently and thoroughly, which
can be confirmed by our excellent clustering performance
presented in Section 3}

In this paper, we propose a new multi-view clustering
method, namely t-SVD based Multi-view Subspace Clus-
tering (t-SVD-MSC). Fig. [T]illustrates the flowchart of our
method. Given a collection of data points with multiple views
XM, XV t-SVD-MSC can obtain the subspace rep-
resentation matrices Z), ..., Z(V), and then merge them
to construct a 3-order tensor Z. This tensor needs to be ro-
tated so as to keep self-representation coefficient in Fourier
domain, and the detailed merits can be found in Section
Subsequently, the rotated tensor Zis efficiently up-
dated by t-SVD based tensor nuclear norm minimization,
such that the high order information hidden among multi-
view representation can be captured. After that, each Z () (
v =1,...,V) will be updated under the self-reconstruction
constraint. This process runs iteratively until convergence
is arrived. We need to emphasize here that our contribu-
tions are not meant as a simple replacement for the unfold-
ing based tensor norm presented in [22]. The proposed t-
SVD-MSC carefully consider the complicated structure of
the subspace representation matrices from all the views, so
that the subspace coefficients are transformed into Fourier
domain; meanwhile the information among different sam-
ples and views can be explored by comparing every row
(sample-specific) and every column (view-specific) of frontal
slices over the third dimension (coefficient-specific), which
is the intrinsic property of tensor low rank built upon t-SVD.

The main contributions of this paper are summarized as
follows:

— We propose a new multi-view subspace clustering model,
i.e., t-SVD-MSC, to effectively ensure the consensus among
different views by utilizing a well-founded tensor norm
in a unified tensor space, so that the complementary in-
formation can be captured and propagated among all the
views.

— To accommodate the circulant algebra, we design a ro-
tated tensor structure to preserve the self-representation
coefficient in Fourier domain, as well as explore the high

order correlations by comparing every row (sample-specific)

and every column (view-specific) of frontal tensor slices.

— We present an efficient optimization algorithm to solve
the t-SVD-MSC optimization problem with relatively low
computational complexity and theoretical convergence
guarantee.

— We conduct the extensive evaluation of our method on
several challenge datasets, where a significant improve-
ment over state-of-the-art MSC approaches is achieved.
By incorporating CNN feature as a view, the proposed
model has achieved highly competent (even better) per-
formance compared to recent proposed CNN based clus-
tering method on some large-scale datasets.

The rest of this paper is organized as follows. Section
2] introduces related works. Section [3] gives the preliminar-
ies on tensors and the notations that will be used throughout
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Figure 1: The Flowchart of t-SVD-MSC. Given a collection of data points with multi-view representation (a),

XM,

,X(V) t-SVD-MSC stacks all the subspace representations (b), Z(1), ...,

Z() into a tensor Z, and then rotates

to Z; the Z will be updated by using t-SVD based tensor multi-rank minimization (c).

the paper. In Section [ we motivate the proposed model in
detail, give an optimization algorithm to solve it, analyze
its computational complexity and convergence, and provide
some discussions. Experimental analysis and completion re-
sults are shown in Section [5| to verify our method. Finally,
we conclude the proposed method in Section [6]

2 Related Work

Multi-view clustering methods have been extensively stud-
ied in recent years, we roughly divide them into three cate-
gories in accordance with [1]: 1) graph-based approaches, 2)
co-training or co-regularized approaches, 3) subspace learn-
ing algorithms.

The first stream is the graph-based approaches [2}/31141\5)
6] which exploit the relationship among different views by
using multiple graph fusion strategy. [2] constructed a bi-
partite graph underlying the minimizing-disagreement crite-
rion to connect the two-view feature, and then solved stan-
dard spectral clustering problem on the bipartite graph. The
method [5]] proposed to learn a latent graph transition proba-
bility matrix via low-rank and sparse decomposition to han-
dle the noise from different views. Given graphs constructed
separately from single view data, [6] built cross-view tensor
product graphs to explore higher order information. More-
over, graph based algorithms is closely related to Multiple
Kernel Learning (MKL) technique, in which views are con-
sidered as given kernel matrices. The aim is to learn the
weighted combination of these kernel and the partitioning
simultaneously [7].

Co-training and co-regularized style methods often con-
struct separate learners on distinct views, then utilize the in-
formation in each learner to constrain other views. [8] pro-
vided a clustering method by interchanging the partition in-
formation among different views. [9]] proposed to utilize the
spectral embedding from one view to constrain the adja-
cent matrices in other views. By co-regularizing the clus-
tering hypotheses across views, [10] designed novel spec-
tral clustering objective functions that implicitly combine
graphs from multiple views of the data to achieve a better
result. In [47], authors extended the recent subspace cluster-
ing to multi-view domain, and utilized the Hilbert Schmidt
Independence Criterion (HSIC) as a co-regularized term to
explore the complementarity between views. To cluster the
video face by multiple intrinsic cues, [46] considered both
the video face pairwise constraints as well as the multi-view
consistence, which is a co-regularization term that penal-
izes the disagreement among different graphs of multiple
views, leading to a state-of-the-art performance on several
real-world video datasets.

Subspace learning approaches are built on the assump-
tion that all the views are generated from a latent subspace.
Its goal is to capture shared latent subspace first and then
conduct clustering. The representative methods in this stream
are proposed in [[L1112]], which applied canonical correlation
analysis (CCA) and kernel CCA to project the multi-view
high-dimensional data onto a low-dimensional subspace, re-
spectively. By including robust losses to replace the squared
loss used in CCA, [15] provided a convex reformulation
of multi-view subspace learning that enforces conditional
independence between views. Inspired by deep representa-
tion, [14]] proposed a DNN-based model combining CCA
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and autoencoder-based terms to exploit the deep informa-
tion from two views. Since those CCA based methods are
limited by capability of only handling two-view features,
tensor CCA [13]] generalized CCA to handle the data of an
arbitrary number of views by analyzing the covariance ten-
sor of different views.

Besides CCA, the recent proposed subspace clustering
methods [54,22]] resorted to explore the relationship between
samples with self-representation (e.g., sparse subspace clus-
tering (SSC) [20] and low-rank representation (LRR) [21])
in multi-view setting. Our approach is closely related to [22]],
which extended the LRR based subspace clustering to multi-
view by employing the rank-sum of different mode unfold-
ings to constrain the subspace coefficient tensor. However,
such a kind of tensor constraint lacks a clear physical mean-
ing for general tensor, so that it can not thoroughly explore
the complementary information among different views. On
the contrary, the high order constraint within our model is
built upon a new tensor decomposition scheme [[16,31]], which
is referred to as t-SVD and has been applied to various tasks,
such as image reconstruction and tensor completion [[18}{17,
19]. Therefore, the proposed model possesses good theoret-
ical properties and clear physical meaning for handling the
subspace representation tensor. The detailed motivation will
be presented in Section[4.1]

3 Notations and Preliminaries

In this section, we will introduce the notations and give the
basic definitions used throughout the paper. We use bold
calligraphy letters for tensors, e.g., X, bold upper case let-
ters for matrices, e.g., X, bold lower case letters for vec-
tors, e.g., x, and lower case letters for the entries, e.g., z;;.
The Frobenius norm of a matrix X is defined as ||X||r :=
(3, |7ij12)%. Let X = UEVT be the SVD of X and
0;(X) the ith largest singular value, then the matrix nu-
clear norm of X is || X[, := >, 04(X). The corresponding
singular-value thresholding (SVT) operation with threshold
Tis D;(X) = U, VT, where ¥, = diag {(0:(X) — 7), }
and ¢ is the positive part of ¢.

An N-way (or N-mode) tensor is a multi-linear structure
in RMxm2x--XnN - A glice of an tensor is a 2D section de-
fined by fixing all but two indices, and a fiber is a 1D section
defined by fixing all indices but one [29]. For a 3-way tensor
X, we use the Matlab notation X (k, :,:), X (:, k,:) and X (:
,:, k) to denote the kth horizontal, lateral and frontal slices,
respectively; X (:, 4, 5), X (4,:,7) and X (i, 4, :) to denote the
mode-1, mode-2 and mode-3 fibers, and X y = fit(X,[],3)
to denote the Fourier transform along the third dimension.
In particular, X*) is used to represent X (:, :, k). Unfolding
the tensor X along the /th mode defined as unfold;(X) =
X(z) e Rl ™’ which is a matrix whose columns are

mode-/ fibers [29]]. The opposite operation “fold” of the un-
folding is defined as fold;(X(;)) = X. The Frobenius norm
of X is [|X||p := (X, ; 4 lijx|*)%. and the I norm of X
is [[ X[y =225 5 5 |wijnl-

Before introducing the t-SVD and its derived tensor nu-
clear norm, it is necessary to define five block-based oper-
ators, i.e., bcirc, bvec, bvfold, bdiag and bdfold [16]. For
X € R™M*m2X"s gpecially, the X ®s can be used to form
the block circulant matrix:

xD  xha) . @
x@ x@O .. x®

beire(X) := ) ) ) ) , (1
x(ma) pma-1) . )

the block vectorizing and its opposite operation

bvec(X) := . , bvfold(bvec(X)) = X, (2)

X("ng)
and the block diag matrix and its opposite operation

x@
bdiag(X) := . , bdfold(bdiag(X)) = X.
X("s)

3)

3.1 Tensor Singular Value Decomposition (t-SVD)

To help understand the t-SVD, the following related notions,
which are defined in [[16], need to be introduced. The t-
product between two 3-mode tensors is defined as follows:

Definition 1 (t-product) Let X be ny X ng X n3, and Y be
ng X ng X n3. The t-product X * Y is an n1 X n4 X n3 tensor

M = X x Y =: bvfold{bcirc(X)bvec(Y)}. 4)

The t-product is analogous to the matrix multiplication ex-
cept that the circular convolution replaces the multiplica-
tion operation between the elements, which are now mode-3
fibers [17], as follows:

na

M, j,) =D X(ik,:) o V(k,j,), (5)
k=1

where o denotes the circular convolution between two tubes.
The t-product in the original domain corresponds to the ma-
trix multiplication of the frontal slices in the Fourier domain,
as follows :

MP =2 PP k=1, s, (6)
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Definition 2 (Tensor Transpose) Let X € R™1*"2X"3 the
transpose tensor X’ Tis an ng X N1 X ng tensor obtained by
transposing each frontal slice of X and then reversing the
order of the transposed frontal slices 2 through ns.

Definition 3 (Identity Tensor) The identity tensor Z € R™1 *"1%"3

is a tensor whose first frontal slice is the nq X n; identity ma-
trix and all other frontal slices are zero.

Definition 4 (Orthogonal Tensor) A tensor Q@ € R *"1 "3

is orthogonal if
Q'+Q=0+0"=1, (7)

where x is the t-product.

Definition 5 (f-diagonal Tensor) A tensor is called f-diagonal

if each of its frontal slices is diagonal matrix. The t-production
of two f-diagonal tensors with the same size ny X ns X ngs,
ie., M =X «x)Y,isalso an ny X ny X n3 f-diagonal tensor,
and its diagonal tube fibers are

M(i,i,:) = X(4,4,:) o Y(4,4,:), ¢ = 1,...,min(ng, na).
(®)

Given the aforementioned definitions, the tensor Singular
Value Decomposition (t-SVD) of X is given by

X=UxSxVT, )

where U and V are orthogonal tensors of size n; X ny X ng
and ng X ng X ng respectively. S is an f-diagonal tensor
of size ny X ny X ng, and * denotes the t-product. Fig.
illustrates the decomposition. As demonstrated in Eq. (6),
the t-production can be computed efficiently in the Fourier
domain, which leads to Algorithm I}

X

b e m

n2

m “

m n2
Figure 2: The t-SVD of an n; X ny X ng tensor.

3.2 Tensor Nuclear Norm via t-SVD

The t-SVD allows the tensor X’ to be written as a finite sum
of outer product of matrices [31]:

min(ni,n2)

X= > UG 83,0« V(i) (10)
=1

Algorithm 1: t-SVD [16]

Input: X € RniXn2Xns,

Output: U, S, V;
1 Xy =fI6(X, [],3);
2 fork=1:n3do
[U, =, V] =svDx ()

(k) _ (k) _ () _ ~r.

4 U, ’=0U,8" =5V, =V,
5 end
6 U= iﬁt(uf? []73)’ S = iﬁt(Sf, []73), V= iﬁt(Vf, [}73);
7 ReturnU4, S, V.

which is equivalent to the following equation in the Fourier
domain [31]]:

(1) 7 (1)
X Uy
(ns) (n3)
Xf 3 | uf 3
(1) 1) T (i
Sf vf
(ns) (ns)
Sf ’ i vf ’

where - denotes common matrix product, and we have nj
blocks matrix SVD: X?) = ngf)ng) (ng))T,i =1,...,n;s.
Now, we can define the tensor multi-rank as follows [|16,/17,
18] :

Definition 6 (Tensor multi-rank) The multi-rank of X €
R™M*Xn2Xn3 i5 3 vector r € R™>! with the i-th element
equal to the rank of the i-th frontal slice of X ¢.

Then the t-SVD based tensor nuclear norm (t-TNN) is
given as

min(ni,n2) ng

Z Z‘Sf(ivia k)|a
k=1

i=1
which is proven to be a valid norm and the tightest convex
relaxation to ¢; norm of the tensor multi-rank in [[18l17].
Due to the unitary invariance of matrix nuclear norm, we
have

|Ibdiag(X f)||. = [|Ibdiag(S )« = |[X][e,

| X]|e == (12)

13)

and since block circulant matrixes can be block diagonalized
by using the Fourier transform, there is

|[bdiag(X f)|[ = |[(Fn, @ L, )beire(X)(Fy,, @ Ly, )|«
= ||beire(X)]|..
(14)
where, ® denotes the Kronecker product, F,, is the n x n

Discrete Fourier Transform (DFT) matrix, and I, isann xn
identity matrix. Finally, we obtain

1X|le = [[beire(X)]].. (15)
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The equivalence in Eq. (I5) endows the t-TNN with inter-
pretability in the original domain, i.e., (X)||« mea-
sures the rank of beirc(X’) by comparing every row and ev-
ery column of frontal slices over the third dimension, which
exploits structural information of a tensor deeper than the
monotonous matrix nuclear norm of certain unfolding.

4 The Proposed Approach

Subspace clustering is a technology for clustering data ac-
cording to the underlying subspaces. In the paper, we con-

sider the self-representation based subspace clustering method,

specifically the LRR approach [21]], which constructs affin-
ity matrix through reconstruction coefficients, as well as ex-
plores low-dimensional subspace structures embedded in data.
Suppose X = xy] € RN is the matrix of
data vectors, whose column is a sample vector, and d is the
dimensionality of the feature space. Formally, LRR solves
the following optimization problem:

in \[|E Z||,,
min Al[Ef|2,1 + 12|

[X17X2,...,

(16)
st. X =XZ+E,

where Z = [z1, 2o, . ..,2x] € RV*Y is the coefficient ma-

trix with each z; being the new representation of sample x;,
and || - || is the nuclear norm, || - ||2,1 denotes the £ ;-norm
of a matrix. After achieving the self-representation matrix
Z, the affinity matrix A is usually constructed as

1
A =3 (1Z[+12"), (17)

where | - | represents the absolute operator. Then, the ob-
tained affinity matrix A will be sent to a spectral clustering
algorithm [24] to produce the final clustering result.

Intuitively, the above single view subspace clustering methodl (§1

can be extended to the multi-view setting in a simple and
direct way. We use X(*) to denote the feature matrix corre-
sponding to the v-th view, and use Z(*) to represent the v-th
view’s learned subspace representation. Hence, the objec-
tive function of the LRR based naive multi-view subspace
clustering turns out to be:

v
S D7 OB 2+ 11Z0]1.),

st. XW =X®z@) L E® »=1,2,...,V,

(18)

where V' denotes the number of all views. After obtaining

(2},

ing all subspace representation of each view: A =

, the final affinity matrix is calculated by combin-

|Z(” |)/2. However, this formulation treats each subspace
representation independently, ignoring the relationship among
different views. To overcome this drawback, we propose to
utilize t-SVD based tensor nuclear norm to capture the high
order correlations among different views.

4.1 Motivation
4.1.1 Ensuring Consensus Principle among Views

Recall the LRR [21]], it can achieve the self-representation
coefficient matrix Z € RY*¥ by representing the data sam-
ples as linear combinations of the bases in a given dictio-
nary (usually, the whole dataset itself). In other words, LRR
leads to dense representation coefficients within the same
subspace. When we employ multiple features to describe
the data, we will have multiple self-representation coeffi-
cient matrix {Z(")}V_, correspondingly. Not only should
we keep the low rank constraint for each 7 but also need
to ensure the consensus principle by imposing low rank across
all views. The proposed approach is capable of modeling
those two level low rank constraints in a unified tensor space
by imposing the t-TNN. Consequently, after the optimiza-
tion, all the {Z(*)}Y_, are much more close to well struc-
ture, which means that the fused Z = ZV L(Z™] +

|Z(7|)/2 can be easily segmented by common spectral
clustering method.

4.1.2 Requiring a Well-Founded Low Rank Constraint in
Tensor Space

To extend the self-representation based subspace clustering
to multi-view setting, [22]] introduced a low-rank tensor con-
straint [23]], which directly extended the matrix nuclear norm
to higher-order case:

3
N2l = &nllZmll (19)
m=1

where the weight &,,, needs to satisfy &,,, > 0 and an:l Em =
= & = &3 is used in [22]), Z is a 3-order tensor con-
structed by merging different Z(*) along the third dimen-
sion, and Z,,,) is the unfolding matrix along the m-th mode.
We refer to it as the generalized tensor nuclear norm (g-
TNN). Albeit easy to implement, different from matrix sce-
narios, such a simple rank-sum term is short of a clear phys-
ical meaning for general tensors. Besides, the strategy of us-
ing the same weights to penalize all dimensionality ranks of
a tensor is not always rational. However, incorporating the
t-TNN in the proposed model possesses obvious and clear
physical meaning. We introduce the following theorem to
theoretically explain why the t-TNN is adopted in the pro-
posed model.

heorem 1 [31)] Let the t-SVD of A € R™ *"2X"s pe given

VZU (12 bB/.A UxS+VT andfork<m1n(n1,n2)deﬁneAk—

Zizlu Hi,) x S(1,0,:) x V(i i 7:)
A, :argminHAf/NlHF

AeM

where M = {C — X*y|x c RankXT‘Lg’y € Ranzxm}.

, then

(20)
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Theorem [I] indicates that a truncated t-SVD representation
could provide an optimal approximation in the same way as
the truncated matrix SVD, which gives a best low rank ap-
proximation to the matrix in terms of the Frobenius norm
under rank &k constraint. Moreover, matrix nuclear norm is
the tightest convex relaxation of the original rank minimiza-
tion, while t-TNN also has been proven to be the tightest
convex relaxation to /1 norm of the tensor multi-rank (see
Section @) [17]. Theoretically, the t-TNN is more analo-
gous to the matrix nuclear norm than the g-TNN defined in

@)

A

A '\ﬂx
NN shiftdim( 4, 1)
_—

1
|
|
i
|
AN
|
|
|
i
|

<«
shiftdim(3B, 2)

Figure 3: The rotated coefficient tensor in our approach.

4.1.3 Constructing a Structure for Tensor Circulant
Algebra

Directly utilizing the t-TNN to model the low rank con-
straint is still far from effectiveness, which can be evidenced
by observing the performance of Ut-SVD-MSC method in
experimental section. To accommodate the intrinsic circu-
lant algebra underlying t-TNN, we choose to transform the
self-represented coefficient (mode-1 fiber) into the mode-3
fiber by using the rotation operatimﬂ of the coefficient ten-
sor, as illustrated in Fig. 3] where the marked fiber denotes
a self-represented feature coefficient of a certain sample be-
longing to a certain view.

While relatively simple, the proposed model will ben-
efit from the rotate operation in three aspects. First of all,
through tensor rotation, the self-representation coefficient
can be preserved in Fourier domain, since the Fourier trans-
form along the third dimension. Secondly, each frontal slice
in Fourier domain considers the information among differ-
ent samples and different views. By measuring every row
and every column of frontal slices over the third dimen-
sion, the t-TNN provides a deeper insight into multi-view
feature tensor than g-TNN. Another advantage of this rotate
operation is the significant reduction of computational com-
plexity, which will be analyzed in Section [4.4] and Section

! The tensor rotation in Matlab can be achieved by using the com-
mand “shiftdim”.

[5.4.4] To sum up, the aforementioned satisfaction of prin-
ciple, good theoretical properties, and well-designed tensor
structure motivate us to design the proposed t-SVD-MSC
model.

4.2 Problem Formulation

The objective function of the proposed method is:

min  A|El|21 + || Z]]e,
Z () E)

st. X =X®z0) L E® v =1,...,V,
Z=0(zM,2? .. 7)),
E=[EY;E®; . EV),

where the function @(-) constructs the tensor Z by merging
different representation Z(*) to a 3-mode tensor, and then
rotate its dimensionality to N x V' x N, as shown in Fig. 3|
Also, we can easily get the following relationship:

2 (8) =2, 22)

where @~1(-) denotes the inverse function of &(-), and its
subscript (v) means to extract the v-th frontal slice. As sug-
gested in [21], the vertical concatenation along the column
of error matrix, i.e., E = [EW;E®); .. EMV)], can en-
force the column of E(*) in each view to have jointly con-
sistent magnitude values. Consequently, the objective func-
tion in Eq. (ZI) aims to find the optimal self-representations
through capturing the informational and structural complex-
ity of multi-view features.

The above optimization problem can be solved by using
the Augmented Lagrange Multiplier (ALM) [25]]. To adopt
alternating direction minimizing strategy to problem (2I)),
we need to make the objective function seperable. By in-
troducing the auxiliary tensor variable G, the optimization
problem can be transferred to minimize the following un-
constrained problem:

ey

£(z@W,.. . zV),ED . EV);g)

= AE|

.
o1 +1G0e + > (m, X)Xz _ )

v=1

+BIXO - X020 - BUE) + (W, 2 - 0)

+ 2112 - gl
(23)

where the matrix Y, and the tensor WV represent two La-
grange multipliers, ;¢ and p are actually the penalty parame-
ters, which are adjusted by using adaptive updating strategy
as suggested in [26]. The optimization problem (23 seems
challenging to solve, not only because of the t-TNN on G,
but also since the tensor Z depends on the subspace repre-
sentation of all views.
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4.3 Optimization Procedure

The alternative minimization scheme is adopted for updat-
ing Z("), E("), and G, respectively. The detailed procedure
can be partitioned into three steps alternatingly.

Algorithm 2: t-SVD based Tensor Multi-Rank Mini-
mization
Input: Observed tensor F € R™1X™2X"s gcalar 7 > 0
Output: tensor G

1 Fy =fit(F,[],3), 7" =naT;

Z(")-subproblem: When E and G are fixed, since @@% (W) =2 for j = 1:ns do

W®) and 45(_01) (G) = G @), we will solve the following sub-
problem for updating the subspace representation Z():

min (Y, X" —X®z®) _

E(”)> +
Z(v)

Bixo - x
2

“EO|2 + (W®, 20 g0y 4 gl\z(”)
(24)
By setting the derivative of (24) to zero, the closed-form of
Z(") can be obtained by
Z0" =(I+ ﬁx(v)Tx(v))*l <(X(”)TYU + XX
p

_XOTE® — W)+ G(v))_
(25)
E()-subproblem:

(®)7®)

GW|[%.

[u&])ﬁgi}])’v;])]
o | TV =diag{(1 -

= SVD(F{);

T’/ ;
S;j)(ij))‘F}v =

1,...,min(ni,n2);
) _ () ().
5 Sf,T'_Sf J.J 5 .
6 g(f]) :u‘(fj)s}{l/v'(fj) :

7 end
s G =ifft(Gy,[],3);
9 Return tensor G.

Theorem 2 For 7 > 0 and G, F € R™*"2X"s the glob-
ally optimal solution to the following problem

) 1
min 7/(Glle + 5119 — FlIz (29)
is given by the tensor tubal-shrinkage operator

g = Cng‘r(]:)
where F =UxS* V" and C,,,(S) =

=U % Cpyr (8)x VT, (30)
ST, herein, J is

E" = argmln MEl|2,1 + Z ( Y, X® - x®z®) _ E(U)>an n1 X ng X ng f-diagonal tensor whose diagonal element

v=1

ILL v v v v
X0 - x0Z0) B >||%>

A 1
= argmin —||E||2,1 + =||E — D||3,
E M 2
(26)

where D is constructed by vertically concatenating the ma-
trices X(*) — X" Z®) 4 (1/1)Y, together along column.
According to the Lemma 4.1 in [21], this subproblem has
the following solution,

ID
IID:,z—H

0 otherwise.

A
D D.; 2
—_ D >

)

27)

where D. ; represents the ¢-th column of the matrix D.

G-subproblem: When Z("), (v = 1,2, ..., V) are fixed,
for updating the tensor G, we solve the following subprob-
lem:

% . 1
G* = argmin [Gllo + 519~ (Z+ W)l (9
which is referred to as the tensor multi-rank minimization
in this paper. The solution of the optimization problem (28)
can be achieved through the following theore

2 A similar discussion about the optimization of the TNN regular-
ized low-rank tensor completion problem can be found in [[17]].

in the Fourier domain is J f(i,4,j) = (1 — W())

The proof can be found in Appendix. We summarize the
t-SVD based tensor multi-rank minimization in Algorithm
] Additionally, the Lagrange multipliers Y, and W need
to be updated as follows:

Yi=Y,+uX® X7z _gO) (31)
W =W +p(Z - G). (32)

Finally, the optimization procedure of the proposed multi-
view subspace clustering method is described in Algorithm

Bl

4.4 Convergence Properties and Computational Complexity

The convergence properties of the inexact ALM have been
well established when the number of blocks is at most two
[25]]. Despite of its success in practice, its convergence prop-
erties for minimizing the objective function with N (N >
3) blocks variables linked by linear constraints, have re-
mained unclear. Since there are several blocks (including
{Z™}Y_ | E,and G)in Algonthml 3 and the objective func-
tion of (ZI) is not smooth, it would be not easy to prove
the convergence in theory. Fortunately, as suggested in [21],
two conditions are sufficient (but may not necessary) for Al-
gorithm [3[ to converge: (1) each feature matrix X () is of
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Algorithm 3: MSC via Tensor Multi-Rank Minimiza-
tion
Input: Multi-view feature matrices: X (1), X (2)

A, and cluster number K
Output: Clustering results C

1 Initialized Z(*) = 0,E(") =0,Y, =0,i=1,...,V;

LX),

G=W=0;
M= 10751 p = 10741 n= 27 Hmax = Pmax — 1010,
e=10""7;

2 while not converge do
// Solving Z
3 forv=1:V do

4 ‘ Update Z(*) by using ;
5 end

// Solving E
6 Update E by solving ;
7 forv=1:V do
8 | Update Y, by using ;
9 end

10 Obtain Z = $(ZM,Z) ... [ Z(V));

// Solving G

1 Update G via subproblem by using Algorithm
12 Update W by using ;

13 Update parameters p and p: i = min(nu, fimax)»
p = min(np, pmax);

14 (GM,...,G)) =d—1(G);

15 Check the convergence conditions:

[|X() — X Z®) — EM®)||,, < eand
12— GOlos < &

16 end
7 Obtain the affinity matrix by

A=L1V 120|427

Apply the spectral clustering method with the affinity matrix
A
9 Return Clustering result C.

—

—
®

—

full column rank; (2) the optimality gap produced in each
iteration step is monotonically decreasing. The first condi-
tion can be met by factorizing Z() into P®WZ®), where
P() can be computed in advance by orthogonalizing the
columns of X ()" Moreover, due to the convexity of the La-
grangian function (23)), the monotonically decreasing con-
dition can be guaranteed to some extent according to [30].
Therefore, the proposed MSC algorithm ensures good con-
vergence properties. Furthermore, the proposed method per-
forms well and indeed converges fast in reality, which will
be illustrated in Section [5.4.4]

Since inverse matrix can be calculated in advance in Eq.
for solving Z("), the computational bottleneck of the
proposed Algorithm [3] only lies in solving the subproblems
for E and G. As for the E subproblem, it takes O(V N?) in
each iteration. As for the G subproblem, calculating the 3D
FFT and 3D inverse FFT of an N x V' x N tensor and N
SVDs of N x V matrices in the Fourier domain, actually
dominate the main computation. Since in multi-view set-
ting we have N > V and log(N) > V, the computation
at each iteration will take O(2N2V log(N) + N?V?) =~

O(2N?V log(N)). By considering the cost of spectral clus-
tering (usually O(IN?)) and the number of iterations needed
to converge, the complexity of Algorithm [3]is:

O(N?) + O(K(2N?*V log(N))), (33)

where K denotes the number of iterations. The iteration
number K depends on the choice of 7: larger 7 leads to a
smaller K, and vice versa. In our experiments, we fix the
7 to 2, such that the iteration number K commonly locates
within the range of 30 ~ 50.

4.5 Discussion

Furthermore, we can analyze the contribution of each view
to final clustering from the perspective of feature’s charac-
teristic, i.e., discriminative power, both theoretically and ex-
perimentally (Section [5.4.1)). Recent studies on sparse sub-
space clustering have proved that a sample can be rep-
resented by its corresponding dictionary if the signals sat-
isfy certain incoherence condition. In other words, low rank
representation of a data point ideally corresponds to a com-
bination of all the point from its own subspace, leading to a
block-diagonal connectivity in affinity matrix. As it is proved
in [21]], for a certain feature, the closer the affinity matrix
AW =1z + 1Z™)7|) is to block-diagonal structure,
the better the clustering result is. It is worth noting that the
block-diagonal property does not require the data samples
to have been grouped together according to their subspace
memberships, because the solution produced by low rank
representation is globally optimal and does not depend on
the arrangements of the data samples [21].

However, in real application, different features have dif-
ferent capabilities of discriminative power. The feature with
less discriminative power incurs more non-zero responses
in the atoms belonging to different subspaces (e.g., Z;; # 0,
where samples 7 and j belong to different subspaces), while
strongly discriminant feature will force the linear represen-
tation coefficients on different subspaces tend to zero (e.g.,
Z;; = 0, where samples ¢ and j belong to different sub-
spaces). Discriminant feature will make the edges between
points in different subspaces weak, such that spectral clus-
tering can find the correct segmentation. Therefore, theoret-
ically, discriminant feature will provide greater contribution
to the final clustering results.

5 Experimental Results and Analysis

In this section, we perform experiments on several chal-
lenging image clustering datasets to present a comprehen-
sive evaluation of the proposed method. We test our method
on three applications: face clustering, scene clustering, and
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generic object clustering. The statistics of all the datasets are
summarized in Table[Tl

Competitors: We compare the proposed method with
seven representative clustering algorithms: the standard spec-

tral clustering algorithm with the most informative view (SPCpey),

LRR algorithm with the most informative view (LRRpeg),
robust multi-view spectral clustering via low-rank and sparse

decomposition (RMSC) [3], diversity-induced multi-view sub-

space clustering (DiMSC) [47]], low-rank tensor constrained
multi-view subspace clustering (LTMSC) [22]), the proposed
method with unrotated coefficient tensor (Ut-SVD-MSC),
learning and transferring deep ConvNet (convolutional neu-
ral network) representations with group-sparse factorization
(GSNMF-CNN) [37]]. The first two methods are the single
view baselines. The RMSC, DiMSC, and LTMSC represent
the state-of-the-art methods in multi-view clustering. Com-
paring with the method Ut-SVD-MSC is used to illustrate
the advantage of the tensor rotation. The last approach, i.e.,
GSNMEF-CNN, does not belong to multi-view method but
with the claim that it achieves state-of-the-art image cluster-
ing performance by using deep ConvNet.

Evaluation Methodology: Different experimental strate-
gies are adopted for different applications. As for face clus-
tering, we use relatively simple image features (e.g., inten-
sity, LBP, Gabor) to test the performance of different multi-
view clustering methods. As for scene clustering, some so-
phisticated features (such as PHOW [43]], CENTRIST [42],
etc.) are considered as views to handle scene clustering. Be-
sides traditional handcrafted features, we utilize the CNN
feature trained on large-scale annotated dataset (ImageNet)
to handle two challenging datasets, i.e., MITIndoor-67 and
Caltech-101 for scene clustering and generic object cluster-
ing, respectively. Since CNN feature is adopted in our ex-
periments, it is necessary to compare with a state-of-the-art
CNN based image clustering method, termed the GSNMF-
CNN (371, which shows the transferability of the deep Con-
vNet trained on ImageNet to be used for enhancing image
clustering. Due to the different scales, features, and chal-
lenges of different datasets, we leave the description of the
detailed experimental setup to the corresponding section of
each application.

Evaluation Measures. The evaluation of clustering re-
sults is a challenging problem. Two types of criteria are gen-
erally used for measuring cluster quality [32]: external and
internal criteria. External criteria measures the agreement
between the clustering result and an external input (usually
the groundtruth of the dataset). Internal criteria, on the other
hand, measures quality based on characteristic of the data
and the partitioning result (e.g., between-cluster and within-
cluster scatter). However, good scores on an internal crite-
rion do not necessarily translate into good effectiveness in an
application [32]]. Moreover, under subspace clustering set-
ting, since data in a subspace are often distributed arbitrar-

Table 1: Statistics of different test datasets

Dataset Images Objective Clusters
Yale 165 Face 15
Extended YaleB | 640 Face 10
ORL 400 Face 40
Notting-Hill 4660 Face 5
Scene-15 4485 Scene 15
MITIndoor-67 5360 Scene 67
COIL-20 1440  Generic Object 20
Caltech-101 8677  Generic Object 101

ily and not around a centroid [20]], standard internal criteria
measurement that take advantage of the spatial proximity
of the data can not be applicable. So, external criteria has
been widely used for evaluating clustering performance
R2147].

In our experiments, six popular external metrics are used
to evaluate the performances [32,34]: Normalized Mutual
Information (NMI), Accuracy (ACC), Adjusted Rank index
(AR), F-score, Precision and Recall.

NMI can be information-theoretically interpreted. Sup-
pose that C' and C” represent the predicted partition and the
groundtruth partition respectively, the NMI metric is calcu-
lated as:

K S N|C;NC|
2 im1 Zj:l |Cin 03”097\@\@“}

oSy
VK [Clloge)(55, Clliog %)
(34)

NMI(C,C") =

For the definition of accuracy, suppose the clustering al-
gorithm is tested on NV samples. For a sample x;, the cluster
label is denoted as r;, and groundtruth is ¢,. The accuracy is
defined as follows:

ACC — Zfil 0(t;, map(r;))

N (35)
where
5a.b) 1 ifa=0b 36)
“n = 0 otherwise,

Function map(z) denotes the best permutation mapping func-
tion gained by Hungarian algorithm [33]], which maps clus-
ter to the corresponding groundtruth label. So the more la-
bels of samples are predicted correctly, the greater the accu-
racy is.

As for F-score, Precision, Recall, and AR, these four
metrics view the clustering as a series of decisions, one for
each the N (N — 1)/2 pairs of samples on the dataset. The
goal is to assign two samples to the same cluster if and only
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if they are similar. For more details about their definitions,
please refer to [32]].

For each of the metrics, the higher it is, the better the
performance is. Those metrics favor different properties in
the clustering such that a comprehensive evaluation can be
achieved. Note that in all dataset, the reported final results
on those metrics are measured by the average and standard
derivation of 20 runs. We highlight the best values in bold
font in each table.

Only one parameter A needs to be tuned, and we found
its empirical value is within the range [0.1,2]. More de-
tails about the parameter will be discussed in Section [5.4]
The parameters in other competitors are set within ranges
suggested by original papers, and we tune those parame-
ters so as to show the best results. All experiments are im-
plemented in Matlab on a workstation with 4.0GHz CPU,
32GB RAM, and TITANX GPU (12GB caches). To promote
the culture of reproducible research, source codes and exper-
imental results accompanying this paper can be achieved at
https://www.researchgate.net/profile/Yuan_Xie4.

5.1 Experiments on Face Clustering

The Yalﬁ face dataset contains 165 grayscale images of 15
individuals. There are 11 images per subject, one per differ-
ent facial expression or configuration.

The Extended YaleBdataset includes 38 individuals and
around 64 near frontal images under different illuminations
for each individual. Similarly to the works [21L22]], we use
a part of images which contains the first 10 individuals, in-
cluding 640 frontal face images.

The ORLE| dataset consists of 40 distinct subjects, each
of which contains 10 different images captured under differ-
ent times, lighting, facial expressions, and facial details.

For all those datasets, similar to [22], three types of fea-
tures are extracted: intensity, LBP [48] and Gabor [49]]. The
standard LBP features are extracted with the sampling size
of 8 pixels, and the blocking number of 7 x 8. The Gabor
feature is extracted with one scale A = 4 at four orientations
0 = {0°,45°,90°, 135°}. Therefore, the dimensionalities of
LBP and Gabor are 3304 and 6750, respectively.

As illustrated by the Table 2] LTMSC performs the sec-
ond best in terms of all metrics on Yale dataset, while the
proposed approach presents a clear advance over it, e.g.,
0.953 vs. 0.765 in NMI, and 0.963 vs. 0.741 in ACC. Ta-
ble [] gives the clustering results on the ORL dataset. It can
be seen that quite a lot of methods achieve promising perfor-
mance. However, our approach obtains a nearly perfect re-
sult in terms of all six metrics, e.g., NMI 0.993, ACC 0.970,

3 https://cvc.yale.edu/projects/yalefaces/yalefaces.html
4 https://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
> http://www.uk.research.att.com/facedatabase.html
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Figure 4: Comparison among LRR with all the view fea-
tures, DIMSC, LTMSC and the proposed t-SVD-MSC in
terms of accuracy and NMI on face clustering datasets.

and Recall 0.991, which means that our method still outper-
forms all the alternative approaches significantly. As shown
in Table[3] the improvement of t-SVD-MSC over other rep-
resentative approaches (such as DiMSC and LTMSC) on Ex-
tended YaleB are not so much noticeable as on the above two
datasets. We observe that, due to large variation of illumina-
tion, the LBP and Gabor features present significant lower
capabilities of representation than intensity feature (see the
second group bars in Fig. d). Therefore, the basic assump-
tion of the multi-view clustering might be violated so as to
suffer the degradation of performance. This observation co-
incides with the corresponding conclusions obtained in [22,
47).

The dataset Notting-Hill [38] is constructed from the
movie “Notting-Hill”, where the faces of 5 main casts are
collected, including 4660 faces in 76 tracks. The original
dataset consists of the facial images of the size of 120 x 150,
and we downsample each facial image to 40 x 50. The fea-
tures utilized in this dataset are the same with the features
used in other face clustering datasets. Table [3] shows the
clustering result, where the proposed method also outper-
forms all other competitors in all metrics with clear large



Table 2: Clustering results (mean + standard deviation) on Yale. We set A = 1.1 in proposed t-SVD-

MSC.

Method NMI ACC AR F-score Precision Recall
SPChest 0.654 4+ 0.009 0.618 £0.030 0.440 +0.011 0.475 £0.011 0.457 £0.011 0.500 4+ 0.010
LRRpest 0.709 +0.011 0.697 £0.001 0.512 + 0.005 0.547 £ 0.007 0.529 £ 0.005 0.567 4 0.004
RMSC 0.684 4+ 0.033 0.642 + 0.036 0.485 +0.042 0.517 +0.043 0.500 £+ 0.043 0.535 4+ 0.044
DiMSC 0.727 4+ 0.010 0.709 £+ 0.003 0.535 £+ 0.003 0.564 +0.010 0.543 £0.012 0.586 + 0.009
LTMSC 0.765 +0.008 0.741 £0.002 0.570 £ 0.004 0.598 4+ 0.006 0.569 £ 0.004 0.629 + 0.005
Ut-SVD-MSC | 0.756 £ 0.012 0.733 £ 0.005 0.584 +0.003 0.610 £0.006 0.591 £ 0.005 0.630 4 0.006
t-SVD-MSC | 0.953 £+ 0.008 0.963 + 0.006 0.910 + 0.010 0.915 £+ 0.007 0.904 + 0.005 0.927 4+ 0.007

Table 3: Clustering results
proposed t-SVD-MSC.

(mean =+ standard deviation) on Extended YaleB. We set A = 1.3 in

Method NMI ACC AR F-score Precision Recall

SPChest 0.360 4+ 0.014 0.366 £ 0.059 0.225 + 0.018 0.308 +0.011 0.296 £+ 0.010 0.310 4 0.012
LRRypest 0.627 +0.040 0.615 £0.013 0.451 £ 0.002 0.508 4+ 0.004 0.481 £ 0.002 0.539 + 0.001
RMSC 0.157 £ 0.019 0.210 £0.013 0.060 £ 0.014 0.155 +0.012 0.151 £0.012 0.159 £ 0.013
DiMSC 0.636 + 0.002 0.615 £0.003 0.453 + 0.005 0.504 £ 0.006 0.481 £ 0.004 0.534 4+ 0.004
LTMSC 0.637 + 0.003 0.626 £ 0.010 0.459 + 0.030 0.521 £0.006 0.485 £ 0.001 0.539 4 0.002
Ut-SVD-MSC | 0.479 4+ 0.007 0.470 £0.011 0.274 4 0.005 0.350 £+ 0.007 0.327 4+ 0.004 0.375 + 0.005
t-SVD-MSC | 0.667 + 0.004 0.652 + 0.000 0.500 + 0.003 0.550 + 0.002 0.514 4+ 0.004 0.590 + 0.004

Table 4: Clustering results (mean =+ standard deviation) on ORL. We set A = 0.2 in proposed t-SVD-

MSC.

Method NMI ACC AR F-score Precision Recall
SPChest 0.884 4+ 0.002 0.725 £0.025 0.655 £ 0.005 0.664 4+ 0.005 0.610 £ 0.006 0.728 + 0.005
LRRypest 0.895 4+ 0.006 0.773 £0.003 0.724 + 0.020 0.731 £ 0.004 0.701 £ 0.001 0.754 4+ 0.002
RMSC 0.872 4 0.012 0.723 £0.007 0.645 + 0.003 0.654 £ 0.007 0.607 £ 0.009 0.709 4 0.004
DiMSC 0.940 4+ 0.003 0.838 £ 0.001 0.802 + 0.000 0.807 £ 0.003 0.764 £ 0.012 0.856 4 0.004
LTMSC 0.930 4+ 0.003 0.795 £ 0.007 0.750 £ 0.003 0.768 4+ 0.004 0.766 £ 0.009 0.837 &+ 0.005
Ut-SVD-MSC | 0.874 £ 0.002 0.765 £ 0.001 0.666 4+ 0.004 0.675 £ 0.005 0.643 £ 0.003 0.708 4 0.002
t-SVD-MSC | 0.993 £ 0.002 0.970 £ 0.003 0.967 £ 0.002 0.968 £+ 0.003 0.946 + 0.004 0.991 + 0.003

Table 5: Clustering results (mean =+ standard deviation) on Notting-Hill. We set A = 0.1 in proposed

t-SVD-MSC.

Method NMI ACC AR F-score Precision Recall
SPChest 0.723 +0.008 0.816 +£0.000 0.712 + 0.020 0.775 +0.015 0.780 £0.018 0.776 + 0.013
LRRpest 0.579 4+ 0.003 0.794 £0.033 0.558 £+ 0.007 0.653 4+ 0.007 0.672 £ 0.007 0.636 + 0.008
RMSC 0.585 4+ 0.002 0.807 £ 0.013 0.496 + 0.004 0.603 4 0.005 0.621 £ 0.002 0.586 %+ 0.011
DiMSC 0.799 4+ 0.001 0.837 £0.021 0.787 £ 0.001 0.834 4+ 0.001 0.822 £ 0.005 0.827 &+ 0.009
LTMSC 0.779 4+ 0.003 0.868 £ 0.000 0.777 + 0.002 0.825 4+ 0.002 0.830 £ 0.002 0.814 4 0.004
Ut-SVD-MSC | 0.837 £ 0.005 0.933 £0.015 0.847 4+ 0.001 0.880 £ 0.005 0.900 + 0.004 0.861 4 0.009
t-SVD-MSC | 0.900 £ 0.005 0.957 £ 0.010 0.900 £ 0.003 0.922 + 0.003 0.937 + 0.006 0.907 £ 0.005

Yuan Xie et al.
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margins. Our result might even be comparable with the state-

of-the-art result achieved by [46] (with NMI 0.920 and ACC

0.934), where additional video-specific constraints are em-

ployed, i.e., faces from the same track are likely to be from

the same person, while faces do not belong to the same per-

son if they appear together in the same video frame. Note

that, the proposed method conduct video face clustering with-
out any video-specific priori.

5.2 Experiments on Scene Clustering

Scene-1 SE] dataset was gradually built by the works [39,140L
41] with 15 categories, including office, kitchen, living room,
bedroom, etc. Images are about 250 x 300 resolution, with
210 to 410 images per category. This dataset contains a wide
range of outdoor and indoor scene environments. We ex-
tracted three kinds of handcrafted image features on this
dataset: 1) Pyramid histograms of visual words (PHOWﬂ
feature [43]] which was extracted with 8 pixels’ dense sam-
pling step and 300 visual words, resulting in a 1800 dimen-
sional feature. 2) Pairwise rotation invariant co-occurrence
local binary pattern (PRI-CoLBP) feature, which was proven
to be suitable for scene classification [44]. Different from
other LBP variants, PRI-CoLBP not only captured the spa-
tial context co-occurrence information effectively, but also
possessed rotation invariance. We use gray-scale PRI-CoLBP
and choose the simplest template so that the final dimen-
sionality is 590 x 2 = 1180. 3) CENsus TRansform hIS-
Togram (CENTRIST) feature [42]]. It is a holistic represen-
tation which can capture structural properties such as rect-
angular shapes, flat surfaces and so on. By using the spatial
pyramid technology, there are 1, 5, and 25 blocks for levels
0, 1, and 2, respectively. We use PCA to reduce the dimen-
sionality of CENTRIST to 40, then a level 2 pyramid will
result in a feature vector which has 40 x (1+5+25) = 1240
dimensions.

The clustering results are shown in Table [6] where the
noticeable performance gain can be concluded by compar-
ing with the second best LTMSC algorithm. Moreover, con-
fusion matrices of the LTMSC and the proposed method is
shown in Fig. [5] where row and column names are true and
predicted labels respectively. Here, the cluster label is pre-
dicted by the best permutation mapping function used in
the metric of ACC [33]]. We can see that, compared with
LTMSC, the proposed method wins in almost all categories
in terms of clustering accuracy. The biggest confusion oc-
curring between the indoor classes, such as bedroom and
living room, coincides well with the the confusion distribu-
tion in [41]].

6 http://www-cvr.ai.uiuc.edu/ponce_grp/data/
7 This feature was extracted by using vlfeat toolbox [45]]

MITIndoor-67 dataset was firstly introduced by [50], which
is a challenging dataset including 15K indoor image span-
ning 67 different categories. It provides a training subset
(5360 images) for classification task, and we perform clus-
tering on this subset. Some samples are shown in Fig.[6] To
the best of our knowledge, hardly any traditional clustering
methods can achieve good performance in such a challeng-
ing dataset. To pursuit better performance, besides the fea-
tures used in Scene-15, we further import the VGG-VD [51]],
which was pre-trained on ILSVRC12 [52]], as a new view to
complement handcrafted features. We use the activations of
the penultimate layer for feature extraction, and resize its
smaller dimension of each image to 448 for VGG19 while
maintaining aspect ratio. The features are extracted from 5
scales {2°,s = —1,—0.5,0,0.5,1}, and all local features
are pooling together regardless of scales and locations. The
MatConvNet toolbox [53] is adopted to extract this feature.

Compared with GSNMF-CNN, our method gains sig-
nificant improvement around 7.7%, 16.7%, 29.1%, 19.0%,
17.6% and 20.1% in terms of NMI, ACC, AR, F-score, Pre-
cision and Recall, respectively. Fig. [/| illustrates the com-
parison between SPC/LRR with different single view fea-
ture and the proposed t-SVD-MSC with multiview features.
It can be observed that, the performance of SPC with raw
VGG19 feature is much higher than that of SPC with tra-
ditional handcrafted features, so CNN feature is indeed an
excellent representation even without any transfer. However,
representing CNN feature in low-rank subspace will signif-
icantly degrade the performance, see the brown bar in LRR.
The yellow bar in Fig.[7]indicates that, the proposed method
could capture the complementarity between the handcrafted
features and CNN feature, and boost the performance to a
higher level.

5.3 Experiments on Generic Clustering

The COIL-Z dataset contains 1440 images of 20 object
categories viewed from varying angels, with each category
including 72 images. Similar to [22//47]], all the images are
normalized to 32 x 32 with the same features used in Section
being extracted. As shown in Table [8] our method also
outperforms three most recently published algorithms, i.e.,
RMSC, DIiMSC, and LTMSC, which further demonstrates
the effectiveness of the proposed method.

The Caltech-101 dataset [55] contains 8677 image of
objects belonging to 101 categories, with about 40 to 800
images per category. Currently, image clustering method are
usually evaluated under small-scale experimental configu-
ration, e.g., using relatively simple datasets (such as Yale
and ORL), or cropping a small portion of categories from
a large dataset (such as using 5, 7 and 20 sub-categories of

8 http://www.cs.columbia.edu/CAVE/software/softlib/
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Table 6: Clustering results (mean 4 standard deviation) on Scene-15.

We set A = 1.5 in proposed

t-SVD-MSC.

Method NMI ACC AR F-score Precision Recall
SPChest 0.421 +0.010 0.437 £0.015 0.270 + 0.010 0.321 £0.022 0.314 £ 0.016 0.329 4 0.020
LRRpest 0.426 +0.018 0.445 £0.013 0.272 £ 0.015 0.324 +0.010 0.316 £0.015 0.333 +0.015
RMSC 0.564 4+ 0.023 0.507 £ 0.017 0.394 £ 0.025 0.437 +0.019 0.425 £+ 0.021 0.450 4+ 0.024
DiMSC 0.269 4+ 0.009 0.300 £0.010 0.117 +0.012 0.181 £0.012 0.173 £0.016 0.190 4+ 0.010
LTMSC 0.571 £ 0.011 0.574 £0.009 0.424 +0.010 0.465 4+ 0.007 0.452 £ 0.003 0.479 + 0.008
Ut-SVD-MSC | 0.555 +£0.007 0.510 £ 0.005 0.375 4+0.003 0.422 +£0.004 0.389 + 0.010 0.460 4+ 0.008
t-SVD-MSC | 0.858 £+ 0.007 0.812 + 0.007 0.771 4+ 0.003 0.788 + 0.001 0.743 + 0.006 0.839 + 0.003

Table 7: Clustering results (mean + standard deviation) on MITIndoor-67. We set A = 0.2 in pro-
posed t-SVD-MSC.

Method NMI ACC AR F-score Precision Recall

SPCESI:_J%\’ 0.559 4+ 0.009 0.443 £0.011 0.304 +0.011 0.315 £0.013 0.294 £ 0.010 0.340 4+ 0.014
LRRE;:’?‘ 0.226 4+ 0.006 0.120 £ 0.004 0.031 + 0.007 0.045 4 0.004 0.044 £ 0.006 0.047 4 0.004
RMSC 0.342 +0.004 0.232 £0.009 0.110 £ 0.003 0.123 +0.002 0.121 £ 0.003 0.125 + 0.003
DiMSC 0.383 +0.003 0.246 £ 0.000 0.128 + 0.005 0.141 £0.004 0.138 £ 0.001 0.144 4 0.002
LTMSC 0.546 +0.004 0.431 £0.002 0.280 £ 0.008 0.290 4+ 0.002 0.279 £ 0.006 0.306 + 0.005
GSNMF-CNN | 0.673 +0.003 0.517 £0.003 0.264 4+ 0.005 0.372 +£0.002 0.367 4+ 0.004 0.381 + 0.001
Ut-SVD-MSC | 0.518 + 0.010 0.386 £ 0.007 0.245 4+ 0.013 0.256 £ 0.007 0.249 4+ 0.006 0.263 + 0.006
t-SVD-MSC 0.750 4+ 0.007 0.684 + 0.005 0.555 + 0.005 0.562 £+ 0.008 0.543 + 0.005 0.582 + 0.004

the Caltech-101 dataset [36.54])). Here, we use the instances
from all the categories to test whether the proposed method
could handle relatively large and challenging dataset, and
compare the clustering performance with the state-of-the-art
unsupervised CNN-based clustering method, i.e., GSNMF-
CNN. We use the deep feature Inception V3 [56] in this
dataset, since it achieves better results than VGG19. It is
also extracted from the activations of the penultimate layer,
leading to a 2048-dimensional feature vector. The same fea-
ture is used in GSNMF-CNN.

The results are shown in Table [0 By using the more
powerful deep feature, the baseline algorithms (SPC and
LRR) perform better than some sophisticated methods such
as RMSC and DiMSC. This is probably because RMSC and
DiMSC suffer from the less representation capabilities of
the handcrafted features on this dataset. Surprisingly, the
LTMSC is not affected by some degenerate views and even
does sightly better than GSNMF-CNN. Furthermore, in the
testing of all the datasets, three observations need to be worth
noting: (1) The method Ut-SVD-MSC sometimes shows com-
parable performance to other state-of-the-art approaches, but
still has a significant gap with regard to the proposed method.
Because Ut-SVD-MSC does not make full use of the struc-
ture of the self-representations coefficient tensor, while the
proposed method preserves those coefficients in Fourier do-
main, as illustrated in Fig. E} (2) Due to noise or error in

measurement, some of the available views may be mislead-
ing in revealing the true structure of the data, so that includ-
ing them in the clustering process may have negative influ-
ence. The corresponding phenomena appear several times,
for example, DiMSC on Scene-15, (RMSC, DiMSC, and
LTMSC) on MITIndoor-67, and (RMSC and DiMSC) on
Caltech-101, where their performances are worse than di-
rectly using spectral clustering with single best feature. On
the contrary, the proposed method exhibits robustness to the
existence of degenerate views. (3) CNN feature is usually
better than handcrafted features in terms of representation
capability. But this does not mean that it is enough for clus-
tering only by using CNN feature. The performance gains of
the proposed method on all these datasets confirm the “com-
plementary principle” in the multi-view learning, which states
that each view of the data may contain some knowledge that
other views do not have. The complementary information
between CNN feature and handcrafted features can help to
improve the clustering performance.
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Figure 5: Comparison the confusion matrices between LTMSC and the proposed t-SVD-MSC on Scene-15 dataset.

Table 8: Clustering results (mean =+ standard deviation) on COIL-20. We set A = 0.25 in proposed

t-SVD-MSC.

Method NMI ACC AR F-score Precision Recall
SPChest 0.806 + 0.008 0.672 +0.063 0.619 +0.018 0.640 +0.017 0.596 4+ 0.021 0.692 £ 0.013
LRRpest 0.829 + 0.006 0.761 +0.003 0.720 +0.020 0.734 4+ 0.006 0.717 +0.003 0.751 4 0.002
RMSC 0.800 + 0.017 0.685 +0.045 0.637 +0.044 0.656 +0.042 0.620 4+ 0.057 0.698 & 0.026
DiMSC 0.846 + 0.002 0.778 +0.022 0.732 +0.005 0.745 4+ 0.005 0.739 4+ 0.007 0.751 £ 0.003
LTMSC 0.860 + 0.002 0.804 +0.011 0.748 +0.004 0.760 4+ 0.007 0.741 +0.009 0.776 & 0.006
Ut-SVD-MSC | 0.841 4+ 0.004 0.788 4+ 0.005 0.732 +0.003 0.746 £+ 0.006 0.731 £ 0.002 0.760 =+ 0.002
t-SVD-MSC | 0.884 &+ 0.005 0.830 + 0.000 0.786 + 0.003 0.800 £ 0.004 0.785 £ 0.007 0.808 + 0.001

Table 9: Clustering results (mean =+ standard deviation) on Caltech-101.

We set A = 0.5 in proposed

t-SVD-MSC.

Method NMI ACC AR F-score Precision Recall
SPCbCte{" 0.723 +0.032 0.484 £0.019 0.319 +0.014 0.340 £ 0.025 0.597 £0.018 0.235 4 0.020
LRRECI;’{‘I 0.728 +0.014 0.510 £ 0.009 0.304 + 0.017 0.339 +0.008 0.627 £ 0.012 0.231 4+ 0.010
RMSC 0.573 +0.047 0.346 + 0.036 0.246 +=0.031 0.258 + 0.027 0.457 £0.033 0.182 4+ 0.031
DiMSC 0.589 +0.011 0.351 £0.008 0.226 + 0.003 0.253 4+ 0.007 0.362 £ 0.010 0.191 + 0.007
LTMSC 0.788 4+ 0.005 0.559 +£0.012 0.393 + 0.007 0.403 +0.003 0.670 £+ 0.009 0.288 4+ 0.012
GSNMF-CNN | 0.775 £ 0.010 0.534 + 0.012 0.246 4+ 0.008 0.275 £+ 0.006 0.230 4+ 0.004 0.347 + 0.006
Ut-SVD-MSC | 0.742 4+ 0.008 0.483 £+ 0.003 0.334 + 0.002 0.344 +£0.004 0.612 £+ 0.002 0.239 4+ 0.002
t-SVD-MSC 0.858 + 0.003 0.607 £+ 0.005 0.430 + 0.005 0.440 - 0.010 0.742 + 0.007 0.323 + 0.009

5.4 Model Analysis

5.4.1 Contributions of Multi-View Features

In this subsection, we will analyze the contributions of mul-
tiple features to the final clustering result from the experi-
mental perspective. In Fig. [§] we present the view-specific

affinity matrices and the final affinity matrix for the ORL
dataset. Since the LBP feature owns much more expressive
capability than other two low-level feature in face descrip-
tion, the matrix corresponding to LBP (Fig. |§| (b)) reveals

the underlying clustering structures more clearly, which fur-
ther validates our conclusion that discriminant feature con-
tributes more to final result. Similar observation can be seen
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Figure 6: Samples from MITIndoor-67 dataset.
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Figure 7: Comparison between SPC/LRR with the single
view feature and the proposed t-SVD-MSC in terms of ac-
curacy and NMI on MITIndoor-67 dataset.

in Fig. 0] where the block-diagonal structures are loomed
and apparent for PRICoOLBP and CNN-VGG19 features, re-
spectively, while the affinity matrices for PHOW and CEN-
TRIST features can hardly see the block-diagonal structures.
This observation coincides with the conclusion that PRI-
CoLBP is more suitable for scene classification than the
other two handcrafted features [3], i.e., PHOW and CEN-
TRIST. Obviously, two discriminant features PRICoLBP and

CNN-VGGI19 contribute more to final clustering, which is
demonstrated in the final affinity matrix in Fig. 9| (e).

Furthermore, we analyze the changes of affinity matrix
for all the views before and after the proposed optimization
procedure, so that the influence of the proposed model upon
each view can be explored more thoroughly. To this end,
the LRR solution of each feature (denotes by Z(“)) is em-
ployed to initialize the Z(*) (see the step 1 in Algorithm 3)
S0 as to obtain the optimized self-representation matrix (de-
notes by Z*(*)) in a unified tensor space. Fig. Eshows the
comparison of clustering accuracy by using { Z(“)}le be-
fore (blue bar) and after (magenta bar) optimization on the
ORL and MITIndoor-67 datasets. Two key observations are
listed as follows: 1) The feature type, which provides most
contribution to final clustering, is kept the same before and
after the optimization. 2) The performance of all the views
are improved simultaneously, which is an evidence that the
complementary information can be captured and propagated
among all the views in high-order tensor space.

5.4.2 Parameter Tuning

We will discuss the parameter tuning in the proposed multi-
view clustering model. Fortunately, the proposed model con-
tains only one parameter A needed to be chosen. The param-
eter A > 0 is used to balance the effects of the two parts
in (ZI). Commonly, the choice of A depends on the prior
knowledge of the error level of the data. Fig. [IT] shows the
evaluation results on Yale and Scene-15 datasets by using
different values of A\. Although the parameter A plays an im-
portant role on performance, most results are still better than
other competitors, as can be seen from the red horizontal
lines in Fig. [IT] (a) and (b), which denote the second best
indexes. The same indexes are not presented in Fig. [TT] (c)
and (d), as they are far below the minimal values of vertical
ordinate. This implies the partial stability of the proposed
model while A is varying.

5.4.3 Stability

Overall, compared with all those competitors, the proposed
method keeps relatively low standard deviation. Actually,
the variance is mainly caused by the numerical calculation
error of matrix inverse and matrix SVD, as well as the k-
means algorithm in the final spectral clustering step. The
matrix inverse operation is involved in optimization of Z(")
in the step (4) in Algorithm [ the SVD of complex matrix
operation arises in updating G in the step (11) (details in Al-
gorithm [2). The final step (18), i.e., the spectral clustering,
also can incur the variance, since it contains the real matrix
SVD and k-means algorithm. As we know, k-means algo-
rithm is sensitive to initialization. However, relatively good
affinity matrix provided by the proposed t-SVD-MSC can
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Figure 8: (a)~(c) The illustration of affinity matrices AW =
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1(1zZ2™)| + 1Z™7|), v = 1,2,3 for all the views/features in

ORL datasets. (d) The final affinity matrix Z = & S0_, (|2 4 |27 ) /2.

reduce the variance produced by k-means to some extent.
This can be evidenced by observing the standard deviation
of the proposed method in all the result tables (Table [2] ~
Table[9), which indicates that the proposed t-SVD-MSC is a
stable multi-view subspace clustering method.

5.4.4 Convergence and Computational Complexity

Thanks to the rotation of the coefficient tensor (see Fig. E[),

the computational complexity for SVD is reduced to O(N2V2),

compared with O(N3V') for the unrotated tensor. In prac-

tice, the proposed optimization method for t-SVD-MSC con-

verges fast, which is illustrated in Fig. [I2] The two curves

10).

v
1

R truction Error = — X _x @7z g

econstruction Error V;H I

(37

\Y4
1
- (@) _ g
Match Error = E ||Z G'||0o (38)

v=1

Table 10: Comparison of CPU time of different methods, s,

record the reconstruction error (defined in Eq. (37)) and match 7 and /2 denote second, minute and hour, respectively.

error (Eq. (38)) in each iteration step. Additionally, the CPU
times needed by the proposed method and its competitors
are illustrated in Table [T0] Compared with other state-of-
the-art algorithms, the proposed model is advanced not only
in clustering performance, but also in saving time, especially
when handling large-scale dataset (see the third row in Table

\ [ RMSC | DiMSC [ LIMSC | Our |
ORL 21.07s 21.02s 42.97s 37.61s
Scene-15 187.01m | 221.46m | 135.68m | 27.69m
Caltech-101 ~ 24h > 27h ~ 5h ~ 2h
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6 Conclusions

In this paper, a t-SVD based tensor low-rank subspace model
is proposed to perform data clustering from multi-view fea-
tures. To capture the complementary information from dif-
ferent views, the proposed method constrains the rotated
subspace coefficient tensor through tensor multi-rank to ex-
plore the high order correlations. Then, the multi-view clus-
tering problem have been formulated in a unified optimiza-
tion framework, and an efficient algorithm is proposed to
find the optimal solution. The proposed t-SVD-MSC is then
applied to three kinds of image clustering datasets: face clus-
tering, scene clustering, and generic object clustering. Ex-
tensive evaluation of our method is conducted on several
challenge datasets, where a clear advance over contempo-
rary MSC approaches is achieved. Meanwhile, the proposed
model presents strongly robust to degenerate views. By uti-
lizing CNN feature as a new view, the results show that
t-SVD-MSC is very competitive with the recent proposed
CNN based clustering approach on challenge datasets.

7 Appendix

Proof of the Theorem [

\ IR oo MR Opeinizco M Fin \

0.7
0.6 8
05 8
0.4t ]
Q
Q
<
03+ 8
02t 8
0.1f 8
0
PHOW PRICOLBP CENTRIST Final
Featureslvlews

(b) MITIndoor-67

before (blue bar) and after (ma-

Proof In Fourier domain, the optimization problem of Eq.
(29) can be reformulated as

G5 = argmln 7|[bdiag(G )|l + 7|\gf FillE (39

Sr

1 .
= argmln ZT ||g(” + 5”953)

S

~FPN3 @0

where 7/ = n37. Then Eq. can be separated into ng
independent subproblems,

1 .
g(]) _ argmm ’ ||g(])||* + nggcJ)
f

-FPIE @D

where j = 1,2,...,n3. Note that Eq. (4I)) is the F-norm
based nuclear norm low rank matrix approximation problem
represented in Fourier domain. According to the result on
gradients of unitarily invariant norms, Eq. @I)) can also be
solved by a soft-thresholding operation [27],

. . . . AT
67 = Do (FP) =uP PV “2)
here, gﬁi’ = u}j)s;j)v}”T, D, (+) is the SVT operation

with with threshold 7/ (see Section, and S ({3, = diag{ (S}j ) (4,9)—

7')+}. Then, we can get

G = bdfold {bdiag(U ;)bdiag(S . )bdiag(V;)T}
(43)

and

G=U+SxVT (44)
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Figure 11: Parameter () tuning in terms of ACC and NMI
on Yale and Scene-15 datasets.
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Figure 12: Convergence curves on Scene-15 dataset.

where 8 = ifft(S .+, [],3). Suppose that J is an 1, x 1 x
ng f-diagonal tensor whose diagonal element in the Fourier
domain is J ¢ (4,7,7) = (1 — ﬁ;“)ﬁ then we have that
S (i,1,:) = Sf(1,4, :)]f(i,fi, :) in the Fourier domain,
as well as 8(i,4,:) = 8(i,4,:) o J(i,4,:) in the original
domain. Because both S and J are f-diagonal, S can be
formulated as S = S * J . Therefore, a convolution based
tubal-shrinkage operator in the original domain is equivalent
to the tensor SVT in the Fourier domain.
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